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Abstract: Advancements in deep learning and availability of medical imaging data have led to use 

of CNN based architectures in disease diagnostic assisted systems. In spite of the abundant use of 

reverse transcription-polymerase chain reaction (RT-PCR) based tests in COVID-19 diagnosis, CT 

images offer an applicable supplement with its high sensitivity rates. Here, we study classification 

of COVID-19 pneumonia (CP) and non-COVID-19 pneumonia (NCP) in chest CT scans using 

efficient deep learning methods to be readily implemented by any hospital. We report our deep 

network framework design that encompasses Convolutional Neural Networks (CNNs) and 

bidirectional Long Short Term Memory (biLSTM) architectures. Our study achieved high specificity 

(CP: 98.3%, NCP: 96.2% Healthy: 89.3%) and high sensitivity (CP: 84.0%, NCP: 93.9% Healthy: 

94.9%) in classifying COVID-19 pneumonia, non-COVID-19 pneumonia and healthy patients. Next, 

we provide visual explanations for the CNN predictions with gradient-weighted class activation 

mapping (Grad-CAM). The results provided a model explainability by showing that Ground Glass 

Opacities (GGO), indicators of COVID-19 pneumonia disease, were captured by our CNN network. 

Finally, we have implemented our approach in three hospitals proving its compatibility and 

efficiency. 

Keywords: deep learning; computed tomography; image classification; COVID-19; medical image 

analysis; pneumonia; CNN, LSTM, medical diagnosis 
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1. Introduction 

The outbreak of a novel coronavirus, severe acute respiratory syndrome coronavirus 

2, (SARS-CoV-2) started in Wuhan, China in December 2019 [1]. Afterwards, the 

aggressive human-to-human spread of the virus infected the entire world now widely 

referred to as COVID-19 (coronavirus disease 2019). The total number of reported cases is 

more than 110 million at the time of writing (Feb 22, 2021). [2] Although governments take 

drastic measures to fight the transmission of the virus, emerging variants are threatening 

progress [3]. 

Currently, there are two types of diagnostic tests used in the identification of COVID-

19. These are molecular tests such as real-time reverse transcriptase polymerase chain 

reaction (RT-PCR), detecting virus’s genetic material and antigen tests, detecting specific 

proteins from the virus. Although, RT-PCR test is done to patients showing clinical 

symptoms, the current tests have very high false negative rates resulting in the lack of 

treatment of COVID-19 patients and consequently failing to prevent transmission of the 

virus to others by these patients [4]. Therefore, as an alternative, medical doctors are 

utilizing chest imaging technologies for diagnosing COVID-19. Computed tomography 

(CT) of lungs is found to be a sensitive and accurate test for COVID-19 diagnosis [5,6]. 

Chest CT scans have further advantage of identifying patients who are at the very start of 

the symptoms and even identifying asymptomatic patients [7]. 

In addition to diagnosis challenges, the prevalence of the virus and ever-growing 

number of confirmed cases created a high-level demand of healthcare workers. The 

healthcare providers are facing intense workload due to the pandemic [8]. To relieve the 

overwhelming workload, AI systems are being used to detect and identify COVID-19 

using medical imaging technologies [9-17]. Recent studies on radiology demonstrate 

promising results on COVID-19 pneumonia classification using chest CTs with the help 

of deep learning methodologies.  

Although there are works proposing deep Convolutional Neural Networks (CNNs) 

without performing segmentation on CT slices [9,13],  performing segmentation of CT 

slices is usually preferred as a preprocessing step before classification networks. The 

reason why the segmentation before classification is commonly preferred is that lung 

regions in CT images can easily be extracted with segmentation networks which are 

efficacious in removing redundant information and eliminating noise. In these related 

works, pre-trained well-known architectures such as U-Net [18], U-Net++ [19], and  

Deeplabv3 [20] are used for the segmentation task. As for the classification, deep CNNs, 

ResNext [21] based classifiers and LSTMs are utilized. There are different class definition 

approaches in the COVID-19 related studies like binary or multiclass. Binary classification 

is usually applied as Covid pneumonia and non-Covid pneumonia [12,17] or Covid 

positive and Covid negative[14,16]. Multiclass classification separates Covid negative 

further into Covid pneumonia, non-Covid pneumonia and no pneumonia [9-11,13,15]. For 

radiologists diagnosing hundreds of patients with COVID pneumonia and distinguishing 

Covid pneumonia and non-Covid pneumonia in a short time is challenging. Therefore, a 

multiclass classifier is beneficial for radiologists for making fast diagnosis.  
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Another important difference in the methods applied among the related studies is 

the use of slice-based or patient-level labeling. While most of the COVID-19 classification 

studies exploit slice-based CT image labels [10,12,13,15-17] because of its convenience, it 

has a big labour cost requiring manual labelling of slices by radiologists. Therefore, 

patient-level labelling has also been used [9,11,14] instead of slice-based labelling where  

slice-based features can be obtained with the help of deep learning methods. 

Notwithstanding, the studies making patient-level predictions apply restrictions on the 

input slice size of a single CT Volume causing information loss. These are done via 

random selection or  interpolation.  

At the beginning of the outbreak, most of the infected patients were diagnosed with 

pneumonia with unknown causes [22]. Resemblance of the chest CT scans of patients with 

COVID-19 and non-Covid pneumonia, made identification of the disease difficult. 

Therefore, it is crucial to distinguish between non-Covid pneumonia and pneumonia 

caused by COVID-19. In this study, we developed a multiclass classification model on 

chest CTs of the patients with COVID-19 symptoms. The dataset used in this study was 

provided by a Turkish hospital. 

2. Materials and Methods 

2.1. Dataset 

The dataset used in this study consists of 26935 CT images of 348 patients with 

varying numbers from 13 to 261 for each patient. For each individual CT slice image, the 

labels of the patients were used.The dataset was supplied by American Hospital and 

labelled by their expert radiologists. CT images were exported onto a local server from 

the CT machines via the picture archiving and communication systems (PACS) in DICOM 

format. All slices were converted to PNG format with adaptive histogram equalization.   

In this study three subclasses were used as Covid Pneumonia (CP), Non-Covid 

Pneumonia (NCP) and healthy. Out of 348 patients, 270 were assigned to the training set 

and 78 to the test set with these three subclasses. The distribution of the dataset is given 

in Table 1.  For each three subclasses CT slice images are represented in Figure 1 with 

original, manually segmented, AI-based segmented and final merged format. 

Table 1. Distribution of CT image dataset in three studied cases. 

Image Dataset Training Testing 

Covid19 pneumonia cases 95 25 

Other pneumonia cases 96 33 

Healthy cases 79 20 
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Figure 1. Representative images of lung CT segmentation. Rows are depicting CT slices of patients 

with Covid pneumonia, no pneumonia and non-Covid pneumonia, respectively. A) Original CT 

slice images; B) manually segmented CT slice images; C) AI-based segmentation of CT slice 

images; D) merged image of the segmentation mask and original CT slice images 

2.2. Preprocessing 

Spatial resolution of the CT images is 512 pixels and slice thicknesses are between 

0.75 and 5.0 mm. In the image preprocessing step, CT images were scaled to 256x256 

pixels. To eliminate redundant information in lung CT slices, CT slices were segmented 

and obtained masks were used for elimination of small lungs. The slices of each patient 

were grouped to have 50 slices in each group to feed the network. 

2.2.1. Lung Segmentation 

U-net [18] medical image segmentation architecture was used for CT slices 

segmentation. In this study U-Net architecture was trained from scratch since it is not 

designed for CT images. The segmentation helped to reduce the background information 

and assisted classifier model by focusing on the areas with pneumonia characteristics.  

The segmentation model was trained with 301 manually annotated CT slice images. 

The validation set was assigned randomly from 10% of the annotated dataset.  The model 

was trained for 30 epochs achieving 0.9681 Dice-Coefficient Index proving an accurate 

segmentation. Learning rate of the segmentation model was set to 2e-5. For data 

augmentation, rotating, flipping, blurring and brightening were used. The generalization 

of the model was increased by applying augmentation in random range with randomly 

selected augmentation type through a data generator. 

2.2.2. Segmentation Based Elimination 

The areas containing no lung information were eliminated. CT slices having small 

lung regions were also eliminated since those were not supplying valuable information 

on pneumonia characteristics. The original CT slices were masked by the ratio obtained 
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by the maximum CT lung area. The threshold values of 0.4 for up-side of lung and 0.9 for 

down-side of lung were used for masking. The segmentation mask was applied to those 

having a scaled CT lung area smaller than the defined thresholds. 

2.2.3. Slice Grouping 

In this study, we adopted a patient-based labelling without imposing any restrictions 

on input size to not have an information loss. Patient-based labelled dataset requires the 

number of slices in a group which has to be defined considering the number of 

occurrences of pneumonia characteristics. We grouped CT images since each slice can 

contribute to pneumonia characteristics, We set the group size to be 50 CT slices since an 

exact number of slices needs to be fed to the network. In the studied dataset, the number 

of slices ranges from 13 to 261 as mentioned in Section 2.1. Therefore, in case the number 

of slices for a patient was not divisible by 50; when there were more than 25 slices 

remaining, the last group of slices were augmented with padding of black images, when 

there were less than 25 slices remaining then the amount of slices in the last two groups 

were downsampled to 50 using interpolation.  

2.3. Deep Learning Model 

In this study, CNNs were used to obtain feature maps of CT slices and bidirectional 

LSTMs were used for classification. This framework was applied to CT Volumes 

consisting of multiple CT slices for each patient. CT groups generated from CT slices for 

each patient were fed to the bidirectional LSTM. Then, segmented and eliminated CT 

groups of each patient were processed by the framework. 

Two separate steps of training were performed in an end-to-end pipeline. Initially, 

the slices were fed to the proposed Convolutional Neural Network block for extracting 

spatial features. Once the spatial features were extracted from each slice, the feature maps 

were given to the bidirectional LSTM. The bidirectional LSTM makes the classification for 

the CT group by exploiting the axial dependency in the input slices and transforming the 

spatial features to axial features. Finally, label-based majority voting was performed for 

classification outputs of multiple CT groups for a particular patient. The proposed 

framework was motivated by detection of violence in video frames by Hanson et al. [23]. 

The proposed framework was trained on a machine with a 4 NVIDIA Tesla V100 

GPU and implemented on the Python programming language with Keras library with 

Tensorflow backend.  

2.3.1. Convolutional Neural Network 

The proposed architecture was formed of 4 convolutional layers with ReLU 

activation function whose outputs were concatenated after applying Global Max Pooling 

operations. The architecture of the network is shown in Figure 2. This concatenation 

ensures that features from all layers are used equally.  

Most of the related studies use pre-trained classification models [9,10,14,24]; 

however, these architectures are not particularly designed for classification of CT 

Volumes. The architectures such as ResNet [25] and Inception [26], are designed for 

ImageNet dataset [27] where the images contain a wide variety of objects. For the 

ImageNet classification task, a large set of features must be learned for inference, hence 
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deeper networks need to be utilized. On the other hand, CT Volumes can be inferred with 

smaller feature maps in comparison to ImageNet. The CNN encoder architecture is 

designed to be more efficient in terms of both memory and runtime inference.  

 

 

Figure 2. CNN block architecture for learning feature maps. 

The main purpose of training these CNN blocks is to obtain feature maps of ground 

glass opacities (GGO) which are prevalent in Covid pneumonia [5,28]. After training, the 

infection feature maps belonging to each slice were fed to the bidirectional LSTM to 

maintain the relationship between slices.  

All layer weights were initialized randomly. The CNNs were trained for 100 epochs 

with an early stopping set to 25 epochs to avoid overfitting. Learning rate is set to 1e-4. 

The categorical cross-entropy loss function was used to calculate the loss between 

predictions and ground-truth labels. Rotating, flipping, blurring and brightening were 

used as data augmentation techniques. Data generator at each step augments data in 

random range with randomly selected augmentation type to increase generalization of 

model. 

2.3.2. Bidirectional LSTM based classifier 

The concatenation of the output of CNN blocks for each CT slice was fed to 

bidirectional LSTM. Sequence model was used to emphasize the relationship between 

spatial feature maps of multiple and ordered CT slices. Since this relationship is both 

forward and backward, a bidirectional sequence model was used. The output of each 

bidirectional LSTM cell was preserved and flattened. It is assumed that each cell output 

has equal importance given the fact that spatial feature maps are agnostic in terms of the 

amount of infection in the lungs. The aggregated features obtained from bidirectional 

LSTM were then transferred to a dense layer with dropout. The obtained output of the 

final dense layer is a multiclass classifier of three classes for each CT group of a single 

patient. The architecture of the network is shown in Figure 3.  

CNN blocks (explained in detail in section 2.2.2) were initialized with the weights of 

feature extracting layers. CNN weights were frozen and the rest were initialized 

randomly. The classifier was trained for 200 epochs with an early stopping set to 25 epochs 
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to avoid overfitting. Same parameters in the CNN were used for biLSTM (see section 

2.3.2). 

 

Figure 3. Illustration of the CNN-biLSTM classifier architecture. End-to-end pipeline for 

classification where segmented slices are fed to CNN blocks and then CNN outputs are processed 

by bidirectional LSTM. Each state output is preserved, and every output is combined prior to 

dense layers and softmax layer. 

2.4. Performance and Assessment 

In the case of patients having more than one CT group, label-based majority voting 

was applied. First, the label with the highest classification probability for each group was 

selected. Next, the label having the majority vote was assigned to the label of the patient. 

When the output was healthy and the group was classified as NCP or CP, the probability 

of non-healthy class was checked further. When the probability was greater than the 

predefined threshold (0.9), then the label changed in favor of the non-healthy class.  

Accuracy, specificity, sensitivity and f1-score were calculated from the label-based 

majority voting method outputs since the infections of pneumonia might not be apparent 

in all slices of a patient. The flowchart for the algorithm is illustrated in Figure 4. 

 

Figure 4. Flowchart diagram for the classification algorithm. 

3. Results 

CT images, collected from PACS server, were preprocessed then fed to the CNN + 

biLSTM network. CNN blocks were used for obtaining feature maps of ground glass 

opacities (GGO), then feature maps were fed to the biLSTM network which maintained 

the relationship between spatial feature maps of multiple and ordered CT slices. The 

framework was designed to be efficient in runtime inference. As a result of this approach, 
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average inference runtime for each CT group in our test set is 0.106 second with a single 

NVIDIA RTX 2060 GPU and 0.409 second with a Intel i7-9750H CPU. The proposed 

network performance was evaluated on an independent test set. Accuracy, specificity, 

sensitivity and f1-score for each class were calculated and summarized in Table 2. 

On an independent test dataset, we achieved high specificity (98.3%) and high 

sensitivity (84%) rates in detection of COVID-19. Moreover, we obtained high specificity 

(96.2%) and high sensitivity (93.9%) rates in detection of non-COVID-19 pneumonia as 

well (Table 2). The areas under receiver operating characteristics for COVID-19 and non-

COVID-19 pneumonia were 0.90 and 0.91, respectively (Figure 6a). 

CNN blocks of the proposed network were utilized to obtain feature maps of ground 

glass opacities (GGO). To illustrate the effectiveness of the approach used in this study, 

the last class activation map (CAM) was visualized with the help of Grad-CAM (Figure 

5). As it can be seen from Figure 5, features were extracted mostly from ground glass 

opacities. 

The same algorithm (Figure 4) was applied for each patient in the test set and 

represented. By comparing the patients’ ground-truth labels, ROC curves and confusion 

matrix are plotted as shown in Figure 6. In the ROC curve we obtained a macro average 

AUC value as 0.92. Table 2 shows the classification results of the patients. Our network 

classifies NCP patients more accurately (93.9%) than other labels and its overall accuracy 

is 89.7%. 

Specificity and sensitivity are mostly used for evaluating diagnosis applications. Our 

model’s specificity value on CP patients is 98.3% and NCP patients is 96.2%. These values 

show that our model can classify pneumonia affected patients efficiently. 

Table 2. Performance metrics (accuracy, specificity, sensitivity, f1-score) for each class of test set. 

 accuracy specificity sensitivity f1-score 

CP 0.840  0.983 0.840  0.875  

NCP 0.939  0.962 0.939  0.899  

Healthy 0.900  0.889 0.900  0.923  

Average 0.897  0.949 0.893  0.899  
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Figure 5. Visualization of CNN outputs. Left: Cropped CT image, right: visualized feature map of 

CNN output. The right image shows CNN blocks are capable of capturing Ground Glass Opacities 

in CT images. 

  

(a) (b) 

Figure 6. Classification performance represented with (a) Receiver operating characteristics 

(ROC) curves. (b) Normalized confusion matrix. In the ROC curve, the blue line denotes the 

macro-average area under the curve (AUC). 

4. Discussion 

In this work, we designed and implemented a two-staged deep learning model for 

the diagnosis of COVID-19 disease from chest CT volumes. Our model was able to assist 

the radiologists with its performance of high specificity (CP: 98.3%, NCP: 96.2%) and high 

sensitivity (CP: 84%, NCP: 93.9%) rates in detection of COVID-19 pneumonia and non-

COVID-19 pneumonia. This study offers a reduced time and effort in diagnosing CP and 

NCP as well as distinguishing healthy patients. This work was especially motivated to be 

easily implemented and used in COVID-19 pandemic to manage overwhelming 

workload. 

We were able to collect a large number of chest CT scans from American Hospital in 

Turkey. The dataset included a total of 26935 CT scans belonging to 348 distinct patients. 

We used a patient-based labelling due to its effectiveness both in cost and time. Although 

slice-based labelling is advantageous for deep learning methods, these slice-based 

features can be obtained via CNNs. The use of slice based, or patient-based labeling was 

among the differences in the model architectures used in the related studies (see Table 3 

for all compared features). We implemented a grouping method for the varying numbers 

of slices in the CT Volumes dataset. There are other methods like performing 

interpolations on CT Volumes or random selection of slices of a CT Volume; however, 

these cause information loss. Another advantage of the grouping method was exploiting 

each single slice of every patient. Since we grouped the CT slices of the patients, the 

evaluation of the class probabilities of groups was done by utilizing the majority-voting 

method. 
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In Table 3, we report a summary of the previous works that are focusing on multiclass 

classification on chest CT scans distinguishing COVID-19 pneumonia from community-

acquired pneumonia and healthy patients. Only exception is the study from El-bana et al. 

[24] where they are compartmentalizing the community-acquired pneumonia by viral and 

bacterial. In this table we  compared the related studies with our work in terms of 

number and types of classes, sample size as well as the architectures used for 

segmentation and feature extraction tasks. Furthermore, the use of pre-trained models 

was examined for both segmentation and feature extraction methods. The studies using 

sequence models to relate CT scans in a CT volume was also noted. Unlike other studies 

using prominent segmentation architectures,  in this study, we trained on our dataset of 

chest CT scans since U-Net is not trained on chest CT scans.  

We designed an efficient architecture to be readily used in every hospital. Since 

deeper architectures require high memory and high computing power, not every hospital 

has a suited infrastructure to fulfill those requirements. Our model utilizes inference task 

with moderate memory and computational power (0.409 seconds average runtime for 

each CT group on CPU). This work has several limitations. Foremost, we used a single 

dataset from a single hospital since this study was an immediate response to an urgent 

need. Correspondingly, this dataset is collected from a particular type of CT machine. It 

would be desirable to work with other datasets from other hospitals. Hence, we are in the 

process of collaborating with other hospitals. Nonetheless, we believe our study is a 

compatible and fast response to the hospitals in need. Our proposed framework can be 

used to help relieve the burden on radiologists as well as reduce the time to diagnose 

COVID-19 pneumonia and non-COVID-19 pneumonia. In addition, our framework can 

decrease misdiagnosis of CP and NCP thanks to its high specificity and sensitivity rates.  

Although explainability and interpretability are major concerns for deep learning 

models, there have been significant efforts in explaining the decisions of deep learning 

models used for medical diagnosis. Since the doctors are going to make decisions for 

patients relying on the AI system, it is useful to understand why the AI system makes one 

choice over another. There are many methods developed to explain deep learning 

methods trained on medical images [29], such as Grad-CAM [30]. With this in mind, we 

visualized the feature maps generated via Grad-CAM to provide insights on our 

framework. 

5. Conclusions 

Fast and accurate diagnosis of COVID-19 forms a challenge for all countries. The 

available tests for fast diagnosis either have sensitivity or accuracy problems. In this 

regard, chest CT scans found to be very effective in identifying COVID-19 patients. This 

method showed a superior practice over other methods by its power in identifying 

COVID-19 patients even who are at the very early stages of the disease or patients with 

no symptoms. In addition to this, there is a pronounced level of confirmed cases causing 

an additional demand of healthcare workers.  

We built an AI system that can accurately differentiate COVID-19 pneumonia 

patients and non-COVID-19 pneumonia patients. The framework is implemented and 
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ready for use to assist radiologists. Our two-staged deep learning classifier enables us to 

identify CP, NCP and healthy patients from chest CT volumes. First, this framework is 

capable of learning pneumonic features in CT scans. Second, it can classify COVID-19 

pneumonia and non-COVID-19 pneumonia with 84% and 93.9% accuracy. Our model 

achieves high specificity for CP: 98.3% and NCP: 96.2% and high sensitivity for CP: 84% 

and NCP: 93.9%. We have further analyzed the area under receiver operating 

characteristics curve (ROC-AUC) to demonstrate the effectiveness and efficiency of our 

proposed framework. We provide an AI system for automated, fast and accurate 

diagnosis of COVID-19 using medical imaging technologies. Along with recent efforts in 

radiology we demonstrate a promising COVID-19 pneumonia classification using chest 

CTs augmented with the help of deep learning methodologies. We showed that our 

system is assisting the radiologists. It is implemented in real-time in selected hospitals 

through a user interface.  

Table 3. Comparison of model architectures used in the related studies and in this study. 

Study 

Target 

Specificatio

ns 

Patient-

level 

labelling 

Total # 

of 

images 

Segmentati

on model 

Feature 

Extraction 

Model 

Sequen

ce 

Model 

Segmentation-

Feature 

Extraction 

Pretrained 

Amyar 

2020 

CP 1, 

Healthy, 

Other 

no 1,369 - 
Multitask  

U-net 
- N/A-no 

Li 2020 

CP, NCP 2, 

Healthy 

no 4,352 U-net Resnet50 - yes-yes 

Zhang 

2020 
yes 617,775 Deeplabv3 3d Resnet-18 

3d 

Resnet-

18 

no-no 

Wang 2020 no 104,009 - Conv2d - N/A-yes 

Hasan 

2020 
no N/A 

Image     

processing 
CNN & QDE LSTM N/A-no 

Lee 2021 yes 436,265 - Inception 3d 
Inceptio

n 3d 
N/A-yes 

This work yes 26,935 U-net Conv2d biLSTM no-no 

El-bana 

2020 

CP, PV 3, PB 

4, Healthy 
no 100 - Inception v3 - N/A-yes 

1 Covid Pneumonia, 2 Non-Covid Pneumonia, 3 Pneumonia Virus, 4 Pneumonia Bacteria 

As a next step, we showed that our framework is able to detect Ground Glass 

Opacities (GGO) in patients suffering from COVID-19 pneumonia via visualizations using 

Grad-CAM algorithm [30]. Image pixel attributions can be visualized upon calculating the 

gradient from the output to a given deeper layer. Grad-CAM reconstructs maps as a 

weighted combination of forward neuron activation, with weights based on global 

average pooling and backpropagation outputs to a target layer. This way COVID-19 

patients can be distinguished from the others by providing demonstration of the proposed 
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models with pneumonia indicating top features. Note that this framework not only 

identifies CP but also NCP owing to its capability to generate two-dimensional feature 

maps. This can be easily further compartmentalized for additional pneumonia types 

according to needs of the hospitals and healthcare workers. Overall, our work offers an 

easily adaptable framework which has been already implemented and being used. As 

such, it offers implementation in numerous hospitals with low computing powers 
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Abbreviations 

The following abbreviations are used in this manuscript: 

AI: Artificial Intelligence 

AUC: Area Under Curve 

biLSTM: bidirectional Long Short Term Memory  

COVID-19: Coronavirus Disease 2019 

CP: COVID-19 pneumonia  

CNN: Convolutional Neural Network 

CT: Computed Tomography  

DICOM: Digital Imaging and Communications in Medicine 

DL:  Deep Learning 

Grad-CAM: gradient-weighted class activation mapping  

GGO: Ground Glass Opacities  

PACS: Picture Archive and Communication System. 

ROC: Receiver Operating Characteristic 

RT-PCR: Reverse Transcription Polymerase Chain Reaction 

NCP: non-COVID-19 pneumonia 
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