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Abstract: Advancements in deep learning and availability of medical imaging data have led to use
of CNN based architectures in disease diagnostic assisted systems. In spite of the abundant use of
reverse transcription-polymerase chain reaction (RT-PCR) based tests in COVID-19 diagnosis, CT
images offer an applicable supplement with its high sensitivity rates. Here, we study classification
of COVID-19 pneumonia (CP) and non-COVID-19 pneumonia (NCP) in chest CT scans using
efficient deep learning methods to be readily implemented by any hospital. We report our deep
network framework design that encompasses Convolutional Neural Networks (CNNs) and
bidirectional Long Short Term Memory (biLSTM) architectures. Our study achieved high specificity
(CP: 98.3%, NCP: 96.2% Healthy: 89.3%) and high sensitivity (CP: 84.0%, NCP: 93.9% Healthy:
94.9%) in classifying COVID-19 pneumonia, non-COVID-19 pneumonia and healthy patients. Next,
we provide visual explanations for the CNN predictions with gradient-weighted class activation
mapping (Grad-CAM). The results provided a model explainability by showing that Ground Glass
Opacities (GGO), indicators of COVID-19 pneumonia disease, were captured by our CNN network.
Finally, we have implemented our approach in three hospitals proving its compatibility and

efficiency.
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1. Introduction

The outbreak of a novel coronavirus, severe acute respiratory syndrome coronavirus
2, (SARS-CoV-2) started in Wuhan, China in December 2019 [1]. Afterwards, the
aggressive human-to-human spread of the virus infected the entire world now widely
referred to as COVID-19 (coronavirus disease 2019). The total number of reported cases is
more than 110 million at the time of writing (Feb 22, 2021). [2] Although governments take
drastic measures to fight the transmission of the virus, emerging variants are threatening
progress [3].

Currently, there are two types of diagnostic tests used in the identification of COVID-
19. These are molecular tests such as real-time reverse transcriptase polymerase chain
reaction (RT-PCR), detecting virus’s genetic material and antigen tests, detecting specific
proteins from the virus. Although, RT-PCR test is done to patients showing clinical
symptoms, the current tests have very high false negative rates resulting in the lack of
treatment of COVID-19 patients and consequently failing to prevent transmission of the
virus to others by these patients [4]. Therefore, as an alternative, medical doctors are
utilizing chest imaging technologies for diagnosing COVID-19. Computed tomography
(CT) of lungs is found to be a sensitive and accurate test for COVID-19 diagnosis [5,6].
Chest CT scans have further advantage of identifying patients who are at the very start of
the symptoms and even identifying asymptomatic patients [7].

In addition to diagnosis challenges, the prevalence of the virus and ever-growing
number of confirmed cases created a high-level demand of healthcare workers. The
healthcare providers are facing intense workload due to the pandemic [8]. To relieve the
overwhelming workload, Al systems are being used to detect and identify COVID-19
using medical imaging technologies [9-17]. Recent studies on radiology demonstrate
promising results on COVID-19 pneumonia classification using chest CTs with the help
of deep learning methodologies.

Although there are works proposing deep Convolutional Neural Networks (CNNs)
without performing segmentation on CT slices [9,13], performing segmentation of CT
slices is usually preferred as a preprocessing step before classification networks. The
reason why the segmentation before classification is commonly preferred is that lung
regions in CT images can easily be extracted with segmentation networks which are
efficacious in removing redundant information and eliminating noise. In these related
works, pre-trained well-known architectures such as U-Net [18], U-Net++ [19], and
Deeplabv3 [20] are used for the segmentation task. As for the classification, deep CNN,
ResNext [21] based classifiers and LSTMs are utilized. There are different class definition
approaches in the COVID-19 related studies like binary or multiclass. Binary classification
is usually applied as Covid pneumonia and non-Covid pneumonia [12,17] or Covid
positive and Covid negative[14,16]. Multiclass classification separates Covid negative
further into Covid pneumonia, non-Covid pneumonia and no pneumonia [9-11,13,15]. For
radiologists diagnosing hundreds of patients with COVID pneumonia and distinguishing
Covid pneumonia and non-Covid pneumonia in a short time is challenging. Therefore, a

multiclass classifier is beneficial for radiologists for making fast diagnosis.
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Another important difference in the methods applied among the related studies is
the use of slice-based or patient-level labeling. While most of the COVID-19 classification
studies exploit slice-based CT image labels [10,12,13,15-17] because of its convenience, it
has a big labour cost requiring manual labelling of slices by radiologists. Therefore,
patient-level labelling has also been used [9,11,14] instead of slice-based labelling where
slice-based features can be obtained with the help of deep learning methods.
Notwithstanding, the studies making patient-level predictions apply restrictions on the
input slice size of a single CT Volume causing information loss. These are done via
random selection or interpolation.

At the beginning of the outbreak, most of the infected patients were diagnosed with
pneumonia with unknown causes [22]. Resemblance of the chest CT scans of patients with
COVID-19 and non-Covid pneumonia, made identification of the disease difficult.
Therefore, it is crucial to distinguish between non-Covid pneumonia and pneumonia
caused by COVID-19. In this study, we developed a multiclass classification model on
chest CTs of the patients with COVID-19 symptoms. The dataset used in this study was
provided by a Turkish hospital.

2. Materials and Methods
2.1. Dataset

The dataset used in this study consists of 26935 CT images of 348 patients with
varying numbers from 13 to 261 for each patient. For each individual CT slice image, the
labels of the patients were used.The dataset was supplied by American Hospital and
labelled by their expert radiologists. CT images were exported onto a local server from
the CT machines via the picture archiving and communication systems (PACS) in DICOM
format. All slices were converted to PNG format with adaptive histogram equalization.

In this study three subclasses were used as Covid Pneumonia (CP), Non-Covid
Pneumonia (NCP) and healthy. Out of 348 patients, 270 were assigned to the training set
and 78 to the test set with these three subclasses. The distribution of the dataset is given
in Table 1. For each three subclasses CT slice images are represented in Figure 1 with

original, manually segmented, Al-based segmented and final merged format.

Table 1. Distribution of CT image dataset in three studied cases.

Image Dataset Training Testing
Covid19 pneumonia cases 95 25
Other pneumonia cases 96 33

Healthy cases 79 20
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Figure 1. Representative images of lung CT segmentation. Rows are depicting CT slices of patients
with Covid pneumonia, no pneumonia and non-Covid pneumonia, respectively. A) Original CT
slice images; B) manually segmented CT slice images; C) Al-based segmentation of CT slice

images; D) merged image of the segmentation mask and original CT slice images

2.2. Preprocessing

Spatial resolution of the CT images is 512 pixels and slice thicknesses are between
0.75 and 5.0 mm. In the image preprocessing step, CT images were scaled to 256x256
pixels. To eliminate redundant information in lung CT slices, CT slices were segmented
and obtained masks were used for elimination of small lungs. The slices of each patient

were grouped to have 50 slices in each group to feed the network.
2.2.1. Lung Segmentation

U-net [18] medical image segmentation architecture was used for CT slices
segmentation. In this study U-Net architecture was trained from scratch since it is not
designed for CT images. The segmentation helped to reduce the background information
and assisted classifier model by focusing on the areas with pneumonia characteristics.

The segmentation model was trained with 301 manually annotated CT slice images.
The validation set was assigned randomly from 10% of the annotated dataset. The model
was trained for 30 epochs achieving 0.9681 Dice-Coefficient Index proving an accurate
segmentation. Learning rate of the segmentation model was set to 2e-5. For data
augmentation, rotating, flipping, blurring and brightening were used. The generalization
of the model was increased by applying augmentation in random range with randomly

selected augmentation type through a data generator.
2.2.2. Segmentation Based Elimination

The areas containing no lung information were eliminated. CT slices having small
lung regions were also eliminated since those were not supplying valuable information

on pneumonia characteristics. The original CT slices were masked by the ratio obtained
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by the maximum CT lung area. The threshold values of 0.4 for up-side of lung and 0.9 for
down-side of lung were used for masking. The segmentation mask was applied to those

having a scaled CT lung area smaller than the defined thresholds.
2.2.3. Slice Grouping

In this study, we adopted a patient-based labelling without imposing any restrictions
on input size to not have an information loss. Patient-based labelled dataset requires the
number of slices in a group which has to be defined considering the number of
occurrences of pneumonia characteristics. We grouped CT images since each slice can
contribute to pneumonia characteristics, We set the group size to be 50 CT slices since an
exact number of slices needs to be fed to the network. In the studied dataset, the number
of slices ranges from 13 to 261 as mentioned in Section 2.1. Therefore, in case the number
of slices for a patient was not divisible by 50; when there were more than 25 slices
remaining, the last group of slices were augmented with padding of black images, when
there were less than 25 slices remaining then the amount of slices in the last two groups

were downsampled to 50 using interpolation.
2.3. Deep Learning Model

In this study, CNNs were used to obtain feature maps of CT slices and bidirectional
LSTMs were used for classification. This framework was applied to CT Volumes
consisting of multiple CT slices for each patient. CT groups generated from CT slices for
each patient were fed to the bidirectional LSTM. Then, segmented and eliminated CT
groups of each patient were processed by the framework.

Two separate steps of training were performed in an end-to-end pipeline. Initially,
the slices were fed to the proposed Convolutional Neural Network block for extracting
spatial features. Once the spatial features were extracted from each slice, the feature maps
were given to the bidirectional LSTM. The bidirectional LSTM makes the classification for
the CT group by exploiting the axial dependency in the input slices and transforming the
spatial features to axial features. Finally, label-based majority voting was performed for
classification outputs of multiple CT groups for a particular patient. The proposed
framework was motivated by detection of violence in video frames by Hanson et al. [23].

The proposed framework was trained on a machine with a 4 NVIDIA Tesla V100
GPU and implemented on the Python programming language with Keras library with

Tensorflow backend.
2.3.1. Convolutional Neural Network

The proposed architecture was formed of 4 convolutional layers with ReLU
activation function whose outputs were concatenated after applying Global Max Pooling
operations. The architecture of the network is shown in Figure 2. This concatenation
ensures that features from all layers are used equally.

Most of the related studies use pre-trained classification models [9,10,14,24];
however, these architectures are not particularly designed for classification of CT
Volumes. The architectures such as ResNet [25] and Inception [26], are designed for
ImageNet dataset [27] where the images contain a wide variety of objects. For the

ImageNet classification task, a large set of features must be learned for inference, hence


https://doi.org/10.20944/preprints202105.0605.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 May 2021 d0i:10.20944/preprints202105.0605.v1

deeper networks need to be utilized. On the other hand, CT Volumes can be inferred with
smaller feature maps in comparison to ImageNet. The CNN encoder architecture is

designed to be more efficient in terms of both memory and runtime inference.
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Figure 2. CNN block architecture for learning feature maps.

The main purpose of training these CNN blocks is to obtain feature maps of ground
glass opacities (GGO) which are prevalent in Covid pneumonia [5,28]. After training, the
infection feature maps belonging to each slice were fed to the bidirectional LSTM to
maintain the relationship between slices.

All layer weights were initialized randomly. The CNNs were trained for 100 epochs
with an early stopping set to 25 epochs to avoid overfitting. Learning rate is set to le-4.
The categorical cross-entropy loss function was used to calculate the loss between
predictions and ground-truth labels. Rotating, flipping, blurring and brightening were
used as data augmentation techniques. Data generator at each step augments data in
random range with randomly selected augmentation type to increase generalization of

model.
2.3.2. Bidirectional LSTM based classifier

The concatenation of the output of CNN blocks for each CT slice was fed to
bidirectional LSTM. Sequence model was used to emphasize the relationship between
spatial feature maps of multiple and ordered CT slices. Since this relationship is both
forward and backward, a bidirectional sequence model was used. The output of each
bidirectional LSTM cell was preserved and flattened. It is assumed that each cell output
has equal importance given the fact that spatial feature maps are agnostic in terms of the
amount of infection in the lungs. The aggregated features obtained from bidirectional
LSTM were then transferred to a dense layer with dropout. The obtained output of the
final dense layer is a multiclass classifier of three classes for each CT group of a single
patient. The architecture of the network is shown in Figure 3.

CNN blocks (explained in detail in section 2.2.2) were initialized with the weights of
feature extracting layers. CNN weights were frozen and the rest were initialized

randomly. The classifier was trained for 200 epochs with an early stopping set to 25 epochs
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to avoid overfitting. Same parameters in the CNN were used for biLSTM (see section

2.3.2).
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Figure 3. [llustration of the CNN-biLSTM classifier architecture. End-to-end pipeline for
classification where segmented slices are fed to CNN blocks and then CNN outputs are processed
by bidirectional LSTM. Each state output is preserved, and every output is combined prior to

dense layers and softmax layer.

2.4. Performance and Assessment

In the case of patients having more than one CT group, label-based majority voting
was applied. First, the label with the highest classification probability for each group was
selected. Next, the label having the majority vote was assigned to the label of the patient.
When the output was healthy and the group was classified as NCP or CP, the probability
of non-healthy class was checked further. When the probability was greater than the
predefined threshold (0.9), then the label changed in favor of the non-healthy class.

Accuracy, specificity, sensitivity and fl-score were calculated from the label-based
majority voting method outputs since the infections of pneumonia might not be apparent

in all slices of a patient. The flowchart for the algorithm is illustrated in Figure 4.
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Figure 4. Flowchart diagram for the classification algorithm.

3. Results

CT images, collected from PACS server, were preprocessed then fed to the CNN +
biLSTM network. CNN blocks were used for obtaining feature maps of ground glass
opacities (GGO), then feature maps were fed to the biLSTM network which maintained
the relationship between spatial feature maps of multiple and ordered CT slices. The

framework was designed to be efficient in runtime inference. As a result of this approach,
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average inference runtime for each CT group in our test set is 0.106 second with a single
NVIDIA RTX 2060 GPU and 0.409 second with a Intel i7-9750H CPU. The proposed
network performance was evaluated on an independent test set. Accuracy, specificity,
sensitivity and f1-score for each class were calculated and summarized in Table 2.

On an independent test dataset, we achieved high specificity (98.3%) and high
sensitivity (84%) rates in detection of COVID-19. Moreover, we obtained high specificity
(96.2%) and high sensitivity (93.9%) rates in detection of non-COVID-19 pneumonia as
well (Table 2). The areas under receiver operating characteristics for COVID-19 and non-
COVID-19 pneumonia were 0.90 and 0.91, respectively (Figure 6a).

CNN blocks of the proposed network were utilized to obtain feature maps of ground
glass opacities (GGO). To illustrate the effectiveness of the approach used in this study,
the last class activation map (CAM) was visualized with the help of Grad-CAM (Figure
5). As it can be seen from Figure 5, features were extracted mostly from ground glass
opacities.

The same algorithm (Figure 4) was applied for each patient in the test set and
represented. By comparing the patients’ ground-truth labels, ROC curves and confusion
matrix are plotted as shown in Figure 6. In the ROC curve we obtained a macro average
AUC value as 0.92. Table 2 shows the classification results of the patients. Our network
classifies NCP patients more accurately (93.9%) than other labels and its overall accuracy
is 89.7%.

Specificity and sensitivity are mostly used for evaluating diagnosis applications. Our
model’s specificity value on CP patients is 98.3% and NCP patients is 96.2%. These values

show that our model can classify pneumonia affected patients efficiently.

Table 2. Performance metrics (accuracy, specificity, sensitivity, f1-score) for each class of test set.

accuracy specificity sensitivity fl-score
cp 0.840 0.983 0.840 0.875
NCP 0.939 0.962 0.939 0.899
Healthy 0.900 0.889 0.900 0.923

Average 0.897 0.949 0.893 0.899
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Figure 5. Visualization of CNN outputs. Left: Cropped CT image, right: visualized feature map of
CNN output. The right image shows CNN blocks are capable of capturing Ground Glass Opacities

in CT images.
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Figure 6. Classification performance represented with (a) Receiver operating characteristics
(ROC) curves. (b) Normalized confusion matrix. In the ROC curve, the blue line denotes the

macro-average area under the curve (AUC).

4. Discussion

In this work, we designed and implemented a two-staged deep learning model for
the diagnosis of COVID-19 disease from chest CT volumes. Our model was able to assist
the radiologists with its performance of high specificity (CP: 98.3%, NCP: 96.2%) and high
sensitivity (CP: 84%, NCP: 93.9%) rates in detection of COVID-19 pneumonia and non-
COVID-19 pneumonia. This study offers a reduced time and effort in diagnosing CP and
NCP as well as distinguishing healthy patients. This work was especially motivated to be
easily implemented and used in COVID-19 pandemic to manage overwhelming
workload.

We were able to collect a large number of chest CT scans from American Hospital in
Turkey. The dataset included a total of 26935 CT scans belonging to 348 distinct patients.
We used a patient-based labelling due to its effectiveness both in cost and time. Although
slice-based labelling is advantageous for deep learning methods, these slice-based
features can be obtained via CNNs. The use of slice based, or patient-based labeling was
among the differences in the model architectures used in the related studies (see Table 3
for all compared features). We implemented a grouping method for the varying numbers
of slices in the CT Volumes dataset. There are other methods like performing
interpolations on CT Volumes or random selection of slices of a CT Volume; however,
these cause information loss. Another advantage of the grouping method was exploiting
each single slice of every patient. Since we grouped the CT slices of the patients, the
evaluation of the class probabilities of groups was done by utilizing the majority-voting
method.
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In Table 3, we report a summary of the previous works that are focusing on multiclass
classification on chest CT scans distinguishing COVID-19 pneumonia from community-
acquired pneumonia and healthy patients. Only exception is the study from El-bana et al.
[24] where they are compartmentalizing the community-acquired pneumonia by viral and
bacterial. In this table we compared the related studies with our work in terms of
number and types of classes, sample size as well as the architectures used for
segmentation and feature extraction tasks. Furthermore, the use of pre-trained models
was examined for both segmentation and feature extraction methods. The studies using
sequence models to relate CT scans in a CT volume was also noted. Unlike other studies
using prominent segmentation architectures, in this study, we trained on our dataset of
chest CT scans since U-Net is not trained on chest CT scans.

We designed an efficient architecture to be readily used in every hospital. Since
deeper architectures require high memory and high computing power, not every hospital
has a suited infrastructure to fulfill those requirements. Our model utilizes inference task
with moderate memory and computational power (0.409 seconds average runtime for
each CT group on CPU). This work has several limitations. Foremost, we used a single
dataset from a single hospital since this study was an immediate response to an urgent
need. Correspondingly, this dataset is collected from a particular type of CT machine. It
would be desirable to work with other datasets from other hospitals. Hence, we are in the
process of collaborating with other hospitals. Nonetheless, we believe our study is a
compatible and fast response to the hospitals in need. Our proposed framework can be
used to help relieve the burden on radiologists as well as reduce the time to diagnose
COVID-19 pneumonia and non-COVID-19 pneumonia. In addition, our framework can
decrease misdiagnosis of CP and NCP thanks to its high specificity and sensitivity rates.

Although explainability and interpretability are major concerns for deep learning
models, there have been significant efforts in explaining the decisions of deep learning
models used for medical diagnosis. Since the doctors are going to make decisions for
patients relying on the Al system, it is useful to understand why the Al system makes one
choice over another. There are many methods developed to explain deep learning
methods trained on medical images [29], such as Grad-CAM [30]. With this in mind, we
visualized the feature maps generated via Grad-CAM to provide insights on our

framework.

5. Conclusions

Fast and accurate diagnosis of COVID-19 forms a challenge for all countries. The
available tests for fast diagnosis either have sensitivity or accuracy problems. In this
regard, chest CT scans found to be very effective in identifying COVID-19 patients. This
method showed a superior practice over other methods by its power in identifying
COVID-19 patients even who are at the very early stages of the disease or patients with
no symptoms. In addition to this, there is a pronounced level of confirmed cases causing
an additional demand of healthcare workers.

We built an Al system that can accurately differentiate COVID-19 pneumonia

patients and non-COVID-19 pneumonia patients. The framework is implemented and
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ready for use to assist radiologists. Our two-staged deep learning classifier enables us to
identify CP, NCP and healthy patients from chest CT volumes. First, this framework is
capable of learning pneumonic features in CT scans. Second, it can classify COVID-19
pneumonia and non-COVID-19 pneumonia with 84% and 93.9% accuracy. Our model
achieves high specificity for CP: 98.3% and NCP: 96.2% and high sensitivity for CP: 84%
and NCP: 939%. We have further analyzed the area under receiver operating
characteristics curve (ROC-AUC) to demonstrate the effectiveness and efficiency of our
proposed framework. We provide an Al system for automated, fast and accurate
diagnosis of COVID-19 using medical imaging technologies. Along with recent efforts in
radiology we demonstrate a promising COVID-19 pneumonia classification using chest
CTs augmented with the help of deep learning methodologies. We showed that our
system is assisting the radiologists. It is implemented in real-time in selected hospitals

through a user interface.

Table 3. Comparison of model architectures used in the related studies and in this study.

. Segmentation-
Target Patient- Total # . Feature Sequen
. Segmentati . Feature
Study Specificatio level of Extraction ce .
) . on model Extraction
ns labelling images Model Model .
Pretrained
CpP?,
Amyar Multitask
Healthy, no 1,369 - - N/A-no
2020 U-net
Other
Li 2020 no 4,352 U-net Resnet50 - yes-yes
3d
Zhang
2000 yes 617,775  Deeplabv3 3d Resnet-18 Resnet- no-no
18
Wang 2020 CP, NCP?, no 104,009 - Conv2d - N/A-yes
Hasan Healthy Image
no N/A CNN & QDE LSTM N/A-no
2020 processing
) Inceptio
Lee 2021 yes 436,265 - Inception 3d ad N/A-yes
n
This work yes 26,935 U-net Conv2d biLSTM no-no
El-bana CP,PV 3 PB
no 100 - Inception v3 - N/A-yes
2020 4, Healthy

1 Covid Pneumonia, 2 Non-Covid Pneumonia, * Pneumonia Virus, ¢ Pneumonia Bacteria

As a next step, we showed that our framework is able to detect Ground Glass
Opacities (GGO) in patients suffering from COVID-19 pneumonia via visualizations using
Grad-CAM algorithm [30]. Image pixel attributions can be visualized upon calculating the
gradient from the output to a given deeper layer. Grad-CAM reconstructs maps as a
weighted combination of forward neuron activation, with weights based on global
average pooling and backpropagation outputs to a target layer. This way COVID-19

patients can be distinguished from the others by providing demonstration of the proposed
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models with pneumonia indicating top features. Note that this framework not only
identifies CP but also NCP owing to its capability to generate two-dimensional feature
maps. This can be easily further compartmentalized for additional pneumonia types
according to needs of the hospitals and healthcare workers. Overall, our work offers an
easily adaptable framework which has been already implemented and being used. As

such, it offers implementation in numerous hospitals with low computing powers
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The following abbreviations are used in this manuscript:

Al Artificial Intelligence

AUC: Area Under Curve

biLSTM: bidirectional Long Short Term Memory
COVID-19: Coronavirus Disease 2019

CP: COVID-19 pneumonia

CNN: Convolutional Neural Network

CT: Computed Tomography

DICOM: Digital Imaging and Communications in Medicine
DL: Deep Learning

Grad-CAM: gradient-weighted class activation mapping
GGO: Ground Glass Opacities

PACS: Picture Archive and Communication System.

ROC: Receiver Operating Characteristic

RT-PCR: Reverse Transcription Polymerase Chain Reaction

NCP: non-COVID-19 pneumonia
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