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Abstract: Metabolic flexibility is the ability of an organism to adapt its energy source based on1

nutrient availability and energy requirements. In humans, this ability has been linked to cardio-2

metabolic health and healthy aging. Genome-scale metabolic models have been employed to3

simulate metabolic flexibility by computing the Respiratory Quotient (RQ), which is defined as the4

ratio of carbon dioxide produced to oxygen consumed, and varies between values of 0.7 for pure5

fat metabolism and 1.0 for pure carbohydrate metabolism. While the nutritional determinants of6

metabolic flexibility are known, the role of low energy expenditure and sedentary behavior in the7

development of metabolic inflexibility is less studied. In this study we present a new description8

of metabolic flexibility in genome-scale metabolic models which accounts for energy expenditure,9

and we study the interactions between physical activity and nutrition in a set of patient-derived10

models of skeletal muscle metabolism in older adults. The simulations show that fuel choice is11

sensitive to ATP consumption rate in all models tested. The ability to adapt fuel utilization to12

energy demands is an intrinsic property of the metabolic network13

Keywords: metabolic flexibility, respiratory quotient, energy expenditure14

1. Introduction15

The ability of an organism to efficiently switch between oxidation of different energy16

substrates according to environmental circumstances is known as metabolic flexibility.17

Healthy metabolism is characterized by physiological shifts between glucose and fat18

oxidation in response to nutrient availability. This process maintains homeostasis in19

response to changing energy demands, for example during exercise. This transition is20

driven by insulin activity and regulated by a cross-talk between metabolic and signaling21

pathways across different tissues [1]. Skeletal muscle, as the largest contributor to22

insulin-mediated glucose uptake from plasma and as major determinant of energy23

expenditure in resting and non-resting conditions [2], is one of the major drivers of24

metabolic flexibility.25

Energy metabolism is heavily involved in the aging process, not only because26

mitochondrial dysfunction and impaired nutrient sensing are among the main drivers27

of the aging process [3], but also because all the recognized hallmarks of aging are28

connected to undesirable metabolic alterations [4]. Metabolic flexibility is recognized29

as a feature of healthy metabolism and has been associated with longevity and longer30

health span. It has also been associated with increased insulin sensitivity [5], and lower31

incidence of age-related diseases such as type 2 diabetes [6] and cardiovascular diseases32

[7]. Treatments targeting metabolic flexibility may delay the onset of aging and related33

comorbidities. Currently, regular physical activity and a balanced diet are still the best34

available treatments to increase metabolic health and to maximize health span [8], [9].35

Computational models are key to investigate the complexity of the interactions36

between nutrition and physical activity. Constraint based metabolic models have been37
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successfully used to simulate metabolic flexibility in silico by computing the Respiratory38

Quotient (RQ) in different nutritional conditions, for example after a meal, during the39

transition between the fast and the fed state [10], [11]. The RQ value about which macro40

nutrients are being metabolized and which pathway is used for energy production. It is41

defined as the ratio of carbon dioxide produced by the body to oxygen consumed by42

the body, and it varies between values of 0.7 for pure fat metabolism and 1.0 for pure43

carbohydrate metabolism.44

While the influence of nutrition and diet composition on metabolic flexibility is well45

documented [12], [13], fewer studies have examined the role of physical activity and46

sedentary behaviors on metabolic flexibility. Previous studies which modeled RQ during47

the fast to fed transition using constraint-based models did not take into consideration48

the effect of energy expenditure on RQ [11]. In this study we propose a new description49

of the fast to fed transition that allows us to simulate the effect of various levels of50

physical activity on fuel choice in constraint-based models.51

Constraint-based metabolic models do not include any description of signaling52

pathways. To simulate the changing concentration of plasma glucose and fatty acids after53

a meal, Nogiec and coworkers [11] directly modulated the fluxes through the glucose54

and palmitate transporters, the reactions transporting substrates between the external55

medium and the cytoplasm compartments. Maximization of ATP, creatine-phosphate,56

glycogen, and triglycerides production was used as objective function.57

In our opinion this model is biased, since the carbohydrate/fat ratio used by the58

model to fulfil its objective (and consequently the predicted RQ) is predetermined by the59

modeler. Moreover, large genome-scale metabolic models such as Recon 2.2 and Recon60

3D have multiple alternative transporters for glucose and palmitate, which are often61

coupled with symport or antiport of different ions such as H+ and Na+. In our model62

we avoid this bias by limiting the availability of glucose and palmitate through exchange63

reactions to simulate the fast to fed transition. This is comparable to controlling the64

maximal amount of nutrients present in the external medium of a cell culture. ATP65

hydrolysis (ATPH) was chosen as objective function. By maximizing ATP consumption66

instead of ATP production, we let the models generate ATP using the optimal pathway,67

thus eliminating another potential source of bias. By constraining the flux through the68

ATPH reaction we can simulate a condition of reduced energy expenditure. A simplified69

visualization of the two models is presented in Figure 1.70

In this study we investigate the link between physical inactivity and metabolic71

flexibility by simulating the effect of changing levels of energy expenditure on fuel72

choice, measured as RQ. Our new description of metabolic flexibility is validated in a set73

of constraint based metabolic models. This model set includes two human metabolic74

reconstructions, Recon 2.2 [14] and Recon3D [15], a model of central carbon metabolism,75

MitoCore [16] and a set of 24 patient-derived models of skeletal muscle metabolism [17].76

We show that, in all models tested, fuel choice is sensitive to ATP consumption rate, and77

that a reduction in ATP consumption reproduces phenotypes associated with metabolic78

inflexibility.79
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Figure 1. Simplified representation of two different descriptions of the fast to fed transition in
a constraint-based metabolic model. (A) Architecture of the simulation presented in [11]: Change
in nutrient availability during the fast to fed transition is modeled by modulating the flux through
glucose and palmitate transporters, the reactions transporting substrates between the external
and the cytoplasm compartments (black arrows). Production of ATP, creatinine phosphate (CrP),
glycogen and triglycerides (TG) was used as objective reaction (red arrow). The availability of
glucose and palmitate in the external compartment is assumed to be infinite. (B) Architecture
of the simulation presented in this study. The fast to fed transition is modeled by modulating
the amount of nutrients available in the external compartment through exchange reactions (black
arrows). ATP Hydrolysis (ATPH) is used as objective function (red arrow). The models are free
to choose the optimal mix of substrates to optimize the flux through the objective function. RQ
is defined as the ratio between CO2 efflux and O2 influx (blue arrows) in both implementations.
Blank arrows represent reactions that were left unbounded.
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2. Results80

2.1. New description of the fast to fed transition in genome scale metabolic models highlights81

heterogeneity of model predictions82

A B
Figure 2. Simulations of fast to fed transition highlight heterogeneity of model predictions.
Validation of our of the fast-to fed transition. (A) RQ values predicted by three human constraint-
based models (Recon2.2, Recon3D and MitoCore) during the fast to fed transition with the
objective function ATPH left unconstrained (upper bound ATPH = 1000 mM/gDw/h). X axis:
upper bound values for palmitate and glucose exchange reactions during the fast to fed transition
(in mM/gDw/h). (B) ATP yields for glucose and palmitate across the three models.

First, we want to validate our model of the fast to fed transition, using three different83

constraint-based metabolic models - Recon2.2, Recon3D and MitoCore – to predict RQ84

in high energy expenditure conditions, meaning that the objective function ATPH is85

left unconstrained (upper bound ATPH = 1000 mM/gDw/h). Recon2.2, Recon3D86

and MitoCore share most of their reaction identifiers and were chosen to facilitate a87

comparative analysis of the results. To simulate the fasted condition, we restricted the88

maximal influx of glucose and palmitate to 0.5 mM/h and 0.38 mM/h respectively. In89

the fed condition, the maximal influx of glucose and palmitate was restricted to 4.590

mM/h and 0.034 mM/h respectively. The bounds are progressively changed to simulate91

the transition between these states. The exchange of other metabolites with the external92

medium was deactivated, except for the exchange of water and protons (H+).93

All models predict RQ values within the expected range (0.7 <RQ < 1.0),(figure94

2A), but the exact predictions by the three models are not consistent. In particular, the95

predictions of the MitoCore model are divergent from those of Recon2.2 and Recon3D.96

MitoCore’s RQ profile rises to a RQ value of 1.0 in the second half of the transition. An97

inspection of the uptake fluxes during the fast to fed transition shows that the model98

maximizes the uptake of glucose but does not metabolize palmitate in the second part of99

the simulation, despite its availability in the medium. This suggests that the composition100

of the medium employed in this study might be sub optimal to conduct metabolic101

flexibility simulations with the MitoCore model. Different RQ profiles can be explained102

by the different ATP yields for glucose and palmitate among the three models (figure103

2B). MitoCore has the highest ATP yield for glucose (33 mM/gDw/h), which explains104

why MitoCore selects glucose as its only energy substrate when sufficient glucose is105

available to meet energy requirements (glucose > 2.7 mM/gDw/h, Fig. 2A). Recon2.2106

and Recon3D have an ATP yield for glucose of 31.5 and 32 mM/gDw/h respectively.107

ATP yield for palmitate is 106.8 mM/gDw/h in Recon2.2, 113.0 mM/gDw/h in Recon3D108

and 111.9 mM/gDw/h in MitoCore. Moreover, MitoCore is a small model focused on109

mitochondrial metabolism containing only 555 reactions and describes only a part of110

the full metabolic network. Additionally, the topology of the metabolic network of the111

MitoCore models is different from the topology of both Recon models, due to a different112

formulation of mitochondrial transport reactions and of the proton gradient that drives113

oxidative phosphorylation, suggesting that the topology and the stoichiometry of the114

metabolic network could also affect RQ predictions. These differences influence the type115
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and the amount of substrate used by the model to fulfil the objective function, and thus116

determine the RQ. Recon3D and MitoCore models needed to be modified before they117

could predict RQ values in the expected range, as explained in Appendix A.118

2.2. RQ is sensitive to changes in ATP consumption rate119

A B

C
Figure 3. RQ is sensitive to changes in ATP turnover rate. RQ values during the fast to fed
transition simulated for different rates of ATP turnover in Recon 2.2 (A), Recon 3D (B) and
MitoCore (C). The upper bound of the objective reaction (ATPH) was progressively decreased
from 200 mM/gDw/h (blue line) to 35 mM/gDw/h (red line). In all models, as ATP turnover rate
decreases, RQ values approaches a constant value (RQ=1.0) faster during the fast to fed transition.

120

Since we showed that our model of the fast to fed transition could reproduce121

theoretical RQ values in high energy expenditure conditions, we progressively reduced122

the rate of ATP consumption to investigate how each model adapts its fuel choice to a123

decrease in energy expenditure.124

Figure 3 shows the RQ profiles computed during the fast to fed transition for the125

Recon2.2, Recon3D and MitoCore models while the upper bound on the ATPH reaction126

was being decreased within the range 200-35 mM/gDw/h. A visualization of the full127

data is presented in figure S2. RQ values were sensitive to changes in ATP consumption128

rate in all models tested: as the upper bound of the ATPH reaction decreased, RQ129

converged to a value of 1.0 in both the fast and fed conditions (figure S3), indicating130

that the models were prioritizing carbohydrates as energy substrate in low energy131

expenditure conditions. Reduced ∆RQ, defined as the difference between the RQ in the132

fast state and in the fed state, is a phenotype associated with metabolic inflexibility.133

Certain behaviors exhibited by the models could not be fully explained, for example134

the fluctuations that can be observed in the predicted RQ values of the Recon3D model,135

which are also visible in the predictions of all three models at lower energy expenditures,136

when the upper bound of ATPH < 35 mM/gDw/h (figure S3). The ATPH fluxes achieved137

over the course of the simulations for the three models are shown in figure S4.138

Despite the differences between the responses to low energy expenditure across the139

three models, the emerging pattern is that RQ is sensitive to energy expenditure and140

that glucose is the favorite substrate at low energy expenditure levels. Considering that141

constraint-based metabolic models do not contain any description of the intracellular142

regulatory pathways that regulate fuel selection, such as insulin signaling or pyruvate143
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dehydrogenase kinases (PDK) [18], we deduce that the ability to adapt fuel utilization to144

energy demand is an intrinsic property of the metabolic network.145

2.3. Resistance training increases metabolic flexibility146

A B
Figure 4. Simulations in low energy expenditure conditions show heterogeneity of individu-
alized models’ predictions. RQ values predicted by a set of 24 patient-derived models of skeletal
muscle metabolism. (A) high energy expenditure conditions (ATPH bound = 1000 mM/gDw/h).
All models predict the same RQ values during the fast to fed transition and have overlapping RQ
profiles. (B) Comparison of trained vs untrained subgroups. Low energy expenditure condition
(ATPH upper bound = 35 mM/gDw/h). In this condition untrained models predicted on average
lower RQ values and low variability between the fast and fed conditions than trained models.
These two phenotypes are associated with metabolic inflexibility.

A B
Figure 5. Increased utilization of oxidative phosphorylation (OXPHOS) in trained models in
response to low energy demands. Percentage of total cellular ATP produced was measured as
flux through the adenine nucleotide translocator (ANT) reaction (reaction ID: ATPtm). 21 models
were included in the analysis (N trained =12, N untrained =9). (A) high energy expenditure. (B)
low energy expenditure. In Low EE conditions, trained models produce a higher percentage of
total ATP from OXPHOS than untrained ones. Untrained models show a larger variance in the
percentage of total ATP obtained from OXPHOS than untrained models.

We established the importance of ATP consumption rate for fuel selection in a147

set of generic human metabolic reconstructions and we hypothesized that low energy148

expenditure could be one of the major contributors to the development of metabolic149

inflexibility. Now we ask whether a physical activity intervention, such as resistance150

training program, can restore metabolic flexibility. To answer this question, we use a151

set of patient-derived models of skeletal muscle metabolism in older adults [17]. These152

models were developed using longitudinal gene expression data collected from skeletal153

muscle of the same individuals before and after a resistance training program. Therefore,154

they capture the long-term metabolic adaptations in energy metabolism that follow a155

metabolic intervention such as a 12-weeks training program and they can be used to156

investigate the effect of a non-nutritional intervention on metabolic flexibility.157

In high energy expenditure conditions (ATPH upper bound = 1000 mM/gDw/h)158

all 24 models predicted identical RQ values (Fig4 left panel), meaning that they used the159

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2021                   



Version May 21, 2021 submitted to Metabolites 7 of 13

same mixture of substrates to produce ATP. Conversely, when ATPH was constrained to160

simulate a low energy expenditure condition (ATPH upper bound = 35 mM/gDw/h),161

each individual model predicted a different RQ profile (figure S1). In low energy162

expenditure conditions, much less ATP is needed to fulfill the cellular objective and163

the models can use different mixtures of substrates to generate ATP. In this simulation,164

one model predicted RQ values outside the expected range (figure S1). This model165

(ID: untrained5) had already been identified as outlier in our previous study [17], and166

has a reaction composition different from all the other patient-derived models. Trained167

models predicted a higher average RQ (Figure 4B), and a higher utilization of OXPHOS168

for ATP production in low expenditure conditions (ATP UB = 35 mM/gDw/h). (Figure169

5B). Three untrained models (id: 5, 9, 11) predicted no flux through the mitochondrial170

adenine nucleotide translocator (ANT) reaction (reaction ID: ATPtm), therefore they171

were not included in figure 5.172

Low flux through OXPHOS is a phenotype associated with insulin resistance and173

metabolic inflexibility [19]. Resistance training has been proved to be effective in restor-174

ing mitochondrial function in insulin resistant and diabetic subjects [20], [21]. The results175

of this simulation show that a 12-weeks training intervention was effective in increasing176

utilization the OXPHOS pathway also in skeletal muscle of older individuals. The large177

variability in OXPHOS utilization, especially among the untrained models, suggests that178

these individuals could have had different metabolic health before the beginning of the179

training program, and that some of them could have been more metabolically flexible180

than others. Our previous study on the same set of patient-derived models arrived at181

similar conclusions [17]. Without supplementary information regarding the lifestyle of182

these individuals before and during the study, for example data about their nutrition183

or previous fitness status, we cannot speculate further. Therefore, this observation un-184

derlines the importance of collecting information about the lifestyle of the participants185

along with molecular data in systems medicine studies. Taken together, these results not186

only confirm that patient derived models developed from longitudinal gene expression187

data can capture long-term metabolic adaptations to lifestyle change interventions, but188

also support the hypothesis that energy expenditure is a main determinant of metabolic189

flexibility and that physical activity can improve metabolic health in older adults.190

3. Discussion191

Metabolic flexibility is an important integrative biology concept which can help192

us understand the link between sedentary behavior, overnutrition and dysregulation193

of energy metabolism and is an important part of metabolic health. Knowledge of194

the determinants of metabolic flexibility will help develop treatments to maintain and195

restore metabolic health in pathologies associated with metabolic inflexibility such as196

insulin resistance, Type 2 diabetes, cardiovascular diseases, and aging.197

Previous computational models of metabolic flexibility focused on the nutritional198

determinants of metabolic flexibility while the effect of energy expenditure on fuel choice199

remained understudied. In this study we proposed a new description of metabolic flexi-200

bility, which enabled the study of the interactions between physical activity and nutrition.201

Two of the human metabolic reconstructions we used to test this new implementation,202

Recon2.2 and Recon3D, gave predictions that were consistent with expected RQ values203

and with previous studies [11] when energy expenditure was high. When the flux204

through the ATP Hydrolysis (ATPH) reaction was progressively reduced to reproduce a205

condition of lower energy expenditure, RQ values progressively increased, while the206

difference between RQ in the fast and fed condition decreased.207

Patterns in fuel oxidation are determined not only by dietary intake but also by208

energy expenditure. Constraining the flux through the ATPH reaction had a large effect209

on RQ and was sufficient to reproduce phenotypes associated with metabolic inflexibility,210

such as a lower ∆RQ between the fast and fed states. Since low energy expenditure is211

one of the main determinants of metabolic inflexibility, a physical activity intervention212
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should restore metabolic flexibility even in absence of a nutritional intervention. To verify213

this hypothesis we simulated the fast to fed transition in a set of patient-derived models214

of skeletal muscle metabolism that describe the metabolism of 12 older individuals215

before and after a 12-weeks resistance training program [22]. In high energy expenditure216

conditions, all models had the same response during the fast to fed transition. In low217

energy expenditure conditions (ATPH upper bound = 35 mM/gDw/h) trained models218

had an increased utilization of the OXPHOS pathway for energy production. These219

results show that patient-derived models can capture some of the long-term metabolic220

adaptations resulting from a metabolic intervention, supporting the idea that these221

models can be used to improve our understanding of individual responses to diet and222

exercise.223

Constraint-based metabolic models are useful tools to investigate the interactions224

between physical activity and nutrition, and how they influence metabolic health and the225

aging process. But they also have an important limitation: they are steady-state models226

and cannot describe the intracellular accumulation of storage macromolecules e.g.,227

glycogen or ectopic fat, or dynamic bioenergetic signals relevant in longevity pathways228

such as the NADH/NAD+ ratio and AMP/ATP ratio [23]. Moreover, they do not include229

any information about regulatory pathways, for example those relevant to fuel selection230

such as the insulin signaling pathway. The lack of a regulatory network in genome scale231

metabolic models is a limitation, but also decouples the metabolic network from the232

signaling network and gives us the possibility to study their properties. By doing so, in233

our simulations we found that the metabolic network was able to adapt its fuel choice to234

its energetic requirements independently from regulation. RQ was found to be sensitive235

to energy expenditure conditions and glucose was found to be the preferred substrate for236

ATP production in low expenditure conditions. We concluded that metabolic flexibility237

is intrinsic to the metabolic network. The ability to adapt substrate choice to the external238

environment can also be found in single-celled bacterial organisms, where the activity239

of catabolic pathways is regulated mainly at the transcriptional level and by negative240

feedback by the end product of a pathway [24]. Metabolic flexibility is an evolutionary241

advantage, as it increases the resilience of an organism to environmental disruptions242

[25].243

But what is an optimal strategy for a single cell might be detrimental for a multi244

cellular organism: the prioritization of glucose as energy substrate in low energy expen-245

diture conditions, regardless of glucose supply, could cause a depletion of this substrate246

and deprive other important tissues, such as the brain (whose metabolism relies on glu-247

cose) of fuel. This is why, in multicellular organisms, a systemic regulation mechanism248

is required for the coordination of the energetic demands of multiple tissue types across249

the whole body. The regulation of metabolic flexibility by insulin signaling [18] and by250

pyruvate dehydrogenase kinases [26] is part of the allostatic response to the imbalance251

between energy intake and expenditure [27]. The aim of this response is to maintain252

homeostasis and optimal substrate allocation across different tissues.253

In principle, the calculation of RQ from reaction stoichiometry is straightforward.254

In practice, using genome-scale metabolic models to simulate metabolic flexibility is255

not trivial. RQ simulations are challenging because of their sensitivity to ‘technical’256

variability, for example the use of a different solver software, or due to different model257

implementations such as constraints on external fluxes, different stoichiometry for the258

same reaction, and different ATP yields for relevant energy substrates. But metabolic259

flexibility is also sensitive to ’biological’ variability, for example different nutrition and260

energy expenditure habits, or different genetic backgrounds among different individuals.261

It may be difficult to distinguish ‘technical’ variability from ‘biological’ variability. Model262

inconsistencies that were biasing the results were addressed, as discussed in appendix A.263

To ensure the reproducibility of the results, models and simulation parameters should264

be standardized as much as possible.265
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Metabolic flexibility is an important health concept that integrates nutrition and266

energy expenditure. Expanding this concept to any response of fuel metabolism to267

external stressors, such as hot and cold temperatures, traumatic events such as illness,268

injuries or surgeries, and psychological stress [28] could reveal more details about how269

these factors interact in many pathological and physiological conditions, including270

aging.271

4. Materials and Methods272

4.1. Simulating the fast to fed transition in constraint-based models273

In this study we investigate the effects of physical activity on metabolic flexibility
using a set of different models, including Recon2.2, Recon3D, MitoCore, and 24 patient-
derived models of skeletal muscle metabolism based on Recon2.2. The development and
validation of the patient-derived models is described in [17]. To identify the fuel mix
utilized by the models during the fast to fed transition we computed the Respiratory
Quotient (RQ) using the following relation:

RQ = COout
2 /Oin

2 (1)

In fasting conditions, plasma concentration of glucose is low, and skeletal muscle uses274

fatty acids as energy substrate. After a meal the plasma concentration of glucose rises,275

and insulin is secreted by pancreas in response. Insulin signals to skeletal muscles and276

to other tissues to use glucose for energy production. Oxidation of fatty acids such as277

palmitate is inhibited, and fatty acids are instead stored in adipocytes as energy reserve.278

This is known as fast to fed transition.279

We reproduced this transition by progressively changing the upper bound of the280

glucose and palmitate exchange reactions. In the fasted condition, the maximal influx281

of glucose and palmitate was restricted to 0.5 mM/h and 0.38 mM/h respectively. In282

the fed condition, the maximal influx of glucose and palmitate was restricted to 4.5283

mM/h and 0.034 mM/h respectively. All other exchanges, except water and protons,284

were deactivated. The LP solver chose a combination of palmitate and glucose from the285

medium to fulfill the cellular objective. By maximizing ATP consumption instead of286

ATP production, the models generated ATP using the optimal pathway, thus eliminating287

a potential source of bias. By constraining the flux through the ATPH reaction we288

simulated a condition of reduced energy expenditure. This allowed us to simulate the289

effect of reducing energy expenditure on fuel choice. (Figure 1B). The analyses were290

performed in Python 3.7 using the Cobrapy package [29]. The Gurobi solver was used to291

perform flux balance analysis.292

5. Conclusions293

A new description of the fast to fed transition enables the investigation of the294

interactions between energy expenditure and fuel choice using constraint-based models.295

Even if limited to the analysis of glucose and palmitate metabolism, our model is rich296

enough to describe metabolic flexibility. Simulating low energy expenditure conditions297

reproduced phenotypes linked to metabolic inflexibility in several human metabolic298

reconstructions. Patient derived models of skeletal muscle metabolism can capture299

the metabolic adaptations following a resistance training intervention and can be used300

to investigate the variability in the individual responses to metabolic interventions.301

Physical activity can restore metabolic flexibility.302

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2021                   



Version May 21, 2021 submitted to Metabolites 10 of 13

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-1303

989/1/1/0/s1; Figure S1: Individual RQ profiles of 24 patient-derived models of skeletal muscle304

metabolism in older adults in low energy expenditure conditions (ATPH UB=35 mM/gDw/h).305

Figure S2 (A-C): Visualization of RQ predictions for Recon2.2, Recon3D and MitoCore models306

(200 > ATPH UB > 35 mM/gDw/h). Figure S (A-C)3: Visualization of RQ predictions for Re-307

con2.2, Recon3D and MitoCore models in low energy expenditure conditions (ATPH UB < 35308

mM/gDw/h). Figure S4 (A-C): Flux through ATPH (objective reaction) during the fast to fed309

transition for Recon2.2, Recon3D and MitoCore models (1000 > ATPH UB > 1 mM/gDw/h).310
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Abbreviations319

The following abbreviations are used in this manuscript:320

321

RQ Respiratory Quotient
ATPH ATP Hydrolysis reaction
OXPHOS Oxidative Phosphorylation
UB Upper Bound
gDw grams of dry weight

322

Appendix A323

Both MitoCore and Recon3D models required modifications before they could324

give RQ predictions in the expected range. MitoCore by default has an upper bound325

constraint of 0.9 mM/gDw/h on the reaction GLCt1r (glucose transporter). This resulted326

in a non-smooth trajectory in the RQ profile at higher ATPH UB values and in a ‘flat’ RQ327

profile at lower ATPH UB values:328

The constraints on this reaction were removed, yielding the predictions presented in329

figure 2. Recon3D model was giving inconsistent predictions and with higher RQ values330

than expected, for example converging at RQ=1.015:331
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Recon2.2 and Recon3D model contain two alternative reactions for Complex IV of the332

electron transport chain (Cytochrome oxidase), (IDs: CYOOm3i and CYOOm2i).333

CYOOm3i:7.92 hm + o2m + 4.0 focytCm −−⇀↽−− 1.96 h2om + 4.0 ficytCm + 0.02 o2sm + 4.0 hi334

CYOOm2i:8.0 hm + o2m + 4.0 focytCm −−⇀↽−− 2.0 h2om + 4.0 ficytCm + 4.0 hi335

The two reactions have similar formulations, but CYOOm3i also produces o2s (reactive336

oxygen species, ROS). In the model 2 o2s are converted into o2 + h2o2 by the reaction337

superoxide dismutase (ID: SPODM). The o2 produced by SPODM is then reused by338

CYOOm3i, accounting for 1% of the input flux. This means that the o2 influx from339

the external compartment into the cytosol (which is measured to compute RQ) will340

be 1% smaller, causing an increase in the RQ value. When the CYOOm3i reaction341

was deactivated in Recon3D, the model predictions returned to the expected range. In342

Recon2.2 the two reactions are associated with different genes. During the construction of343

the skeletal muscle models, which are based on Recon2.2., only one of the two reactions344

(CYOOm3i) was inherited by the "child" models [17].345
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