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Abstract: Metabolic flexibility is the ability of an organism to adapt its energy source based on
nutrient availability and energy requirements. In humans, this ability has been linked to cardio-
metabolic health and healthy aging. Genome-scale metabolic models have been employed to
simulate metabolic flexibility by computing the Respiratory Quotient (RQ), which is defined as the
ratio of carbon dioxide produced to oxygen consumed, and varies between values of 0.7 for pure
fat metabolism and 1.0 for pure carbohydrate metabolism. While the nutritional determinants of
metabolic flexibility are known, the role of low energy expenditure and sedentary behavior in the
development of metabolic inflexibility is less studied. In this study we present a new description
of metabolic flexibility in genome-scale metabolic models which accounts for energy expenditure,
and we study the interactions between physical activity and nutrition in a set of patient-derived
models of skeletal muscle metabolism in older adults. The simulations show that fuel choice is
sensitive to ATP consumption rate in all models tested. The ability to adapt fuel utilization to
energy demands is an intrinsic property of the metabolic network
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1. Introduction

The ability of an organism to efficiently switch between oxidation of different energy
substrates according to environmental circumstances is known as metabolic flexibility.
Healthy metabolism is characterized by physiological shifts between glucose and fat
oxidation in response to nutrient availability. This process maintains homeostasis in
response to changing energy demands, for example during exercise. This transition is
driven by insulin activity and regulated by a cross-talk between metabolic and signaling
pathways across different tissues [1]. Skeletal muscle, as the largest contributor to
insulin-mediated glucose uptake from plasma and as major determinant of energy
expenditure in resting and non-resting conditions [2], is one of the major drivers of
metabolic flexibility.

Energy metabolism is heavily involved in the aging process, not only because
mitochondrial dysfunction and impaired nutrient sensing are among the main drivers
of the aging process [3], but also because all the recognized hallmarks of aging are
connected to undesirable metabolic alterations [4]. Metabolic flexibility is recognized
as a feature of healthy metabolism and has been associated with longevity and longer
health span. It has also been associated with increased insulin sensitivity [5], and lower
incidence of age-related diseases such as type 2 diabetes [6] and cardiovascular diseases
[7]. Treatments targeting metabolic flexibility may delay the onset of aging and related
comorbidities. Currently, regular physical activity and a balanced diet are still the best
available treatments to increase metabolic health and to maximize health span [8], [9].

Computational models are key to investigate the complexity of the interactions
between nutrition and physical activity. Constraint based metabolic models have been
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successfully used to simulate metabolic flexibility in silico by computing the Respiratory
Quotient (RQ) in different nutritional conditions, for example after a meal, during the
transition between the fast and the fed state [10], [11]. The RQ value about which macro
nutrients are being metabolized and which pathway is used for energy production. It is
defined as the ratio of carbon dioxide produced by the body to oxygen consumed by
the body, and it varies between values of 0.7 for pure fat metabolism and 1.0 for pure
carbohydrate metabolism.

While the influence of nutrition and diet composition on metabolic flexibility is well
documented [12], [13], fewer studies have examined the role of physical activity and
sedentary behaviors on metabolic flexibility. Previous studies which modeled RQ during
the fast to fed transition using constraint-based models did not take into consideration
the effect of energy expenditure on RQ [11]. In this study we propose a new description
of the fast to fed transition that allows us to simulate the effect of various levels of
physical activity on fuel choice in constraint-based models.

Constraint-based metabolic models do not include any description of signaling
pathways. To simulate the changing concentration of plasma glucose and fatty acids after
a meal, Nogiec and coworkers [11] directly modulated the fluxes through the glucose
and palmitate transporters, the reactions transporting substrates between the external
medium and the cytoplasm compartments. Maximization of ATP, creatine-phosphate,
glycogen, and triglycerides production was used as objective function.

In our opinion this model is biased, since the carbohydrate/fat ratio used by the
model to fulfil its objective (and consequently the predicted RQ) is predetermined by the
modeler. Moreover, large genome-scale metabolic models such as Recon 2.2 and Recon
3D have multiple alternative transporters for glucose and palmitate, which are often
coupled with symport or antiport of different ions such as H* and Na*. In our model
we avoid this bias by limiting the availability of glucose and palmitate through exchange
reactions to simulate the fast to fed transition. This is comparable to controlling the
maximal amount of nutrients present in the external medium of a cell culture. ATP
hydrolysis (ATPH) was chosen as objective function. By maximizing ATP consumption
instead of ATP production, we let the models generate ATP using the optimal pathway,
thus eliminating another potential source of bias. By constraining the flux through the
ATPH reaction we can simulate a condition of reduced energy expenditure. A simplified
visualization of the two models is presented in Figure 1.

In this study we investigate the link between physical inactivity and metabolic
flexibility by simulating the effect of changing levels of energy expenditure on fuel
choice, measured as RQ. Our new description of metabolic flexibility is validated in a set
of constraint based metabolic models. This model set includes two human metabolic
reconstructions, Recon 2.2 [14] and Recon3D [15], a model of central carbon metabolism,
MitoCore [16] and a set of 24 patient-derived models of skeletal muscle metabolism [17].
We show that, in all models tested, fuel choice is sensitive to ATP consumption rate, and
that a reduction in ATP consumption reproduces phenotypes associated with metabolic
inflexibility.
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Figure 1. Simplified representation of two different descriptions of the fast to fed transition in
a constraint-based metabolic model. (A) Architecture of the simulation presented in [11]: Change
in nutrient availability during the fast to fed transition is modeled by modulating the flux through
glucose and palmitate transporters, the reactions transporting substrates between the external
and the cytoplasm compartments (black arrows). Production of ATP, creatinine phosphate (CrP),
glycogen and triglycerides (TG) was used as objective reaction (red arrow). The availability of
glucose and palmitate in the external compartment is assumed to be infinite. (B) Architecture
of the simulation presented in this study. The fast to fed transition is modeled by modulating
the amount of nutrients available in the external compartment through exchange reactions (black
arrows). ATP Hydrolysis (ATPH) is used as objective function (red arrow). The models are free
to choose the optimal mix of substrates to optimize the flux through the objective function. RQ
is defined as the ratio between CO2 efflux and O2 influx (blue arrows) in both implementations.
Blank arrows represent reactions that were left unbounded.
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2. Results

2.1. New description of the fast to fed transition in genome scale metabolic models highlights
heterogeneity of model predictions
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Figure 2. Simulations of fast to fed transition highlight heterogeneity of model predictions.
Validation of our of the fast-to fed transition. (A) RQ values predicted by three human constraint-
based models (Recon2.2, Recon3D and MitoCore) during the fast to fed transition with the
objective function ATPH left unconstrained (upper bound ATPH = 1000 mM/gDw /h). X axis:
upper bound values for palmitate and glucose exchange reactions during the fast to fed transition
(in mM/gDw /h). (B) ATP yields for glucose and palmitate across the three models.

First, we want to validate our model of the fast to fed transition, using three different
constraint-based metabolic models - Recon2.2, Recon3D and MitoCore — to predict RQ
in high energy expenditure conditions, meaning that the objective function ATPH is
left unconstrained (upper bound ATPH = 1000 mM/gDw/h). Recon2.2, Recon3D
and MitoCore share most of their reaction identifiers and were chosen to facilitate a
comparative analysis of the results. To simulate the fasted condition, we restricted the
maximal influx of glucose and palmitate to 0.5 mM/h and 0.38 mM/h respectively. In
the fed condition, the maximal influx of glucose and palmitate was restricted to 4.5
mM/h and 0.034 mM/h respectively. The bounds are progressively changed to simulate
the transition between these states. The exchange of other metabolites with the external
medium was deactivated, except for the exchange of water and protons (H").

All models predict RQ values within the expected range (0.7 <RQ < 1.0),(figure
2A), but the exact predictions by the three models are not consistent. In particular, the
predictions of the MitoCore model are divergent from those of Recon2.2 and Recon3D.
MitoCore’s RQ profile rises to a RQ value of 1.0 in the second half of the transition. An
inspection of the uptake fluxes during the fast to fed transition shows that the model
maximizes the uptake of glucose but does not metabolize palmitate in the second part of
the simulation, despite its availability in the medium. This suggests that the composition
of the medium employed in this study might be sub optimal to conduct metabolic
flexibility simulations with the MitoCore model. Different RQ profiles can be explained
by the different ATP yields for glucose and palmitate among the three models (figure
2B). MitoCore has the highest ATP yield for glucose (33 mM/gDw /h), which explains
why MitoCore selects glucose as its only energy substrate when sufficient glucose is
available to meet energy requirements (glucose > 2.7 mM/gDw /h, Fig. 2A). Recon2.2
and Recon3D have an ATP yield for glucose of 31.5 and 32 mM/gDw /h respectively.
ATP yield for palmitate is 106.8 mM/gDw /h in Recon2.2, 113.0 mM/gDw /h in Recon3D
and 111.9 mM/gDw /h in MitoCore. Moreover, MitoCore is a small model focused on
mitochondrial metabolism containing only 555 reactions and describes only a part of
the full metabolic network. Additionally, the topology of the metabolic network of the
MitoCore models is different from the topology of both Recon models, due to a different
formulation of mitochondrial transport reactions and of the proton gradient that drives
oxidative phosphorylation, suggesting that the topology and the stoichiometry of the
metabolic network could also affect RQ predictions. These differences influence the type
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and the amount of substrate used by the model to fulfil the objective function, and thus
determine the RQ. Recon3D and MitoCore models needed to be modified before they
could predict RQ values in the expected range, as explained in Appendix A.

2.2. RQ is sensitive to changes in ATP consumption rate
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Figure 3. RQ is sensitive to changes in ATP turnover rate. RQ values during the fast to fed
transition simulated for different rates of ATP turnover in Recon 2.2 (A), Recon 3D (B) and
MitoCore (C). The upper bound of the objective reaction (ATPH) was progressively decreased
from 200 mM/gDw /h (blue line) to 35 mM/gDw /h (red line). In all models, as ATP turnover rate
decreases, RQ values approaches a constant value (RQ=1.0) faster during the fast to fed transition.

Since we showed that our model of the fast to fed transition could reproduce
theoretical RQ values in high energy expenditure conditions, we progressively reduced
the rate of ATP consumption to investigate how each model adapts its fuel choice to a
decrease in energy expenditure.

Figure 3 shows the RQ profiles computed during the fast to fed transition for the
Recon2.2, Recon3D and MitoCore models while the upper bound on the ATPH reaction
was being decreased within the range 200-35 mM/gDw /h. A visualization of the full
data is presented in figure S2. RQ values were sensitive to changes in ATP consumption
rate in all models tested: as the upper bound of the ATPH reaction decreased, RQ
converged to a value of 1.0 in both the fast and fed conditions (figure S3), indicating
that the models were prioritizing carbohydrates as energy substrate in low energy
expenditure conditions. Reduced ARQ), defined as the difference between the RQ in the
fast state and in the fed state, is a phenotype associated with metabolic inflexibility.

Certain behaviors exhibited by the models could not be fully explained, for example
the fluctuations that can be observed in the predicted RQ values of the Recon3D model,
which are also visible in the predictions of all three models at lower energy expenditures,
when the upper bound of ATPH < 35 mM/gDw /h (figure S3). The ATPH fluxes achieved
over the course of the simulations for the three models are shown in figure S4.

Despite the differences between the responses to low energy expenditure across the
three models, the emerging pattern is that RQ is sensitive to energy expenditure and
that glucose is the favorite substrate at low energy expenditure levels. Considering that
constraint-based metabolic models do not contain any description of the intracellular
regulatory pathways that regulate fuel selection, such as insulin signaling or pyruvate
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dehydrogenase kinases (PDK) [18], we deduce that the ability to adapt fuel utilization to
energy demand is an intrinsic property of the metabolic network.

2.3. Resistance training increases metabolic flexibility
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Figure 4. Simulations in low energy expenditure conditions show heterogeneity of individu-
alized models’ predictions. RQ values predicted by a set of 24 patient-derived models of skeletal
muscle metabolism. (A) high energy expenditure conditions (ATPH bound = 1000 mM/gDw /h).
All models predict the same RQ values during the fast to fed transition and have overlapping RQ
profiles. (B) Comparison of trained vs untrained subgroups. Low energy expenditure condition
(ATPH upper bound = 35 mM/gDw /h). In this condition untrained models predicted on average
lower RQ values and low variability between the fast and fed conditions than trained models.
These two phenotypes are associated with metabolic inflexibility.
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Figure 5. Increased utilization of oxidative phosphorylation (OXPHOS) in trained models in
response to low energy demands. Percentage of total cellular ATP produced was measured as
flux through the adenine nucleotide translocator (ANT) reaction (reaction ID: ATPtm). 21 models
were included in the analysis (N trained =12, N untrained =9). (A) high energy expenditure. (B)
low energy expenditure. In Low EE conditions, trained models produce a higher percentage of
total ATP from OXPHOS than untrained ones. Untrained models show a larger variance in the
percentage of total ATP obtained from OXPHOS than untrained models.

We established the importance of ATP consumption rate for fuel selection in a
set of generic human metabolic reconstructions and we hypothesized that low energy
expenditure could be one of the major contributors to the development of metabolic
inflexibility. Now we ask whether a physical activity intervention, such as resistance
training program, can restore metabolic flexibility. To answer this question, we use a
set of patient-derived models of skeletal muscle metabolism in older adults [17]. These
models were developed using longitudinal gene expression data collected from skeletal
muscle of the same individuals before and after a resistance training program. Therefore,
they capture the long-term metabolic adaptations in energy metabolism that follow a
metabolic intervention such as a 12-weeks training program and they can be used to
investigate the effect of a non-nutritional intervention on metabolic flexibility.

In high energy expenditure conditions (ATPH upper bound = 1000 mM/gDw /h)
all 24 models predicted identical RQ values (Fig4 left panel), meaning that they used the
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same mixture of substrates to produce ATP. Conversely, when ATPH was constrained to
simulate a low energy expenditure condition (ATPH upper bound = 35 mM/gDw /h),
each individual model predicted a different RQ profile (figure S1). In low energy
expenditure conditions, much less ATP is needed to fulfill the cellular objective and
the models can use different mixtures of substrates to generate ATP. In this simulation,
one model predicted RQ values outside the expected range (figure S1). This model
(ID: untrained5) had already been identified as outlier in our previous study [17], and
has a reaction composition different from all the other patient-derived models. Trained
models predicted a higher average RQ (Figure 4B), and a higher utilization of OXPHOS
for ATP production in low expenditure conditions (ATP UB = 35 mM/gDw /h). (Figure
5B). Three untrained models (id: 5, 9, 11) predicted no flux through the mitochondrial
adenine nucleotide translocator (ANT) reaction (reaction ID: ATPtm), therefore they
were not included in figure 5.

Low flux through OXPHOS is a phenotype associated with insulin resistance and
metabolic inflexibility [19]. Resistance training has been proved to be effective in restor-
ing mitochondrial function in insulin resistant and diabetic subjects [20], [21]. The results
of this simulation show that a 12-weeks training intervention was effective in increasing
utilization the OXPHOS pathway also in skeletal muscle of older individuals. The large
variability in OXPHOS utilization, especially among the untrained models, suggests that
these individuals could have had different metabolic health before the beginning of the
training program, and that some of them could have been more metabolically flexible
than others. Our previous study on the same set of patient-derived models arrived at
similar conclusions [17]. Without supplementary information regarding the lifestyle of
these individuals before and during the study, for example data about their nutrition
or previous fitness status, we cannot speculate further. Therefore, this observation un-
derlines the importance of collecting information about the lifestyle of the participants
along with molecular data in systems medicine studies. Taken together, these results not
only confirm that patient derived models developed from longitudinal gene expression
data can capture long-term metabolic adaptations to lifestyle change interventions, but
also support the hypothesis that energy expenditure is a main determinant of metabolic
flexibility and that physical activity can improve metabolic health in older adults.

3. Discussion

Metabolic flexibility is an important integrative biology concept which can help
us understand the link between sedentary behavior, overnutrition and dysregulation
of energy metabolism and is an important part of metabolic health. Knowledge of
the determinants of metabolic flexibility will help develop treatments to maintain and
restore metabolic health in pathologies associated with metabolic inflexibility such as
insulin resistance, Type 2 diabetes, cardiovascular diseases, and aging.

Previous computational models of metabolic flexibility focused on the nutritional
determinants of metabolic flexibility while the effect of energy expenditure on fuel choice
remained understudied. In this study we proposed a new description of metabolic flexi-
bility, which enabled the study of the interactions between physical activity and nutrition.
Two of the human metabolic reconstructions we used to test this new implementation,
Recon2.2 and Recon3D, gave predictions that were consistent with expected RQ values
and with previous studies [11] when energy expenditure was high. When the flux
through the ATP Hydrolysis (ATPH) reaction was progressively reduced to reproduce a
condition of lower energy expenditure, RQ values progressively increased, while the
difference between RQ in the fast and fed condition decreased.

Patterns in fuel oxidation are determined not only by dietary intake but also by
energy expenditure. Constraining the flux through the ATPH reaction had a large effect
on RQ and was sufficient to reproduce phenotypes associated with metabolic inflexibility,
such as a lower ARQ between the fast and fed states. Since low energy expenditure is
one of the main determinants of metabolic inflexibility, a physical activity intervention
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should restore metabolic flexibility even in absence of a nutritional intervention. To verify
this hypothesis we simulated the fast to fed transition in a set of patient-derived models
of skeletal muscle metabolism that describe the metabolism of 12 older individuals
before and after a 12-weeks resistance training program [22]. In high energy expenditure
conditions, all models had the same response during the fast to fed transition. In low
energy expenditure conditions (ATPH upper bound = 35 mM/gDw /h) trained models
had an increased utilization of the OXPHOS pathway for energy production. These
results show that patient-derived models can capture some of the long-term metabolic
adaptations resulting from a metabolic intervention, supporting the idea that these
models can be used to improve our understanding of individual responses to diet and
exercise.

Constraint-based metabolic models are useful tools to investigate the interactions
between physical activity and nutrition, and how they influence metabolic health and the
aging process. But they also have an important limitation: they are steady-state models
and cannot describe the intracellular accumulation of storage macromolecules e.g.,
glycogen or ectopic fat, or dynamic bioenergetic signals relevant in longevity pathways
such as the NADH/NAD+ ratio and AMP/ATP ratio [23]. Moreover, they do not include
any information about regulatory pathways, for example those relevant to fuel selection
such as the insulin signaling pathway. The lack of a regulatory network in genome scale
metabolic models is a limitation, but also decouples the metabolic network from the
signaling network and gives us the possibility to study their properties. By doing so, in
our simulations we found that the metabolic network was able to adapt its fuel choice to
its energetic requirements independently from regulation. RQ was found to be sensitive
to energy expenditure conditions and glucose was found to be the preferred substrate for
ATP production in low expenditure conditions. We concluded that metabolic flexibility
is intrinsic to the metabolic network. The ability to adapt substrate choice to the external
environment can also be found in single-celled bacterial organisms, where the activity
of catabolic pathways is regulated mainly at the transcriptional level and by negative
feedback by the end product of a pathway [24]. Metabolic flexibility is an evolutionary
advantage, as it increases the resilience of an organism to environmental disruptions
[25].

But what is an optimal strategy for a single cell might be detrimental for a multi
cellular organism: the prioritization of glucose as energy substrate in low energy expen-
diture conditions, regardless of glucose supply, could cause a depletion of this substrate
and deprive other important tissues, such as the brain (whose metabolism relies on glu-
cose) of fuel. This is why, in multicellular organisms, a systemic regulation mechanism
is required for the coordination of the energetic demands of multiple tissue types across
the whole body. The regulation of metabolic flexibility by insulin signaling [18] and by
pyruvate dehydrogenase kinases [26] is part of the allostatic response to the imbalance
between energy intake and expenditure [27]. The aim of this response is to maintain
homeostasis and optimal substrate allocation across different tissues.

In principle, the calculation of RQ from reaction stoichiometry is straightforward.
In practice, using genome-scale metabolic models to simulate metabolic flexibility is
not trivial. RQ simulations are challenging because of their sensitivity to ‘technical’
variability, for example the use of a different solver software, or due to different model
implementations such as constraints on external fluxes, different stoichiometry for the
same reaction, and different ATP yields for relevant energy substrates. But metabolic
flexibility is also sensitive to ‘biological variability, for example different nutrition and
energy expenditure habits, or different genetic backgrounds among different individuals.
It may be difficult to distinguish ‘technical’ variability from ‘biological’ variability. Model
inconsistencies that were biasing the results were addressed, as discussed in appendix A.
To ensure the reproducibility of the results, models and simulation parameters should
be standardized as much as possible.
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Metabolic flexibility is an important health concept that integrates nutrition and
energy expenditure. Expanding this concept to any response of fuel metabolism to
external stressors, such as hot and cold temperatures, traumatic events such as illness,
injuries or surgeries, and psychological stress [28] could reveal more details about how
these factors interact in many pathological and physiological conditions, including

aging.

4. Materials and Methods
4.1. Simulating the fast to fed transition in constraint-based models

In this study we investigate the effects of physical activity on metabolic flexibility
using a set of different models, including Recon2.2, Recon3D, MitoCore, and 24 patient-
derived models of skeletal muscle metabolism based on Recon2.2. The development and
validation of the patient-derived models is described in [17]. To identify the fuel mix
utilized by the models during the fast to fed transition we computed the Respiratory
Quotient (RQ) using the following relation:

RQ = CO3" /0" (1)

In fasting conditions, plasma concentration of glucose is low, and skeletal muscle uses
fatty acids as energy substrate. After a meal the plasma concentration of glucose rises,
and insulin is secreted by pancreas in response. Insulin signals to skeletal muscles and
to other tissues to use glucose for energy production. Oxidation of fatty acids such as
palmitate is inhibited, and fatty acids are instead stored in adipocytes as energy reserve.
This is known as fast to fed transition.

We reproduced this transition by progressively changing the upper bound of the
glucose and palmitate exchange reactions. In the fasted condition, the maximal influx
of glucose and palmitate was restricted to 0.5 mM/h and 0.38 mM/h respectively. In
the fed condition, the maximal influx of glucose and palmitate was restricted to 4.5
mM/h and 0.034 mM/h respectively. All other exchanges, except water and protons,
were deactivated. The LP solver chose a combination of palmitate and glucose from the
medium to fulfill the cellular objective. By maximizing ATP consumption instead of
ATP production, the models generated ATP using the optimal pathway, thus eliminating
a potential source of bias. By constraining the flux through the ATPH reaction we
simulated a condition of reduced energy expenditure. This allowed us to simulate the
effect of reducing energy expenditure on fuel choice. (Figure 1B). The analyses were
performed in Python 3.7 using the Cobrapy package [29]. The Gurobi solver was used to
perform flux balance analysis.

5. Conclusions

A new description of the fast to fed transition enables the investigation of the
interactions between energy expenditure and fuel choice using constraint-based models.
Even if limited to the analysis of glucose and palmitate metabolism, our model is rich
enough to describe metabolic flexibility. Simulating low energy expenditure conditions
reproduced phenotypes linked to metabolic inflexibility in several human metabolic
reconstructions. Patient derived models of skeletal muscle metabolism can capture
the metabolic adaptations following a resistance training intervention and can be used
to investigate the variability in the individual responses to metabolic interventions.
Physical activity can restore metabolic flexibility.
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989/1/1/0/s1; Figure S1: Individual RQ profiles of 24 patient-derived models of skeletal muscle
metabolism in older adults in low energy expenditure conditions (ATPH UB=35 mM/gDw/h).
Figure S2 (A-C): Visualization of RQ predictions for Recon2.2, Recon3D and MitoCore models
(200 > ATPH UB > 35 mM/gDw /h). Figure S (A-C)3: Visualization of RQ predictions for Re-
con2.2, Recon3D and MitoCore models in low energy expenditure conditions (ATPH UB < 35
mM/gDw /h). Figure 54 (A-C): Flux through ATPH (objective reaction) during the fast to fed
transition for Recon2.2, Recon3D and MitoCore models (1000 > ATPH UB > 1 mM/gDw/h).
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Abbreviations

The following abbreviations are used in this manuscript:

RQ Respiratory Quotient
ATPH ATP Hydrolysis reaction
OXPHOS Oxidative Phosphorylation
UB Upper Bound

gDw grams of dry weight
Appendix A

Both MitoCore and Recon3D models required modifications before they could
give RQ predictions in the expected range. MitoCore by default has an upper bound
constraint of 0.9 mM/gDw /h on the reaction GLCt1r (glucose transporter). This resulted
in a non-smooth trajectory in the RQ profile at higher ATPH UB values and in a ‘flat” RQ
profile at lower ATPH UB values:

MitoCore

100 200

20.857

ATPH
Upper Bound

Fast Fed

The constraints on this reaction were removed, yielding the predictions presented in
figure 2. Recon3D model was giving inconsistent predictions and with higher RQ values
than expected, for example converging at RQ=1.015:
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Recon2.2 and Recon3D model contain two alternative reactions for Complex IV of the
electron transport chain (Cytochrome oxidase), (IDs: CYOOm3i and CYOOm?2i).

CYOOm3i:7.92hy;, + 02y + 4.0 focytCyy == 1.96hr0,; + 4.0 ficytC,; + 0.02 025, + 4.0 h;
CYOOm2i:8.0 hy, + 02y + 4.0 focytC,; == 2.0hy0,, + 4.0 ficytC,, + 4.0 h;

The two reactions have similar formulations, but CYOOm3i also produces 02s (reactive
oxygen species, ROS). In the model 2 02s are converted into 02 + h202 by the reaction
superoxide dismutase (ID: SPODM). The 02 produced by SPODM is then reused by
CYOOm3i, accounting for 1% of the input flux. This means that the 02 influx from
the external compartment into the cytosol (which is measured to compute RQ) will
be 1% smaller, causing an increase in the RQ value. When the CYOOm3i reaction
was deactivated in Recon3D, the model predictions returned to the expected range. In
Recon2.2 the two reactions are associated with different genes. During the construction of
the skeletal muscle models, which are based on Recon2.2., only one of the two reactions
(CYOOm3i) was inherited by the "child" models [17].
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