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Abstract 
Lignocellulosic fibers are widely applied as composite reinforcement due to their 
properties. The thermal degradation behavior determines the maximum temperature in 
which the fiber can be applied without significant mass loss. It is possible to determine 
these temperatures using Thermogravimetric Analysis (TG). In particular, when curves 
are obtained at different heating rates, kinetic parameters can be determined and more 
detailed characteristics of the material are obtained. However, every curve obtained at a 
distinct heating rate demands material, cost, and time. Methods to predict 
thermogravimetric curves can be very useful in the materials science field and in this 
sense mathematical approaches are powerful tools if well employed. For this reason, in 
the present study, curaua TG curves were obtained at three different heating rates (5, 10, 
20, and 40 °C.min-1) and Vyazovkin kinetic parameters were obtained. After, the 
experimental curves were fitted using an artificial neural network (ANN) approach 
followed by a Surface Response Methodology (SRM). Curves at any heating rate 
between the minimum and maximum experimental heating rates were obtained with 
high reliability. Finally, Vyazovkin kinetic parameters were tested again with the new 
curves showing similar kinetic parameters from the experimental ones. In conclusion, 
due to the capability to learn from the own data, ANN combined with SRM seems to be 
an excellent alternative to predict TG curves that do not test experimentally, opening the 
range of applications.    

Keywords: lignocellulosic fiber, thermal degradation, kinetic analysis, artificial neural 
network.  
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1. Introduction 

Lignocellulosic fibers are versatile materials used in different applications. Their use 
englobes the entire fiber for reinforcement in composite materials [1,2], or the use of 
their derivatives (cellulose, hemicellulose, or lignin) in different uses as shape memory 
of lignin-rubber composites [3], to obtain nanocellulose [4], to reinforce expanded 
composites [5] or cellulose biomedical applications [6], for example. This potential of 
application can be attributed to the wide variety of chemical components (cellulose, 
hemicellulose, lignin, waxes, low molecular weight components, oil, etc.) presented in 
the lignocellulosic fibers [7,8]. Also, the same fiber can have different properties 
depending on the plant age, climate, soil among others [9].  

Yao et al. [10] studied the thermal degradation behavior of ten different 
lignocellulosic fibers, focusing on the Arrhenius kinetic parameters. The activation 
energy in the function of the conversion degree presented similar values, independently 
of the chemical content of the fiber. A linear dependency in the conversion range α = 
0.2-0.8 was observed for all fibers with an apparent activation energy of 160-170 
kJ.mol-1 for most of the fibers studied. Sunphorka et al [11] studied an artificial neural 
network (ANN) model using 150 data from different lignocellulosic fibers in relation to 
Arrhenius kinetic parameters. The main results indicated that cellulose plays a major 
role in the pre-exponential factor while the hemicellulose on the reaction order. 
According to the authors, all components affected the activation energy. Ornaghi Jr. et 
al. [7] studied the mechanisms involved in the thermal degradation of lignocellulosic 
fibers based on the chemical composition. The main results indicate that the activation 
energy of the fibers followed similar values to the cellulose component and that the 
thermogravimetric curves followed a similar pattern, independently of the chemical 
composition. Monticeli et al [12] studied the optimal training data for ANN application 
using thermogravimetric analysis. The results indicated 50-60 as the optimal number of 
training datasets for all fibers. Also, a reliable prediction of TG curves was obtained at 
different heating rates did not obtained experimentally.  

Most of the fibers found in the literature follow a similar curve format, 
independently of the amount of the chemical components, indicating that the 
degradation process may follow certain degradation rules. For example, a mass loss of 
about 5-10% is obtained at 100 °C due to moisture evaporation and from 300 °C from 
the degradation of cellulose. In some cases, a shoulder is observed at DTG (derivative 
thermogravimetric analysis) due to the higher amount of hemicellulose in a small range 
before cellulose degradation  [13,14]. Hence, the prediction of the thermogravimetric 
curves of a particular lignocellulosic fiber can be extended to most of the fibers due to 
these similarities. 

The main objective of this study is to perform the thermal degradation kinetic 
behavior of curaua fiber using the Vyazovkin kinetic method and ANN approach. The 
experimental curves were kinetically tested, and curves do not tested experimentally 
were predicted, and new kinetic tests were done. The results presented reliable and 
robust data without the necessity of further experimental curves. 

2. Materials and Methods 

Curaua fiber received from CEAPAC (support center for community action 
projects) was used in this study. More details about the fiber characteristics can be 
found on [15,16]. 

Thermogravimetric analysis was carried out using a TA instrument model TGA-50 
Shimadzu under nitrogen atmosphere from 25 to 900 °C. It was used ~10 mg of each 
sample at three distinct heating rates (5, 10, 20, and 40 °C.min-1). The curves were used 
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to calculate the kinetic parameters according to the Vyazovkin method. The theoretical 
and ANN predicted curves were used to calculate the kinetic parameters. It was used in 
the previous study of Monticeli et al. [12] as a base for the obtaining of the new ANN 
curves at distinct heating rates. The predicted curves were used to calculate again the 
kinetic parameters.  

2.1 Kinetic approach 

The thermal degradation kinetic of lignocellulosic fibers follows the kinetics of the 
reaction of solids:  

𝑑𝛼

𝑑𝑡
= 𝑘(𝑇)𝑓(𝛼) 

(1) 

 

where 𝑑𝛼 𝑑𝑡⁄  is the degradation rate, 𝑘(𝑇) is the rate constant, and 𝑓(𝛼) is a function of 
the conversion. 

The degradation kinetic follows Arrhenius (Equation 2) and the heating rate 
changes linearly with temperature (Equation 3): 

𝑘(𝑇) = 𝐴𝑒  (2) 

 

𝛽 =
𝑑𝑇

𝑑𝑡
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(3) 

 

where 𝐴 is the pre-exponential factor, 𝐸𝑎 is the activation energy, 𝑅 is the gas constant, 
𝑇 is the temperature, 𝛽 is the heating rate, and 𝑑𝑇 𝑑𝑡⁄  is the temperature in function of 
time. 

The reaction model follows equation (4): 

𝑓(𝛼) = 𝛼 (1 − 𝛼) − 𝑙𝑛(1 − 𝛼)  (4) 

 

where 𝑚, 𝑛, and p are constants. 

In combining Equations (1) (2) (3) and (4) we obtain equation (5):  

 
𝑑𝛼

𝑑𝑇
=

𝐴

𝛽
𝑒 𝛼 (1 − 𝛼) − 𝑙𝑛(1 − 𝛼)  

(5) 

 
Vyazovkin equation is proposed according to Equations (6) (corrected heating rate) 

and (7): 

 (𝑇 (𝛽. 𝑡 + 𝑇 ))  
  

                                                               (6) 

 

 
𝐼 𝐸𝑎, 𝑇 , 𝛽

[𝐼 𝐸𝑎, 𝑇 , 𝛽 ]
= 𝑚𝑖𝑛 

 

(7) 
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where 𝑆 is the number of files for the corresponding heating rate, 𝐿 is the number of 
rows in the i-file, 𝑇  is a value of the temperature in the i-file in the j-row, and 𝑡  is the 
value of the time in the i-file in the j-row measurements. 𝛽 and 𝑇  are unknown 
parameters of the equation. 𝐼(𝐸, 𝑇) if found by numerical integration. 

The kinetic calculation was performed with the help of the Software developed by 
Drozin et al. [17] with the experimental and predicted curves. 

2.2 Artificial neural network  

 An ANN is conventionally constructed with three layers, i.e. an input, an output, 
and a hidden layer. Each layer has different numbers of neuronal elements. In the 
present case, we use as input vectors a set of iTG curves at different heating rates. In 
this sense, the network will modify the weight of the interconnections between neurons 
in order to reproduce the given parameters. Figure 1 shows the scheme of the 
calculation process. 

 

Figure 1. Flowchart of the calculation process.  

The main issues necessary to be defined before using the networks are the quality 
and number of the initial TG curves, the training algorithm, and the number of neurons 
in the hidden layer. The number of initial TG curves used for the training should not be 
excessively large in order to avoid the over-training of the network, and it has to be 
distributed correctly, in the sense that normally it is a good idea to avoid sets of input 
vectors with the same output vectors. These kinds of orthogonal combinations produce 
better results than using random sets of parameters  [18].  

The following conditions (Table 1) were used to training the ANN network: 
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Table 1 – Parameters used to perform the ANN fit. 

 
With the training of the network, we can feed the network with different curves 

and predicted new curves. The main drawback is that the curves outside the lower and 
higher heating rate cannot be created due to the accumulation of errors [18,19] 

 
2.3 Surface Response Methodology (SRM) 

 The SRM is a statistical approach for modeling and analyzing a process in 
which the response of interest is affected by various variables [12,20,21]. Equation 8 
describes the degradation curve interaction among the combination of temperature and 
heating rate. In using this method, the statistical relevance is kept and the number of 
experiments can be reduced. 

𝑌 = 𝛽 + 𝛽 𝑥 +  𝛽 𝑥 + 𝛽 𝑥 +  𝛽 𝑥  +      𝛽 𝑥 𝑥  (8) 

where Y represents the predicted response (i.e., degradation curve – 𝑊  (%)), xi and xj 
are variations parameter, in which i represents the 𝑥-axis (temperature T (ºC)) and j is 
the 𝑦-axis (heating rate HR (ºC.min-1)). β0 is the constant coefficient; βi is the linear 
coefficient; and βij is the interaction coefficient. 

 

3. Results and discussion 

Figure 2 a-b) shows the experimental thermogravimetric curves and the 
respective derivatives of curaua fiber at different heating rates. The curves maintain the 
same format independently of the heating rate used only shifting the curve to higher 
temperature due to the thermal lag. Three visible main loss stages are visualized: i) at 
around 100 °C a mass loss of 5% can be mainly attributed to the evaporation of intrinsic 
moisture, ii) at around 300 °C a more abrupt mass loss attributed mainly to 
hemicellulose that extends up to 350 °C and, iii) from 350 °C to 400 °C the degradation 
of cellulose (the main component) in a narrower range, representing the main 
degradation stage. Lignin degrades overall extension range [7,22,23].  

 

Technique Number 
of layers 

Number 
of hidden 
neurons 
in each 
layer 

Training  

Repetitions 

Neural network 
algorithm 

Error 
function 

Threshold 
of  error 
function 

Activation 
Function 

TGA 1 12 3 Resilient 
backpropagation 
with back 
tracking 

Sum of 
squared 
errors 

0.01 Tangent 
hyperbolicus 
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Figure 2. a) thermogravimetric and b) derivative TG curves of curaua fiber at different 
heating rates. The heating rates of 10, 20 and 40 °C.min-1 are represented by the red, 
blue and green lines. The vertical cyan lines represent the limit of calculation of the 
kinetic parameters 

 

All the curves above were used to calculate the kinetic parameters using the 
Vyazovkin kinetic model in the temperature range from 100 to 435 °C (main 
degradation stage). The corrected heating rates (provided by the Software) using the 
Vyazovkin method were 10.09, 20.1, and 39.79 °C.min-1. Figure 3a represents the 
activation energy in the function of the conversion and while Figure 3b the degradation 
rate in the function of conversion degree. A very good correlation between the 
theoretical and calculated degradation rate vs alpha is obtained. The results presented 
the following values: Ea = 192.02 KJ/mol-1, A = 10.6 E15, m =0.9, n = 1.71 and p = 0.  
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Figure 3. Kinetic calculation of the experimental curves. a) activation energy in 
function of conversion degree, and b) degradation rate in function of conversion degree  

 

Based on experimental degradation curves, the ANN fit was constructed with 
parameters variation, in which temperature and heating rate as the input parameters and 
the loss of mass (kinetic behavior) as output. The experimental dots were used to 
training the ANN. The number of training data influences the predictive curve, which 
was thoroughly investigated in previous work to optimize the ANN method [12]. Figure 
4a presents the trained curves with the experimental ones, and Figure 4b exhibits the 
enlargement of initial degradation. An excellent fit was obtained for all heating rates 
tested. The coefficient of determination was R2 > 0.99 for all curves. 
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Figure 4. a) Thermogravimetric curves of curaua fiber at different heating rates trained 
using ANN approach according to Monticeli et al [12], and b) enlargement of initial 
degradation 

 

Only 1/10 of the experimental dataset has been used for training the ANN, 
resulting in a perfect fitting, resulting in an appropriate predictive result. Regarding the 
ANN application, new degradation behavior could be predicted with no need for long 
experiments [24]. 

From the ANN predicted curves, intermediate heating rates were predicted using 
the surface response methodology (SRM), resulting in a 3D Surface response to predict 
mass loss as a function of temperature and heating rate variation. Dot curves give the 
experimental data. The coefficient of determination R2 = 0.96, indicating high reliability 
of predicted results. For the lowest heating rate (i.e., 5 ºC/min), the degradation curve 
initiates at the lowest temperature for onset and endset, resulting in the slowest 
degradation of the remaining residue (15%), between 375 - 810 ºC. With the increased 
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heating rate, more abrupt degradation occurs, increasing the onset and endset 
temperature.  

A well-trained ANN could develop a degradation mechanistic understanding of 
the natural fiber considered, considering that the ANN method is a purely 
phenomenological approach. For a better approximation of the theoretical and 
experimental results, the equation of the three-dimensional curve in Figure 5 was 
divided into three, presented in Eq. (9) – for the temperature range of 25 – 250 ºC, Eq. 
(10) – for the temperature range of 250 – 410 ºC, and Eq. (11) – for the temperature 
range of 410 – 810 ºC. 

 

Figure 5. Surface Response Methodology for the thermogravimetric curves 

 

𝑊 = 97.5 + 0.17𝐻𝑅 − 0.007𝑇 − 0.004𝐻𝑅 − 2.4 ∙ 10 𝑇 + 3.1 ∙ 10 𝑇 ∙ 𝐻𝑅 (9) 
𝑊 = −272.7 − 1.2𝐻𝑅 + 2.83𝑇 − 0.01𝐻𝑅 − 0.005𝑇 + 0.006𝑇 ∙ 𝐻𝑅 (10) 

𝑊 = 44.4 − 0.5𝐻𝑅 − 0.09𝑇 + 0.0054𝐻𝑅 + 4.9 ∙ 10 𝑇 + 3.14 ∙ 10 𝑇 ∙ 𝐻𝑅 (11) 
 

Following Figure 5 and Eqs. (9) - (10), Figure 5 exhibits the predicted values of 
curaua fiber degradation using the heating rates of 7, 15, 30, and 50 ºC.min-1. Through 
the ANN and RSM combination, it is possible to predict other degradation curves with 
different analysis parameters not accessed experimentally, which decreases costs and 
time related to tests repetitions with high reliability 
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Figure 6. Predicted thermogravimetric curves of curaua fiber 

The new kinetic modeling was done using the following curves predicted at the 
heating rates of a) 7, 15, and 30 °C.min-1 and b) 7, 15, 30, and 50 °C.min-1. The results 
using Vyazovkin model presented the following values for condition a): Ea = 228.74 
KJ/mol-1, A = 3.59 E19, m = 0.1, n = 1.00 and p = 0 and for condition b) Ea = 226.92 
KJ/mol-1, A = 6.92 E18, m = 0.1, n = 1.53 and p = 0.  

The values obtained, mainly the activation energy is close to the experimental 
curves. Also, the extrapolated curve (at 50 °C.min-1) used in condition b) seems to be 
satisfactory in the present study. Of course that the extrapolation of data using ANN is 
not well recommended due to the accumulation of errors. However, it can be used 
carefully and seems to work if the behavior did not change drastically from the previous 
behavior. 

4. Conclusions 

The present study proposed obtaining new thermogravimetric curves for curaua 
fiber at any heating rate situated between the minimum and maximum heating rates 
experimentally tested. For this, an Artificial Neural Network (ANN) followed by the 
Surface Response Methodology (SRM) was used to obtain new TG curves. Vyazovkin 
kinetic method was used in the experimental curves and in the newly obtained curves. 
The kinetic results presented similar values for the experimental and predicted curves. 
This approach can be extended to any material to obtain properties, parameters or to 
optimize processes.  
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