

1 *Review*

2 **Technologies for the development of new value-added**
3 **foods from dates and their processing by-products**

4 **Research highlights**

5 • Innovative approaches to the value addition to date fruits and their processing by-
6 products have been reviewed

7 • New processes (e.g., ultrafiltration and hydrothermal treatments) to obtain
8 differentiated date ingredients are shown

9 • The use of date fruits and their processing by-products as natural sources of value-
10 added active compounds is also presented

11

12 *Review*

13 **Technologies for the development of new value-added**

14 **foods from dates and their processing by-products**

15 Alex López Córdoba

16 Universidad Pedagógica y Tecnológica de Colombia, Facultad Seccional Duitama,
17 Escuela de Administración de Empresas Agropecuarias, Carrera 18 con Calle 22,
18 Duitama 150461, Boyacá, Colombia. alex.lopez01@uptc.edu.co. ORCID: 0000-0003-
19 2434-5743

20

21 **Abstract:** The changes in consumer preferences and the increasingly competitive global
22 market have demanded that food entrepreneurs engage in innovative value-added activities.

23 The date is a delicatessen fruit known by its content of active compounds (e.g., dietary fiber
24 and antioxidants) and its biological activity which has a vast potential in the design of new
25 products such as bioactive ingredients, sugar substitutes, dietary supplements, functional
26 foods, among others. In the current paper, innovative approaches to the value addition to
27 date fruits and their processing by-products have been reviewed from recent high-quality
28 scientific works. New processes such as ultrafiltration and hydrothermal treatments are
29 shown as a useful alternative to obtain differentiated date-based ingredients (e.g., fiber
30 concentrates, sap syrups, and date powders). Moreover, the use of date fruits and their
31 byproducts as natural sources of value-added active compounds in the preparation of dairy,
32 meat, and bakery and cereal products is also presented.

33 **Keywords:** Value addition; Functional Foods; *Phoenix dactylifera*; Innovation;
34 Differentiation

35

36

37 1. Introduction

38 Date palm (*Phoenix dactylifera* L., Family Arecaceae) is one of the oldest and most
39 important fruit crops in the arid and semi-arid regions of the world such as the Middle East
40 and North Africa region (Ghnimi et al. 2017). In these areas, date fruits have played an
41 essential role as a food security crop and provide a valuable support economic development.
42 The date palm has the advantage of survives under harsh conditions, such as high levels of
43 soil salinity, extreme drought, and heat (Yaish and Kumar 2015).

44 The world production of dates rose 8.166.014 t in 2017 (FAOSTAT 2019). Although
45 Egypt (1.590.414 t), Iran (1.185.165 t), Algeria (1.058.559 t), Saudi Arabia (754.761 t), and
46 Iraq (618.818 t) are the central producing countries (FAOSTAT 2019), date palm production
47 has extended to United States of America, Central and South America (Mexico, Peru, Chile
48 and Colombia), Southern Europe (Spain) and Australia (Rivera and Johnson 2013; Sirisena
49 et al. 2015).

50 The number of date varieties grown globally exceeds 2000, but the two most widely
51 known in the international market are the Medjool and Deglet Noor (Ghnimi et al. 2017).
52 The rest of the date varieties sold in the international markets are generally referred to as
53 “common dates,” especially in the EU market (Mbaga 2015). Unfortunately, a large number
54 of excellent date varieties are not well known outside their countries of production as there
55 is no internationally agreed system for their identification and classification (Ghnimi et al.
56 2017).

57 Date palm is considered a multipurpose palm because it is a source of multiple nonfruit
58 and fruit products. However, it has not been fully exploited as yet. Date fruits are known for
59 their differenced nutritional value and functional properties (Khalid et al. 2017). They are
60 widely available in the global market, especially at the ripe stage Tamar, and are consumed
61 fresh, dried, or in various processed forms such as jam and jellying (Ghnimi et al. 2017).
62 Unfortunately, it is estimated that about 30% of the total production of dates is lost during

63 harvesting, picking, storage, commercialization and technological transformation due to the
64 incidence of physical, physiological, and pathological disorders and to insect infestation
65 (Abbès et al. 2011; Lobo et al. 2013). Therefore, several strategies have been proposed in
66 order to valorize hard dates, as well (Tang et al. 2014; Mrabet et al. 2015).

67 In addition to date fruits, palm trees offer several other derivatives (such as leaves,
68 trunks, and seeds), which are used for many traditional and industrial activities like roofing,
69 fencing, basket making, and animal feeding (Makhlof-Gafsi et al. 2016). Date palm sap
70 could be directly consumed as a juice or fermented to obtain alcoholic beverages. The waxes
71 of the leaf have important pharmacological properties such as wound healing, anti-
72 inflammatory, antibacterial, antiviral, hepatoprotective, and antitumoral effect (Khelil et al.
73 2016). The current paper provides information concerning the advances in the development
74 of new value-added products from date fruits and their industrial exploitation. Several recent
75 high-quality scientific works were reviewed, and new technologies for the value addition to
76 date fruits are presented. As far as the authors are aware, several works are dealing with the
77 composition and the biological activity of different date cultivars (Ghnimi et al. 2017).
78 However, the development of value-added foods from date has been little discussed.

79

80 **2. Date fruit development**

81

82 Figure 1 shows the stages that take place during the development of the date fruit.
83 Several studies had discussed the physical and chemical development of dates as they pass
84 through these stages (Baliga et al. 2011; Ghnimi et al. 2017). Date fruits are commonly
85 consumed in their last three development stages (i.e., Khalal, Rutab and Tamr).

86 The fruits are also classified according to their moisture contents at fresh Tamr stage into
87 soft (> 30% moisture), semi-dry (20–30% moisture) and dry cultivars (<20% moisture)

88 (Ghnimi et al. 2018). In soft cultivars (like Hillawi, Abada, Amhat, Barhi, Bentaisha, Halawy,
89 Hayani, Honey, Khadrawy, and Medjhool), almost all sucrose is converted into invert or
90 reducing sugars (glucose and fructose) during ripening (Lobo et al. 2013). Dry date cultivars
91 (like Badrayah, Bartamoda, Deglet Beida, Horra, Sakoty, and Thoory) contain a relatively
92 high proportion of sucrose. Semi dry-date cultivars include cultivars such as Amry, Dayri,
93 Deglet Nour, Khalas, Sewy, and Zahidi. Both dry and semi-dry dates retain a good amount
94 of sucrose on full ripening, in addition to the reducing sugars (Lobo et al. 2013).

95 **3. Composition and biological activity**

96 The date fruit is composed of an edible flesh (or pulp) (85-90%) and a single seed (10-
97 15%) (also called kernel, stone, pit, or pyrene) (Figure 1) (Ghnimi et al. 2018; Kamal and
98 Sami 2018).

99 The composition of date fruits depending on the cultivar, stage of maturity, and agro-
100 climatic conditions. Table 1 shows the estimated composition of date pulp and seeds of some
101 of the most popular date varieties in the global market. Date pulps contain easily digestible
102 sugars (70%), mainly glucose, sucrose and fructose; dietary fibers and contain fewer proteins
103 and fats (Table 1) (Baliga et al. 2011; Ghnimi et al. 2017). They also contain vitamins like
104 riboflavin, thiamine, biotin, folic, and ascorbic acid that are essential for the body (Baliga et
105 al. 2011; Aslam et al. 2013). The pulps are rich in iron, calcium, cobalt, copper, fluorine,
106 magnesium, manganese, potassium, phosphorus, sodium, copper, sulfur, boron, selenium and
107 zinc (AL Juhaimi et al. 2014; Al-Farsi et al. 2018).

108 When compared to the pulp, date pits contain a higher quantity of protein and fat and are
109 also high in dietary fiber (Table 1) (Baliga et al. 2011; Bouhlali et al. 2017). They have many
110 other benefits, such as vitamins, minerals, carotenes, and other chemicals that may prevent
111 cancer and heart disease (Bouhlali et al. 2017; Laghouiter et al. 2018). Date palm seeds

112 contain 5–12% oil with the predominant of oleic acid followed by linoleic, lauric, palmitic,
113 and stearic acids (Laghouiter et al. 2018).

114 Date pulp and seeds are rich in value-added metabolites such as phenolic acids, flavonoids,
115 tannins, anthocyanins, and carotenoids (Di Cagno et al. 2017; Ghnimi et al. 2017). Several
116 works are dealing with the role of these compounds on the health benefits associated with
117 date fruit (Table 2) (Taleb et al. 2016; Al-Alawi et al. 2017).

118 **4. Value addition to date fruits**

119 *4.1. Dried dates*

120 Drying of fresh dates is necessary because it contains high moisture which limits the
121 shelf life. Moreover, several consumers show a preference for fruits at the dry and semi-dry
122 stage, probably because of lower astringency, sweet taste, and easy storability

123 Drying consist in the reduction of the moisture content of the date fruits. Sun-drying is
124 a traditional way of preserving dates (Al-Farsi et al. 2005). However, some of their
125 antioxidant constituents are lost during this process (Al-Farsi et al. 2005). Air drying is
126 another process used for the decreasing of the water content of date fruits (Al-Awaadh et al.
127 2015). Al-Awaadh et al., 2015 studied the effects of different air-drying conditions on date
128 fruits color and texture. Drying assays were performed at different temperatures (50°C, 60°C,
129 70°C, and 80°C,) and air velocities (0.5, 1.0, and 2.0 m/s). It was stated that to minimize
130 changes in the date fruits color and texture, the optimal drying conditions are temperatures
131 ranging between 60 and 70 °C using a air velocity of 2 m/s. Juhaimi, Özcan, & Uslu, 2017
132 studied the effect of microwave (360, 540 and 720 W) and conventional drying (70, 90 and
133 110 °C) on the antioxidant activity, the polyphenol content and the mineral profile of date
134 pulp. Both dehydration methods caused a reduction in the phenolic compounds amount,
135 although the antioxidant activity of the date flesh was not affected.

136 4.2. Date paste

137 Date paste is one of the most popular date products in several countries. It is prepared
138 based on pitted and minced dates and is mainly consumed as paste, but also it is used as an
139 important ingredient in bakery and confectionery industries for cookies, sweetbreads, and
140 candy bars (Sánchez-Zapata et al. 2011; Al-farisi and Lee 2014). Moreover, date paste could
141 be used as a texture modifier and also as an stabilizer of lipid-rich foods or emulsions
142 (Sánchez-Zapata et al., 2011).

143 Date paste is rich in sugar (sucrose, fructose, and glucose), dietary fiber, and phenolic
144 compounds (Table 3) (Sánchez-Zapata et al. 2011; Martín-Sánchez et al. 2014; Ben Mya et
145 al. 2017). Moreover, this product has reported low pH (6.0) and water activity (0.58)
146 (Sánchez-Zapata et al. 2011).

147 Date paste can also be enriched with date seeds to improve their dietary fiber and
148 phenolic compounds content. Al-farisi & Lee, 2014 proposed an innovative process to
149 obtaining date paste enriched with dried and roasted seed powders with good sensory quality.

150 Most recently, dried date paste has been proposed as a useful carrier for probiotic strains
151 such as *B. coagulans* BC4 (Marcial-Coba et al. 2019). This interesting approach could be
152 useful to the development of new functional snacks containing probiotic bacteria.

153

154 4.3. Date juice and syrup

155 Date syrup (or dibs) is one of the most important derived date fruit product. Date-syrup
156 mainly contains sugars, such as sucrose, fructose, and glucose (Abbès et al. 2015). Moreover,
157 this contains proteins, lipids, pectin, salts, and minerals (Abbès et al. 2015). Date syrup is
158 also an important source of natural antioxidant compounds (Al-Mamary et al. 2014).

159 The date syrup could be used as an ingredient of a broad amount of food products. Also,
160 date syrup has been proposed as a tablet binder (Alanazi 2010).

161 To the preparation of the date syrup, date pulp is blended with water and heated at 100
162 °C between 5 and 30 min. The produced juice is filtered and centrifuged. Finally, the
163 supernatant is concentrated to 80 °Brix by heating. The syrup could be crystallized and could
164 be a product named as date-set-syrup (Al-Farsi et al. 2018).

165 Raw date syrup is frequently subject to clarification/descoloration steps in order to
166 remove off-color compounds and increase the extraction yield, reducing sugars soluble dry
167 matter and titrable acidity of the products (Abbès et al. 2011). The treatment of the syrup
168 with hydrolytic enzymes (e.g., pectinase and cellulase) has proved to be a useful way to
169 increase the recovery of soluble solids of date syrups (Abbès et al. 2011, 2013, 2015). To
170 remove off-color compounds, such as polyphenols, activated carbon is used for its high
171 adsorptive capacity, and sufficient pore size distribution (Ahdno and Jafarizadeh-Malmiri
172 2017). Ahdno and Jafarizadeh-Malmiri 2017 developed a sequenced enzymatically pre-
173 treatment and filter pre-coating process to decrease turbidity and darkness intensity of date
174 syrup (Figure 2).

175 Date palm sap is one of the popular derivatives of date palm trees (Makhlof-Gafsi et al.
176 2016, 2018). This derivative has steadily gained attention and importance in the development
177 of date syrups. To the preparation of the date sap syrup, exuding saps are collected by a
178 traditional tapping method from male and female date palms, filtered through a fine cloth and
179 concentrated by heating at 100 °C to 74 °Brix or with a rotary vacuum evaporator, at 60 °C.
180 The date palm sap syrups have been produced at laboratory scale and characterized in terms
181 of their physicochemical, rheological, microstructure, and thermal properties (Makhlof-
182 Gafsi et al. 2016). Furthermore, their content of bioactive compounds has been evaluated
183 finding a high content of polyphenolic compounds and a potent antioxidant, antimicrobial,
184 and cytotoxic activity (Makhlof-Gafsi et al. 2018). The ultrafiltration process also has been
185 evaluated as a positive alternative to concentrate and separate the date sap syrup (Makhlof-
186 Gafsi et al. 2016, 2018). It has been found that ultrafiltration allows retaining sucrose through

187 tubular membranes decreasing its content in the corresponding syrups and increasing the
188 amount of reducing sugars. This contributes to a reduction of the syrup crystallization
189 phenomenon. Moreover, the ultrafiltration process caused retention of pectin, which affects
190 significantly the rheological properties of sap syrups (Makhlouf-Gafsi et al. 2016).

191 4.4. Date powders

192 Date powders constitute a useful dosage form of date components into several food
193 formulations, for instance, as a sugar replacer (Barimah et al. 2015; Ben Mya et al. 2017). To
194 their preparation, macerated dates are put on trays and dried down to less than 5% moisture
195 by air drying or freezing drying. The dried dates are ground and sold in various screen sizes
196 (Suresh et al. 2013; Jridi et al. 2015).

197 Date powders have also been obtained from date processing by-products such as date
198 pits. Suresh et al., 2013 studied the thermal properties and the chemical composition of date-
199 pits powders. The pits were removed from dates variety Khalas in the Tamar maturity stage,
200 cleaned, freeze-dried, and grounded (Suresh et al. 2013). Date-pits powders showed a high
201 content of crude fiber (33.9 g /100 g date-pits powder) and their polyphenol contents ranged
202 from 21 to 62 mg gallic acid equivalents (GAE)/g date-pits depending on the extraction
203 conditions (solvent and temperature). A. Ahmed, Arshad, Saeed, Ahmed, & Chatha, 2016
204 working with roasted date-pits powders reported crude fiber contents around 9 g /100 g
205 roasted date-pits powders and polyphenols content between 8 and 12 mg GAE/g. Gökşen et
206 al., 2018 determined the proximate compositions, dietary fiber contents, and the
207 technological properties and bile acid binding capacity of the date seeds powders of three
208 cultivars (Safawi, Suhgai, and Mebruum). Date seeds powders showed high total dietary fiber
209 contents (85.6–87.4%), where the insoluble and soluble dietary fiber contents were in the
210 range of 82.1–84.4% and 2.8–3.5%, respectively. Besides, it was suggested that hydrophobic
211 interactions between dietary fiber fractions and bile acids lead to high bile acid binding

212 capacity of date seeds powder. Binding of bile acids and increasing their fecal excretion has
213 been hypothesized as a possible mechanism by which dietary fiber lowers cholesterol
214 (Gökşen et al. 2018).

215 The lactic acid fermentation of date fruits has also been proposed as innovative
216 biotechnology to achieve functional dietary supplements. Di Cagno et al., 2017 investigated
217 selected autochthonous lactic acid bacteria for the manufacturing of freeze-dried powder
218 from fermented date fruits puree. Fermented date fruits puree resulted enriched in γ -amino
219 butyric acid, conjugated linoleic and linolenic acids, and insoluble dietary fibers. Besides,
220 lactic acid fermentation allowed the highest concentration of phenolic derivatives with high
221 human bioavailability.

222 4.5. Date fiber concentrates

223 Dietary fiber concentrates from date have been considered functional ingredients. It has
224 been obtained from secondary dates applying hydrothermal pre-treatments that allow for the
225 extraction of soluble compounds to the liquid phase, leaving a fibrous material as a solid
226 fraction (Mrabet et al. 2015). Steam explosion treatment has been proposed for the
227 manufacturing of date fiber concentrate. In this process, the material is treated with high-
228 pressure saturated steam (10-40 kg/cm²/ 180-240 °C) for a few minutes, and then the pressure
229 is swiftly reduced, causing the materials to undergo an explosive decompression (Figure 3A).

230 In order to reduce the pressure and the processing costs, others pre-treatment processes have
231 been developed based on steam treatment but without explosive decompression (Figure 3B)
232 (Mrabet et al. 2015). In the novel system, a lower range of pressure and temperatures (3-9
233 kg/cm² and 140-180 °C) is applied for a longer period of time (15-90 min). Mrabet et al.,
234 2015 applied for the first time both thermal pre-treatment systems based on steam technology
235 (steam explosion treatment and steam treatment) to secondary date varieties from Tunisia, in
236 order to obtain new date fiber concentrates with antioxidant properties. The recovery of fiber

237 concentrate was similar for both processes and also their chemical composition. Also, the
238 date fiber concentrates had very high antiradical activity (230–580 mmol Trolox/kg of fiber
239 concentrate). Date fiber concentrate exhibited a pleasant chocolate/coffee flavor and
240 therefore was proposed for their incorporation in dairy or bakery products. More recently,
241 Mrabet et al., 2017 developed a new date fiber concentrate rich in dietary soluble fiber
242 through enzymatic hydrolysis (Viscozyme® L) in order to increase their prebiotic effect. The
243 fiber concentrates were rich in gluco- oligosaccharides and manno- and xylo-
244 oligosaccharides that are considered as emerging prebiotics.

245 4.6. Date oils

246 The date-pit oil is commonly extracted using n-hexane in a Soxhlet apparatus or
247 ultrasound-assisted solvent extraction (Al-Kharousi et al. 2016). Date palm seed oil contain
248 saturated and unsaturated fatty acids, where the oleic acid is the major fatty acid (39.7–
249 49.7%) (Golshan Tafti et al. 2017; Al Juhaimi et al. 2018; Laghouiter et al. 2018).
250 Pentadecanoic, palmitic, heptadecanoic, stearic, arachidic, behenic, palmitoleic, cis10-
251 heptadecenoic, cis11-eicosenic, linolenic, cis11,14-eicosadienoic, cis-11,14,17-
252 eicosatrienoic have also been found in date seed oil (Habib et al. 2013). Date seed oil is also
253 rich with phenolics compounds including hydroxytyrosol, protocatechuic acid, gallic acid,
254 tyrosol, caffeic acid, p- coumaric acid, 3,4-dihydroxyphenylacetic acid and oleuropein
255 (Laghouiter et al. 2018). β -Carotene has been reported as the most occurring carotenoid in
256 several date seed oil varieties. Moreover, the date seed oils depicted considerable
257 concentrations of vitamin E and vitamin K1 (Habib et al. 2013). Besides of its valuable
258 chemical composition, date pits oil had reported a good oxidative and thermal stability; thus,
259 it could be used for cooking and frying in culinary and industrial applications (Al-Kharousi
260 et al. 2016; Golshan Tafti et al. 2017). Acid value, peroxide value, and p-anisidine value of

261 1.4 mg KOH/g oil, 3.3 meq/ kg oil and 0.6, respectively were reported for fresh date-pit oil
262 by Al-Kharousi et al., 2016.

263 **5. Development of food products with ingredients derived from date**

264 **5.1. Fruit and vegetable products**

265 Date fruits have been proposed as a positive alternative to conventional fruit in jam and
266 jelly production. These products have been prepared from date paste and date syrup,
267 respectively (Benali et al. 2015). Benali et al., 2015 demonstrated the feasibility of natural
268 jelly from three Algerian raw materials, namely date syrup, lemon juice, and orange albedo
269 powder, using response surface methodology combined with central composite design. The
270 cooking temperature and cooking time were found to be the most influent factors on textural
271 properties of the final jelly. Moreover, these authors reported that to reach textural properties
272 of commercial jellies, the temperature of the cooking process and the heating time of the
273 initial fruit mixture had to be fixed at 155 °C and 10 min, respectively.

274 Fruit bars also constitute an excellent vehicle for date bioactive compounds. Parn, Bhat,
275 Yeoh, & Al-Hassan, 2015 developed fruit bars by utilizing date paste as a sugar source. Date
276 paste was boiled under stirring for 10 min and then was added of milk powder, margarine,
277 citric acid and common salt. The pulp mixture obtained was boiled, and continuously stirred
278 until 75 °Brix and then poured into greased, non-sticking trays and cooled to room
279 temperature (25 °C). Finally, the fruit bars were cut and packed. Date fruit bars had a high
280 content of crude protein, carbohydrates, and fat being a good source of energy. Moreover,
281 the bars had suitable textural characteristics.

282 **5.2. Meat products**

283 The incorporation of date into meat products has proved to be an easy and economical
284 strategy to develop healthier products with improved physicochemical and sensory properties

285 (Elleuch et al. 2008; Sánchez-Zapata et al. 2011). Sánchez-Zapata et al., 2011 developed date
286 paste-added bologna sausage finding that when date paste was added at 10 and 15%, it results
287 in a more adhesive and less hard, chewy, and cohesive product than the control (Sánchez-
288 Zapata et al. 2011).

289 Martín-Sánchez et al., 2013 evaluated the viability of using date paste in a campagne
290 type pork liver pâté, as an inexpensive source of sugars, dietary fiber, and natural
291 antioxidants. Liver pâtés, with high amounts of fat and iron, are sensitive to oxidative
292 deterioration. Thus the addition of a date paste which is rich in natural antioxidants was
293 proposed to increase the product quality. The incorporation of 10% date paste protected the
294 product against lipid oxidation during refrigerated storage. Moreover, pâtés with date paste
295 were greatly accepted by consumers, and trained panelists, the mix of sweet and salty tastes,
296 together with a good texture was agreeable (Martín-Sánchez et al. 2013).

297 5.3. Dairy products

298 There is an increased number of scientific and clinical evidence supporting the health
299 benefits of fermented milk products. El-Nagga & Abd ElTawab, 2012 studied the effect of
300 the addition of date syrup on the physicochemical and sensory properties of two fermented
301 dairy products (zabady and biogarde). Buffalo's milk (3.0% fat) was heated to 90 °C/15 min,
302 then concentrated date syrup was added at different levels (1%, 2%, and 3%) at 50 °C, rapidly
303 cooled to 42 °C. To the preparation of zabady, the blends were inoculated with *Lactobacillus*
304 *delbruekii* subsp. *Bulgaricus* and *S. thermophilus*. In the case of biogarde, active starter
305 cultures of *B. bifidum*, *Lb. acidophilus* and *S. thermophilus* were used. Date syrup-added
306 fermented milk had better flavor, appearance, and body textures. Moreover, they were good
307 sources of lysine, histidine, threonine, and leucine + Isoleucine (El-Nagga and Abd ElTawab
308 2012).

309 Dairy products have also been fabricated from date processing by-products. Trigueros,
310 Sayas-Barberá, Pérez-Álvarez, & Sendra, 2012 proposed a strategy to the sustainable use of
311 date blanching water for reconstituting skim milk powder and producing low-fat yogurt. Date
312 blanching water was found to be a source of phenols and flavonoids as well as organic acids
313 and sugars, that confer interesting antioxidant, sensory and physicochemical properties to the
314 yogurt (Trigueros et al. 2012). Jridi et al., 2015 obtained syrups and powders from by-
315 products of three Tunisian date varieties (Deglet Nour, Kentichi and Allig) for their
316 incorporation in different formulations of dairy desserts. Date syrups and powders were used
317 as natural sweetening agents and source of coloring and flavoring compounds. Moreover,
318 they were able to act as thickening aids due to their high-water holding capacity attributed to
319 their content of insoluble fibers and polysaccharides. The incorporation of the date by-
320 products improved the polyphenol content and the antioxidant activity of the dairy desserts
321 (Jridi et al. 2015).

322 5.4. Cereal and bakery products

323 Breakfast cereals are defined as foods obtained by swelling, grinding, rolling or flaking
324 a cereal grain. They are the most popular breakfast choice eaten by school-aged children.
325 Although breakfast cereals are a good source of vitamins and minerals, antioxidants,
326 phytoestrogens, and fiber, many breakfast cereals contain high levels of sugar (Khehra et al.
327 2018). Recently, Aljobair, 2018 fabricated corn and sorghum flakes using date syrup in place
328 of sugar. The products showed a high nutrient content and exhibit good sensory
329 acceptability, except for the dark color of the flakes.

330 Bakery products constitute a major food staple in the world. The use of date syrups as a
331 sugar substitute in bread formulations has been studied for many years ago. Also, date dietary
332 fiber concentrate is a beneficial ingredient to bread making because it offers health benefit
333 and improves the bread yield due to their high water absorption capacity (Borchani et al.

334 2011). Bchir, Rabetafika, Paquot, & Blecker, 2014 examined the effect of the incorporation
335 of apple, pear and date fiber from cooked fruit by-products of “Liège syrup” manufacturing
336 on wheat bread dough performance and bread quality. Date and apple fiber concentrate-
337 enriched dough showed higher water absorption, stability, and dough yield. The crust of the
338 bread enriched with date fiber had a darker color characterized by a low lightness (Figure 4).

339 Mrabet et al., 2016 developed muffins enriched with date fruit fiber concentrate obtained
340 after a steam pre-treatment. The muffins containing date fiber concentrate showed higher
341 dietary fiber content and antioxidant activity than the unfortified muffins. They also showed
342 good sensory acceptability, similar to that of the product without date fiber concentrate.

343 5.5. Sauces

344 Mayonnaise is an oil-in-water emulsion based on of egg, vinegar, oil and spices
345 (especially mustard). This is probably one of the most widely used sauces or condiments in
346 the world today. Oil is the major ingredient contributing to the viscosity and body of
347 mayonnaise. Mayonnaise is commercially prepared using soya bean, cottonseed, sunflower,
348 and corn oils. Basuny & AL-Marzooq, 2011 used date pit oil to replace conventional oil in
349 producing mayonnaise. It was found that mayonnaise containing date pit oil was superior in
350 sensory characteristics as compared with control manufactured from corn oil.

351 5.6. Ethnic date-based products

352 The term ethnic foods refers to the cuisine of a country, which is socially and culturally
353 accepted by people that live outside of that country (Karizaki 2017). The date is one of the
354 most common ingredients of Iranian national cuisine. Iranian people consume an average of
355 7 kg of dates per year. Date-pilaf, egg-date, and date-pastry are the most popular date-based
356 products consumed by Iranian people. These products are generally prepared in the home, or
357 small (noncommercial) operations (Karizaki 2017).

358 **6. Conclusions**

359 There is an increased number of scientific and clinical evidence supporting the biological
360 activities of date palm fruits. Thus, date palm fruits and their processing byproducts can be
361 used as a source of several bioactive compounds such as antioxidants and dietary fiber for
362 the development of new value-added date-based foods. Several emerging technologies have
363 been explored at laboratory scale for the manufacturing of high valued added date-based
364 ingredients. Between them, the ultrafiltration and the lactic acid fermentation have shown
365 important advantages. However, the use of these at the industrial level is also in its start-
366 point. Interactions between the scientific community and agri-food industries are highly
367 necessary to the transfer of scientific knowledge currently available in the literature in order
368 to commercialize innovative date-based foods.

369 **Conflicts of Interest:** The authors declare no conflict of interest.

370 **References**

371 Abbès F, Bouaziz MA, Blecker C, et al (2011) Date syrup: Effect of hydrolytic enzymes
372 (pectinase/cellulase) on physico-chemical characteristics, sensory and functional
373 properties. LWT - Food Sci Technol 44:1827–1834. doi:
374 <https://doi.org/10.1016/j.lwt.2011.03.020>

375 Abbès F, Kchaou W, Blecker C, et al (2013) Effect of processing conditions on phenolic
376 compounds and antioxidant properties of date syrup. Ind Crops Prod 44:634–642. doi:
377 <https://doi.org/10.1016/j.indcrop.2012.09.008>

378 Abbès F, Masmoudi M, Kchaou W, et al (2015) Effect of enzymatic treatment on rheological
379 properties, glass temperature transition and microstructure of date syrup. LWT - Food
380 Sci Technol 60:339–345. doi: <https://doi.org/10.1016/j.lwt.2014.08.027>

381 Abdennabi R, Bardaa S, Mehdi M, et al (2016) Phoenix dactylifera L. sap enhances wound
382 healing in Wistar rats: Phytochemical and histological assessment. *Int J Biol Macromol*
383 88:443–450. doi: 10.1016/j.ijbiomac.2016.04.015

384 Ahdno H, Jafarizadeh-Malmiri H (2017) Development of a sequenced enzymatically pre-
385 treatment and filter pre-coating process to clarify date syrup. *Food Bioprod Process*
386 101:193–204. doi: <https://doi.org/10.1016/j.fbp.2016.11.008>

387 Ahmed A, Arshad MU, Saeed F, et al (2016) Nutritional probing and HPLC profiling of
388 roasted date pit powder. *Pakistan J Nutr* 15:229–237. doi: 10.3923/pjn.2016.229.237

389 Ahmed S, Khan RA, Jamil S, Afroz S (2017) Antidiabetic effects of Native date fruit Aseel
390 (Phoenix dactylifera L.) in normal and hyperglycemic rats. *Pak J Pharm Sci* 30:1797–
391 1802

392 Al-Alawi R, Al-Mashiqri JH, Al-Nadabi JSM, et al (2017) Date palm tree (Phoenix
393 dactylifera L.): Natural products and therapeutic options. *Front Plant Sci* 8:. doi:
394 10.3389/fpls.2017.00845

395 Al-Awaadh AM, Hassan BH, Ahmed KMA (2015) Hot air drying characteristics of Sukkari
396 date (Phoenix dactylifera L.) and effects of drying condition on fruit color and texture.
397 *Int J Food Eng* 11:421–434. doi: 10.1515/ijfe-2014-0309

398 Al-farisi M, Lee C (2014) Enrichment of Date Paste. *J Hum Nutr Food Sci* 2:1032

399 Al-Farsi KA, Al-Habsi NA, Rahman MS (2018) State Diagram of Crystallized Date-Syrup:
400 Freezing Curve, Glass Transition, Crystals-Melting and Maximal-Freeze-Concentration
401 Condition. *Thermochim Acta* 666:166–173. doi:
402 <https://doi.org/10.1016/j.tca.2018.06.003>

403 Al-Farsi M, Alasalvar C, Morris A, et al (2005) Comparison of antioxidant activity,
404 anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date
405 (Phoenix dactylifera L.) varieties grown in Oman. *J Agric Food Chem* 53:7592–7599.
406 doi: 10.1021/jf050579q

407 Al-Kharousi N, Al-Khusaibi M, Al-Bulushi I, et al (2016) Physico-chemical Characteristics
408 and Oxidative Stability of Date-Pits Oil during Storage at Different Temperatures. *Int J*
409 *Food Eng* 12:385–393. doi: 10.1515/ijfe-2015-0173

410 Al-Mamary M, Al-Habori M, Al-Zubairi AS (2014) The in vitro antioxidant activity of
411 different types of palm dates (Phoenix dactylifera) syrups. *Arab J Chem* 7:964–971. doi:
412 <https://doi.org/10.1016/j.arabjc.2010.11.014>

413 Al-Mssalleem IS, Hu S, Zhang X, et al (2013) Genome sequence of the date palm *Phoenix*
414 *dactylifera* L. *Nat Commun* 4:2274

415 AL Juhaimi F, Ghafoor K, Özcan MM (2014) Physicochemical properties and mineral
416 contents of seven different date fruit (Phoenix dactylifera L.) varieties growing from
417 Saudi Arabia. *Environ Monit Assess* 186:2165–2170. doi: 10.1007/s10661-013-3526-3

418 Al Juhaimi F, Özcan MM, Adiamo OQ, et al (2018) Effect of date varieties on physico-
419 chemical properties, fatty acid composition, tocopherol contents, and phenolic
420 compounds of some date seed and oils. *J Food Process Preserv* 42:. doi:
421 10.1111/jfpp.13584

422 Alanazi FK (2010) Utilization of date syrup as a tablet binder, comparative study. *Saudi*
423 *Pharm J* 18:81–89. doi: <https://doi.org/10.1016/j.jsps.2010.02.003>

424 Albakhit S, Khademvatan S, Doudi M, Foroutan-Rad M (2016) Antileishmanial Activity of

425 Date (*Phoenix dactylifera* L.) Fruit and Pit Extracts In Vitro. *J Evid Based*
426 *Complementary Altern Med* 21:NP98–NP102. doi: 10.1177/2156587216651031

427 Aljobair MO (2018) Characteristics of cereal flakes manufactured using date syrup in place
428 of sugar. *Nutr Food Sci* 48:899–910. doi: 10.1108/NFS-01-2018-0013

429 Aslam J, Khan SH, Khan SA (2013) Quantification of water soluble vitamins in six date palm
430 (*Phoenix dactylifera* L.) cultivar's fruits growing in Dubai, United Arab Emirates,
431 through high performance liquid chromatography. *J Saudi Chem Soc* 17:9–16. doi:
432 <https://doi.org/10.1016/j.jscs.2011.02.015>

433 Awan KA, Butt MS, Sharif MK, Hussain F (2018) Compositional profiling of selected
434 Pakistani date cultivars. *Pakistan J Agric Sci* 55:575–581. doi:
435 [10.21162/PAKJAS/18.6694](https://doi.org/10.21162/PAKJAS/18.6694)

436 Baliga MS, Baliga BR V, Kandathil SM, et al (2011) A review of the chemistry and
437 pharmacology of the date fruits (*Phoenix dactylifera* L.). *Food Res Int* 44:1812–1822.
438 doi: 10.1016/j.foodres.2010.07.004

439 Barimah J, Laryea D, Okine UNK (2015) Date fruit powder as sugar replacer in rock buns.
440 *Nutr Food Sci* 45:920–929. doi: 10.1108/NFS-05-2015-0050

441 Basuny AMM, AL-Marzooq MA (2011) Production of Mayonnaise from Date Pit Oil. *Food*
442 *Nutr Sci* 02:938–943. doi: 10.4236/fns.2011.29128

443 Bchir B, Rabetafika HN, Paquot M, Blecker C (2014) Effect of Pear, Apple and Date Fibres
444 from Cooked Fruit By-products on Dough Performance and Bread Quality. *Food*
445 *Bioprocess Technol* 7:1114–1127. doi: 10.1007/s11947-013-1148-y

446 Ben Mya O, Ben Amar L, Zarroud B, Hammami H (2017) Deglet Nour Dates Phoenix

447 dactylifera L.: An Alternative Source to Sugar in Algeria. *Sugar Tech* 19:337–340. doi:
448 10.1007/s12355-016-0462-x

449 Benali S, Benamara S, Bigan M, Madani K (2015) Feasibility study of date (*Phoenix*
450 *dactylifera* L.) fruit syrup-based natural jelly using central composite design. *J Food Sci*
451 *Technol* 52:4975–4984. doi: 10.1007/s13197-014-1529-x

452 Borchani C, Masmoudi M, Besbes S, et al (2011) Effect of date flesh fiber concentrate
453 addition on dough performance and bread quality. *J Texture Stud* 42:300–308. doi:
454 10.1111/j.1745-4603.2010.00278.x

455 Bouhlali E dine T, Alem C, Ennassir J, et al (2017) Phytochemical compositions and
456 antioxidant capacity of three date (*Phoenix dactylifera* L.) seeds varieties grown in the
457 South East Morocco. *J Saudi Soc Agric Sci* 16:350–357. doi:
458 <https://doi.org/10.1016/j.jssas.2015.11.002>

459 Bouhlali E dine T, Bammou M, Sellam K, et al (2016) Evaluation of antioxidant,
460 antihemolytic and antibacterial potential of six Moroccan date fruit (*Phoenix dactylifera*
461 L.) varieties. *J King Saud Univ - Sci* 28:136–142. doi:
462 <https://doi.org/10.1016/j.jksus.2016.01.002>

463 Boulenouar N, Marouf A, Cheriti A (2011) Antifungal activity and phytochemical screening
464 of extracts from *Phoenix dactylifera* L. cultivars. *Nat Prod Res* 25:1999–2002. doi:
465 10.1080/14786419.2010.536765

466 Di Cagno R, Filannino P, Cavoski I, et al (2017) Bioprocessing technology to exploit organic
467 palm date (*Phoenix dactylifera* L. cultivar Siwi) fruit as a functional dietary supplement.
468 *J Funct Foods* 31:9–19. doi: <https://doi.org/10.1016/j.jff.2017.01.033>

469 El-Nagga EA, Abd ElTawab YA (2012) Compositional characteristics of date syrup
470 extracted by different methods in some fermented dairy products. *Ann Agric Sci* 57:29–
471 36. doi: <https://doi.org/10.1016/j.aoas.2012.03.007>

472 Elleuch M, Besbes S, Roiseux O, et al (2008) Date flesh: Chemical composition and
473 characteristics of the dietary fibre. *Food Chem* 111:676–682. doi:
474 <https://doi.org/10.1016/j.foodchem.2008.04.036>

475 FAOSTAT (2019) Food and agriculture data. In: Food Agric. data.
476 <http://www.fao.org/faostat/en/#home>. Accessed 10 Feb 2019

477 Ghnimi S, Al-Shibli M, Al-Yammahi HR, et al (2018) Reducing sugars, organic acids, size,
478 color, and texture of 21 Emirati date fruit varieties (*Phoenix dactylifera*, L.). *NFS J* 12:1–
479 10. doi: <https://doi.org/10.1016/j.nfs.2018.04.002>

480 Ghnimi S, Umer S, Karim A, Kamal-Eldin A (2017) Date fruit (*Phoenix dactylifera* L.): An
481 underutilized food seeking industrial valorization. *NFS J* 6:1–10. doi:
482 [10.1016/j.nfs.2016.12.001](https://doi.org/10.1016/j.nfs.2016.12.001)

483 Gökşen G, Durkan Ö, Sayar S, Ekiz Hİ (2018) Potential of date seeds as a functional food
484 components. *J Food Meas Charact* 12:1904–1909. doi: 10.1007/s11694-018-9804-6

485 Golshan Tafti A, Solaimani Dahdivan N, Yasini Ardakani SA (2017) Physicochemical
486 properties and applications of date seed and its oil. *Int Food Res J* 24:1399–1406

487 Habib HM, Kamal H, Ibrahim WH, Dhaheri AS Al (2013) Carotenoids, fat soluble vitamins
488 and fatty acid profiles of 18 varieties of date seed oil. *Ind Crops Prod* 42:567–572. doi:
489 <https://doi.org/10.1016/j.indcrop.2012.06.039>

490 Hafzan Y, Saw JW, Fadzilah I (2017) Physicochemical properties, total phenolic content,

491 and antioxidant capacity of homemade and commercial date (*Phoenix dactylifera* L.)
492 vinegar. *Int Food Res J* 24:2557–2562

493 Jassim SAA, Naji MA (2010) In vitro evaluation of the antiviral activity of an extract of date
494 palm (*phoenix dactylifera* l.) pits on a pseudomonas phage. *Evidence-based*
495 *Complement Altern Med* 7:57–62. doi: 10.1093/ecam/nem160

496 Jridi M, Souissi N, Salem M Ben, et al (2015) Tunisian date (*Phoenix dactylifera* L.) by-
497 products: Characterization and potential effects on sensory, textural and antioxidant
498 properties of dairy desserts. *Food Chem* 188:8–15. doi:
499 <https://doi.org/10.1016/j.foodchem.2015.04.107>

500 Juhaimi FA, Özcan MM, Uslu N (2017) The effect of microwave and conventional drying
501 on antioxidant activity, phenolic compounds and mineral profile of date fruit (*Phoenix*
502 *dactylifera* L.) flesh. *J Food Meas Charact* 11:58–63. doi: 10.1007/s11694-016-9371-7

503 Kamal A, Sami E (2018) Classification of date fruit (*Phoenix dactylifera* , L .) based on
504 chemometric analysis with multivariate approach. doi: 10.1007/s11694-018-9717-4

505 Karizaki VM (2017) Iranian dates and ethnic date-based products. *J Ethn Foods* 4:204–209.
506 doi: <https://doi.org/10.1016/j.jef.2017.08.002>

507 Khalid S, Khalid N, Khan RS, et al (2017) A review on chemistry and pharmacology of Ajwa
508 date fruit and pit. *Trends Food Sci Technol* 63:60–69. doi: 10.1016/j.tifs.2017.02.009

509 Khan TJ, Kuerban A, Razvi SS, et al (2018) In vivo evaluation of hypolipidemic and
510 antioxidative effect of ‘Ajwa’ (*Phoenix dactylifera* L.) date seed-extract in high-fat diet-
511 induced hyperlipidemic rat model. *Biomed Pharmacother* 107:675–680. doi:
512 10.1016/j.biopha.2018.07.134

513 Khehra R, Fairchild RM, Morgan MZ (2018) UK children's breakfast cereals - An oral health
514 perspective. *Br Dent J* 225:164–169. doi: 10.1038/sj.bdj.2018.531

515 Khelil R, Jardé E, Cabello-hurtado F, et al (2016) Structure and composition of the wax of
516 the date palm , *Phoenix dactylifera L .*, from the septentrional Sahara. *Sci Hortic*
517 (Amsterdam) 201:238–246. doi: 10.1016/j.scienta.2016.02.012

518 Laghouiter OK, Benalia M, Gourine N, et al (2018) Chemical characterization and in vitro
519 antioxidant capacity of nine Algerian date palm cultivars (*Phoenix dactylifera L.*) seed
520 oil. *Med J Nutrition Metab* 11:103–117. doi: 10.3233/MNM-17185

521 Lobo MG, Yahia EM, Kader AA (2013) Biology and postharvest physiology of date fruit.
522 Dates Postharvest Sci Process Technol Heal Benefits 57–80. doi:
523 10.1002/9781118292419.ch3

524 Makhlof-Gafsi I, Baklouti S, Mokni A, et al (2016) Effect of ultrafiltration process on
525 physico-chemical, rheological, microstructure and thermal properties of syrups from
526 male and female date palm saps. *Food Chem* 203:175–182. doi:
527 <https://doi.org/10.1016/j.foodchem.2016.02.055>

528 Makhlof-Gafsi I, Krichen F, Mansour R Ben, et al (2018) Ultrafiltration and thermal
529 processing effects on Maillard reaction products and biological properties of date palm
530 sap syrups (*Phoenix dactylifera L.*). *Food Chem* 256:397–404. doi:
531 <https://doi.org/10.1016/j.foodchem.2018.02.145>

532 Marcial-Coba MS, Pjaca AS, Andersen CJ, et al (2019) Dried date paste as carrier of the
533 proposed probiotic *Bacillus coagulans* BC4 and viability assessment during storage and
534 simulated gastric passage. *LWT* 99:197–201. doi:

535 https://doi.org/10.1016/j.lwt.2018.09.052

536 Martín-Sánchez AM, Cherif S, Vilella-Esplá J, et al (2014) Characterization of novel
537 intermediate food products from Spanish date palm (*Phoenix dactylifera* L., cv.
538 Confitera) co-products for industrial use. *Food Chem* 154:269–275. doi:
539 https://doi.org/10.1016/j.foodchem.2013.12.042

540 Martín-Sánchez AM, Ciro-Gómez G, Sayas E, et al (2013) Date palm by-products as a new
541 ingredient for the meat industry: Application to pork liver pâté. *Meat Sci* 93:880–887.
542 doi: https://doi.org/10.1016/j.meatsci.2012.11.049

543 Matloob MH (2014) Zahdi Date Vinegar: Production and Characterization. *Am J Food
544 Technol* 9:231–245

545 Mbaga MD (2015) Date Marketing. In: Dates: Production, Processing, Food, and Medicinal
546 Values (Medicinal and Aromatic Plants - Industrial Profiles). pp 160–163

547 Mrabet A, Rodríguez-Gutiérrez G, Guillén-Bejarano R, et al (2015) Valorization of Tunisian
548 secondary date varieties (*Phoenix dactylifera* L.) by hydrothermal treatments: New fiber
549 concentrates with antioxidant properties. *LWT - Food Sci Technol* 60:518–524. doi:
550 https://doi.org/10.1016/j.lwt.2014.09.055

551 Mrabet A, Rodríguez-Gutiérrez G, Rodríguez-Arcos R, et al (2016) Quality Characteristics
552 and Antioxidant Properties of Muffins Enriched with Date Fruit (*Phoenix Dactylifera*
553 L.) Fiber Concentrates. *J Food Qual* 39:237–244. doi: 10.1111/jfq.12194

554 Mrabet A, Rodríguez-Gutiérrez G, Rubio-Senent F, et al (2017) Enzymatic conversion of
555 date fruit fiber concentrates into a new product enriched in antioxidant soluble fiber.
556 *LWT* 75:727–734. doi: https://doi.org/10.1016/j.lwt.2016.10.017

557 Parn OJ, Bhat R, Yeoh TK, Al-Hassan AA (2015) Development of novel fruit bars by
558 utilizing date paste. Food Biosci 9:20–27. doi:
559 <https://doi.org/10.1016/j.fbio.2014.11.002>

560 Rivera D, Johnson D (2013) Historical evidence of the Spanish introduction of date palm
561 (Phoenix dactylifera L., Arecaceae) into the Americas. doi: 10.1007/s10722-012-9932-
562 5

563 Salomón-Torres R, Ortiz-Uribe N, Sol-Uribe JA, et al (2018) Influence of different sources
564 of pollen on the chemical composition of date (Phoenix dactylifera L.) cultivar Medjool
565 in México. Aust J Crop Sci 12:1008–1015. doi: 10.21475/ajcs.18.12.06.PNE1213

566 Sánchez-Zapata E, Fernández-López J, Peñaranda M, et al (2011) Technological properties
567 of date paste obtained from date by-products and its effect on the quality of a cooked
568 meat product. Food Res Int 44:2401–2407. doi:
569 <https://doi.org/10.1016/j.foodres.2010.04.034>

570 Siddeeg A, Zeng X-A, Ammar A-F, Han Z (2018) Sugar profile, volatile compounds,
571 composition and antioxidant activity of Sukkari date palm fruit. J. Food Sci. Technol.
572 Sirisena S, Ng K, Ajlouni S (2015) The Emerging Australian Date Palm Industry: Date Fruit
573 Nutritional and Bioactive Compounds and Valuable Processing By-Products. Compr
574 Rev Food Sci Food Saf 14:813–823. doi: 10.1111/1541-4337.12162

575 Suresh S, Guizani N, Al-Ruzeiki M, et al (2013) Thermal characteristics, chemical
576 composition and polyphenol contents of date-pits powder. J Food Eng 119:668–679.
577 doi: <https://doi.org/10.1016/j.jfoodeng.2013.06.026>

578 Taleb H, Maddocks SE, Morris RK, Kanekanian AD (2016) Chemical characterisation and

579 the anti-inflammatory, anti-angiogenic and antibacterial properties of date fruit
580 (*Phoenix dactylifera* L.). J Ethnopharmacol 194:457–468. doi:
581 <https://doi.org/10.1016/j.jep.2016.10.032>

582 Tang ZX, Shi LE, Aleid SM (2014) Date and their processing byproducts as substrates for
583 bioactive compounds production. Brazilian Arch Biol Technol 57:706–713. doi:
584 10.1590/S1516-89132014005000017

585 Trigueros L, Sayas-Barberá E, Pérez-Álvarez JA, Sendra E (2012) Use of date (*Phoenix*
586 *dactylifera* L.) blanching water for reconstituting milk powder: Yogurt manufacture.
587 Food Bioprod Process 90:506–514. doi: <https://doi.org/10.1016/j.fbp.2011.10.001>

588 Yaish MW, Kumar PP (2015) Salt tolerance research in date palm tree (*Phoenix dactylifera*
589 L.), past , present , and future perspectives Impact of Soil Salinity on Date Palm. 6:1–
590 5. doi: 10.3389/fpls.2015.00348

591 Zhang C-R, Aldosari SA, Vidyasagar PSP V, et al (2017) Health-benefits of date fruits
592 produced in Saudi Arabia based on in vitro antioxidant, anti-inflammatory and human
593 tumor cell proliferation inhibitory assays. J Saudi Soc Agric Sci 16:287–293. doi:
594 <https://doi.org/10.1016/j.jssas.2015.09.004>

595

596

Table 1. Chemical composition (g/100 g dry weight basis) of date pulp and seed of some of the most popular date varieties

Varieties	Origin	maturity stages	Fruit part	Dry matter	Sugars	Protein	Fat	Ash	References
Deglet Noor	Tunisia	Tamr	Flesh	75.6 ± 0.05	79.1 ± 0.80	2.10 ± 0.10	-	2.50 ± 0.04	(Elleuch et al. 2008)
Medjool (or Madjool)	Mexico	Tamr	Flesh	82.86 ± 0.80	71.16 ± 1.09	3.47 ± 0.11	0.74 ± 0.19	2.36 ± 0.03	(Salomón-Torres et al. 2018)
Alligh	Tunisian	Tamr	Flesh	73.1 ± 0.80	72.8 ± 0.27	3.02 ± 0.13	-	2.52 ± 0.01	(Elleuch et al. 2008)
Barhee									
Zahidi	Pakistan	-	Flesh	89.5 ± 0.39	73.72±2.65	4.60±0.18	2.08±0.07	1.91±0.07	(Awan et al. 2018)
Khalas	Oman	Tamr	Pit	93.3	46.1	5.3	10.4	0.4	(Suresh et al. 2013)
Sukkari	Iraq	-	Flesh	87.43 ± 0.33	78.32 ± 0.98	3.00 ± 0.18	0.65 ± 0.09	2.30 ± 0.20	(Siddeeg et al. 2018)
Safawi	Saudi Arabia	-	Pit	-	-	5.42 ± 0.19	8.14 ± 0.24	0.81 ± 0.04	(Gökşen et al. 2018)
Mebruum	Saudi Arabia	-	Pit	-	-	5.56 ± 0.17	6.99 ± 0.08	0.97 ± 0.02	(Gökşen et al. 2018)
Shugi	Saudi Arabia	-	Pit	-	-	5.60 ± 0.22	7.19 ± 0.16	0.95 ± 0.01	(Gökşen et al. 2018)

597

598

Table 2 Health benefits associated with date fruit

Health benefits	References
Antioxidant activity	(Al-Mamary et al. 2014; Zhang et al. 2017)
Anti-inflammatory activity	(Taleb et al. 2016; Zhang et al. 2017)
Anti-tumor activity	(Zhang et al. 2017)
Antihemolytic activity	(Bouhlali et al. 2016)
Antibacterial activity	(Bouhlali et al. 2016; Taleb et al. 2016)
Antileishmanial activity	(Albakhit et al. 2016)
Antimutagenic properties	(Baliga et al. 2011)
Antiviral activity	(Jassim and Naji 2010)
Hypolipidemic effect	(Khan et al. 2018)
Antidiabetic effects	(Ahmed et al. 2017)
Anti-angiogenic properties	(Taleb et al. 2016)
Wound healing	(Abdennabi et al. 2016)
Antifungal activity	(Boulenouar et al. 2011)

599

600

601

Table 3. Chemical composition of date paste

Component	Average \pm standard deviation (g/100 g fresh weight)
Proteins	2.12 \pm 0.02
Fats	1.35 \pm 0.25
Moisture	34.73 \pm 1.16
Ash	1.75 \pm 0.42
Total sugars	53.00 \pm 1.03
Total dietary fiber	7.00 \pm 0.15
Insoluble dietary fiber	4.04 \pm 0.04
Total phenolic content	225 \pm 22 (mg GAE/100 g fresh weight)

602

603 Reprinted with permission From Sánchez-Zapata et al., 2011

604

605 **List of Figures**

606 Figure 1 (A) Different fruiting stages of date palm according to days post-pollination.

607 Reprinted with permission from Al-Mssalem et al., 2013; (B) The anatomy of the date fruit

608 at Tamr stage showing the epicarp, mesocarp, endocarp, and seed. Reprinted with permission

609 from Ghnimi et al., 2017

610 Figure 2 Raw date syrup (a) and clarified date syrup using optimum conditions obtained for

611 enzymatically pre-treatment and filter pre-coating processes (b). Reprinted with permission

612 from Ahdno & Jafarizadeh-Malmiri, 2017

613 Figure 3 Diagrams of hydrothermal treatment reactors. Subfigure A: Steam explosion reactor

614 (SET). Subfigure B: Steam reactor (ST). 1.- Steam generator. 2.- Steam accumulator. 3.-

615 Reactor chamber (2 L capacity). 4.- Expansion chamber. 5.- Reactor chamber (100 L

616 capacity). 6.- Cooler. 7.- Steam accumulator. Reprinted with permission from Mrabet et al.,

617 2015

618 Figure 4 Effect of flesh fiber concentrates on external appearance and internal structure of

619 bread: control (a), date fiber (b), pear fiber (c) and apple fiber (d). Reprinted with permission

620 from Bchir, Rabetafika, Paquot, & Blecker, 2014

621

622 Figure 1 (A) Different fruiting stages of date palm according to days post-pollination.

623 Reprinted with permission from Al-Mssallem et al., 2013; (B) The anatomy of the date fruit
624 at Tamr stage showing the epicarp, mesocarp, endocarp, and seed. Reprinted with permission
625 from Ghnimi et al., 2017

626

627

628 Figure 2 Raw date syrup (a) and clarified date syrup using optimum conditions
629 obtained for enzymatically pre-treatment and filter pre-coating processes (b).

630 Reprinted with permission from Ahdno & Jafarizadeh-Malmiri, 2017

631

632

633

634 Figure 3 Diagrams of hydrothermal treatment reactors. Subfigure A: Steam
635 explosion reactor (SET). Subfigure B: Steam reactor (ST). 1.- Steam generator. 2.-
636 Steam accumulator. 3.- Reactor chamber (2 L capacity). 4.- Expansion chamber. 5.-
637 Reactor chamber (100 L capacity). 6.- Cooler. 7.- Steam accumulator. Reprinted
638 with permission from Mrabet et al., 2015

639

641 Figure 4 Effect of flesh fiber concentrates on external appearance and internal structure of
642 bread: control (a), date fiber (b), pear fiber (c) and apple fiber (d). Reprinted with permission
643 from Bchir, Rabetafika, Paquot, & Blecker, 2014

644