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Abstract: This paper proposes a novel efficient multistage algorithm to extract source speech signals
from a noisy convolutive mixture. The proposed approach comprises of two stages named Blind
Source Separation (BSS) and De-noising. A hybrid source prior model separates the source signals
from the noisy reverberant mixture in the BSS stage. Moreover, we model the low and high-energy
components by generalized multivariate Gaussian and super-Gaussian models, respectively. We use
Minimum Mean Square Error (MMSE) to reduce noise in the noisy convolutive mixture signal in
the de-noising stage. Furthermore, two proposed models investigate the performance gain. In the
first model, the speech signal is separated from the observed noisy convolutive mixture in the BSS
stage, followed by suppression of noise in the estimated source signals in the de-noising module.
In the second approach, the noise is reduced using the MMSE filtering technique in the received
noisy convolutive mixture at the de-noising stage, followed by separation of source signals from the
de-noised reverberant mixture at the BSS stage. We evaluate the performance of the proposed scheme
in terms of signal-to-distortion ratio (SDR) with respect to other well-known multistage BSS methods.
The results show the superior performance of the proposed algorithm over the other state-of-the-art
methods.

Keywords: Blind Source Separation (BSS), Minimum Mean Square Error (MMSE), convolutive
mixture, source Prior, generalized Gaussian distribution

1. Introduction

In a noisy real-time environment, the performance efficiency of Blind Source Separation (BSS)
applications is degraded by background noise and interfering signals. The classical methods used for
speech enhancement have reached their saturation level in terms of enhancement and performance.
The estimation of the desired source signal from a mixture with noise, especially for non-stationary
noisy conditions, is a bottleneck for these techniques. Therefore, the BSS applications require a solution
that can suppress the noise according to the nature of the environment.

The speech signal enhancement problem is well studied in the past decades. Different solutions
are provided to enhance the intelligibility and quality of the speech signals and improve the
performance of the BSS systems. The classical techniques overcome this problem by using adaptive
techniques like minimum means square error (MMSE) [1-7]. The MMSE adjusts itself according
to the observed convolutive mixture. Another solution uses statistical models which accurately
diagonalize the second-order statistical properties of the noisy reverberant mixture. This approach
uses an auto-correlation covariance matrix and its one-sample delayed matrix, forming two positive
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definite symmetry matrices. Then, exploit the matrices’” diagonalization accurately by computing
generalized singular value decomposition (GSVD) using the tangent algorithm [8].

The BSS methods extract the desired source speech signal from the convolutive mixture in the
presence of noise. The main advantage of BSS methods is to separate the targeted source speech
signal from the reverberant mixture without prior knowledge of the mixing process nor the number
of source signals. Some of the popular BSS approaches are Independent Component Analysis (ICA),
and FASTICA which extract the source speech signals in a noisy reverberant environment. First, the
ICA speech enhancement method de-noises the noisy reverberant mixture, followed by the FASTICA
algorithm to separate the de-noised estimated speech signal from the observed convolutive mixture [9].
Additionally, in an undermined scenario, ICA is combined with a speaker recognition system (SRS) to
extract the desired targeted speech signal [10].

The main problem encountered by BSS techniques is the permutation and scaling ambiguities
after the speech separation process. Therefore, in [11], the authors proposed a solution that can easily
recognize the desired source speech signal in a noisy environment by looking at the speaker’s face. An
audiovisual coherence is used to estimate the speech signals using statistical methods where statistical
tools model the audio and visual information in the frequency domain (FD).

Furthermore, in multiple audio sources with multiple microphones scenarios, the performance
of the BSS separation process is improved by using the BSS output to generate the wiener filter
coefficients and apply them to the desired speech signals [12]. Moreover, adaptive filtering with BSS
can also reduce the noise, leading to speech enhancement and noise reduction. Forward Blind Source
Separation (FBSS) combined with Simplified Fast transversal filters (SFTF) method results in adoption
gain from forwarding prediction [13]. Nevertheless, adaptive filtering methods face problems while
canceling or suppressing the acoustic noise. This issue is tackled using the Modified Predator-prey
particle swarm optimization (MPPPSO) approach. It also solves the problem of steady-state error of
PPPSO for non-stationary inputs and large filter length [14].The acoustic noise can also be suppressed
by introducing variable step size in a two-channel sub-band forward algorithm (2CSF) that improves
the convergence speed and overcomes fixed step size problem in the traditional 2CSF method [15].
Another approach using variable step size is adaptive blind source separation through a two-channel
forward-backward structure based on the normalized least-mean square (NLMS) method that uses
variable step size for steady-state condition [16]. The estimated source signal enhancement in the
presence of acoustic noise is performed by Threshold Wavelet-based Forward Blind Source Separation
(TWEBSS). This approach reduces the computational complexity from the Wavelet-based Forward
Blind Source Separation (WFBSS) method [17].

Kalman filters can also be used with BSS techniques to deal with the noisy convolutive mixture.
First, the BSS approach extracts the estimated source speech signal from the non-stationary noisy
reverberant mixture. Then, Kalman filtering suppresses the noise components in the estimated speech
signal [18]. Recently, new evolving techniques such as deep learning are also applied with the BSS
approach in the reverberant noisy environment [19]. In general, the BSS methods are tested under
non-Gaussian noise modeled by the fourth-order cumulant, and singular value decomposition-total
least square method [20]. Moreover, the speech signals are often corrupted by different types of noise
produced in the surrounding environment that can be tackled by the Dual Recursive non-Quadratic
(DRNQ) adaptive method combined with FBSS to enhance the speech quality [21].

1.1. Background

The BSS methods estimate the desired source speech signals from the observed convolutive
mixture containing noise. However, accurate identification of the targeted speech signal in a noisy
reverberant environment is the fundamental goal of the speech processing systems. The traditional
BSS methods are limited to multiple speech signals and sensors, where the de-noising process is
challenging. Nevertheless, various signal processing methods, such as Single-channel Blind Source
Separation (SBSS), Sparse Component Analysis (SCA), Variation Mode Decomposition (VMD), can
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tackle this issue. The VMD method is applied to decompose a single channel into two channels,
and then SCA separates the speech signals. This approach shows enhancement of speech signal in
under-determined conditions [22].

Another approach called AdaGrade is proposed in [23] for blind audio speech extraction that
uses the gradient-based algorithm. The gradient learning rule is modified by pre-conditioning the
input signal and using AdaGrade update. In this method, the natural gradient method with two-step
pre-processing suppresses the noise in the receiving reverberant mixture. First, the bias removal
method followed by least-square is applied to de-noise the noisy convolutive mixture. Then, a
joint algorithm with a gradient method estimates the noisy signals and their mixing matrix [24].
Moreover, in [25], the BSS involves Eigen filtering, which receives the dominant frequencies of the
signal, and then Wavelet de-noising is applied. It suppresses the noise components and retains
the speech signal regardless of its frequency components. The authors in [26] propose an alternate
method based on temporal predictability to get the individual independent noise signal where a
non-negative matrix factorization algorithm enhances the speech signal. The performance is improved
by adding time-correlation to the objective function, which restricts the time-varying gain of the noise
[27]. Moreover, masking techniques can also be applied to separate the desired speech signal from
the received mixture, where the time-frequency masking rule can define the BSS method [28]. In
[29], the authors propose an EM algorithm to suppress the noise in the convolutive mixture for the
complex-Gaussian signal model and the unknown deterministic model. The statistical model is defined
for both models, and the EM algorithm is developed for these models to estimate the speech signal
and its acoustic parameters.

Recently, unsupervised speech enhancement algorithms are gaining interest that uses a Real-Time
(RT) two-channel BSS algorithm. In this method, a non-negative matrix factorization (NMF) dictionary
is combined with generalized cross-correlation (GCC) spatial localization approach. The RT-GCC-NMF
operates in a frame-by-frame manner, comparing individual dictionary atom with the desired speech
signal or interfering noise based on the time-delay arrivals [30].

1.2. Contributions

The BSS approach separation gain depends on the selection of appropriate source prior function
for extracting the desired speech signals [31,32]. For example, [33] proposes a mixed source prior model
comprised of Super-Gaussian and Student’s T to enhance the performance of the BSS. Consequently, in
[34], the performance is improved by using a hybrid model, consisting of multivariate super-Gaussian
and generalized Gaussian source priors. This approach models the higher amplitudes of the observed
convolutive mixture by multivariate generalized Gaussian source prior, and the low amplitude
are exploited by multivariate Gaussian source prior. Unlike these existing works, we propose
an efficient multistage BSS method. In this method, a multivariate generalized Gaussian and
Super-Gaussian source priors are combined as hybrid source prior model. The generalized Gaussian
exploits higher-order statistical properties while other related information are modeled by multivariate
Super-Gaussian. The contributions of this research work are as follows:

o  We propose a novel efficient multistage approach for the BSS applications. This method
concatenates the hybrid approach. Our proposed hybrid models combine multivariate generalized
Gaussian and Super-Gaussian source priors.

e Based on the hybrid model, two different schemes are introduced, i.e., first BSS followed by
de-noising and second de-noising in the first stage followed by BSS.

e  The performance of proposed multistage hybrid model is evaluated with other multistage BSS
methods having single source priors.

e  The performance of the proposed models are investigated via extensive simulations in a noisy
reverberant environment.
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1.3. Organization

The article is organized into following sections. Section II describes the hybrid source prior signal
model for the Independent Vector Analysis (IVA). Section III provides a detailed description of the
proposed multistage approach for speech enhancement, followed by Results and discussion in Section
IV. In Section V; we evaluate the performance of the multistage proposed model. Section VI presents
the conclusion and future works.

2. Signal Model

Consider a clean source speech signal x(t), noise signal n(t), and received speech signal y/(t)
contaminated by noise. It can be mathematically modeled as,

y(t) = x(t) + n(t). @

The clean speech source signal, noise signal and the received noisy speech signal are transformed to
FD domain and these parameters are denoted by X(k), N(k), and Y (k) respectively. while k denotes
the position index of the coefficient in the transformed domain. The design criteria of the estimator for
the observation is to minimize the MSE is given by,

E{X(k) - X(k)}, @

where E{-} is the expectation operator and X (k) is the estimated source signal. Minimum Mean Square
Error (MMSE) filter can be used to minimize the mean square error (MSE) in (2).

In a given noisy observation {y(t); 0 <t < T} with received signal Y(K). The estimated X (k)
can be obtained by [35,36],

X(k) = E{X(k)/Y (k)}. ®)
Equation (3) can be rewritten by Baye’s theorem [35-37],

o [ ap(Y (k) /ay)p(ax) day
X0 = T Y ) /o))

4)

where p(.) is the probability density function (pdf) and a; denotes the dummy variable representing
all possible values of X (k). Assuming a Gaussian distribution model, then p(Y (k) /ax) and p(ay) can
mathematically written as,

p(Y(k)/a) =

(Y(k) — ﬂk)2> 5)

200 P <_ 200 (k)
and

() = - exp [ ®)
PA = ) C P\ T 20, (k)

where A, (k) = E{|N(k)|?>} and A (k) = E{|X(k)|?} are the variances of the noisy signal and clean
signal respectively. Putting (5) and (6) in (4), then X(k (k) can be rewritten as [37],[36],

20 = 5 YW %
where (k) is the priori SNR and ¢(k) = E g The value A, and A, must be known. [38,39] shows the

detail method for estimating A. Deci51on directed estimated method develop to estimate Ay [37]. The
equation of estimating ;\x for Ay is given by [36],

~

Ay = wAy(k)p+ (1 —a) rnax(Y(k)2 — Ax(k),0) (8)
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where max(.) is the maximum function. It is used to obtain non-negative values. )A\x(k)p is the
estimated value of A, of the previous frame. « is the constant tuned for the best results. The parameter
A value is set to 0.98. If A is set to 1. It deteriorates the speech signal and smaller values result in high
musical noise.

3. Proposed Multistage BSS Approach

This section presents the proposed multistage approach for BSS and speech enhancement in a
noisy reverberant environment. The multistage method comprises of BSS stage and de-noising stage
using MMSE filtering as shown in Figure 1 and Figure 2, respectively. The proposed scheme evaluates
different combinations of the BSS hybrid model and the de-noising MMSE method. In the first model
(Figure 1), the observed convolutive mixture speech signal is first processed by BSS stage with hybrid
source prior model for the extraction of estimated speech signals from the reverberant mixture. The
de-noising module processes the resultant noisy extracted speech signals where the noisy elements in
the separated speech signals are suppressed to improve the quality of the estimated signals. In the
second model (Figure 2), the received reverberant observed speech mixture is de-noised by the MMSE
filtering method in the first stage. In the second stage, the enhanced convolutive speech mixture is
processed by the BSS stage with a hybrid source prior model to extract the de-noised estimated source
speech signal from the enhanced reverberant mixture.

Noise
S;+Noise X1 i ( ) ( ) ‘: ~
S > > — > - 5
Mixture E BSS De-noising E
S ——(H——> N > S
S,+Noise X2 P ) L )
Receiver
Noise
Figure 1. First Model
Noise
Sy+Noise X1 i ( ) ( ) E ~
S1 1) > —> > —> S
Mixture ¢ | De-noising BSS E
Sz . > > —‘_": §2
So+Noise X2 :‘ L ) L ) ,:
SO R
Receiver
Noise

Figure 2. Second Model

A multivariate generalized Gaussian and Super-Gaussian source priors are combined as the
hybrid source prior model in the BSS stage. The generalized Gaussian model exploits higher-order
statistical properties while multivariate Super-Gaussian models other related information in the hybrid
source prior model approach. The weights of the source priors in the hybrid model are adopted
following the energy components of the received convolutive mixture [34]. In the de-noising stage, the
MMSE filtering method is used to suppress the noisy component in the received convolutive mixture
signal.

The hybrid source prior model provides a better separation performance and preserves the
frequency dependencies between different frequency blocks for the IVA algorithm. Instead of
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using a single source prior distribution, a combination of multivariate generalized Gaussian and
Super-Gaussian are used as source priors for the IVA to preserve the frequency dependencies. By
using the KL divergence cost function to preserve the dependencies within the source speech signal
while removing the dependencies among different source signals [40]. Mathematically the non-linear
cost function for the hybrid model can be written as [31]

N
C=KL(P(51,---,sn)II T Ta(s:))
i=1
X N ©)
= const — ) _ log|det(W(k))| — ) Elogq(5:),
k=1 i=1

where ¢(§;) is the i-th estimated source signal, W (k) is the k-th separating matrix, and g(§;)is the source
prior of i-th estimated source signal. The multivariate cost function in (9) is minimized by the Gradient
Descent algorithm to remove the dependencies among different source signals and mathematically
can be expressed as [31],

(10)

where [ is the identity matrix and @®)(.) is the non-linear score function which can be mathematically

expressed as [34],
A1 A(K
k (:’;‘(1) o §(K)) _ 7alogq(sl( ),- .. 'Sz( ))
AN a3k

(11)

The non-linear score function retains the dependency between different frequency bins, which is the
main theme of the IVA algorithm and plays a vital role in the separation process. Fundamentally, the
IVA method [31], it uses multivariate Super-Gaussian distribution source prior to model the different
frequency bins inter-frequency dependencies which is expressed as,

(12)

7

where 0; (k) represents the standard deviation of i-th source at k-th frequency block. Using equation
(11) to determine the score function of equation (12), we get

(k) (3. 5, AN
¢ (5i(1), -+, 5i(K)) = :
v Zker [8i() 2 -

Equation (13) shows the non-linear score function of the fundamental IVA algorithm and is used for
inter-frequency dependencies between source signals. However, the non-linear score function is not
unique and is strongly dependent on the source prior. Therefore, we can use different source prior
to exploit higher-order statistics. The generalized multivariate Gaussian can also be used as a source
prior distribution to retain inter-frequency dependencies between different frequency blocks. Due
to its heavy tails, it exploits higher-order statistical properties between the source signal and can be
expressed as [32],

1650 exp (=t = ) 2 s ) ). (1)
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Assuming mean y; = 0 and covariance %; equal to identity. Then, using equation (11) for equation
(14), the score function will be,

_ 25;(k)
. 15
3, (5 (R (1)

In a noisy real-time environment, the non-stationary nature of the observed convolutive mixture
contains high as well as low energy components. Hence, it is difficult for a single source prior to
model the statistical properties of a non-stationary convolutive mixture. Therefore, a hybrid model is
proposed containing multivariate generalized Gaussian and Super-Gaussian source priors. The hybrid
source prior model can better model low and higher amplitudes [34]. The Super-Gaussian source prior
function models low energy amplitude, and the high energy amplitude is modeled by multivariate
generalized Gaussian source prior. The weights between these source priors in the hybrid source prior
model are adopted based on the energy of a noisy convolutive mixture. The hybrid model can be
expressed as

B fSGD lf(P <05 .

fcep is the multivariate generalized Gaussian source prior distribution and fs¢p is the Super-Gaussian
source prior distribution. The non-linear hybrid score function is mathematically written as,

2%k S0 >05
(3\3/ (TE, §i(k)|2)2> #=

o™ (5(1),--,5(K)) = (17)

W) e <05
( ):f:l §i(k)|2> 4)

where ¢ = [0, 1] is the weighting parameter, which depends on the normalized energy of the received
noisy convolutive mixture. The weights of the non-linear score functions and ¢ are adjusted by the
normalized energy of the mixture at every frequency block.

4. Results and Discussion

This section provides the performance evaluation of the proposed work using the Matlab
simulation tool. We generate artificially noisy convolutive mixed signals using a simulated room
model and then apply the proposed multistage algorithm.

4.1. Experimental Setup

We consider 10 source speech signals comprised of 5 female and 5 male speakers from the TIMIT
database [41]. All the source speech signals have the same loudness and a sampling rate of 8 kHz.
The Hamming window of having a 75% overlapping factor is used. A noisy reverberant environment
is used to evaluate the separation performance of the proposed multistage approach. For the fair
comparison the methods used in [31], [42], and[32] are extended such that they are composed of their
respective BSS technique and MMSE filtering mechanism for de-noising as presented in Figure 1 and 2,
respectively. The proposed models are investigated for different parameters such as signal-to-distortion
ratio (SDR) and RT. ASDR is defined as the difference between the desired SDR of the estimated speech
signal and SDR of the speech mixtures, i.e., A SDR=SDRyegired-SDRmixture-

4.2. Objective Evaluation

For the first proposed model shown in Figure 1, the SNR values are varied from —2 dB to 10 dB.
The NFFT, window size, and RT are considered 1024, 512, and 100 msec, respectively. The obtained
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results of different input speech mixtures are averaged and the results are provided in Table 1. Table
1 shows that the proposed model shows performance improvement as compared to BSS methods
with multivariate Super-Gaussian [31], multivariate Student’s T [42], and generalized Gaussian [32]
source priors for estimated speech signals S; and Sp. Next, the RT parameter is varied from 40 to
200 msec. The window size and NFFT are set to 512 and 1024 respectively. In Table 1, the proposed
model shows better results on SNR = 4 dB in comparison to rest of SNR values. Therefore, SNR =
4 dB is considered for the RT experiments. From the Table 2, it is also concluded that the proposed
model shows improvement in comparison to [32], [31], and [42]. The first proposed model shows
better performance due to its adaptability according to the non-stationary nature of the observed
convolutive mixture as it contains low and high energy components compared to the single source
prior BSS models.

Table 1. Average SNR results for the First Proposed Model Shown in Figure 1 with Variable SNR for
Multistage BSS Models having Different Source Priors.

Multivariate Student’s T Generalized Proposed Model
Gaussian Distribution Gaussian

SNR Source Prior [31] Source Prior [42] Source Prior [32]
(dB) ASDRS; ASDRS, ASDRS; ASDRS, ASDRS; ASDRS, ASDRS; ASDRS,
-2 10.22 6.17 8.05 4.57 10.30 6.24 10.44 6.35
0 9.58 5.36 7.49 4.18 9.73 5.39 9.83 5.41
2 9.30 5.08 5.98 2.02 9.51 5.31 9.66 5.33
4 8.80 3.49 5.82 1.86 8.85 5.05 9.31 5.12
6 8.75 3.38 5.57 1.14 8.81 3.48 8.84 3.57
8 8.62 2.37 5.33 1.00 8.71 3.36 8.81 3.42
10 8.31 2.01 5.21 0.26 8.39 2.33 8.53 241

Table 2. Average RT results for the First Proposed Model Shown in Figure 1 with Variable RT for
Multistage BSS Models having Different Source Priors.

Multivariate Student’s T Generalized Proposed Model
Gaussian Distribution Gaussian

RT Source Prior [31] Source Prior [42] Source Prior [32]
(ms) ASDRS; ASDRS, ASDRS; ASDRS, ASDRS; ASDRS, ASDRS; ASDRS,;
40 16.10 7.47 9.64 2.27 16.29 7.56 16.37 7.68
80 12.45 5.79 6.94 2.00 12.65 5.72 12.81 5.87
120 7.06 3.02 5.92 1.65 7.26 3.22 741 3.39
160 4.49 211 2.88 1.04 4.63 2.63 4.83 2.85
200 3.92 1.62 2.25 0.28 4.01 1.81 4.23 1.97

For the second proposed model reflected in (Figure 2), the same procedure is followed to generate
different convolutive speech mixtures having two speech signals and White Gaussian noise by
simulated room model [43]. The SNR values are varied from -2 to 10 dBs. The obtained results
of different multistage BSS approaches are averaged and presented in Table 3. From Table 3, the
proposed model shows performance gain in comparison to [31], [42], and [32] for the S; and S,.
Similarly, the parameter RT is varied to evaluate the proposed model robustness. The values for
window size, NFFT, and SNR are 512, 1024, and 4 dBs, respectively. The results provided in Table 4
shows performance improvement of the proposed model in comparison to the methods in [31], [42],
and [32]. The results of the second model conclude that the switching between the two source priors
according to the low and high energy components in the received convolutive mixture improve the
performance from the single source prior BSS models [31], [42], and [32].

d0i:10.20944/preprints202105.0543.v1
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Table 3. Average SNR results for the Second Proposed Model Shown in Figure 2 with Variable SNR for
Multistage BSS Models having Different Source Priors.

Multivariate Student’s T Generalized Proposed Model
Gaussian Distribution Gaussian

SNR Source Prior [31] Source Prior [42] Source Prior [32]
(dB) ASDRS; ASDRS, ASDRS; ASDRS, ASDRS; ASDRS, ASDRS; ASDRS,
-2 5.76 4.48 3.79 5.39 5.81 4.67 5.87 451
0 4.37 3.74 3.44 2.86 4.39 3.38 4.53 3.87
2 3.86 3.34 3.37 2.56 3.90 2.68 3.96 3.52
4 3.45 2.83 2.80 2.13 3.57 241 3.61 2.85
6 2.34 2.18 2.37 1.02 2.40 1.95 243 2.47
8 1.79 1.49 1.40 0.35 1.90 1.36 2.05 1.70
10 0.70 1.19 0.63 0.11 0.81 1.22 1.02 1.45

Table 4. Average RT results for the Second Proposed Model Shown in Figure 2 with Variable RT for
Multistage BSS Models having Different Source Priors.

Multivariate Student’s T Generalized Proposed Model
Gaussian Distribution Gaussian

RT Source Prior [31] Source Prior [42] Source Prior [32]
(ms) ASDRS; ASDRS, ASDRS; ASDRS, ASDRS; ASDRS, ASDRS; ASDRS,
40 10.86 6.32 6.30 2.50 10.85 6.35 10.97 6.43
80 2.38 2.52 4.34 2.07 4.55 2.62 4.87 3.14
120 2.11 1.81 3.23 1.97 4.09 212 4.29 2.53
160 1.72 1.56 1.19 1.16 3.82 2.06 391 2.39

200 1.40 1.19 1.05 0.38 2.46 1.24 2.76 1.74
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From the results of the two proposed models, it is clear that the first model (Figure 1) performs
better than the second model (Figure 2). In the first model, the estimated source speech signals are
first extracted from the observed noisy convolutive mixture. Then the noise in the separated speech
signal is suppressed individually, leading to better performance. On the other hand, the second model
performs de-noising first, suppressing the noise in the estimated source signal mixed as considering it
received noisy convolutive mixture, resulting in performance degradation.

4.3. Subjective Evaluation

In the case of subjective evaluation, listening tests are performed to verify the simulation results
obtained Table 5 to Table 8. Five participants conduct the subjective evaluation experiments (2 female,
3 male) where all the listening participants have normal hearing ability. Every listener is guided to
mark a score from integer value 1 (estimated speech signals not audible) to integer 5 (estimated speech
signals audible) of the extracted source speech signals from the noisy convolutive mixture. The listener
listens to the original signal and the enhanced speech signals separated from the noisy reverberant
mixtures using the two proposed models.

Table 5. Average MOS results of the subjective evaluation for the First Model Shown in Figure 1 with
Variable SNR for Multistage BSS Models having Different Source Prior.

Multivariate Student’s T Generalized Proposed Model
Gaussian Distribution Gaussian
SNR Source Prior [31] Source Prior [42] Source Prior [32]
(dB) MOSfor MOSfor MOSfor MOSfor MOSfor MOSfor MOSfor MOS for
51 Sz S1 S2 S1 S2 S1 S2
-2 1.57 1.71 1.45 1.55 1.72 1.81 2.01 1.96
0 2.13 2.37 1.98 2.15 2.45 2.62 2.83 2.77
2 2.57 2.62 2.34 244 2.88 2.76 3.21 2.99
4 3.12 2.87 2.73 2.67 3.56 3.22 3.87 3.58
6 3.95 3.25 3.46 3.11 4.17 3.49 4.21 3.67
8 4.37 3.63 3.88 3.34 442 3.86 4.53 3.93
10 4.46 413 413 3.96 4.61 4.58 4.69 4.26

Table 6. Average MOS results of the subjective evaluation for the First Model shown in Figure 1 with
Variable RT for Multistage BSS models having Different Source Prior.

Multivariate Student’s T Generalized Proposed Model
Gaussian Distribution Gaussian
RT Source Prior [31] Source Prior [42] Source Prior [32]
(ms) MOSfor MOSfor MOSfor MOSfor MOSfor MOSfor MOSfor MOS for
S1 S2 S1 S2 S1 S2 S1 S2
40 3.94 4.01 3.86 3.70 4.10 4.23 4.34 4.67
80 3.72 3.79 3.52 3.39 3.94 3.86 4.21 4.18
120 3.18 2.75 2.63 2.57 3.49 3.18 3.68 3.44
160 2.81 2.58 2.46 243 2.95 2.87 3.03 2.96
200 2.34 2.25 217 2.08 2.46 2.37 2.58 247

The same speech signals are chosen for both objective evaluation and subjective listening analysis
in these experiments. In the multistage model presented in Figure 1, the values of the parameters
for window size, NFFT, and RT are set to 512, 1024, and 100 msec. The SNR value is varied from -2
to 10 dBs. The score marked by the participants is based on the cleanness of the extracted signals
from the convolutive mixture containing White Gaussian noise. The clean estimated speech signals

d0i:10.20944/preprints202105.0543.v1
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Table 7. Average MOS results of the subjective evaluation for the Second Model shown in Figure 2
with variable SNR for Multistage BSS models having Different Source Prior.

Multivariate Student’s T Generalized Proposed Model
Gaussian Distribution Gaussian
SNR Source Prior [31] Source Prior [42] Source Prior [32]
(dB) MOSfor MOSfor MOSfor MOSfor MOSfor MOSfor MOSfor MOS for
S Sz 51 S2 51 S2 S Sz
-2 1.23 1.27 1.07 1.24 1.37 1.30 1.55 1.48
0 1.91 2.08 1.74 1.63 2.21 2.26 243 2.39
2 2.24 2.31 1.98 1.78 2.53 2.49 2.72 2.58
4 2.81 2.67 2.46 2.27 2.98 2.81 3.15 3.04
6 3.22 291 2.83 2.71 3.45 3.22 3.59 3.45
8 3.39 3.21 2.96 2.88 3.62 3.47 3.82 3.51
10 3.54 3.45 3.20 3.13 3.79 3.55 3.92 3.68

Table 8. Average MOS results of the subjective evaluation for the Second Model shown in Figure 2
with Variable RT for Multistage BSS models having Different Source Prior.

Multivariate Student’s T Generalized Proposed Model
Gaussian Distribution Gaussian
RT Source Prior [31] Source Prior [42] Source Prior [32]
(ms) MOSfor MOSfor MOSfor MOSfor MOSfor MOSfor MOSfor MOS for
S1 S2 S1 S2 S1 S2 S1 S2
40 3.39 3.52 3.43 3.51 3.61 3.55 3.89 3.63
80 3.19 3.35 3.05 3.16 3.35 3.48 3.55 3.52
120 2.79 2.58 2.38 2.18 291 2.67 3.02 2.88
160 251 2.35 2.23 1.92 2.73 2.46 2.95 2.54

200 2.36 2.14 1.89 1.67 251 2.33 2.68 2.39
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are marked with a higher mean opinion score (MOS) and vice versa. The results obtained from the
listening participants for each extracted signal are averaged and presented in Table 5. In the Table 5,
the proposed model shows improvement in its MOS in comparison with the multistage BSS having
source priors [31], [42], and [32]. Next, the parameter RT is varied from 40 to 200 msec with fixed
window length = 512, NFFT = 1024, and SNR = 4 dB. The averaged results obtained are provided in
Table 6. From Table 6, the proposed model shows improvement over the methods in [31], [42], and
[32].

In the second multistage model shown in Figure 2, previous parameter values are used for RT,
window length, and FFT frame length. The SNR parameter value is varied from -2 to 10 dBs. The
averaged MOS results are presented in Table 7, showing the performance improvement of the proposed
model compared to Super-Gaussian [31], Student’s T [42], and generalized Gaussian [32] source priors.
Next, the RT parameter is varied from 40 to 200 msec with window length = 512, FFT = 1024, and SNR
=4 dB. The proposed model-averaged MOS results in Table 8 reflects an improvement from [42], [31],
and [32].

5. Performance Evaluation

In this section, the separation performance of the proposed model is compared with various
multistage BSS approaches with different source priors such as multivariate Super-Gaussian [31],
Student’s T [42], and generalized Gaussian distribution [32]. The two proposed multistage models are
composed of the BSS approach to separate the estimated speech signals from the noisy convolutive
mixture followed by the MMSE filtering technique to de-noise the signals.

For the performance evaluation of first model, we generate 20 different noisy convolutive speech
mixtures with the help of a simulated room model by randomly selecting speech signals from a pool
of 10 source speech signals (5 male and 5 female). We vary SNR and RT to obtain the average results
where the SNR varies between -2 to 10 dB with window length = 512, NFFT = 1024, and RT = 100 msec.
The average results are presented in Table 1 in terms of SDR, showing that the proposed model gains
an enhancement of 0.3 dB for S; and 0.5 dB for Sy. Moreover, the proposed model is compared with
the literature, showing its effectiveness with an optimum gain of 0.2 dB and 1 dB for both estimated
speech signal Sy and S, respectively.

Also, RT is varied from 40 to 200 msec with window length = 512, FFT frame length = 1024, and
SNR = 4 dB. The noisy reverberant mixtures are fed to the proposed model and the other multistage
BSS methodologies [31], [42], [32]. The average objective analysis results are presented in Table 2, which
shows performance gain for the proposed model of 0.3 dB and 0.4 dB for $; and S, in comparison
with other BSS approachs . The proposed approach also shows significant performance improvement
of 3.81 dB and 2.9 dB for the estimated source signals S; and S, respectively from the multistage BSS
having source prior [42]. The objective analysis is also compared with [32] in which the proposed
method shows optimum improvement of 0.16 dB and 0.2 dB for S; and S, respectively.

For the performance evaluation of second model, the noisy reverberant mixtures are de-noised by
using MMSE filtering technique in the first stage. In the second stage, the estimated speech signals
are separated from the de-noised mixture using BSS method. The average results based on objective
analysis by varying SNR are shown in Table 3. It is reflected from the Table 3 that the proposed model
shows performance improvement of 0.2 dB for both $; and S, in comparison with other multistage BSS
approachs. The results in Table 3 shows that the proposed approach achieved significant performance
improvement of 0.7 dB and 0.8 dB in comparison with Student’s T method [42] for estimated source
signals S; and S, respectively. Moreover, Table 3 demonstrates that the proposed approach shows
0.1 dB and 0.4 dB gain from [32] for $; and $,, respectively. The objective evaluation with variable
RT having window size = 512, FFT = 1024, and SNR = 4 dB are provided in Table 4. From Table 4, the
proposed model shows performance gain of 1.7 dB, 2.14 dB, 0.21 dB for $; and 0.6 dB, 1.63 dB, 0.4 dB
for S, in comparison with [31], [42], [32], respectively.
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Experiments are also performed to cross verify the simulations where the window length, NFFT,
RT parameters are set to 512, 1024, and 100 msec, respectively. The 5 participants were asked to mark
the MOS of the estimated speech signals extracted from the multistage BSS model with source prior
[31], [42], [32], and the two proposed methods. The average MOS results from the first model are
presented in Table 5 and 6 with variable SNR and RT, respectively. In the Table 5 with variable SNR, it
is observed that the proposed approach achieved the performance gain of 0.5, 0.8, 0.2 in terms of MOS
for estimated source S; and 0.4, 0.6,0.12 for estimated source S, in comparison with other multistage
BSS methods respectively. For varying RT parameter having fixed window length = 512, FFT = 1024,
and SNR = 4 dB, the average MOS are shown in Table 6 with gain of 0.4, 0.6, 0.2 for S;and 0.5,0.7,0.2
for 5,. Same procedure is followed to verify the second proposed model and the results are displayed
in Table 7 and in Table 8. For varying SNR, it is observed from Table 7 that the proposed model
achieves MOS gain of 0.4,0.7, 0.2 for §1 and 0.3,0.7, 0.2 for $,. Similarly, in Table 8 results are provided
by varying RT that shows MOS gain of the proposed model i.e., 0.4, 0.6, 0.2 for S; and 0.2, 0.5, 0.1 for
S.

5.1. Comparative analysis of the proposed models

A comparative analysis of the two proposed models are presented in Figure3 to Figure6 for
estimated speech signals 51 and S, . The results of these figures are deduced from objective evaluation
Tables 1 to 4 for variable SNR and RT. From Figure3 and Figure4, it is clear that the first model provides

—8— 1st Proposed model
—#— 2nd Proposed model

ASDR

SNR(dB)

Figure 3. Comparison of the two proposed models for S; with Variable SNR (dB).

significant improvement in comparison to the second model for estimated source signals $; and S,
with variable SNR. Similarly, for varying RT, it is observed from Figure5 and Figure6 that the first
model shows considerable performance gain in comparison to the second model for 5; and S,. The
performance of the first model (Figure 1) is better than the second model (Figure 2) for both RT and
SNR because the first model suppresses the noise in the estimated source signal extracted from the
noisy convolutive mixture while in the second model, the de-noising technique suppresses noise and
estimated source signals mixed in the noisy convolutive mixture. The de-noising module considers the
other estimated signals in the noisy convolutive mixture as noise resulting in performance degradation.
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Figure 4. Comparison of the two proposed models for S, with Variable SNR (dB).
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Figure 5. Comparison of the two proposed models for $; with Variable RT (msec).
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Figure 6. Comparison of the two proposed models for $, with Variable RT (msec).
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6. Conclusion and Future Work

This paper proposes an efficient hybrid multistage approach for blind source separation (BSS)
of noisy convolutive speech mixture. In the BSS stage, a hybrid source prior model consisting of
multivariate super-Gaussian and generalized Gaussian distribution model the source signals in the
observed noisy reverberant mixture. The weights are assigned between the source priors following the
energy of the observed convolutive mixture. In the de-noising stage, the noise is suppressed by the
MMSE filtering technique using two different proposed models. In the first model, the BSS module
is followed by the de-noising stage. In the second model, the de-noising module is followed by the
BSS stage. Both proposed models are compared with the literature, where the results clearly show
the performance improvement of the proposed schemes. Furthermore, it is observed from the results
that the proposed model with BSS module followed by de-noising stage shows a significant gain in
comparison with the model with first de-noising followed by BSS stage.
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