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Abstract: Learning disorders (LD) are diagnosed in children impaired in the academic skills of 
reading, writing and/or mathematics. Children with LD usually show a slower resting-state 
electroencephalogram (EEG), with EEG patterns corresponding to a neurodevelopmental lag. 
LD-children also show a consistent cognitive impairment in working memory (WM), including an 
abnormal task-related EEG with an overall slower EEG activity of more delta and theta power, 
and less gamma activity in posterior sites; task-related EEG patterns considered indices of an 
inefficient neural resource management. Neurofeedback (NFB) treatments aimed at normalizing 
the resting-state EEG of LD-children have shown improvements in cognitive-behavioral indices 
and diminished EEG abnormalities. Given the typical findings of a WM impairment in 
LD-children; we aimed to explore the effects of a NFB treatment in the WM of children with LD, 
by analyzing the WM-related EEG power-spectrum. We recruited 18 children with LD (8-10 years 
old). They performed a Sternberg-type WM-task synchronized with an EEG of 19 leads (10-20 
system) twice in pre-post treatment conditions. They went through either 30 sessions of a NFB 
treatment (NFB-group, n= 10); or through 30 sessions of a placebo-sham treatment (Sham-group, 
n= 8). We analyzed the before-after treatment group differences for the behavioral performance 
and the WM-related power-spectrum. The NFB group showed faster response times in the 
WM-task post-treatment. They also showed an increased gamma power at posterior sites and a 
decreased beta power. We explain these findings in terms of NFB improving the maintenance of 
memory representations coupled with a reduction of anxiety. 

Keywords: Neurofeedback; Learning Disorders; Working Memory; School-age Children; EEG 
Power Spectrum; Source Localization 

 

1. Introduction 

A Learning disorder (LD) is a neurodevelopmental impairment with a prevalence of 5-20% in 
children and adolescents between 5 to 16 years old [1–4]. A child diagnosed as a specific LD has 
significant difficulties in learning the academic skills of reading, writing, or mathematics, with these 
skills being remarkably lagged for his/her age and schooling [2]. A child with LD having a combined 
deficiency in two or three of these skills belongs to a subtype of LD, formerly known as LD not 
otherwise specified [5]. The co-occurrence of academic impairments appears in up to 80% of the LD 
cases [6]; and a specific learning disorder of reading is the most commonly found LD subtype, 
appearing alone or in combination with the other two specific disorders (writing or mathematics) in 
4 out of 5 cases of LD [2]. 
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Coupled with the lagged academic skills, children with LD usually endure a heterogenous 
frame of cognitive impairments in processes such as phonological awareness, attentional control, 
processing speed, and working memory (WM) [6], the latter process being a main source of this 
heterogeneity [7]. WM is the part of memory in charge of the online processing of information in a 
type of limited-capacity mental workspace to achieve goal-directed actions [8]. This process is a 
commonly affected cognitive domain in LD children [9–11], being an adequate predictor of current 
and future academic difficulties [12, 13]. The WM performance is more severely affected in LD with 
co-occurrence of other academic impairments [6]. A defective WM implies a diminished capacity for 
the access, maintenance, and/or retrieval of information, usually of a phonological nature. It is 
relevant to highlight that school-age children require adequate WM functioning to properly develop 
their basic academic skills [12, 14]. Children with LD are also at an increased risk to suffer emotional 
disturbances in dealing with school issues [15, 16]. An affective distress in LD often appears in the 
form of reduced self-esteem coupled with possible anxiety and depression problems that can 
aggravate further into adolescence and adulthood [17]. 

The neural correlates of a child with LD have been identified with quantitative 
electroencephalogram (EEG) analyses of a resting-state [18]. The resting-state EEG of LD children 
usually shows an abnormally slower EEG activity than age-matched children with typical 
development. The slower EEG activity of children with LD is akin to that of younger healthy 
children, with more theta power in frontal regions and less alpha power in posterior (parietal and 
occipital) regions. This apparent lag in the brain functional development of LD children has led to 
the hypothesis of LD as a developmental disorder with a delay in the EEG maturation that impairs 
the abilities to keep up with a given grade at school [19–21].  

The task-related EEG, recorded during the performance of WM tasks, has been examined with 
main techniques such as event-related potentials (ERP) and power-spectrum analyses. The Sternberg 
WM task [22] has been used because it allows a proper isolation of the different WM phases: 
encoding, maintenance, and retrieval. In an ERP study of poor readers vs. normal control children 
who responded to a Sternberg WM task, it was found that poor-readers had longer and larger P300 
latencies at frontal sites for the retrieval phase [23]; results that point to a greater effort required by 
LD children since the P300 amplitude is considered a marker of the amount of attentional resources 
required to perform a cognitive task [24]. Moreover, when the WM-related power spectrum of 
healthy children was compared with adults [25], the children showed more delta, more theta, and 
less alpha power; EEG patterns which the authors interpreted as compensatory mechanisms due to 
neural immaturity. These findings are supported by a work that compared LD children with healthy 
control children in a task-related power-spectrum analysis of the maintenance phase of a WM task 
[26]. Children with LD group showed a slower overall activity with more delta and theta power, and 
less gamma power at posterior brain sites; patterns of activity considered as indices of inefficient 
neural resource management to achieve proper cognitive performance. In EEG studies during 
cognitive tasks, the delta activity has been implied with states of sustained concentration coupled 
with the inhibition of sensory information [25, 27–29]. Higher task-related theta power is more 
pronounced in less apt individuals, at greater task difficulties including conditions that require a 
higher WM load with more items to memorize, and in situations in which the focusing of attention 
involves more effort [30–35]; hence, the task-related theta power is considered to be increasingly 
recruited according to the neural resources needed to properly perform a cognitive task. And for the 
gamma band, a sustained increase over posterior sites is involved with a role of memory 
maintenance and the binding of memory representations [36–40]. Thus, the previous findings point 
to greater recruitment of delta and theta power and less recruitment of the high-frequency gamma 
band, in conditions of a higher WM load and less mature populations with greater difficulties to 
perform WM tasks. 

For the treatment of LD, the main interventions used are special education classes and 
evidence-based programs of reading, writing, or mathematics [41–43]. Also, surging from the EEG 
field of research, a Neurofeedback (NFB) treatment is a relevant therapeutic approach. NFB is an 
operant conditioning training aimed at modifying the brain activity with therapeutic or 
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performance-enhancing aims [44–46]. A NFB treatment still occupies an experimental treatment 
status [47]; with ongoing research of its effects in many disorders such as 
attention-deficit/hyperactivity disorder, anxiety disorders, epilepsy, among others; including LD 
[48–50]. The current research of NFB effects in LD children has shown that a protocol aimed at 
normalizing their altered EEG resting-state by reinforcing the reduction of a theta/alpha ratio [50] is 
capable of boosting the cognitive-behavioral performance and improving resting-state EEG patterns 
by reducing such ratio of abnormally slower activity; with treatment effects lasting for at least two 
years [51]. These positive effects suggest a facilitation of the EEG maturation due to this NFB 
treatment. Two other works have also found NFB benefits in LD such as an improved spelling and 
an increased EEG connectivity of the alpha-band with a measure of coherence [49]; and improved 
measures of reading, phonological awareness, and a normalization of EEG coherence measures [48]. 

Given that WM is frequently affected in children with LD, and NFB treatments appear to boost 
cognitive-behavioral performance and regulate their resting-state EEG, the goal of the present work 
was to examine the effects of a NFB treatment (theta/alpha inhibition at lead with the most abnormal 
theta/alpha ratio) on the WM-related EEG power spectrum of children with LD. Specifically, we 
aimed to analyze the WM-power spectrum of LD children during the maintenance phase of a 
Sternberg-type WM task, as the pre-post treatment comparison of two groups: a NFB group vs. a 
sham-NFB group. Our main hypothesis being of the NFB treatment as inducing a tendency to 
normalize the EEG task-related WM power spectrum; by decreasing the excessively slower EEG 
power in the delta and theta bands and increasing the high-frequency gamma activity, as indices of 
EEG patterns related with better cognitive performance (Martínez-Briones et al., 2020).  

2. Materials and Methods 

The Ethics Committee of the Instituto de Neurobiología of the Universidad Nacional Autónoma 
de México (UNAM) approved the experimental protocol on July 1, 2015 [INEU/SA/CB/146], which 
followed the Ethical Principles for Medical Research Involving Human Subjects established by the 
Declaration of Helsinki [52]. Informed consent was signed by all the children and their parents. 

2.1. Participants 
Eighteen right-handed children (11 boys, 7 girls) aged 8 to 11 years diagnosed with LD (see 

inclusion criteria below) were selected from a larger sample of children referred by social workers 
from several elementary schools in Querétaro, México. The sample was randomly divided into two 
groups: 10 LD-children went through a NFB (theta/alpha ratio) treatment and 8 LD-children went 
through a placebo-sham-NFB treatment (Sham group). Both treatments consisted of 30 training 
sessions three times a week with a duration of 30 minutes per session. Before and after the 
treatments, all the children were examined with various tests (including the Sternberg-type WM 
task) described below.  

All children fulfilled the following inclusion criteria: 1) A normal neurological and psychiatric 
assessment (except for the LD diagnostic requirements as stated below); 2) Intelligence Quotient (IQ) 
at least of 75, to exclude children with intellectual disability [53]; 3) a parent (mother) with at least a 
completed elementary school education and a per capita income greater than 50 percent of the 
minimum wage; and 4) an abnormally high EEG theta/alpha ratio compared to a normative 
database. 

The LD diagnosis was established based on the following three criteria: a) poor academic 
achievement reported by teachers and parents, b) percentiles at 16 or lower in the subscales of 
reading, writing, and/or mathematics of the Infant Neuropsychological Scale for Children [54] and c) 
LD diagnosis by a psychologist according to the DSM-5 criteria of LD [2]. Several of them failed on 
different items in the attentional  evaluation of the DSM-V, as it is common in this disorder [55, 56]; 
but they did not meet the DSM-5 criteria of ADHD [2]. Table 1 shows the pre-treatment 
characteristics of both groups. The frequency of academic impairments found in our LD sample 
were as follows: 9 children impaired in the three domains (reading, writing, and mathematics); 3 
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children impaired in reading and writing; 2 children impaired in reading and mathematics; 2 
children impaired in writing and mathematics; and 2 children impaired in mathematics. 

Table 1. Before-treatment sample composition 

 
NFB group 

n= 10 
Sham group 

n= 8 
Statistical differences between groups 

Mean Sd mean sd  
Age 10.4 1.0 10.1 0.8 t = 0.59, (NS) 

WISC test: 
Full Scale IQ 
WM Index 

 
90.1 
85 

 
12.4 
11.7 

 
89 

94.5 

 
8.5 

13.7 

 
t = 0.21, (NS) 
t = -1.58, (NS) 

Female/Male ratio 3/7 4/4 OR = 2.33; CI:(0.3, 16.2); (NS) 
z Theta/Alpha ratio* 2.6 0.8 2.2 0.6 t = 0.81, (NS)  
*The z value of theta/alpha ratio refers to the most abnormal EEG lead. 

2.2. Neurofeedback and Sham treatment procedures  

All children showed an abnormally high EEG theta/alpha ratio than a resting-state EEG 
normative database before being randomly assigned to either the NFB or the Sham treatment 
groups. The resting-state EEG was recorded with eyes closed while seated in a dim-lit faradized and 
soundproofed room, from 19 leads of the international 10-20 system (ElectroCap, International Inc.; 
Eaton, Ohio), referenced to linked earlobes (A1-A2). For this purpose, a Medicid™ IV equipment 
(Neuronic Mexicana, S.A.; Mexico) and a v5.0 Track Walker™ recording software system were used. 
The amplifier bandwidth was set between 0.5 and 50 Hz. All electrode impedances were equal to or 
less than 5 kΩ, and the signal was amplified with a gain of 20,000. The EEG data were sampled every 
5 ms and edited offline. Twenty-four artifact-free segments of 2.56 seconds were selected, from 
which an EEG analysis was performed offline. The fast Fourier transform was applied over the data 
to obtain the absolute power of each of the following frequency bands: delta (1-4 Hz), theta (4-8 Hz), 
alpha (8-12 Hz), and beta (12-30 Hz).   

To calculate the z-values for the theta/alpha ratio, absolute power (AP) of the theta and alpha 
bands was computed for each electrode, and a geometric power (Hernandez et al., 1993) was 
subtracted from the cross-spectral matrix. 

The log value (theta AP/alpha AP) was computed, and z-values for this logarithm were 
calculated using the equation: 

Z= [log (thetaAP/alphaAP) -  /  
where  and  are the mean value and the standard deviation, respectively, of a normative 

sample of the same age as the subject (Szava et al., 1994; Valdés et al., 1990). Since the EEG of 
children with LD is characterized by having more theta and less alpha power than the EEG of 
children with typical development, having a z-value greater than 1.645 (1-tailed distribution, p = 
0.05) in at least one lead was also considered as an added inclusion criterion. The NFB treatment was 
delivered via the lead with the highest abnormal z-value. 

The NFB treatment was applied using a neurofeedback program adapted for the Medicid IV 
registration system. A threshold level was selected in which the subject obtained a reward between 
60 and 80% of the time. The stimulus used as a reward was a tone of 500 Hz at 60 dB. Every 3 
minutes, the threshold level was updated based on the subject's performance. Each subject received 
30 training sessions three times a week, and the duration of each session was 30 minutes. The Sham 
treatment was identical to the NFB treatment, except that the reward was delivered randomly, 
noncontingent on EEG activity. 

2.3. Working Memory Task 

The WM task used in this work was a modified version of the Sternberg memory task [22], a 
classic task that allows to assess each phase of the WM process (encoding, maintenance, and 
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retrieval). A verbal version of this task was employed since LD children show a more consistent 
deficit in the phonological loop subsystem of the Baddeley´s WM model [6, 8]. 

The WM task (Figure 1) consisted of two conditions (low-load and high-load) presented in 180 
trials, with 90 trials per condition appearing randomly. At each trial, four digits appeared 
simultaneously on the screen after a warning signal (asterisk). In the low load condition, all the 
digits were the same; in the high load condition, the digits were different and not in ascending or 
descending order, neither pure even nor pure odd. The participants were instructed to memorize the 
numbers since after the four-digits set appeared, a single-digit (probe stimulus) is presented; they 
had to press one button (match response) if the digit was included in that trial and press another 
button if not (non-match response). To perform the power spectrum analysis, segments of 800 ms 
were selected in the WM maintenance phase, only in trials with correct answers. Stimuli were 
presented with the software MindTracer [57] and synchronized with the EEG data acquisition 
system. This WM task was administered twice for both groups: Before the treatment (NFB or Sham) 
and two months after the treatment.  

 
Figure 1. Representation of a single trial (both conditions have been represented in the same Figure). 
In this case, the single digit (‘probe stimulus’) was included previously in the set 'stimuli to 
remember' from both conditions, and the subject had to press the button of the 'match response'. The 
segment in red corresponds to the WM maintenance phase, the section selected for the power 
spectrum analysis. The total trial duration is 4500 msec. 

2.4. EEG recording and data analysis of the WM task 

Before and after the treatments, the administration of the WM task was coupled with an EEG of 
similar specifications to the resting-state condition: All the children were seated in the dim-lit 
faradized and soundproofed room. The task-related EEG was recorded during the task performance 
(with eyes open) using the Medicid IV and Track WalkerTM v5.0 data systems, from 19 leads of the 
10–20 system referenced to the linked earlobes (A1–A2). The amplifier bandwidth was set between 
0.1 and 50 Hz. The signal was amplified with a gain of 20,000 with electrode impedances at or below 
5 kΩ, and the EEG data was sampled every 5 ms with a sampling frequency of 200 Hz. 

For the power spectrum calculation, 800 ms of the WM maintenance phase from each trial with 
correct responses were used. Up to 90 trials were recorded per condition (to guarantee a necessary 
number of EEG epochs to analyze). From which we admitted a minimum of 19 artifact-free segments 
for the power spectrum analysis. This number of epochs assures, in one hand, the smoothness of the 
power spectrum and, on the other hand, that the cross-spectral matrix is positively defined (at least 
as many segments as EEG leads are needed to achieve this condition), a requirement for the 
subsequent processing and statistical analyses [58]. The recordings were edited off-line by an expert 
neurophysiologist, who selected only artifact-free and quasi-stationary epochs before the 
probe-stimuli onsets, without using any automatic algorithm for artifact rejection. The automatic 
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artifact rejection is useful in high-density EEG recordings, where the visual inspection of the data 
becomes difficult and controversial, as well as to obtain a clean recording of all channels during long 
periods. However, since our recordings contain the standard setting of 19 electrodes, we prefer to 
keep control of the recording conditions to obtain clean recordings and avoiding the use of 
automatic procedures, which are not 100% percent guaranteed to produce a clean signal and which 
may also introduce undesirable effects in the “cleaned” signal. 

The classic approaches to analyze the EEG voltage at the sensor space (over the scalp) have two 
main drawbacks: the volume conduction effect and the reference electrode effect, both inducing 
mixing of signals that distort the real neurophysiological events [59]. These shortcomings can be 
partially solved by source localization techniques, which diminish possible localization errors and 
overcome the sensor space limitations by analyzing the contribution of specific cortical brain areas 
[60, 61].  

To attenuate the well-known leakage (mixing) problem of the EEG signals at the scalp due to 
volume conduction [62], we performed our power spectrum analysis at the estimated primary 
current sources. For this, we first apply the s-Loreta technique [61], which transfers our data from 19 
leads to a high-resolution volumetric grid of 3244 sources. However, as stated in Biscay et al. [63], 
besides the difficulty of analyzing such high number of sources, there is the limitation that only a 
small number of sources can be independently estimated for a given number of EEG sensors; 
specifically, the maximum number of independent sources after solving the inverse problem by any 
linear method is the number of EEG sensors minus 1. In their paper, they also presented an 
algorithm that, under quite mild assumptions, can completely unmix the signals for that small 
number of sources when their domains are specified as corresponding to given regions of interest 
(ROIs) of said high-resolution grid. In the present paper, we adhere to that methodology. 

Before estimating the power spectrum at the sources using s-Loreta, the EEG data recorded with 
the linked earlobes reference is re-referenced to the Average Reference montage. This step solves 
two drawbacks: a) the possible effect induced by possible unequal impedances between the two 
earlobes and b) the primary current estimated at the sources employing s-Loreta is reference-free [61]. 

In the EEG literature, in order to choose the specific sources (or ROIs) for the power spectrum 
analysis, it is frequent to use one of the following methods: 1) A selection based on prior alleged 
knowledge of brain functioning, such as working memory networks previously identified through 
neuroimaging [64]. 2) A selection of the sources closer to the 10-20 leads, which is not technically 
arbitrary since the source localization methods are usually more precise in the regions closer to the 
sensors; 3) a data-driven approach where the ROIs are selected based on the intrinsic variability of 
the data. The first two methods are not optimal since they ignore the data itself and do not provide 
the real brain areas involved in a specific experimental task. In this work, we used a data-driven 
approach based on the eigenvector centrality mapping technique (ECM) [65] adapted to the present 
work by the authors. 

The ECM is a technique based on calculating of the principal components decomposition of a 
similarity matrix, usually based on the signal in the time domain over all the voxels. It computes its 
first principal component and interprets each entry of this vector as an index of global connectivity 
for the corresponding brain voxel. The voxels with the higher connectivity indexes are considered 
the most connected voxels in the brain. In general, the ECM method is calculated for each subject 
separately, and for group analysis, a statistical test is performed among the subjects to select those 
voxels with a high connectivity index in most subjects. In our case, we constructed the similarity 
matrix as the one formed by the absolute values of the correlations between the sources of all voxels. 
We developed an optimized version of the power method algorithm in terms of memory usage and 
CPU intensity, which can obtain the first principal component for all the subjects at the same time. In 
this way, it is not required to perform a statistical analysis to select the most connected voxels since 
the global connectivity index that comes out from our approach is a group index of connectivity; and 
the voxels with a high global connectivity index will be common for most of the subjects. With this 
index of global connectivity obtained by the above-described procedure, 18 ROIs (the number of 
scalp sensors minus 1) were selected. More specifically, not only the sources identified by this index 
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were obtained, but we also included the equivalent sources in the contralateral hemisphere in the 
cases when they were not selected according to their values of the connectivity index. The reason for 
this addition was to be able to compare how the homologous sources in both hemispheres 
participated in the task. Figure 2 shows in red the 18 selected ROIs by the data-driven approach, also 
published by Martínez-Briones et al. [26]. For a better insight into its configuration, the cortex 
regions nearest to the positions of the sensors at the scalp are also illustrated in blue. Note that many 
of the relevant areas detected by our algorithm are far from the sources immediately below the scalp 
sensors. The source signals at the 18 ROIs were processed by the unmixing algorithm elaborated by 
Biscay et al. [63]. Then, the segments of unmixed signals of such 18 sources (with 160-time points 
each) in each condition of all subjects were transformed to the frequency domain with the Fast 
Fourier Transform. This procedure yielded a source spectrum of 40 frequencies, from 1.25 to 50 Hz 
(frequency bins every 1.25 Hz) for every ROI for each subject under each task condition and group. 

We performed the statistical analysis of the power spectrum using this narrow band model of 
1.25 Hz frequency resolution up to 50 Hz. Nevertheless, in the results and the discussion sections, to 
consolidate the information and make it easier to understand, we summarized the findings using the 
classic frequency bands: delta (δ)= 1-4 Hz, theta (θ)= 4-8 Hz, alpha (α)= 8-12 Hz, beta (β)= 12-30 Hz, 
and gamma (γ)= 30-50 Hz (the upper extreme of the interval is never reached to avoid overlapping). 
Gamma band is usually reported up to 100 Hz; however, we report changes up to 50 Hz, which is 
considered a lower-gamma band, due to our hardware limitations. 

Finally, for the main group (NFB or Sham) and task condition (low-load or high-load) 
comparisons, we used a Linear Mixed Effect Model (LME) [66], in which we tested these factors at 
each frequency to compare the data before and after the treatments. Independent t-test analyses 
were also performed for the following variables: Full-scale IQ, WM index, the theta/alpha ratio of the 
most abnormal EEG lead, and behavioral results (correct responses and response times) of the 
Sternberg WM task. 

To safeguard the statistical significance of our results given the high number of comparisons, 
the alpha level was corrected using the permutations technique [67]. In all figures that we show in 
section 3.2 with the results of the statistical significance, the two horizontal lines indicate the upper 
and lower significance thresholds at p=0.05, corrected by permutations. 

 

 
Figure 2. ROIs selected by the populational ECM. The sources closer to the 19 leads are in blue, and 
the 18 ROIs are in red: LatFOGL, Left lateral orbitofrontal gyrus; LatFOGR, Right lateral orbitofrontal 
gyrus; MedFGL, Left medial frontal area; MedFGR, Right medial frontal area; InfFGL,Left inferior 
frontal gyrus; InfFGR, Right inferior frontal gyrus; MidFGL, Left medium frontal gyrus; MidFGR, 
Right medium frontal gyrus; SupFGL, Left superior frontal gyrus; SupFGR, Right superior frontal 
gyrus; MidLTGL, Left medial temporal gyrus; MidLTGR, Right medial temporal gyrus; SupPLL, Left 
superior parietal area; SupPLR, Right superior parietal area; AngGL, Left angular gyrus; AngGR, 
Right angular gyrus; OccPL, Left occipital pole; OccPR, Right occipital pole. Taken from 
Martínez-Briones et al. [26] 

3. Results 

According to the comparison of the main characteristics of both groups (see Table 1), the NFB 
and Sham groups did not differ in age, gender, IQ, or theta/alpha ratio for the pre-treatment 
comparison. Therefore, the children of both groups were aptly comparable for the consecutive 
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analyses. The IQ measures and the theta/alpha ratio were also of interest for an additional 
after-treatment comparison between the groups, but they did not statistically differ after the 
treatments. 

3.1. Behavioral results of the WM task 

The behavioral results of the WM task are in terms of a percentage of correct responses and the 
response times of the two conditions (Low-Load and High-Load). There were fewer correct 
responses and slower response times in the High-Load condition than in the Low-Load condition. 
This pattern of differences appears for the two groups both before and after treatment, suggesting 
that the high-load condition is indeed more difficult condition at this behavioral level.  

A main analysis of interest, shown in the following two figures, assessed within-group 
differences for the percentage of correct responses (Figure 3) and response times (Figure 4) by 
comparing the Before-treatment vs. the After-treatment for each group taken separately. In these 
comparisons, we did not find before-after statistical differences in the percentage of correct 
responses for either group, a finding that could point to insufficient sensitivity of the WM task to 
detect possible improvements in performance at this behavioral level. On the other hand, for the 
response times, the NFB group did show a faster response time for the High-Load condition after the 
NFB treatment (t= 2.56, p<0.05). Thus, the NFB treatment seems to modify an index of good 
performance in terms of an improved velocity of WM retrieval.  
 

 
Figure 3. Within-groups behavioral results of the percentage of correct responses for the WM task 
(the left panel shows the Low-Load condition, the right panel shows the High-Load condition). Mean 
values of the percentage of correct responses before treatment appear in blue and after treatment 
appear in yellow. There were no statistical differences for the before vs. after treatment comparisons 
within groups taken separately. 

 
Figure 4. Within-groups behavioral results of the response times for the WM task (the left panel 
shows the Low-Load condition, the right panel shows the High-Load condition). Mean values of 
response time before treatment appear in blue, and after treatment appear in yellow. The asterisk 
indicates statistically significant differences in the before vs. after treatment comparison of the NFB 
group for the High-load condition (t= 2.56, *p<0.05). 
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3.2. WM-related Power Spectrum results 
In the figures below, we focus the power-spectrum analyses on the more difficult High-Load 

condition, given that our within-groups High-Load vs. Load-Load comparisons did not show 
statistical differences at this power-spectrum level. Figure 5 shows the power spectrum 
within-group differences for the NFB group by comparing the Before-treatment vs. the 
After-treatment conditions. Figure 6 shows this Before-After treatment comparison for the Sham 
group. Looking at both figures, a higher beta and gamma power after-treatment at the right medial 
temporal gyrus in both groups can be appreciated. The NFB group (figure 5) also shows an increased 
gamma power at the superior parietal areas and reduced beta power at the occipital poles of both 
hemispheres after treatment. On the other hand, the Sham group (figure 6) shows a right hemisphere 
higher beta power in the right lateral orbitofrontal gyrus, the right medium and superior frontal 
gyri, and the right occipital pole coupled with also a higher gamma power for the after-treatment 
condition; another finding in the Sham group was the reduction of the frontal delta and theta power 
(in the left orbitofrontal gyrus and the bilateral medial frontal areas). Therefore, the NFB group 
shows a more selective modulation of the high-frequency bands in the shape of a decreased beta and 
an increased posterior gamma power after the NFB treatment; and the Sham group shows mostly a 
decrease in the delta and theta power of frontal areas and an increased beta power after the 
Sham-NFB sessions. 

 

Figure 5. Power-spectrum differences within the NFB group in a before vs. after treatment 
comparison of the WM High-Load. The X-axis represents the frequencies (1.25-50 Hz), separated by 
vertical lines to the classic frequency bands: delta (δ)= 1-4 Hz, theta (θ)= 4-8 Hz, alpha (α)= 8-12 Hz, 
beta (β)= 12-30 Hz, and gamma (γ)= 30-50 Hz (open upper intervals). The Y-axis represents the t-values 
of the LME procedure. The red patches (above the horizontal lines) indicate a higher power for the 
after-treatment condition than for the before-treatment condition (p*<0.05, randomization-corrected). 
The blue patches (below the horizontal lines) indicate a higher power for the before-treatment 
condition (p*<0.05, randomization-corrected). LatFOGL/LatFOGR: Left/Right lateral orbitofrontal 
gyrus; MedFGL/MedFGR: Left/Right medial frontal area; InfFGL/InfFGR: Left/Right inferior frontal 
gyrus; MidFGL/MidFGR: Left/Right medium frontal gyrus; SupFGL/SupFGR: Left/Right superior 
frontal gyrus; MidLTGL/MidLTGR: Left/Right medial temporal gyrus; SupPLL/SupPLR: Left/Right 
superior parietal area; AngGL/AngGR: Left angular gyrus; OccPL/OccPR: Left/Right occipital pole. 
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Figure 6. Power-spectrum differences within the Sham group in a before vs. after treatment 
comparison of the WM High-Load. The X-axis represents the frequencies (1.25-50 Hz), separated by 
vertical lines to the classic frequency bands: delta (δ)= 1-4 Hz, theta (θ)= 4-8 Hz, alpha (α)= 8-12 Hz, 
beta (β)= 12-30 Hz, and gamma (γ)= 30-50 Hz (open upper intervals). The Y-axis represents the t-values 
of the LME procedure. The red patches (above the horizontal lines) indicate a higher power for the 
after-treatment condition than for the before-treatment condition (p*<0.05, randomization-corrected). 
The blue patches (below the horizontal lines) indicate a higher power for the before-treatment 
condition (p*<0.05, randomization-corrected). LatFOGL/LatFOGR: Left/Right lateral orbitofrontal 
gyrus; MedFGL/MedFGR: Left/Right medial frontal area; InfFGL/InfFGR: Left/Right inferior frontal 
gyrus; MidFGL/MidFGR: Left/Right medium frontal gyrus; SupFGL/SupFGR: Left/Right superior 
frontal gyrus; MidLTGL/MidLTGR: Left/Right medial temporal gyrus; SupPLL/SupPLR: Left/Right 
superior parietal area; AngGL/AngGR: Left angular gyrus; OccPL/OccPR: Left/Right occipital pole. 

An analysis of particular interest was a between-groups (NFB vs. Sham) comparison after 
subtracting before from after treatment data of each separate group, producing an ‘after minus 
before’ variable for the contrast between the groups (figure 7). This comparison was performed for 
both its value as a direct between-groups contrast and to isolate the actual contributions of the NFB 
treatment, given that the Sham procedures are known to also produce some positive effects in the 
subjects [68, 69]. The results that this analysis yielded were: 1) a higher gamma power for the NFB 
group at the bilateral superior parietal areas, compared to the Sham group; and 2) less right beta 
power at the orbitofrontal gyrus, the medial frontal area, and the right occipital pole for the NFB 
group (compared to the Sham group). According to the main hypothesis, these overall patterns of 
power-spectrum differences for both the before vs. after treatment and the NFB vs. Sham groups 
were partially expected and will be thoroughly discussed in the following section.       
 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 May 2021                   doi:10.20944/preprints202105.0517.v1

https://doi.org/10.20944/preprints202105.0517.v1


 11 of 19 

 

Figure 7. Power-spectrum differences between the groups (NFB vs. Sham) for the High-Load after 
subtracting the before-treatment from the after-treatment condition (yielding an ‘after minus before’ 
condition of group comparisons). The X-axis represents the frequencies (1.25-50 Hz), separated by 
vertical lines to the classic frequency bands: delta (δ)= 1-4 Hz, theta (θ)= 4-8 Hz, alpha (α)= 8-12 Hz, 
beta (β)= 12-30 Hz, and gamma (γ)= 30-50 Hz (open upper intervals). The Y-axis represents the t-values 
of the LME procedure. The red patches (above the horizontal lines) indicate a higher power for the 
NFB group than for the Sham group (p*<0.05, randomization-corrected). The blue patches (below the 
horizontal lines) indicate a higher power for the Sham group (p*<0.05, randomization-corrected). 
LatFOGL/LatFOGR: Left/Right lateral orbitofrontal gyrus; MedFGL/MedFGR: Left/Right medial 
frontal area; InfFGL/InfFGR: Left/Right inferior frontal gyrus; MidFGL/MidFGR: Left/Right medium 
frontal gyrus; SupFGL/SupFGR: Left/Right superior frontal gyrus; MidLTGL/MidLTGR: Left/Right 
medial temporal gyrus; SupPLL/SupPLR: Left/Right superior parietal area; AngGL/AngGR: Left 
angular gyrus; OccPL/OccPR: Left/Right occipital pole.  

4. Discussion 

Our purpose was to explore the effects of a NFB treatment on the WM processing of children 
with LD with theta/alpha excess in their resting-state EEG. For this, we compared the behavior and 
the WM-related power spectrum between a group of children with LD who received a NFB 
treatment and another group of LD children who were given a Sham-NFB treatment.  

In a pre-treatment descriptive comparison of the groups, we did not find statistical differences 
for the main variables of age, gender, IQ (including a WM index provided by the WISC test), for the 
theta/alpha ratio, or the WM behavioral performance (correct responses and response times). Thus, 
our random assignment of children with LD successfully ensured that our groups were comparable 
in the following WM post-treatment behavioral and power spectrum results. Our primary outcomes 
of interest are those regarding our selected Sternberg memory task both at the behavioral and the 
EEG level. However, it must be noted that neither group showed an improvement in IQ, WM index, 
or theta/alpha ratio post-treatment. The main reason for measuring IQ in this study was to satisfy the 
criterion for the diagnosis that establishes that the learning difficulties are not better accounted for 
by intellectual disabilities (American Psychiatric Association, 2013). In general, the IQ is a rigid 
measure with a high rate of failure to be improved by therapies or programs with 
performance-enhancing aims [70–72]; thus, our negative finding was likely to occur. 
Schooling/education has been found to improve the IQ of subjects with typical development at 1-5 
points for every additional year of education [73]. Since this does not usually happen in LD children, 
this realization only adds to the importance of finding out more about possible treatments for LD 
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subjects that both struggle at school and whose usual WM impairments also contribute to their 
academic problems [14]. 

Regarding the lack of a theta/alpha ratio improvement, there may be various explanations. 
Although in previous studies of our research group using this NFB protocol we always found a 
reduction (in average) of the theta/alpha ratio (Fernández et al., 2003, 2007, 2016), this finding was 
not common to all individuals who received the NFB treatment [74]. Also, on the one hand, the 
sample sizes in this study could be too small to make the change evident, especially if there was high 
within-group variability. On the other hand, there is evidence of changes in behavior without 
changes in the EEG after a NFB treatment [50, 75, 76]. In previous studies, we have interpreted this 
as the NFB treatment modifying the functioning of subcortical structures, which would be reflected 
in behavior, but not necessarily in cortical postsynaptic activity. Thus it would be unlikely to observe 
EEG changes since 97% of the recorded EEG activity originates in the cortex [59, 77]. Yet these 
functional changes of deep structures could later modify the EEG through the modulation of 
thalamic-cortical circuits [51, 78]. In addition to the evidence shown by Fernández et al. [50] in LD, 
Lubar et al. [75] in ADHD, and Sterman & Egner [76] in epilepsy; there is indirect evidence that by 
regulating a range of frequencies in the EEG for a single lead, the final changes are observed in other 
frequencies and different regions, which points to a certain non-specificity of frequency and location 
effects in NFB. All in all, for future studies we aim to provide finer measures of NFB improvement 
such as an EEG-NFB at the sources; or arrangements consisting of reinforcing more than one 
abnormal lead either at the EEG surface level or at the sources too [79]. 

As to the behavioral results of the WM task, besides the expected Low-Load vs. High-Load 
within-group differences in both the correct responses and response time measures [26]; our 
additional statistical comparisons yielded a main difference found just for the NFB group: In the 
pre-post treatment comparison of each separate group, the NFB group showed a faster response 
time for the High-Load condition after the NFB treatment, with no statistical differences in the 
percentage of correct responses. Hence, the NFB treatment appears to improve the speed of WM 
retrieval in children with LD. A good WM performance is required for proper academic 
achievement, and a better response time in a task that involves memorizing digits is a noteworthy 
finding.  

The WM-related power spectrum analysis was realized not in the sensor space but for 18 source 
ROIs. An adapted eigenvector centrality mapping (ECM) technique was used as a data-driven 
procedure to select the ROIs. This yielded a global index of connectivity for each voxel that allowed 
a more robust algorithm for ROIs selection. This data-driven procedure is a valuable ROIs selection 
approach by avoiding the assumption of arbitrary or uninformed criteria such as choosing the 
sources closer to the leads; or supposed prior knowledge of brain structure or function, such as an 
alleged WM network that could not apply to LD children with insufficiently mapped task-related 
neural correlates, or who possibly employ a different strategy to solve a task. By contrast, our ROIs 
broadly underlie the sample variance as active sites present in the children during the maintenance 
phase of the WM performance. A main result from this approach was of many ROIs settled in 
prefrontal areas, with no ROIs selected in the central cortex, i.e., near the Cz, C3, and C4 leads. This 
finding agrees with other task-related EEG studies that do not identify a contribution of central areas 
during a cognitive performance; while mainly frontal and posterior regions have indeed been 
involved in the WM functioning [34, 80, 81]. 

Regarding the power spectrum analyses during the maintenance phase of the WM task, we first 
examined each group taken separately in a within-group before vs. after treatment comparison. Our 
original hypotheses were of NFB inducing a tendency to normalize the WM-related power spectrum 
by diminishing the excess of delta and theta power while increasing the gamma activity. We found 
these predicted patterns but distributed between the groups and with some differences for the beta 
band. For example, the NFB group showed specific high-frequency changes with an increased 
gamma power at posterior areas (and a decreased beta activity), while the Sham group completed 
this picture with the decrease of delta and theta power at frontal areas (and increased beta activity). 
An improvement in performance by a sham-NFB or a placebo treatment has been an acknowledged 
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phenomenon and a recently recurring criticism of the NFB literature, with a renewed insistence on 
using appropriate control groups and analyses to isolate the experimental effects [68, 69]. This 
problem was partially solved by our between-group comparison in which we attempted to isolate 
the proper NFB effects. With this additional comparison between the groups, the changes observed 
in delta and theta for the Sham group disappeared among the groups; and for the NFB group, it was 
now highlighted a gamma power increase at the posterior areas and a beta power decrease at the 
right hemisphere, compared to the Sham group. The gamma activity has been attributed to a role of 
memory maintenance and the binding of memory representations [39, 40], and frontal and central 
beta activity has been related to the preparation of motor responses [27]. Given the lack of finesse of 
our experimental paradigm to detect the binding of memory representations, and the fact that our 
power spectrum analysis was performed over EEG segments taken in the maintenance phase, we 
assume that the increased gamma power of the NFB group reveals improved memory maintenance 
due to the NFB treatment, a finding that could also be an EEG substrate of the improved speed of 
WM retrieval for this same group of children. On the other hand, the decreased beta activity in the 
NFB group takes a more equivocal form. A workable explanation of the beta power changes can be 
advanced considering them as nonspecific NFB treatment effects [82] that could share with other 
anxiety-reducing therapeutic interventions such as forms of meditation including mindfulness 
training. There has been conflicting evidence of beta power changes after meditation programs, with 
some increases and mainly decreases of beta power [83, 84]. The decrease of beta is considered an 
effect of transcendental meditation and an index of ‘thoughtless emptiness’, an important aim to 
achieve in meditation practices. Thus, a decreased beta power after the NFB treatment could signify 
a nonspecific effect of anxiety reduction for our LD children. Also, from the sham group point of 
view regarding its beta power increase, possible adverse effects have been reported for Sham-NFB 
interventions such as the occurrence of learned helplessness [85], inducing higher levels of 
restlessness or anxiety by the nature of the noncontingent random reward that fails to be predicted 
by the child. Hence, the increased beta activity for the Sham group could otherwise be due to an 
expectancy effect that elicits an anxious motor preparation to respond by these children. 

To conclude, this is the first study of the effects of a NFB treatment in WM measures (at the 
behavioral and the EEG power spectrum levels), showing promising positive results in variables 
such as improved response times post-treatment and an increased gamma power at the parietal 
areas coupled with a decreased beta power by the NFB treatment. We explicate these power 
spectrum patterns of a boost in the gamma band as revealing improved maintenance of memory 
representations due to NFB; coupled with the decreased beta band as an index of reduced anxiety. 
Our group has previously found positive results of NFB in LD children over a two-year follow-up 
[51] and we also aim to follow through with this verification step for our WM results.    
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