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Abstract: The forecast of electricity demand has been a recurrent research topic for decades, due to
its economical and strategic relevance. Several Machine Learning (ML) techniques have evolved in
parallel with the complexity of the electric grid. This paper reviews a wide selection of approaches
that have used Artificial Neural Networks (ANN) to forecast electricity demand, aiming to help
newcomers and experienced researchers to appraise the common practices and to detect areas where
there is room for improvement in the face of the current widespread deployment of smart meters and
sensors, which yields an unprecedented amount of data to work with. The review looks at the specific
problems tackled by each one of the selected papers, at the results attained by their algorithms, and at
the strategies followed to validate and compare the results. This way, it is possible to highlight some
peculiarities and algorithm configurations that seem to consistently outperform others in specific
settings.
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1. Introduction

Electricity is expected to increase its prevalence as the main energy vector in the near future for
industrial, domestic and transportation use. This emphasizes the importance of electricity demand1

forecast, as it has direct impact on many operational and business processes. For decades, load
forecast has been a recurrent research topic and a framework for the evolution of Machine Learning
(ML) approaches based on Artificial Neural Networks (ANN), which are inherently suitable to deal
with non-linearities and multiple types of inputs [10,11]. Nowadays, the massive deployment of
smart meters and sensors along the grid yields a propitious environment for the optimization of such
techniques.

The literature accumulated on the topic of load forecast using ANN-based models over the last
20 years is vast and difficult to grasp. This paper aims at classifying and reviewing the most relevant
works. Our focus is on identifying what algorithm performs better for specific electricity demand
problems and under what circumstances, including the selection of input variables and the optimal
combination of parameters. Other distinguishing aspects of this systematic review are the following:

• We analyze the Key Performance Indicators (KPIs) used to evaluate the accuracy of the
predictions and to compare the performance of different algorithms. In this regard, the
predominance of some metrics (e.g. MAPE, the Mean Absolute Percentage Error) in the literature
often leads to overlooking important quality parameters, such as the distribution of the error
and the maximum forecast error.

1 The electricity demand of the grid is known as load in the electrical engineering jargon. We will use both terms
interchangeably.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 May 2021                   

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0000-000-000X
https://orcid.org/
https://orcid.org/
http://creativecommons.org/licenses/by/4.0/


2 of 23

• We look at other fundamental aspects in ML problems, such as the data pre-processing techniques,
the selection of training and validation sets, the tuning of the model hyper-parameters, the
graphical representations and the presentation of the results.

• Last but not least, we discuss the ability to publicly access the datasets used to carry out the
experiments and to validate the results and the code of each one of the selected papers. Lack of
access makes the results of many papers very hard or impossible to reproduce, reducing their
impact as sources of innovation and knowledge.

Previous reviews of approaches for electricity demand forecast (see [9,14,24]) surveyed the use
of ANN-based techniques in a shallower manner, as they covered other ML techniques too. Other
surveys looked at general uses of ML in energy systems, not only for load but also for generation,
and not restricted to electricity but considering any sources of energy [1,13,72]. Our exclusive focus
on ANN for electricity demand forecast allows providing deeper insight, to the point of questioning
aspects that have been traditionally taken for granted, such as the non-linear nature of the forecast
problem (to be discussed in Section 4.2). It is worth mentioning, though, that we cover not only pure
uses of ANNs, but also hybrid approaches in which ANNs are combined with other algorithms and/or
used to process the data in early or final stages.

2. Methodology

Initially, we used Elsevier’s ScienceDirect, Scopus and IEEE Xplore to search for relevant papers,
thus ensuring essential quality requirements and coverage of the most relevant publications. We
obtained an initial lists by performing search queries for the keywords “ANN”, “neural networks”,
“forecast”, “prediction”, “electricity”, “load”, “forecasting”, “machine learning”. We also considered
the related papers that were recommended by the search engines and met the search requirements.
Next, we left out all the papers that did not include ANN-based mechanisms or dealt with other
energy sources than electricity –still, we included papers that compared ANN-based methods to other
approaches such as Support Vector Machines (SVM). We proceeded iteratively to include all the papers
referenced in the state of the art section of papers already included in our set.

Table 1 shows the sites from where we downloaded the papers covered in the review. 55% of them
were retrieved from IEEE Explorer, acknowledging the fact that many relevant papers on electric load
forecasting papers have been traditionally presented in IEEE conferences. MDPI and ScienceDirect
also hosted a relevant number of original papers.

Publisher Number of papers References
IEEE 29 [11] [21] [34] [12] [35] [38] [39] [42] [45] [43] [28] [48] [4] [7] [51]

[37] [52] [23] [53] [30] [58] [58] [55] [14] [6] [32] [3] [56] [67]
ScienceDirect 10 [36] [19] [31] [40] [41] [47] [22] [49] [25] [61] [70]

MDPI 8 [17] [46] [50] [59] [8] [18] [70]
Arxiv 3 [2] [62] [63]
Others 2 [20] [5]

Table 1. Sources of papers for the review.

Having selected the papers, we put them on a data sheet with different columns to look at the
specifics of each one. The columns were:

• Type of problem to solve.
• Algorithms used.
• Supporting tools.
• Input variables.
• Dataset characteristics.
• Performance indicators.
• Results.
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• Particularities.

In the last column we wrote down comments about what made one paper different from others.
This helped us to analyze and compare the different papers focusing on specific aspects that we will
cover during the review. A simplified version of this table is included in Section 5 to be used as a quick
reference by the readers.

3. State-of-the-art ANN-based algorithms used in load forecasting problems

Some of the reviewed papers use single ANN-based algorithms, whereas others combine them
with other techniques. The single algorithms are the following:

• The Multi-Layer Perceptron (MLP) refers to a canonical feedforward artificial neural network,
which typically consists of one input layer, one output layer and a set of hidden layers in between.
Early works showed that a single hidden layer is sufficient to yield a universal approximator
of any function, and so MLPs were commonly used in papers from the 90s and early 2000s.
However they have been progressively replaced for more sophisticated recursive algorithms,
which can better capture the complex patterns of load time-series.

• Self-Organizing Maps (SOM) are neural network-based dimensionality reduction algorithms,
generally used to represent a high-dimensional dataset as a two-dimensional discretized pattern.
They are also called feature maps, as they are essentially retraining the features of the input data,
and grouping them according to similarity parameters. SOMs are used to recognize common
patterns in the input space and training distinct ANNs to be used with the different patterns [25].

• Deep Learning refers to ANN networks capable of unsupervised learning from data that is
unstructured or unlabeled. The adjective “deep” comes from the use of multiple hidden layers in
the network to progressively extract higher-level features from the raw input.

• Many papers (e.g. [2,8,32]) use variants of Recursive Neural Networks (RNNs) that have the
capability of learning from previous load time-series. Others use Long Short-Term Memory
(LSTM) networks, a special kind of RNNs that can learn from long-term dependencies. These
were introduced by Hochreiter and Schmidhuber [65] in 1997 and refined and popularized by
many people in subsequent works.

The hybrid ANN-based algorithms found in the reviewed papers fall into three approaches:

• ANN and Genetic Algorithms (ANN-GA). In these works, the idea of the genetic algorithms is
to iteratively apply three operations (referred to as selection, crossing and mutation) in order
to optimize different parameters of the ANNs. For example, Wang et al. [26] used the GA to
improve specifically the back-propagation weights, whereas Azadeh et al. [31] used GAs to tune
all the parameters of an MLP.

• ANN and Particle Swarm Optimization (ANN-PSO). PSO is another optimization technique that
tries to improve a candidate solution in a search-space with regard to a given measure of quality.
It is a metaheuristic (i.e. it makes few or no assumptions about the problem being optimized)
that can search very large spaces of candidate solutions, but it cannot guarantee that an optimal
solution is ever found. As an example, Son and Kim [27] used PSO to select the 10 most relevant
variables to be used as input variables for SVR (Support Vector Machine Regression) and ANN
algorithms. Likewise, He and Xu [28] proposed the use of PSO to optimize the back-propagation
process to tune the parameters of an MLP.

• Adaptive Neuro-Fuzzy Inference System (ANFIS). Developed in 1993 by Jang [69], ANFIS
overcomes the deficient parts of ANNs and fuzzy logic by combining both technologies. It is
used in [14] to model load demand problems. It uses fuzzy inference in its internal layers which
allows the model to be less dependent on proficient knowledge, improving its learning and
making it more adaptable.
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Recent papers combines at least two ANN-based algorithms. [67] integrates LSTM to forecast load
demand from previous time-series with Deep Neural Networks (DNN) to predict from meteorological
input variables. In this case LSTM captures the load forecast due to previous values thanks to its
recursion features, and the DNN gives a more accurate value for the load demand specifically due to
the weather conditions.

4. Particularities of electric load demand as a problem for ANNs

In this section, we shall highlight particular aspects about the use of ANNs for load forecasting.
These are questions that must be taken into account in any research work, as they condition the type of
algorithms that may be used.

4.1. Prediction range

According to the time range of the prediction we can distinguish three categories that have been
used in the definition of energy forecast problems at least since 1995 [12]:

1. Short-term load forecasting (STLF) refers to up to 1 day ahead predictions.
2. Medium-term load forecasting (MTLF) refers to 1 day to 1 year ahead.
3. Long-term load forecasting (LTLF) refers to 1-10 years.

Table 2 shows that most of the reviewed papers that use ANN-based algorithms do so for STLF
problems. Therefore, we can safely assume that ANN-based algorithms have been widely recognized
as suitable for short-term prediction.

Type of forecast Number of papers
STLF 46
MTLF 8
LTLF 1

Table 2. Type of used input variables.

STLF has become particularly important (hence the greater presence in the scientific literature)
since the massive introduction of renewable energy sources, as the forecasts help the electric companies
to plan the production mix more efficiently. STLF is crucial for electric intra-day markets, where 1-day
ahead forecasts are used to fix the prices for the next day in base of the expected demand. STLF is also
important for the operation of electric companies and microgrids, where the predicted demand may
drive operative decisions in order to be properly covered by the generation sources. Overall, it is no
surprise that many electric operators are supporting these research efforts by providing significant
amounts of data and funding.

ANN-based algorithms have been also proven to work well for MTLF when they can capture
the weekly and seasonal patterns, as it happens with the recursion techniques of LSTM [61]. LTLF
problems, in turn, seem harder to solve by using ML algorithms only. The expected demand in the
next years depends heavily on demographic, geopolitical and technological evolution variables, which
are hard to turn into numbers and for which there are no historical data to learn from.

4.2. Non-linearity with respect to input variables

In almost all the reviewed papers, the authors mention the fact that electricity demand is inherently
non-linear, and therefore algorithms designed for linear problems are not a good choice for forecasting.
This is typically taken for granted, without referring to papers which include mathematical analyses of
demand time series in order to calculate the degree of linearity regarding input variables. In this line,
Darbellay and Slama [19] carried out a correlation analysis that suggests that LTLF, at least with the
data available from the Czech Republic, was primarily a linear problem. This was confirmed by the
comparison of the predictions. Knowing that, the same authors discussed under which conditions

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 May 2021                   



5 of 23

ANNs could be superior to linear models. It is relevant to mention that the computational cost of
ANN-based algorithms can be easily assumed by research centers and companies of any size nowadays.
Therefore, the superior mathematical knowledge required to create adapted linear models may not be
worth even when the algorithms are typically lighter than the training and optimization process of
ANN-based algorithms.

4.3. Load forecasting as a sequence prediction problem

In the electricity forecast field, sequences are typically series of past ordered load values indexed
by time. Brownlee [16] differentiated two types of prediction problems:

• Sequence prediction: from a sequence of values a single value is predicted. For example, from a
time series of previous load values we get a prediction for the next load value.

• Sequence-to-Sequence (S2S) prediction: we do not get a single value but a sequence of predicted
values, defining how the load will evolve in a range of future time steps.

Our review covers papers featuring both approaches, and even combined strategies. For example,
[30] compares direct use of LSTM with an S2S architecture using as well standard LSTM.

4.4. Input variables

In many cases the selection of input variables is determined by the available data. All the papers
covered in this review consider the previous load (directly or applying some kind of transformation)
as one of the input variables of the ML algorithm. In many cases, a time series of previous load is
the only input to the algorithm, which is required to learn just from past values. In other cases, it is
common to use additional data such as weather variables and economical activity indicators [27,43,48].
Table 3 shows the distribution of the input variables used in the analyzed papers.

Input variable Number of papers
Previous load time-series 37

Previous load and weather time series 10
Previous load, weather and economic variables time series 3

Table 3. Type of used input variables.

Weather variables –especially temperature– are known to have a linear influence on the forecasting
load [8]. Extensive analyses of the influence of weather variables, daylight hours and human activity
in the electric demand, based on correlation coefficients, can be found in [23] and [64]. It has been
shown (see [43]) that the load data over the same period or previous periods have greater influence,
though, as those values of electric load implicitly capture effects of climate, daylight hours and human
habits.

The values provided by the Advanced Metering Infrastructure (AMIs) deployed by electric
companies give the amount of energy consumed during a period of time (typically 1h and 24h) but
there are sensors that can provide instantaneous values of consumed power. All of them are valid
for the predictions, but energy values in KW/h or W/h are the most commonly used in forecasting
problems. The AMIs can also possible provide the peak values directly and in many cases the
forecasting is focused on the peak values only, not on aggregated consumption.

4.5. Pre-processing of input variables

Any forecast problem requires processing of data before feeding them to whichever ML algorithm.
Most often, the papers covered in this review do not explain the way they pre-process the numeric
data, although it is a key part of the problem solution.

The pre-processing may differ depending on the used algorithm, but it will typically involve the
following steps:
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1. Removal of invalid or missing values. Either due to errors in the sensors or in the data processing,
the time series may include invalid or missing data, making it necessary to apply well-known
mechanisms to modify these values. For example, depending on the type and amount of missing
data different approaches such as dropping the variable, complete with the mean value or the
last observed value can be used. Almost none of the papers mention if any of these techniques
was used and it may have a significant effect on the model performance.

2. Normalization, i.e. scaling of the original data range to values between 0 and 1. Normalization is
useful when the data have varying scales and the algorithm used does not make assumptions
about their distribution (as is the case of ANNs).

3. Standardization. This consists of re-scaling the data so that the mean of the values is 0
and the standard deviation is 1. Variables that are measured at different scales would not
contribute equally to the analysis and might end up creating biased results through the ANNs.
Standardization also avoids problems that would stem from measurements expressed with
different units.

Both normalization and standardization, when applicable, are typically helpful to speed up the
learning process and to favor the convergence of the algorithms. In other cases, it is also necessary to
change the units of the input variables, as when the values need to be unified.

4.6. Output variables

In the reviewed papers we found two main possible output variables:

• A time-series of expected demand for the future, i.e. a list of the demand values predicted for
specific moments.

• The peak value the electric grid at some point in the future (e.g. next day or next week peak).

As shown in Figure 1, the most common output is the 24-hour ahead prediction. As we explained
before, this is especially relevant because the production is scheduled according to the negotiation of
the intra-day electricity markets.

Figure 1. Output variables of the reviewed papers that focus on STLF and MTLF. Some papers are
counted in several columns.

Figure 1 also shows that the number of papers that look only at peak values ([20–22]) is very
low compared to those that predict the load time-series, and none of those was published after 2011.
Narrowing to peak values only was apparently done to simplify the problem, but currently predicting
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a complete time-series is more useful for operative purposes (and, of course, peak values can be drawn
from the predicted time-series).

4.7. Measuring and comparing performance

The reviewed papers typically used the same data set with different algorithms or variants to
decide which one performs better. Several Key Performance Indicators (KPI) have been used in order
to define which one is the best, and to compare their results with other works.

Most of the works compare the results of the simulation algorithm with the actual values. The
most common metrics to do so is the Mean Absolute Percentage Error (MAPE), given by Eq. (1), where
N represents the number of predicted values, Ft the predicted value at t and At the actual value which
corresponds to the predicted value. MAPE gives a measurement of how accurate the prediction is
based on the average percentage of error of each predicted value.

MAPE =
1
N

N

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (1)

The Mean Average Error (MAE), given by Eq. (2) is equivalent to the MAPE but gives an absolute
value for the error, rather than a percentage.

MAE =
N

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (2)

When the same dataset is used to compare the prediction algorithms, both MAPE and MAE can
be used; however, they are not very helpful to compare results from different datasets. Even with the
same dataset, the use of MAE may lead to confusing results if the units of any output are modified.
Thus, MAPE is more common in the reviewed papers.

The second most common KPI is the Root Mean Square Percentage Error (RMSPE), given by
Eq. (3). While the MAPE gives the same weight to all errors, the RMSPE penalizes variance, since it
gives more weight to larger absolute values than errors with smaller absolute values. Like in the case
of the MAE, there is an absolute version called RMSE (Eq. (4)), which also gives more weight to larger
errors.

RMSPE =

√√√√ 1
N

N

∑
t=1

(
At − Ft

At
)

2
(3)

RMSE =

√√√√ 1
N

N

∑
t=1

(At − Ft)
2 (4)

RMSPE is considered more suitable to show bigger deviations and helps to provide a complete
picture of the error distribution (see [33]); however, it is not commonly used in the analyzed papers.
Chai and Draxler [33] claim that RMSE is more appropriate than MAE when the error distribution is
expected to be Gaussian, but this is often disregarded in the reviewed papers even though it would
help to extract more information from the results.

The following are other variables found in the literature, depending of the purpose of the research
work:

• The Maximum Negative Error (MNE) and Maximum Positive Error (MPE) give the maximum
negative and positive difference, respectively, between a predicted value and a real value. These
values can be more relevant than the average error for some applications, for example to forecast
the fuel stockage in a power central.
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• The Residual Sum of Squares (RSS) is the sum of the squares of residuals (deviations predicted
from actual values of data), so it can be calculated from the RMSE. It measures the discrepancy
between the data and an estimation model.

• The Standard Deviation of Residuals describes the difference in standard deviations of observed
values versus predicted values as shown by points in a regression analysis.

• The comparison of the correlation between the time-series produced by different algorithms and
the real validation set is used by some authors to measure quality [39], too.

While computing the values above allows to compare the results attained by different techniques,
such a simple analysis may not be very meaningful especially when the difference between algorithms
is small or the data-set is not very long. In this line, Kandananond [17] used Wilcoxson signed-rank
and paired t-tests to compare the results offered by ANN, MLR and ARIMA. The p-values obtained
where well above α = 0.05, so he concluded that the results were not meaningful and there was no real
advantage of ANN over ARIMA or MLR.

4.8. Origin of the training data

All the reviewed papers used time-series of previous electric demand to train the models. Table 4
shows the origin of the data.

Origin of data Number of papers
Aggregated data from a geographic area 33

Smart meters (AMI) 13
Microgrids 8

Table 4. Origin of load time-series data.

Many of the papers focused on certain geographic areas, so they handled problems of aggregated
demand from thousands or millions of consumers. The use of ANN-based models to these problems
has shown very good performance. The demand prediction problems using smart meter and microgrid
data, in turn, seem to be in an early stage of evolution, as they handle load patterns whose distributions
differ significantly from those of aggregated demands.

Several studies have proved that forecast is much more accurate when it is done over a aggregated
data. For example, Kong et al. [56] proposes the use of a clustering technique called DBSCAN
(Density-Based Spatial Clustering of Application with Noise) to evaluate the consistency in daily
power profile, and found that aggregated data presents fewer outliers, which favors ANN convergence.
The same authors compared the forecast accuracy of individual meters and checked how it improves
with the level of aggregation, discovering that the aggregation of forecasts is more accurate than the
forecast of the aggregation. Regarding the patterns of individual consumers, lifestyles are reflected in
energy consumption even if consumers have common and repetitive behaviors [57].

5. Summary of the reviewed papers

Given the perspective of the previous section, next we provide a table containing the most relevant
information from the reviewed papers, including the following:

• Title and reference.
• Year of publication.
• Objective of the paper.
• Description of the algorithms and optimization techniques used.
• Performance of the best algorithm.

Most of the papers used MAPE (and in some cases other related values) as the metrics to compare
the performance of the algorithms. In order to give a reference to the reader of the performance of each
algorithm, we only include the MAPE value in the table. When other non-normalized values were
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used, we are not included them in the table to keep it coherent and avoid misunderstandings. If, in
some specific case, the MAPE were not the most relevant value, it is indicated in the Best algorithm
column.

Title Year Goal Algorithms Best
algorithm

An artificial neural
network based short term

load forecasting with
special tuning for

weekends and seasonal
changes [21]

1993 To compare the performance
of ANN using season, day of

week, temperature and
previous power peaks as
inputs to forecast 1-week

ahead peaks.

MLP MAPE MLP:
1.60%

A recurrent neural
network for short-term

load forecasting [34]

1993 To compare the performance
of recurrent and

feedforward ANNs.

Feedforward
3-layer MLP
—————

3-layer
recurrent

neural
network with

BP and
diffusion
learning

MAPE RNN
with

diffusion
learning:

2.07%

Practical experiences with
an adaptive neural

network short-term load
forecasting system [35]

1995 To compare performance of
statistical method and MLP
to forecast demand 7 days
ahead in blocks of 3 hours.

3-layer MLP
(hidden layer

with 3
neurons) with
daily, weekly
and monthly
adaptation

MAPE MLP:
6%

A real-time short-term
peak and average load

forecasting system using
a self-organising fuzzy

neural network [36]

1998 To predict the demand peak
1 day and 1 week ahead

comparing the performance
of SFNN (Self-organising
Fuzzy Neural Network),

FFN (Fuzzy Neural
Network) and MLP.

SFNN, FFN
and MLP

MAPE
SFNN: 1.8%

for 1 day
ahead peak

load
forecast and

1.6% for 1
week ahead

Forecasting the
short-term demand for
electricity: Do neural

networks stand a better
chance? [19]

2000 To comparing feedforward
ANN with ARIMA and
ARMAX using previous

demand and temperature as
inputs. To analyze the

non-linearity of the demand
forecast problem.

ARIMA,
ARMAX and

MLP

MAPE MLP:
0.8%
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Global model for
short-term load

forecasting using artificial
neural networks [38]

2002 To check performance of
MLPs trained for classes

defined using
self-organizing maps with

statistical methods. No
comparison with other

algorithms.

Kohonen’s
self-organising
map + Elman

Recurrent
Network

MAPE:
1.15-1.61%

A new approach using
artificial neural network
and time series models

for short term load
forecasting [39]

2003 To check accuracy of ANN
to predict forecast using
input variables selected

depending on their
correlation coefficient

compared with ARIMA.

MLP using
correlation

coefficient to
calculate
weights

MAPE:
2.241%

Forecasting electrical
consumption by

integration of Neural
Network, time series and

ANOVA [40]

2007 To compare the performance
of MLP to predict

aggregated load from
time-series using analysis of

variance and time series
approach. Linear regression

ANOVA and Duncan’s
Multiple Range Test are
used to validate results.

MLP MAPE:
MLP 1.56%

Integration of artificial
neural networks and
genetic algorithm to

predict electrical energy
consumption [31]

2007 To check performance of
MLP and GA for LTLF in the
Iranian agricultural sector.

MLP + GA MAPE MLP:
0.13%

Annual electricity
consumption forecasting
by neural network in high

energy consuming
industrial sectors [41]

2008 To check the performance of
ANN algorithm to predict

annual load of energy
intensive industries using
different input variables
such as electricity price,

number of consumers, fossil
fuel price, previous load and

industrial sector. ANOVA
and Duncan’s multiple
range test are used for

formal comparison and
validation.

MLP using
different

networks and
regression.

MAPE:
MLP 0.99%

Daily load forecasting
using recursive Artificial

Neural Network vs.
classic forecasting
approaches [42]

2009 To compare the performance
of RNN for 24-ahead for a

region of Romania with
other analytical methods.

RNN (using
hyperbolic
tangent as
activation
function).

RNN
performs

better. Least
square

value used
instead of

MAPE.
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Short-term load
forecasting using artificial

neural networks [45]

2009 To compare the performance
of ANN for one hour ahead
performance using previous
load, weekday, month and

temperature as input values
with the results of other

studios. ISO-New England
control data are used to
validate the algorithm.

Feed-Forward
MLP using LM

as BP
algorithm.

MAPE:
0.439% (for
ISO-New
England)

Dynamic neural network
based genetic algorithm

optimizing for short term
load forecasting [43]

2010 To compare BP and Genetic
Algorithm-based BP to find

the optimal weights of a
3-layer MLP for one hour
ahead load forecast using

load time series and weather
variables

3-layer MLP
using BP and

GA-BP

MAPE:
GA-BP 1.6%

(data
calculated

from results
for day max

load)
The comparison of mid
term load forecasting

between multi-regional
and whole country area
using Artificial Neural

Network [44]

2010 To compare the forecasting
results using MLP with data

of Thailand as a whole or
disaggregated in several

regions.

MLP MAPE
monthly

consumption
multi-region:

1.45 peak:
2.48

Forecasting electricity
demand in Thailand with

an Artificial Neural
Network approach [17]

2011 To compare MLP with
ARIMA and Multi-Linear
Regression for LTLF for
Thailand using previous

load time-series and
economical variables.

Different
topologies of

MLP and RBF.

MAPE MLP:
0.96%

A new neural network
approach to short term

load forecasting of
electrical power systems

[46]

2011 To compare performance of
ANN using MHS (Modified
Harmony Search) learning

algorithm with other
techniques STLF forecast

using PJM ISO data

ARMA, RBF,
MLP trained

by BR
(Bayesian

Regularization),
MLP trained

by BFGS
(Broyden,
Fletcher,

Goldfarb,
Shanno) and
MLP neural

network
trained by LM

MAPE:
MLP MHS

1.39%

PREDICT – Decision
support system for load

forecasting and inference:
A new undertaking for

Brazilian power suppliers
[47]

2011 To analyze the use of
wavelets, time series
analysis methods and

artificial neural networks,
for both mid and long term

forecasts.

MLP with BP
and LM

MAPE:
0.72%
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Monthly electricity
demand forecasting based
on a weighted evolving
fuzzy neural network

approach [22].

2011 To compare WEFuNN
(Weighted Evolving Fuzzy

Neural Network) with ENN
and BPN for one-month

ahead load forecast.

WEFuNN,
Winter’s, MRA

MAPE
WEFuNN:

6.43%

Short-term power load
forecasting based on
self-adapting PSO-BP
neural network model

[28]

2012 To show that PSO-BP
algorithm can obtain

optimal MLP parameters
outperforming BP to forecast

hourly 1-day ahead load
demand for a city of China.

MLP getting
the parameters
with PSO-BP

and BP

MAPE
PSO-BP:
2.39%

A comparison of support
vector machines and

artificial neural networks
for mid-term load

forecasting [48]

2012 To compare the performance
of SVM and ANN for MTLF
with load and weather data.

MLP with
several

different
numbers of

neurons (2, 5,
8, 20/30).

Usage of GA
and PSO to get
optimal SVMs

models.

Authors
conclude
that both
ANN and
SVM are

suitable, but
SVM is
more

reliable and
stable for

load
forecasting.

Load forecasting in a
smart grid oriented

building [4]

2013 To compare performance of
ARIMA, MLP, SVM and

STLF (next hour forecast) in
University campus

microgrid.

Seasonal
ARIMA, MLP

and SVM.

MAPE MLP:
5.3%

Short-term load
forecasting for microgrids
based on Artificial Neural

Networks [50]

2013 To check ANN performance
for load forecasting in a
microgrid-sized Spanish

region from previous load
time-series.

MLP (16
neurons in

hidden layer)

MAPE:
2%–5%

Multi-substation control
central load area

forecasting by using
HP-filter and double

neural networks
(HP-DNNs) [49]

2013 To compare the use of HP
(Hodris-Prescott) filter to
decompose the previous

load signals into trend and
cyclical signals and DNN
(Double Neural Network)

for LTLF with other
algorithms.

HP-DNN MAPE
HP-DNNS:

1.42% -
3.20%

Check the performance of
MLP using SOM and

k-means to find the right
number of MLPs for STLF
for a microgrid in Spain

[25].

2014 To check the performance of
MLP using SOM and

k-means to find the right
number of MLPs for STLF
for a microgrid in Spain.

3-stage: SOM +
k-means

clustering and
MLP. No other

algorithms
were tested.

MAPE:
2.73% -
3.22%
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PI-controlled ANN-based
energy consumption
forecasting for smart

grids [7].

2015 To compare ANN and
PI-ANN (Proportional

Integral ANN) to predict
consumption of individual

devices.

PI-ANN and
MLP.

N/A

Short-term load
cross-forecasting using
pattern-based neural

models [51]

2015 To check if a combination of
daily and weekly patterns
performs better than the
models individually for

SLTF from previous load.

Unspecified
neural model

MAPE
cross-

forecasting:
0.85%

Input data analysis for
optimized short term load

forecasts [52]

2016 To compare the performance
of MLP, SVR and clustering

for 24-ahead forecast for
Germany load demand.

MLP(1,1,1)
with (LM)
algorithm,
SVR and
k-means
cluster.

MAPE SRV:
2.1%

Hourly load forecasting
model based on real-time
meteorological analysis

[23]

2016 To check the influence of
weather variables in load

forecast using MLP.

3-layer MLP MAPE
(including
weather

variables) <
2%

Neural network based
short-term electricity
demand forecast for

Australian states [53]

2016 To check the performance of
FFNN (Feed Forward

Neural Network) forecasting
model for the different
regions of Australia for

STFL.

FFNN (using
LM for

training)

MAPE:
2.7233%

Building energy load
forecasting using deep
neural networks [30]

2016 To compare standard LSTM
and LSTM-based Sequence

to Sequence for STFL for
1-minute resolution 1 hour

ahead.

LSTM and
LSTM-based

S2S.

RMSE
LSTM-S2S:

0.667

Deep neural network
based demand side short
term load forecasting [37]

2016 To compare DNN
forecasting results for
individual industrial

consumers from Korea with
typical three layered shallow

neural network (SNN),
ARIMA, and Double

Seasonal Holt-Winters
(DSHW) model

DNN (4
hidden layers

with 150
neurons per

layer and
using RBM
and ReLU),

ARIMA,
DSHW, MLP

DNN RBM:
MAPE
8.84%

RRMSE
10.62%

Forecasting daily
electricity load by wavelet

neural networks
optimized by Cuckoo
search algorithm [54]

2017 To check performance of
MLP using wavelet for
data-preprocessing and
Cuckoo algorithm to get

parameters.

MLP (using
Wavelet and

Cuckoo
algorithm),

ARIMA, MLR

MAPE
Wavelet

ANN-CS:
0.058
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Short-term forecasting of
electricity demand for the

residential sector using
weather and social

variables [27]

2017 Comparing algorithms to
forecast 1-month ahead
demand in South Korea.

SVR,
Fuzzy-rough

feature
selection with

PSO, MLP,
MLR and
ARIMA.

MAPE SVR
fuzzy-rough:

2.13%

A comparison of artificial
neural networks and

support vector machines
for short-term load

forecasting using various
load types [55]

2017 To compare SVM and ANN
to predict the load of

Trinidad and Tobago for
three industrial customer

with different consumption
patterns: continuous, batch,

batch-continuous.

3-layer MLP
and SVM.

MAPE
ANN: 1.04%

Short-term load
forecasting using

EMD(Empirical Mode
Decomposition)-LSTM
neural networks with a
Xgboost algorithm for

feature importance
evaluation [59]

2017 To compare SD(Similar
Days)-EMD-LSTM

algorithm with others used
for STLF.

SD-EMD-LSTM,
LSTM

SD-LSTM
EMD-LSTM,

ARIMA,
BPNN, SVR

MAPE SD-
EMD-

LSTM 24h:
1.04% 168h:

1.56%

Deep learning for
household load

forecasting—A novel
pooling deep RNN [32]

2018 To compare the performance
of PDRNN (Diagonal

Recurrent Neural Networks)
with other algorithms for
STLF household forecast.

PDRNN with
ARIMA, SVR,

DRNN,
SIMple RNN.

MAPE
PDRNN:
0.2510%

Long short term memory
networks for short-term
electric load forecasting

[58]

2017 To compare algorithms for
STLF regional load

forecasting.

LSTM, MLP,
ARIMA.

MAPE
LSTM: 3.8%

Long short term memory
networks for short-term
electric load forecasting

[58]

2017 To compare algorithms for
STLF regional load

forecasting.

LSTM, MLP,
ARIMA.

MAPE
LSTM: 3.8%

A State-of-the-Art Review
of Artificial Intelligence

Techniques for
Short-Term Electric Load

Forecasting [14]

2017 To compare performance of
ANFIS, MLP and SVM for

STLF in a large region.

MLP, SVM and
ANFIS

MAPE SVM:
1.790%

Short term load
forecasting using deep

neural networks (DNN)
[60]

2018 Comparison of different
transfer functions using
MLP for STFL in Iberian

region.

MLP using
different
transfer

functions:
sigmoid, ReLU

and ELU.

MAPE MLP
ELU-ELU:

2.03%
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Residential load
forecasting using deep

neural networks (DNN)
[2]

2018 To compare DNN
algorithms for STFL

day-ahead for residentials
users.

LSTM, GRU,
RNN, ARIMA,

GLM, RF,
SVM, FFNN.

MAPE
LSTM: 29%

Optimal deep learning
LSTM model for electric
load forecasting using
Feature Selection and

Genetic Algorithm:
Comparison with
Machine Learning

Approaches [8]

2018 To find optimal algorithm
for STFL and MTFL for

region load, using GA to
find optimal parameters.

LSTM+GA,
Ridge

Regression,
Random
Forest,

Gradient
Boosting,
Neural

network, Extra
Trees.

RMSE
LSTM
0.61%

Predicting electricity
consumption for
commercial and

residential buildings
using deep recurrent
neural networks [61]

2018 To evaluate an LSTM-based
algorithm using MLP for

encoding for MTLF of
different residential building

load profiles.

LSTM + MLP +
SMBO

N/A

Predicting electricity
consumption using deep
recurrent neural networks

[62]

2019 To compare RNN and LSTM
to predict load in STLF

MTLF and LTLF.

RNN, LSTM,
ARIMA, MLP,

DNN

ARIMA for
STLF RNN
and LSTM
for MTLF
and LTLF.

Short-term load
forecasting in

grid-connected microgrid
[3]

2019 To compare performance of
algorithms for STLF in

microgrid.

GMDH,
MLP-LM

RMSE MLP:
0.062%

Short-term load
forecasting at different
aggregation levels with
predictability analysis

[63]

2019 To compare different
algorithms for STLF at

different aggregation levels.

MLP, LSTM,
GBRT, Linear

regression,
SVR

N/A

Short-term residential
load forecasting based on

LSTM recurrent neural
network [56]

2019 To compare the performance
of forecast algorithms

depending on the level of
aggregation of AMI data.

BNPP-D,
BNPP-T,

LSTM, KNN
and mean.

MAPE
LSTM: ind

44.39%,
aggregated

forecast:
8.18%,

forecast
aggregation:

9.14%
Day-ahead prediction of

microgrid electricity
demand using a hybrid

Artificial Intelligence
model [18]

2019 To compare different
optimization algorithms
before using FFANN for

STLF using load and
economic input variables.

SA-FFANN,
WT-SA-
FFANN,

GA-FFANN,
BP-FFANN,

(PSO)-FFANN

MAPE
WT-SA

-FFANN:
2.95%
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Forecasting electric load
by aggregating

meteorological and
history-based Deep

Learning modules [67]

2020 To compare the combination
of LSTM and DNN for STLF

with LSTM alone.

LSTM+DNN,
LSTM and

DNN

MAPE
LSTM+DNN:

4.28%

A Deep Learning
approach to forecasting

monthly demand for
residential–sector

electricity [70]

2020 To compare LSTM with
other algorithms for MTLF.

SVR, MLP,
ARIMA, MLR,

LSTM

MAPE
LSTM:
0.07%

6. Ability to reproduce the experiments

As shown in Table 6, we found that less than 40% of the reviewed papers used publicly-accessible
data that could be used to reproduce the experiment. In the other cases, the researchers typically had
some type of agreement with the operator providing the data, and the original data are not accessible.
This makes the experiments hard to reproduce and validate, especially in the case of new algorithms.
In any case, aggregated demand and generation is commonly available in developed countries, and the
same goes for the generation data due to the regulation of the electric market. In contrast, smart meter
data is harder to achieve due to data protection laws, but it is possible to gain access to anonymized
load time-series of individual and industrial consumers which can be freely used for experiments.

Data source Number of papers

Public data
14

([2,8,27,32,38,41,45,46,51,52,56,59,62,63])
Private data 37

Table 6. Data source in the reviewed papers.

Another factor that affects the reproducibility of the experiments are the tools and the code used
to conduct them. The growing adoption of ML algorithms to extract value from the massive amount of
data available in numerous fields of applications has fostered an active ML open-source community.
Some of the most relevant ML and data science related projects (e.g. PyTorch, Tensorflow and its
high-level API Keras) are supported by big Internet companies such as Facebook and Google. Research
in ML can now take advantage of these valuable tools, reducing the programming efforts and making it
easier to focus on the problems and try different alternatives. In Table 7, we see that MATLAB remains
the main tool used in the reviewed papers, while several authors used custom code implemented
ad-hoc. In many of the papers, the tool used for the implementation is not even mentioned.

Tool Number of papers
Not mentioned 19

MATLAB 12
Tensorflow-based 6

Custom code 3
Table 7. Tools used in the reviewed papers.

Regarding the code used to conduct the experiments, only one of the reviewed papers offers it
to the reader [2]. However, sharing the code seems to be a growing trend in data science and ML
papers [66] so, it reasonable to expect this for load demand forecasting papers in the near future.
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7. Conclusion

The use of ANN-based ML algorithms for electricity demand forecast is an idea that goes back to
the 1990s, but continues to be the subject of intensive research nowadays. Chronologically, the papers
we have reviewed show how ANNs evolved from a sensible and promising concept —due to the cyclic
nature of load demand— to a widely used reality in production environments.

The generalized use of MAPE to measure the performance of the algorithms enables to extract
some relevant conclusions. The first of them is that the use of ANN-based algorithms (and especially
LSTM, which is the most used algorithm in the reviewed papers) has proved to achieve very good
results in aggregated load forecast and the prediction gets typically more accurate as the number of
electricity consumers grows. We cannot say that the values are getting clearly better in the last years,
but a significant number of papers show MAPE values below 3% for the best cases.

Regarding the ability to compare the different algorithms, we understand that just comparing the
MAPE values from different papers can give a raw orientation for future research works. However, we
are also aware the this is not the best approach, since they are performing the prediction over different
datasets, which in many cases are not accessible to the scientific community. Also using the MAPE as
the single KPI may not be always fair, since the RMSE may be a better metric for many applications
where high forecast errors need to be avoided. It is worth noticing that recently-published papers
typically include (at least) both values, which a positive practice to enable more complete algorithm
comparisons in the future.

ANN-based approaches that can capture recurrent patterns (such as RNN and, specifically, LSTM)
proved to perform well for load demand problems. In consequence, most of the papers covered in this
survey presented one ANN-based algorithm as the best alternative compared to other approaches.
However, there are some exceptions. For instance, in [27] a combination of PSO with SVR turned out to
perform slightly better than PSO with ANN-based algorithms. Likewise, [61] found the autoregressive
models of ARIMA to outperform RNN and LSTM for STLF problems. [14] presents the AI tools used
in electric load forecasting and the different advantages and disadvantages of each other. Namely it
compares MLP, ANFIS and SVM. This last algorithm is claimed to perform a bit better than MLP in an
STLF problem. [48] also proposes that SVM may be more reliable and stable for load forecasting.

In general, combinations of MLP or LTSM with other algorithms do not show a huge advantage
over the original algorithms, but the papers that compare innovative combinations typically show
them as the optimal option over the traditional algorithm. There are innovative models, though,
whose authors claim to obtain MAPE values below 1% [54]. However, without an extensive validation
using different datasets, it remains unclear whether the model really shows a very good performance
for generic load demand problems, or the results may be due to an over-fitted model (e.g. one that
provides very good results only for the dataset with which it has been trained). An alternative to
obtain more accurate models –at the cost of a higher complexity– could be the kind of combinations of
different ANN-based algorithms as proposed in [67].

The accuracy of STLF and MTLF predictions for aggregated demand of a huge number of
consumers is pretty good in general, which makes modern ANN-based algorithms a good tool for
commercial and research purposes. In turn, load forecasting in microgrids is a complex problem to
model according to the results provided by the analyzed papers. The MAPE results are typically above
10%. Still, this could be good enough, inasmuch as recent advances in energy storage techniques can
easily absorb the forecast errors.

The problem of individual user load forecast seems to be the hardest to resolve, which is
understandable due to the nature of some human behaviors. The high MAPE values showed by
the few papers that tackle this problem (such as [56]) suggest that ANN may not be the best approach
if very high levels of precision are needed. Again, the importance of individual consumer forecast is
lower than aggregated load from the point of view of the industry, due to the recent improvements
in power storage technologies that can absorb load oscillation in isolated systems. In any case, we
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understand that there is still room for improvement for microgrids and individual load demand
forecast models.

In order to make unbiased assessment of the performance of the different algorithms, load demand
papers should use a common reference benchmark, which does not yet exist. This could use publicly
available datasets, in addition to any specific dataset which can be used in the paper. For example,
the comprehensive list of smart meter time-series included in [68] could be used as a starting point to
define a reference dataset to benchmark the different algorithms in equivalent conditions. In the same
line, the publication of results without making the source code and datasets available –which used to
be the norm in load demand papers– makes it hard or impossible to reproduce the results. Fortunately,
sharing the source code of the conducted experiments is also becoming common in the last years [66],
so we are optimistic in this sense. Without a doubt, this will help to take forecast towards the limit of
the ML techniques in the next years.
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Conflicts of Interest: The authors declare no conflict of interest. The authors has neither professional nor academic
relationship with any of authors of the reviewed papers
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The following abbreviations are used in this manuscript:
AMI Advanced Metering Infrastructure
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
ARIMA Autoregressive integrated moving average
ARMAX Autoregressive–moving-average model
BFGS Broyden–Fletcher–Goldfarb–Shanno
BP Back-Propagation
BPN Back-Propagation Network
BR Bayesian Regularization
ENN Evolving Neural Network
FFANN Feedforward Artificial Neural Network
LM Levenberg Marquardt (BP algorithm)
DNN Deep Neural Network
GA Genetic Algorithm
KPI Key Performance Indicator
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MHS Modified Harmony Search
ML Machine Learning
MLP Multi-Layer Perceptron
MLR Multiple Linear Regression
MTLF Medium-Term Load Forecast
LSTM Long-Short Term Memory networks
LTLF Short-Term Load Forecast
PDRNN Diagonal Recurrent Neural Networks
PJM Pennsylvania, New Jersey, and Maryland
PSO Particle swarm optimization
RBF Radial Basis Function
RMSE Root Mean Square Error
RMSPE Root Mean Square Percentage Error
RNN Recurrent Neural Network
SFNN Self-organising Fuzzy Neural Network
SOM Self-Organizing Map
STLF Short-Term Load Forecast
SVM Support Vector Machine
SVR Support Vector Machine Regression
WEFuNN Weighted Evolving Fuzzy Neural Network
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