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Abstract  

Background: Type 2 diabetes mellitus (T2DM) is frequently accompanied by affective disorders with 

a prevalence of comorbid depression of around 25%. Nevertheless, the biomarkers of affective 

symptoms including depression and anxiety due to T2DM are not well established. 

Aims: This study was conducted to delineate the serum biomarkers predicting affective symptoms due 

to T2DM above and beyond the effects of insulin resistance and atherogenicity.  

Methods: The present study delineated the effects of serum levels of copper, zinc, β-arrestin-1, 

FBXW7, lactosylceramide (LacCer), serotonin, albumin, calcium, magnesium, IR and atherogenicity 

on severity of depression and anxiety in 58 men with T2DM and 30 healthy male controls. Severity 

of affective symptoms was assessed using the Hamilton Depression and Anxiety rating scales. 

Results: We found that 61.7% of the variance in affective symptoms was explained by the multivariate 

regression on copper, β-arrestin-1, calcium, and insulin resistance coupled with atherogenicity, while 

44.4% of the variance in the latter was explained by copper, β-arrestin-1, LacCer (all positively) and 

calcium and FBXW7 (both negatively). Copper and LacCer (positive) and calcium and BXW7 

(inverse) had significant specific indirect effects on affective symptoms which were mediated by 

insulin resistance and atherogenicity. Copper, β-arrestin-1, and calcium were associated with affective 

symptoms above and beyond the effects of insulin resistance and atherogenicity. 

Discussion: T2DM and affective symptoms share common pathways namely increased atherogenicity, 

insulin resistance, copper, and β-arrestin-1, and lowered calcium, whereas copper, β-arrestin-1, 

calcium, LacCer, and FBXW7 may modulate depression and anxiety symptoms by affecting T2DM.   
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Introduction 

 Diabetes mellitus (DM) is a major public health issue with an increasing epidemic worldwide, 

accounting for 11.3 percent of all deaths [1]. In 2017, there were 451 million people aged over 18 

years with DM worldwide and it is with expected that this figure would increase to reach 693 million 

by the year 2045 [2]. Type 2 DM (T2DM) is initiated by insulin resistance (IR) in target tissues, high 

circulating insulin levels, β-cell dysfunction and subsequent β-cell failure [3]. IR is a condition 

whereby insulin-sensitive target tissues, such as adipose tissue, pancreas, skeletal muscles, and liver, 

do not react adequately to the physiological activities of insulin [4]. IR is part of the metabolic 

syndrome (MetS) cluster, which also involves an elevated atherogenic lipid profile, e.g., 

hypertriglyceridemia and low high density lipoprotein (HDL) cholesterol, abdominal obesity, and high 

blood pressure [5]. 

There is a significant comorbidity between mood disorders including major depressive and 

bipolar disorder and T2DM and MetS-associated features including atherogenicity and IR [6-11]. 

According to the WHO (2017), T2DM is frequently accompanied by mood disorders and a systematic 

review and meta-analysis showed that the prevalence of depression in T2DM is around 25% [12]. For 

example, 10.6% of 2783 T2DM patients suffer from MDD and 17.0% from moderate to severe 

depressive symptoms [13]. Moreover, a meta-analysis reported that depression is associated with a 

significant elevated risk of T2DM and that the latter is associated with a slightly increased risk of 

depression [14], indicating that there are bidirectional relationships between T2DM and mood 

disorders. Nevertheless, mood disorders are more strongly associated with atherogenicity indices than 

with IR [10].  
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The comorbidity between mood disorders (either MDD or BD) and T2DM may be explained 

by multiple overlapping pathways, including insulin resistance, atherogenicity, activation of immune-

inflammatory and nitro-oxidative stress pathways, an acute phase response, complement activation, T 

helper (Th)-17 activation, lowered antioxidant levels, mitochondrial dysfunction, and breakdown of 

the blood-brain-barrier (BBB) and the gut tight junctions barriers (leaky BBB and gut) [11]. Moreover, 

lowered plasma albumin, an inflammatory marker, predicts T2DM [15] and is also a hallmark of MDD 

[16]. It is important to note that the same shared pathways underpin the comorbidity between mood 

disorders and MetS [17-21]. Shared biomarkers of mood disorders, T2DM, and MetS are for example 

increased levels of pro-inflammatory cytokines, malondialdehyde (MDA, indicating lipid 

peroxidation), nitric oxide (NO) metabolites (indicating increased NO production), and advanced 

protein oxidation products (AOPPs), and lowered paraoxonase (PON)-1 activity [10, 11, 22] [23];. 

Nevertheless, the biomarkers of affective symptoms (depression and anxiety) in T2DM are not well 

established and, consequently, research should focus on the up- or downstream biomarkers of the 

above-mentioned pathways that play a role in depression and anxiety due to T2DM. Therefore, the 

present research focuses on the role of β-arrestin-1, FBXW7, CD17, copper, zinc, calcium, and 

magnesium in depression/anxiety due to T2DM. 

β-arrestin-1 controls β-cell functions, survival and mass, and mediates insulin secretion [24]. 

β-arrestin-1 is reduced in the white blood cells of depressed patients while antidepressants increase β-

arrestin-1 levels in leukocytes of depressed patients and rat brain [25, 26]. β-arrestin-1 desensitizes G-

protein coupled receptor (GPCR) signaling, which plays a role in depression [26] and links GPCRs to 

downstream pathways including ERK1/2 [25], which plays a role in T2DM and mood disorders  [27, 

28]. Moreover, β-arrestin-1 interacts with cAMP-Response Element Binding protein (CREB) thereby 

regulating neurobiological processes including cell replication, survival, and plasticity [29]. 
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Aberrations in CREB-mediated transcription are associated with depression, anxiety, and cognitive 

impairments [30]. 

FBXW7 (F-box/WD repeat-containing protein 7), also known as human CDC4, is an E3 

ubiquitin ligase which targets cyclin E for ubiquitin-mediated degradation [31]. Lowered FBXW7 in 

animal models and humans is associated with hyperglycemia, IR, and the development of T2DM [32]. 

In primary neurons, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) 

and mechanistic target of rapamycin complex 1 (mTORC1) are FBXW7 substrates and regulate 

glucose homeostasis [33, 34]. Moreover, FBXW7 regulates neurogenesis by antagonizing c-Jun and 

Notch, which is a key regulator of neuronal differentiation and synaptic plasticity [35]. Furthermore, 

lowered FBXW7 is accompanied by aberrations in stem cell differentiation in the brain [36]. FBXW7 

also regulates the turnover and stability of disrupted in schizophrenia (DISC) which orchestrates neural 

cell signaling and differentiation [37]. Aberrations in neurogenesis, mTOR, DISC, PGC-1α are 

thought to play a role in neuroprogressive mental disorders including mood disorders [36, 38, 39].  

 Lactosylceramides (LacCer or CD17) form lipid rafts on the membrane of neutrophils and are 

involved in chemotaxis, phagocytosis, and superoxide generation [40, 41]. LacCer activates NADPH 

oxidase, which produces superoxide radicals (O2
-.) [42] and inducible nitric oxide synthase (iNOS) 

and associated NO production [43]. Mild diabetes is accompanied by an increased conversion of 

glucosylceramide (GluCer) to LacCer [44]. Ceramides including LacCer are significantly elevated in 

depressed patients [45-47] and the activity of sphingomyelinase may be increased in mood disorders 

[45]. 

 Alterations in peripheral serotonin levels may be another shared biomarker among T2DM and 

affective symptoms. Serotonin is synthesized within β-cells [48] and is stored together with insulin in 

their secretory β-granules [49], and it is co-released when pancreatic islets are stimulated by glucose 
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[50]. Lowered levels of serotonin including in platelets are observed in depressed patients [51]. Other 

biomarkers that may link mood disorders and T2DM comprise copper, zinc, calcium, and magnesium. 

Recent reviews and meta-analyses reported that zinc and copper are involved in the pathogenesis of 

diabetes and IR [52] while reduced zinc and increased copper levels are hallmarks of depression [53] 

[54]. A meta-analysis showed that increased plasma calcium levels are associated with T2DM [55], 

whereas Al-Dujaili et al. [56] established lowered calcium levels in major depression. Magnesium 

deficiency and/or low magnesium dietary intake may cause IR, glucose tolerance, T2DM and MetS 

[55, 57] and depression [58]. In patients with atherosclerosis and unstable angina, IR is associated 

with lowered magnesium and zinc and increased copper, whereas comorbid depression is associated 

with IR coupled with lowered zinc and increased calcium [59]. Nevertheless, no research has 

delineated the effects of the above-mentioned biomarkers on the severity of affective symptoms 

including depression and anxiety. 

 Hence, the present study was conducted to delineate the effects of serum levels of β-arrestin-

1, FBXW7, CD17, serotonin, albumin, calcium, magnesium, zinc, and copper on severity of 

depression and anxiety above and beyond the effects of IR and atherogenicity in T2DM. 

 

Subjects and Methods 

Subjects 

The current study recruited 58 T2DM male patients and 30 age- and BMI-matched healthy 

controls. The subjects were recruited at Al-Sader medical city, Najaf governorate, Iraq during the 

period November 2020 till January 2021. The diagnosis of T2DM was made using the World Health 

Organization criteria [60, 61] and fasting plasma glucose (FPG) ≥ 7.0 mM and glycated hemoglobin 

(HbA1c) > 6.5%. Included were T2DM patients with and without affective symptoms. Nevertheless, 
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we excluded any subjects with psychiatric axis-I diagnosis according to DSM-5 criteria except T2DM 

patients with a “mood disorder due to a general medical condition, depressed mood or diminished 

interest or pleasure in all or almost all activities”. Moreover, patients were excluded if their serum 

FPG was greater than 25 mmol/L and their fasting insulin was greater than 400 pM, to comply with 

the requirements of the HOMA calculator program. In addition, we excluded subjects who had overt 

diabetic conditions such as cardiac failure, liver disease, or kidney disease. We also excluded patients 

a) who are receiving metformin because the latter may affect the IRI [62] and insulin sensitivity [63]; 

and b) with an albumin/creatinine ratio > 30 mg/g [64]. All participants had serum CRP concentrations 

< 6 mg/dl excluding people with overt inflammation. Before taking part in the study, all participants 

gave written informed consent. Approval for the study was obtained from the IRB of the University 

of Kufa (T1375/2020), which complies with the International Guidelines for Human Research 

protection as required by the Declaration of Helsinki. 

 

Assessments 

Severity of depression was assessed using the total score on the 17-item Hamilton Depression 

Rating Scale (HDRS) score [65] and severity of anxiety was assessed using the total score on the 

Hamilton Anxiety Rating Scale (HAM-A) [66]. As explained previously [67] we computed three 

HDRS subdomain scores, i.e., a) key depressive symptoms (key_HDRS) computed as the sum of 

depressed mood + feelings of guilt + suicidal ideation + loss of work and activities; b) physiosomatic 

symptoms (physiosomatic_HDRS) computed as the sum of anxiety somatic + somatic symptoms, 

gastrointestinal + somatic symptoms, general + genital symptoms + hypochondriasis; and c) 

melancholic symptoms (melancholia_HDRS) computed as sum of insomnia late + psychomotor 

retardation + diurnal variation + loss of weight. As reported by Almulla et al. (2021) [67], we computed 
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two different HAM-A subscores, i.e., key anxiety symptoms (key_HAM-A) as sum of anxious mood 

+ tension + fears + anxious behavior at interview; and HAM-A physiosomatic symptoms 

(physiosomatic_HAM-A) computed as sum of somatic muscular + somatic sensory + cardiovascular 

symptoms + respiratory symptoms + gastrointestinal symptoms + genitourinary symptoms + 

autonomic symptoms. Body mass index (BMI) was determined by dividing weight in kilograms by 

height in meters squared. 

After an overnight fast, five milliliters of blood were drawn in the morning from patients and 

controls. After full clotting, blood was centrifuged at 3.000 rpm for 10 minutes to separate serum, 

which was then frozen at -80°C until thawed for assay. Serum copper and zinc were measured 

spectrophotometrically using kits supplied by Spectrum Diagnostics Co. (Cairo, Egypt). LacCer  

(CD17), serotonin, and FBXW7 were measured in sera by ELISA kits supplied by Melsin Medical 

Co, Jilin, China, while β-arrestin-1 was estimated using ELISA kits provided by Bioassay Technology 

Laboratory (Shanghai, China). The processes were carried out precisely as prescribed by the 

manufacturer, with no deviations. Serum insulin was measured by commercial ELISA sandwich kit 

supplied by DRG® International Inc., USA. The sensitivities of the kits were 12.22 pM for insulin, 

0.05 ng/ml for β-arrestin-1, 1.0 ng/ml for serotonin, 0.1 ng/ml for LacCer, and 0.1 ng/ml for FBXW7. 

Sera were diluted 1:4 in order to estimate LacCer levels. Fasting serum levels of albumin, calcium, 

magnesium, glucose (FBG), total cholesterol (TC), and triglycerides (TG) were measured 

spectrophotometrically by a ready for use kits supplied Spinreact®, Girona, Spain. Serum high-density 

lipoprotein cholesterol (HDLc) was determined after precipitating other lipoproteins with a reagent 

comprising sodium phosphotungstate and MgCl2. Then, the cholesterol contents in the supernatant 

were assessed using same kit of total cholesterol. Low-density lipoprotein cholesterol (LDLc) was 

calculated from Friedewald’s formula: LDLc=TC − HDLc – TG/2.19. The intra-assay coefficient of 
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variation (CV) (precision within an assay) was < 10.0% for all ELISA assays. Serum CRP was 

measured using a kit supplied Spinreact®, Girona, Spain. The test is based on the principle of latex 

agglutination.  

In the current study, two atherogenic indices were computed, namely z score of total 

cholesterol – z HDL cholesterol (zCastelli), which reflects the Castelli risk index 1, and z triglyceride 

– z HDL  cholesterol (zAIP), which reflects the atherogenic index of plasma (AIP) [68, 69]. In the 

current study, there were significant correlation between zTC – z HDL and the Castelli risk index 1 

(r=0.995, p<0.001, n=88) and between zTG-zHDL and the AIP index (r=0.904, p<0.001, n=98). In 

the current study, we also computed z unit-weighted composite scores reflecting IR as z glucose + z 

insulin (IRI), and β cell function as z insulin – z glucose (zβCell). We found significant correlations 

between IRI and the HOMA2IR as defined with the HOMA2 Calculator© (Diabetes Trials Unit, 

University of Oxford) (r=0.881, p<0.001, n=88) and between zβCell and HOMA2B (r=0.781, 

p<0.001, n=88).  

    

Statistical analysis 

 We employed analysis of variance (ANOVA) to check differences in scale variables between 

sample groups. Analysis of contingency tables (chi-square test) was employed to assess associations 

among nominal variables. Correlation matrices based on Pearson's product-moment were used to 

examine associations between biomarkers. We used automatic multiple regression analysis to define 

the significant biomarkers (β-arrestin-1, FBXW7, CD17, serotonin, albumin, calcium, magnesium, 

zinc, and copper) predicting the HDRS and HAM-A total and subdomain scores and checked whether 

these biomarkers had significant effects above and beyond the effects of the Castelli, AIP,  IRI, and z 

β-cell indices (or FBG, insulin or the fatty acids) while allowing for the effects of age, education, and 
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BMI. We employed an automatic stepwise (step-up) method with a p-to-enter of 0.05 and p-to-remove 

0.06 while checking R2 changes, multivariate normality (Cook’s distance and leverage), 

multicollinearity (using tolerance and VIF), and homoscedasticity (using White and modified 

Breusch-Pagan tests for homoscedasticity). In case of heteroscedasticity we use HC3 parameter 

estimates with robust standard errors. We also conducted automatic binary logistic regression analysis 

with T2DM as dependent variable and biomarkers as explanatory variables and calculated Odds ratios 

with 95% confidence intervals. For classification purposes, we used the random oversampling method 

to adjust the class distribution of the normal control class. All results were bootstrapped (5.000 

bootstrap samples) and the latter results are shown if the results are not concordant. All tests are two-

tailed, with a p-value of 0.05 used to determine statistical significance. Statistical analyses were carried 

out using IBM SPSS Windows version 25, 2017. 

 Partial Least Squares (PLS) path analysis (SmartPLS) [70] was used to measure the causal 

association between biomarkers, T2DM (atherogenicity and IR) and the phenome of affective 

symptoms. The variables were entered as latent vectors (LVs) extracted from their reflective 

manifestations or as single indicators. We performed complete PLS path analysis on 5000 bootstrap 

samples only when the inner and outer models complied with quality data, namely a) the overall model 

fit is accurate as indicated by SRMR  < 0.08, b) all LVs have an accurate construct validity as indicated 

by average variance extracted > 0.5; composite reliability (> 0.7), Cronbach’s alpha (> 0.7), and rho_A 

(> 0.8),  c) all outer model LV loadings are  > 0.666 at p<0.001, d) Monotrait-Heterotrait analysis 

indicates adequate discriminatory validity, e) blindfolding shows that the construct cross-validated 

redundancies or communalities are adequate, and f) Confirmatory Tetrad analysis indicates that the 

LV models are not mis-specified as reflective models. PLSpredict with 10-fold cross-validation was 

employed to check the predictive performance when analyzing new data [71]. Predicted-Oriented 
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Segmentation analysis, Multi-Group Analysis and Measurement Invariance Assessment were 

employed to examine compositional invariance. 

An a priori power analysis (G power) conducted to estimate the number of cases showed that 

using an effect size of 0.2, alpha level of 0.05, power of 0.8 with 5 predictors in a linear multiple 

regression model, the number of subjects should be at least 70. The same power analysis can be applied 

when examining PLS path analysis indicating that the power of this PLS analysis was > 0.8 [72]. 

 

Results  

Socio-demographic and clinical characteristics  

 Table 1 shows the socio-demographic and clinical data of subjects with a normal IRI, a medium 

IRI, and a high IRI. There were no significant differences in age, BMI, education, residency, marital 

status, and employment among these three groups. The family history of DM was significantly 

different among those three groups with an increasing frequency from the normal IRI → medium IRI 

→ high-IRI group. The treatment regimen also showed a significant difference among groups with the 

highest ratio of subjects treated with drugs in the high IRI group as compared with the two other 

groups. FBG, insulin, IRI, and zAIP were significantly different between the three study groups and 

their values increased from normal IRI → medium IRI → high IRI. The zβcell index, and HDL- and 

LDL cholesterol showed no significant differences among the three study groups. Total cholesterol 

and TG were significantly higher in the medium and high IRI groups than in the normal IRI group. 

The zCastelli index was significantly higher in subjects with a high IRI as compared with those with 

a normal IRI. 

 

Rating scale scores and biomarkers in the IRI subgroups 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 May 2021                   doi:10.20944/preprints202105.0509.v1

https://doi.org/10.20944/preprints202105.0509.v1


13 
 

13 
 

 The total and subdomain scores on the HDRS and HAM-A and biomarker levels are presented 

in Table 2. The total HDRS and key HDRS scores were significantly higher in the high IRI group as 

compared with the two other IRI groups. The physiosomatic and melancholia subdomains of the 

HDRS were significantly higher in subjects with high IRI as compared with those with a normal IRI. 

The total HAM-A, key_HAM-A, and physiosomatic_HAM-A scores were increased in the high IRI 

group as compared with the medium and normal-IRI groups.  

β-arrestin-1, serotonin, albumin, magnesium, calcium, copper, and zinc were not significantly 

different between the three IRI subgroups. FBXW7 was significantly decreased in the high IRI 

subgroup as compared with the two other groups, whereas sCD17 was significantly increased in the 

high IRI group as compared with the two other groups.    

 

Prediction of HDRS score using biomarkers. 

Table 3 shows the results of the two types of multiple regression analysis with the total and 

subdomain scores of the HDRS and HAM-A as dependent variables and the biomarkers listed in table 

2 (a type) or those listed in table 2 as well as the zCastelli, zAIP and IRI indices (b type) as explanatory 

variables while allowing for the effects of age, education, and BMI. Regression #1a shows that 47.8% 

of the variance in the total HDRS-17 score could be explained by CD17, copper and β-arrestin-1 (all 

positively associated) and calcium (inversely associated). Figure 1 shows the partial regression plot 

of the total HDRS score on β-arrestin-1 after adjusting for the variables listed in Table 3, regression 

#1a. In Regression #1b, 49.9% of the variance in the total HDRS-17 score could be explained by 

zCastelli index, copper and β-arrestin-1 (all positively associated) and calcium (inversely associated). 

We found that 34.4% of the variance in the key_HDRS score could be explained by the regression on 

β-arrestin-1 and copper and negatively with calcium (Regression #2a). Regression #2b showed that 
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43.2% of the variance in the key_HDRS score could be explained by the regression on the zCastelli 

index, copper and β-arrestin-1 (all positively associated) and calcium (inversely associated). 

Regression #3a showed that 27.2% of Physiomatic_HDRS could be explained by the regression on 

FBXW7 and calcium (both inversely) and copper (positively associated). Figure 2 shows the partial 

regression plot of the physiosomatic_HDRS scores on calcium after adjusting for the other variables. 

Regression #3b shows that 28.2% of the variance in the physiomatic_HDRS could be explained by 

the regression on the IRI and copper (positively associated), and calcium (both inversely). Regression 

#4a shows that 26.5% of the variance in the melancholia_HDRS score could be explained by the 

regression on the copper and β-arrestin-1 (both positively associated) and zinc (negatively). 

Regression #4b shows that 35.8% of the variance in the   melancholia_HDRS score could be explained 

by the regression on the zCastelli index, copper, albumin, and β-arrestin-1. 

 

Prediction of Hamilton Anxiety Rating Scale (HAM-A) scores 

 Table 4 presents the results of multiple regression analysis with the HAM-A total and 

subdomain scores as dependent variables and biomarkers as explanatory variables. Regression #1a 

shows that 47.7% of the variance in the HAM-A total score could be explained by the regression on 

copper, β-arrestin-1, and LacCer (all positively associated) and calcium (negatively). Figure 3 shows 

the partial regression plot of the total HAM-A score on serum copper after adjusting for the other 

variables in this regression. We found that 52.9% of the variance in HAM-A total score could be 

explained by the regression on β-arrestin-1, zCastelli, and copper (all positively associated) and 

calcium (negatively) (Regression #1b). Regression #2a shows that 46.6% of the variance in the 

key_HAM-A score could be explained by the regression on copper and β-arrestin-1 (all positively 

associated) and FBXW7, calcium and age (all negatively). We found that 49.4% of the variance in the 
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key_HAM-A score could be explained by β-arrestin-1, zCastelli, and copper (all positively associated) 

and age, calcium, and FBXW7 (negatively) (Regression #4). Regression #3a show that 43.7% of the 

variance in the physiosomatic_HAM-A score could be explained by the regression on copper, LacCer, 

and β-arrestin-1 (positively associated) and calcium (negatively associated). We found that 47.4% of 

the variance in the physiosomatic_HAM-A score could be explained by the regression on copper, β-

arrestin-1, and zAIP (all positively associated) and calcium (negatively) (regression #3b).   

 

Prediction of T2DM using biomarkers. 

Table 5 shows the results of binary logistic regression analysis with T2DM as dependent 

variable and controls as the reference group. Binary logistic regression is used to predict the odds of 

being a patient using the biomarkers as independent variables. T2DM was significantly predicted by 

LacCer, copper, and serotonin (positively associated) and FBXW7 and calcium (inversely associated) 

with a Nagelkerke pseudo-R2 value of 0.803 and accuracy of 92.3% (sensitivity=93.3% and 

specificity=91.2%).  Binary regression analysis also showed significant positive associations between 

T2DM and β-arestin-1 and an inverse association with magnesium (all after FDR p correction). 

 

Biomarker predictors of IRI, β-cell function, Castelli and AIP indices 

 Table 6 shows the outcome of different automatic multiple regression analysis with IRI, zβcell 

function, zCastelli or zAIP as dependent variables. Regression #1 shows that 14.6% of the variance in 

IRI was explained by the regression on FBXW7 and LacCer. Regression #2 shows that β-arrestin-1, 

calcium, copper, albumin, and a DM family history explained 45.0% of the variance in the zβcell 

index. In regression #3 we found that calcium, FBXW7, and a positive DM family history explained 
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29.5% of the variance in the zCastelli index. Regression #4 shows that 24.2% of the variance in the 

zAIP index could be explained by calcium, magnesium, and serotonin. 

 

Results of PLS path and PLS predict analysis. 

 Figure 4 shows the final PLS model obtained after feature selection, prediction-oriented 

segmentation with multi-group analysis and PLSpredict analysis. T2DM was entered as a reflective 

LV extracted from FBG, T2DM, triglycerides, and total cholesterol (the mediator) and the depression 

and anxiety phenome was entered as a reflective LV extracted from key_HDRS, 

physiosomatic_HDRS, melancholia_HDRS, key_HAM-A, and physiosomatic_HAM-A (the 

endogenous variable). The other variables were entered as single indicators. The overall fit of the PLS 

model was adequate with SRMR=0.051 and also the construct reliabilities of the LV were adequate, 

namely for the T2DM LV we found a composite reliability of 0.883, Cronbach α: 0.832, rho A: 0.934, 

and AVE: 0.655; and for the affective symptom LV a composite reliability: 0.915, Cronbach α 0.882, 

rho A 0.890, and AVE: 0.683. All outer model loadings on both LVs were > 0.708 at p<0.0001. The 

construct cross-validated redundancies were adequate, namely the T2DM LLV: 0.245 and affective 

symptom LV: 0.410. Complete PLS path analysis performed on 5.000 bootstrap samples showed that 

61.7% of the variance in the affective symptom LV could be explained by the regression on the T2DM 

LV, copper, β-arrestin-1, and calcium, while 44.4% of the variance in the T2DM LV was explained 

by copper, β-arrestin-1, LacCer (all positively) and calcium and FBXW7 (both negatively). There 

were specific indirect effects of copper (t=-2.72, p=0.007), calcium (t=2.54, p=0.011), FBXW7 

(t=2.05, p=0.040), and LacCer (t=2.23, p=0.026) on affective symptoms which were mediated by the 

T2DM LV. There were significant total effects (in descending order of importance) of copper (t=-

4.39, p<0.001), calcium (t=-4.19, <0.001), β-arrestin-1 (t=3.35 p=0.001), LacCer (t=2.29, p=0.026), 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 May 2021                   doi:10.20944/preprints202105.0509.v1

https://doi.org/10.20944/preprints202105.0509.v1


17 
 

17 
 

age (t=2.27, p=0.023), and FBXW7 (t=-2.05, p=0.040) on the affective symptom LV. PLS predict 

with 10-fold cross-validation [71] showed that a) the Q2 Predict values of the affective and T2DM 

LVs were positive, indicating that the PLS prediction error is smaller than that of the most naïve 

benchmark; b) in comparison with the linear regression model, the PLS results showed a lower 

prediction error; and c) all indicators except one have a lower RMSE compared to the naive linear 

regression benchmark indicating medium to strong predictive power. Predicted-Oriented 

Segmentation analysis followed by Multi-Group Analysis and Measurement Invariance Assessment  

showed that full compositional invariance was established. 

 

Discussion 

Biomarkers of T2DM 

 The first major finding of the current study is that copper, LacCer, (positively associated) and 

FBXW7 and calcium (inversely associated) predict around 44.4% of the variance in a composite score 

comprising insulin resistance and atherogenicity. Both copper and LacCer were the best predictors of 

this composite score and T2DM, although also magnesium contributed to the prediction of T2DM.  

 A recent meta-analysis reported increased copper levels in 1079 DM patients including those 

with T2DM and T1DM as compared with 561 healthy controls [73]. Tanaka et al. [74] showed that in 

diabetic C57BL/KsJ-db/db mice, serum copper was significantly increased in association with 

increased reactive oxygen species, while copper chelating attenuated IR and triglyceride levels and 

improved glucose intolerance. The increased copper levels in T2DM are positively associated with 

increased production of reactive oxygen species [75] and glycated hemoglobin A1C [76] and 

negatively with ceruloplasmin and thiol levels [77]. These findings indicate that copper-induced 

oxidative stress plays a key role in T2DM and glycemic control [78]. Although abnormal zinc 
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metabolism may play a role in the onset and maintenance of diabetes and IR [52, 79] we could not 

find significant associations between T2DM and lowered zinc. 

 In our study, LacCer appears to be a highly significant predictor of T2DM and IR as well. As 

reviewed in the Introduction, mild diabetes is accompanied by an increased conversion of 

glucosylceramide (GluCer) to LacCer [44]. Our findings may be explained by the effects of LacCer 

on pattern recognition receptors leading to activated immune, oxidative and nitrosative pathways [40-

43]. Moreover, LacCer is a direct cytosolic phospholipase alpha 2 activator (cPLA2α) by stimulating 

phosphorylation signals and attachment of the enzyme to substrate membranes [80], a phenomenon 

that is associated with activated inflammatory pathways. Furthermore, increased levels of serum 

LacCer predict cardiovascular disease progression and mortality above and beyond the effects of 

established risk factors [81]. 

 We found that T2DM is also accompanied by lowered serum FBXW7, a factor protecting 

against IR and atherogenicity. For example, in ob/ob mice, FBXW7 expression decreases blood 

glucose and insulin levels, IR  and glucose intolerance, and prevents expression of lipogenic genes and 

triglyceride accumulation [82]. Liver-specific FBXW7 knockout mice develop hyperglycemia, 

glucose sensitivity, and IR [82]. Moreover, FBXW7 controls fetuin-A expression in obese humans, 

where the increase in fetuin-A may lead to IR and T2DM [83, 84]. Inactivation of FBXW7 causes the 

sterol regulatory element-binding protein 1SREBP1 to accumulate, and the expression of SREBP1 

increases the expression of genes that are involved in lipid metabolism and synthesis of triglycerides 

[85]. On the other hand, hyperglycemia may suppress FBXW7 expression in renal mesangial cells, 

resulting in increments in inflammatory responses [86], and treatment of human kidney proximal 

tubular cells with glucose significantly lowers FBXW7 expression  [87]. 
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 In our study, increased serum β-arrestin-1 is another biomarker of T2DM and lowered beta-

cell function. Increased expression of wild-type β-arrestin-1 decreases insulin-induced degradation of 

insulin receptor substrate 1 (IRS-1), leading to increased insulin signaling, and attenuation of β-

arrestin-1 enhances IRS-1 degradation, thereby accentuating cellular insulin resistance [88]. β-

arrestin-1 may desensitize the glucagon-like peptide-1 (GLP-1) receptor on pancreatic cells, which 

potentiates glucose-stimulated insulin secretion [89]. Both β-arrestin-1 and -2 are critical regulators of 

immune-inflammatory responses and exert multiple effects on immune pathways, including 

macrophage, neutrophil and T lymphocyte, and Toll-Like Receptor functions, nuclear factor-κB 

activity, explaining that these molecules play a key role in many immune disorders, including 

atherosclerosis [90, 91]. Overall, β-arrestin-1 shows anti-inflammatory effects, although this 

intracellular scaffolding protein also shows some pro-inflammatory effects in some models [92]. 

Furthermore, β-arrestin-1 reduces oxidative stress via Nrf-2 activation [93], although overexpression 

of β-arrestin in cardiac fibroblasts significantly elevates Nox-4 mitochondrial superoxide production 

in an ERK-dependent manner [94]. β-arrestin-1 shows a strong plasma membrane representation, and 

interactome analysis show that β-arrestin-1 interactome activity modulates many downstream 

signalers that play a role in ageing, including cell cycle regulation, G-protein associated functions, and 

opioid signaling [95]. By inference, in T2DM, β-arrestin-1 may play a role in the global reduction in 

homeostatic stability and/or compensatory mechanisms characterized by a switching of the 

metabolism to less efficient processes [95]. 

 Magnesium deficiency is a risk factor for IR, diabetes, hypertension, atherogenicity, and 

cardiovascular disease  [96] and has a detrimental effect on blood glucose homeostasis [97-99]. Our 

calcium findings do not concur with those of a meta-analysis showing that increased plasma calcium 
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levels are associated with T2DM [55]. Nevertheless, in non-diabetic adults, calcium supplementation 

may reduce plasma glucose levels and IR [100].  

 In our study, increased levels of peripheral serotonin are associated with T2DM after 

considering the impact of copper, calcium, LacCer, and FBXW7. Previously, it was shown that 

inhibiting peripheral serotonin synthesis and signaling may effectively treat T2DM, obesity, and 

nonalcoholic fatty liver disease [101]. Moreover, genome-wide association studies found associations 

between genetic polymorphisms in tryptophan hydroxylase and serotonin receptors and obesity 

[102]. As described in the Introduction, serotonin may control glucose metabolism [103] and affect 

insulin secretion through serotonin receptors [104, 105]. Intracellular serotonin, through 

serotonylating GTPases including Rab3a and Rab27a, regulates insulin secretion, resulting in 

serotonin and insulin co-release [106].   

 

Biomarkers of affective symptoms due to T2DM  

 The second major finding of this study is that we were able to construct a reliable and replicable 

nomothetic model of affective symptoms due to T2DM [72, 107, 108]). Our model provided a 10-fold 

cross-validated prediction in a holdout sample, indicating accurate predictive performance when 

analyzing new data. Direct predictors of affective symptoms were copper, calcium, and β-arrestin, 

whereas FBXW7 and LacCer showed indirect effects that were mediated by T2DM. Nevertheless, 

also lowered zinc was a significant predictor of depressive melancholia scores. 

 Importantly, we found that increased atherogenicity had a greater impact on affective 

symptoms than IR. In this respect, primary mood disorders were consistently characterized by 

increased atherogenicity, whereas IR was not always associated with mood disorders [109, 110]. There 

is now also evidence that atherogenicity, as indicated by an increased Castelli risk index 1 and AIP, 
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significantly contributes to the pathophysiology of mood disorders via immune-inflammatory and 

nitro-oxidative pathways [111-113].   

 In our nomothetic model, the most important predictors of depression and anxiety symptoms 

were increased copper and lowered calcium.  A recent meta-analysis showed increased copper levels 

in 1787 depressive patients versus 943 controls [54]. Copper toxicity may also cause anxiety, cognitive 

impairments, sleep disorders, and physiosomatic symptoms, including muscle pain and tension, 

autonomous symptoms, heart palpitation, headache, excessive perspiration, etc. [114]. The 

depressogenic and anxiogenic effects of serum copper may be explained by increased oxidative stress 

and lowering levels of serum zinc [115]. Nevertheless, there are also more recent studies showing that 

copper may be decreased or unchanged in patients with depression [115, 116]. In our study, zinc was 

inversely associated with melancholia symptoms. Recent meta-analyses showed significantly lower 

zinc levels in depressed patients than in controls [117, 118]. Lowered serum zinc predisposes towards 

immune-inflammatory and nitro-oxidative toxicity and, therefore, affective disorders [119]. 

 The results of the present study are also in agreement with previous findings that lowered 

serum calcium is associated with major depression and with self-rated depression, irritability, 

agitation, and physiosomatic symptoms, including neuromuscular excitability [120, 121]. 

Nevertheless, comorbid depressive ratings in unstable angina were not only associated with 

atherogenicity, insulin resistance, lowered zinc but also with increased IL-6 and calcium levels [122]. 

The latter may, however, be explained by specific effects of calcium mineralization of arteries and 

calcification of plaques in unstable angina [122]. 

 Our results showing that β-arrestin-1 is positively associated with depressive symptoms 

contrasts, at first sight, with those of previous reports that β-arrestin-1 is reduced in the white blood 

cells of depressed patients and that reductions in β-arrestin-1 are significantly associated with the 
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severity of depressive symptoms [25, 123]. Those previous reports suggest that β-arrestin-1 is involved 

in the pathophysiology of affective disorders and in the pathways that mediate antidepressant effects 

[25, 124, 125]. Nevertheless, increased plasma β-arrestin levels may be ascribed to leakage of β-

arrestin out of the tissues [126]. Therefore, our results suggest that increased β-arrestin-1 levels may 

be associated with the onset of affective symptoms due to T2DM following desensitization of GPCR 

signaling and GPCR-associated effects on ERK1/2 and CREB (see Introduction). Furthermore, β-

arrestin-1 exerts stimulatory effects on microglia-mediated inflammation and STAT1 and nuclear 

factor-κB activation [127], processes that are associated with affective symptoms [128].  

 As described in our Introduction, LacCer and serum levels of other ceramides are significantly 

increased in mood disorders [45-47], which may in part be explained by increased sphingomyelinase 

activity [45]. Interestingly, ceramide and sphingomyelin species are involved in the pathophysiology 

of depressive symptoms in coronary artery disease [129]. Increased levels of pro-inflammatory 

cytokines and oxidized LDL (which play a role in depression, T2DM, and MetS) may increase the 

biosynthesis of LacCer, which consequently may induce oxygen-specific pathways, thereby 

generating reactive oxygen and nitrogen species a well as peroxynitrite, and inducing immune-

inflammatory pathways [130, 131]. Moreover, high ceramide levels in the hippocampus are associated 

with decreased neurogenesis, neuronal maturation, and neuronal survival [132] and increased 

amygdala sphingolipids are associated with anxiety-like behaviors in animal models [133]. 

This is a first report that lowered FBXW7 may be associated with depressive and anxiety 

symptoms, although these effects may be mediated via increased IR because lowered FBXW7 is 

associated with hyperglycemia, IR, and the development of T2DM [32]. Moreover, as explained in 

the Introduction, FBXW7 modulates some pathways that play a role in mood disorders, including 

neurogenesis, mTOR, DISC, and PGC-1α [36, 38, 39].  
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Limitations 

The results of the current study should be interpreted regarding its limitations. Firstly, this is a 

cross-sectional, case-control study and, therefore, we cannot make conclusive causal deductions. 

Second, it would have been more interesting if we had assayed other immune and oxidative biomarkers 

of affective disorders, including pro-inflammatory cytokines, MDA, oxidized LDL, and PON1 

activity. 

 

Conclusions 

 The most important predictors of affective symptoms due to T2DM were in descending order 

of importance: copper, calcium, β-arrestin-1, LacCer, and FBXW7. T2DM and affective symptoms 

share common pathways, namely increased atherogenicity, insulin resistance, copper, and β-arrestin-

1, and lowered calcium. Moreover, copper, calcium, β-arrestin-1, and LacCer (positive) and FBXW7 

(inverse) may also induce affective symptoms by effects on insulin resistance and atherogenicity. 
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Table 1. Socio-demographic and clinical data in patients with T2DM subdivided according to the insulin resistance index (IRI) values into normal 

IRI values, medium increased IRI, and very high IRI values. 

Variables 
Normal-IRIA 

(n=30) 

Increased-IRIB 

(n=33) 

Very high-IRIC 

(n=25) 

F/χ2 

 

df p 

 

Age (years) 48.5 ±5.5 48.6 ±7.4 49.0 ±5.2 0.06 2/85 0.944 

Body mass index (kg/m2) 26.98 ±3.29 27.50 ±2.75 26.29 ±4.57 0.83 2/85 0.439 

Education (years) 10.0 ±3.9 10.1 ±4.6 9.3 ±3.9 0.32 2/85 0.727 

Single / Married 4 / 26 5 / 28 4 / 21 0.08 2 0.959 

Rural / Urban 12 / 18 21 / 12 6 / 19 1.68 2 0.433 

Employment Yes / No 17 / 13 17 / 16 12 / 13 0.42 2 0.809 

Family history Yes / No 15 / 15  B,C 12 / 21 A,C 19 / 6  A,B 9.05 2 0.011 

Drug free / Diet only / drugs 16 / 6 / 8 C 12 / 10 / 11 C 0 / 9 / 16 A,B FEPT - 0.001 

FBG mM 6.79 ±2.09 B,C 9.53 ±3.95 A,C 13.29 ±3.68 A,B 25.75 2/85 <0.001 

Insulin pM 42.80 ±10.36 B,C 53.45 ±16.74 A,C 62.14 ±19.70 A,B 10.27 2/85 <0.001 

IRI (z score) -1.073 ±0.451 B,C 0.002 ±0.321 A,C 1.196 ±0.527 A,B 188.25 2/85 <0.001 

zβcell (z score) 0.057 ±0.570 0.016 ±1.113 -0.243 ±1.143 0.76 2/85 0.472 

Triglycerides mM 1.38 ±0.47 B,C 1.80 ±0.57 A 2.03 ±0.59 A 10.47 2/85 <0.001 

Total cholesterol mmol/L 5.25 ±0.89 B,C 5.77 ±0.97 A 5.91 ±0.80 A 4.22 2/85 0.018 

HDLc mmol/L 1.04 ±0.15 1.05 ±0.16 0.99 ±0.16 0.85 2/85 0.432 

LDLc mmol/L 3.58 ±0.76 3.90 ±0.84 3.99 ±0.58 2.34 2/85 0.102 

zCastelli (z scores) -0.348 ±0.983 C 0.067 ±1.110  0.458 ±0.553 A 5.09 2/85 0.008 

zAIP (z scores) -0.435 ±0.800 B,C 0.047 ±1.040 A,C 0.572 ±0.885 A,B 8.31 2/85 0.001 

 

All results are shown as mean  (SD); A, B, C: pairwise comparisons between group means; F: results of analysis of variance, χ2: results of 

analysis of contingency analysis, FBG: Fasting blood sugar, HDLc: high-density lipoprotein cholesterol, HDLc: low-density lipoprotein cholesterol, 

AIP: atherogenic index of plasma. 
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Table 2. Measurements of the Hamilton Depression Rating Scale (HDRS) and Hamilton Rating Scale for Anxiety (HAM-A) total and subdomain 

scores and biomarkers in patients with type 2 diabetes mellitus (T2DM), subdivided into those with normal insulin resistance index (IRI) values, 

medium increased IR, and very high IR values.   

Variables 
Normal-IRI 

(n=28) 

Increased-IRI 

(n=33) 
Very high-IRI 

(n=25) 

F/χ2 df 

 

p 

 

Total HDRS 8.33±6.16 C 10.30±5.45 C 13.20±3.96 A, B 5.68 2/85 0.005 

Key HDRS 2.20±1.83 C 2.70±1.61 C 4.00±1.50 A, B 8.42 2/85 <0.001 

Physiosomatic HDRS  2.47±2.08 C 3.24±2.05 3.92±1.98 A 3.50 2/85 0.035 

Melancholia HDRS 1.63±1.65 C 2.03±1.69 2.64±1.25 A 2.84 2/85 0.064 

Total HAM-A 9.17±6.32 C 10.67±5.99 C 14.92±4.13 A, B 7.47 2/85 0.001 

Key HAM-A 2.77±2.10 C 3.15±2.03 C 4.28±1.40 A, B 4.59 2/85 0.013 

Physiosomatic HAM-A 4.27±3.14 C 4.94±3.08 C 7.16±2.81 A, B 6.69 2/85 0.002 

β-arrestin-1          ng/ml 12.81 ±7.21  15.60 ±7.86 17.39 ±6.93  2.71 2/85 0.072 

Serotonin             ng/ml 143.1 ±73.0 142.75 ±81.1 184.4 ±114.4 1.92 2/85 0.153 

FBXW7               ng/ml 16.40 ±7.62 C 16.73 ±8.40 C 11.26 ±6.71 A,B 4.32 2/85 0.016 

Lactosylceramide   ng/ml 27.05 ±11.35 C 30.49 ±15.01 C 38.80 ±16.78 A,B 4.69 2/85 0.012 

Albumin               g/l 45.47 ±6.95 45.82 ±5.47 46.68 ±4.79 0.31 2/85 0.738 

Total magnesium mM 0.736 ±0.161 C 0.682 ±0.192 0.637 ±0.124 A 2.49 2/85 0.089 

Total calcium       mM 2.287 ±0.156 2.259 ±0.168 2.265 ±0.179 0.24 2/85 0.791 

Copper                 mg/l 0.975 ±0.206 0.931 ±0.242 C 1.050 ±0.113 B 2.53 2/85 0.086 

Zinc                     mg/l 0.716 ±0.158 0.685 ±0.200 0.638 ±0.156 1.36 2/85 0.262 

All results are shown as mean  (SD); A, B, C: pairwise comparisons between group means; HDRS: Hamilton Depression Rating Scale, HAM-

A: Hamilton Rating Scale for Anxiety, F-box/WD repeat-containing protein 7 (FBXW7). 
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Table 3. Results of multiple regression with the Hamilton Depression Rating Scale (HDRS) scores as dependent variables and biomarkers as 

explanatory variables. 

Dependent Variables  Explanatory Variables β t p F model df p R2 

#1a. Total HDRS-17 

 

 

 

  

Model    19.03 

 

 

 

  

4/83 

 

 

 

  

<0.001 

 

 

 

  

0.478 

 

 

 

  

Calcium -0.358 -4.39 <0.001 

Copper 0.273 3.25 0.002 

β-arrestin-1  0.275 3.33 0.001 

Lactosylceramide 0.187 2.19 0.031 

#1b. Total HDRS-17  

 

 

 

  

Model     20.66 

 

 

 

  

4/83 

 

 

 

  

<0.001 

 

 

 

  

0.499 

 

 

 

  

Calcium  -0.326 -3.99 <0.001 

Copper 0.302 3.79 <0.001 

β-arrestin-1 0.240 2.90 0.005 

Castelli risk index 1 0.245 2.90 0.005 

#2a. Key_HDRS 

 

 

  

Model    14.66 

 

 

  

3/84 

 

 

  

<0.001 

 

 

  

0.344 

 

 

  

β-arrestin-1  0.327 3.60 0.001 

Copper 0.283 3.12 0.002 

Calcium -0.271 -3.01 0.004 

#2b. Key_HDRS 

 

 

 

  

Model     
15.75 

 

 

 

  

4/83 

 

 

 

  

<0.001 

 

 

 

  

0.432 

 

 

 

  

Castelli risk index 1 0.323 3.58 0.001 

Copper  0.261 3.07 0.003 

β-arrestin-1  0.243 2.76 0.007 

Calcium -0.194 -2.23 0.029 

#3a. Physiom_HDRS 

 

 

  

Model    10.45 

 

 

  

3/84 

 

 

  

<0.001 

 

 

  

0.272 

 

 

  

Calcium -0.351 -3.73 <0.001 

Copper 0.233 2.42 0.018 

FBXW7  -0.216 -2.27 0.026 

#3b. Physiom_HDRS 

 

 

Model    11.01 

 

 

3/84 

 

 

<0.001 

 

 

0.282 

 

 

Calcium -0.353 -3.78 <0.001 

Copper 0.255 2.72 0.008 
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  Insulin Resistance Index 0.236 2.54 0.013         

#4a. Melanch_HDRS 

 

 

  

Model    10.10 

 

 

  

3/84 

 

 

  

<0.001 

 

 

  

0.265 

 

 

  

Copper 0.285 2.98 0.004 

β-arrestin-1  0.286 3.00 0.004 

Zinc -0.233 -2.49 0.015 

#4b. Melanch_HDRS 

 

 

 

 

 

Model    11.55 

 

 

 

 

 

4/83 

 

 

 

 

 

<0.001 

 

 

 

 

 

0.358 

 

 

 

 

 

Castelli risk index 1 0.334 3.59 0.001 

Copper  0.228 2.49 0.015 

Albumin  0.226 2.52 0.014 

β-arrestin-1 0.195 2.08 0.041 

Key_Dep: key depressive symptoms; Phys_Dep: physiosomatic symptoms of the HDRS (Hamilton Depression Rating Scale); Melanch: 

melancholic HDRS symptoms; Key_Anx: key anxiety symptoms of the Hamilton Anxiety Rating Scale (HAM-A); Phys_Anx: physiosomatic 

HAM-A symptoms. 
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Table 4. Results of multiple regression analysis with the Hamilton Anxiety Rating Scale (HAM-A) scores as dependent variables and biomarkers 

as explanatory variables. 

Dependent Variables  Explanatory Variables β t p 

F 

model df p R2 

#1.  HAM-A total score  

 

 

 

  

Model    
18.95 

 

 

 

  

4/83 

 

 

 

  

<0.001 

 

 

 

  

0.477 

 

 

 

  

Copper 0.354 4.21 <0.001 

β-arrestin-1 0.289 3.50 0.001 

Calcium  -0.267 -3.27 0.002 

Lactosylceramide 0.175 2.05 0.043 

#2. HAM-A total score  

 

 

 

  

Model     
23.34 

 

 

 

  

4/83 

 

 

 

  

<0.001 

 

 

 

  

0.529 

 

 

 

  

Castelli risk index 1 0.306 3.72 <0.001 

Copper 0.376 4.87 <0.001 

β-arrestin-1 0.237 2.96 0.004 

Calcium  -0.219 -2.76 0.007 

#3. Key_HAM-A 

 

 

 

 

  

Model    
14.33 

 

 

 

 

  

5/82 

 

 

 

 

  

<0.001 

 

 

 

 

  

0.466 

 

 

 

 

  

Copper 0.366 4.32 <0.001 

FBXW7  -0.307 -3.50 0.001 

Calcium -0.244 -2.96 0.004 

β-arrestin-1 0.229 2.61 0.011 

Age -0.213 -2.51 0.014 

#4. Key_HAM-A 

 

 

 

 

 

  

Model     
13.21 

 

 

 

 

 

  

6/81 

 

 

 

 

 

  

<0.001 

 

 

 

 

 

  

0.494 

 

 

 

 

 

  

Copper .360 4.34 <0.001 

Castelli risk index 1 .191 2.12 0.037 

FBXW7  -.252 -2.81 0.006 

Calcium -.196 -2.33 0.022 

Age -.201 -2.42 0.018 

β-arrestin-1  .195 2.23 0.029 

#5. Physiosom_HAM-A 

 

Model    
16.10 

 

4/83 

 

<0.001 

 

0.437 

 Copper 0.320 3.67 <0.001 
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Calcium -0.281 -3.32 0.001  

 

  

 

 

  

 

 

  

 

 

  
β-arrestin-1  0.256 2.98 0.004 

Lactosylceramide 0.186 2.10 0.039 

#6. Physiosom_HAM-A 

 

 

 

  

Model    
18.70 

 

 

 

  

4/83 

 

 

 

  

<0.001 

 

 

 

  

0.474 

 

 

 

  

Atherogenic index of plasma 0.284 3.25 0.002 

Copper  0.327 3.96 <0.001 

 β-arrestin-1  0.231 2.77 0.007 

Calcium -0.228 -2.70 0.009 

 

Key_HAM-A: key anxiety symptoms of the HAM-A; Physiosom_HAM-A: physiosomatic HAM-A symptoms. 
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Table 5: Results of binary logistic regression analysis with T2DM as dependent variable and biomarkers as explanatory variables. 

 

Dependent variables Explanatory variables B SE Wald df p OR 95% CI 

#1. T2DM Patients vs. Controls Serotonin 1.224 0.386 10.05 1 0.002 3.40 1.60-7.25 

FBXW7 -1.107 0.414 7.15 1 0.008 0.33 0.15-0.74 

Lactosylceramide 1.929 0.568 11.52 1 0.001 6.88 2.26-20.96 

Calcium -1.502 0.401 14.02 1 <0.001 0.22 0.10-0.49 

Copper 1.863 0.506 13.57 1 <0.001 6.44 2.39-17.37 

#2. T2DM Patients vs. Controls β-arrestin 1 1.014 0.317 10.26 1 0.001 2.76 1.48-5.13 

#3. T2DM Patients vs. Controls Magnesium -1.082 0.302 12.80 1 <0.001 0.34 0.19-0.61 
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Table 6. Results of multiple regression analysis with insulin resistance, β-cell function, Castelli risk index 1, and atherogenic index of plasma 

(AIP) as dependent variables. 

Dependent Variables  Explanatory Variables β t p F model df p R2 

#1. Insulin resistance index 

  

Model    7.26 

 

 

2/85 

 

 

0.001 

 

 

0.146 

 

 

FBXW7 -0.239 -2.28 0.025 

Lactosylceramide 0.237 2.26 0.026 

#2. Β cell function index 

 

 

 

 

  

Model    
13.410 

 

 

 

 

  

5/82 

 

 

 

 

  

<0.001 

 

 

 

 

  

0.450 

 

 

 

 

  

B-arrestin  -0.284 -3.30 0.001 

Calcium 0.324 3.79 <0.001 

Copper -0.277 -3.12 0.003 

Albumin  0.251 2.93 0.004 

Family history -0.186 -2.00 0.049 

#3. Castelli Risk index 1 

 

 

  

Model    11.70 

 

 

  

3/84 

 

 

  

<0.001 

 

 

  

0.295 

 

 

  

Family history  0.325 3.38 0.001 

FBXW7  -0.274 -2.93 0.004 

Calcium -0.207 -2.20 0.031 

#4. AIP 

 

 

  

Model    8.94 

 

 

 

 

3/84 

 

 

  

<0.001 

 

 

  

0.242 

 

 

  

Magnesium  -.239 -2.38 .020 

Serotonin .282 2.97 .004 

Calcium -.247 -2.25 .016 
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Figure 1. Partial regression plot with the total 17-item Hamilton Depression Rating Scale (HDRS) score as the dependent variable and 

β-arrestin-1 as explanatory variable. 
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Figure 2. Partial regression plot with the physiosomatic component of the Hamilton Depression Score (HDRS) as dependent variable 

and total calcium as explanatory variable. 
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Figure 3. Partial regression plot with the Hamilton Anxiety Rating Scale (HAM-A) score as the dependent variable and serum copper 

as explanatory variable 
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Figure 4. Results of partial Least Squares (PLS) path analysis. Shown are the significant path coefficients with exact p-values, and the 

explained variances (white figures in the circles). 

LacCer: lactosylceramide; FBG: fasting blood glucose; T2DM: type 2 diabetes mellitus; TG: triglycerides; TC: total cholesterol;   

Key_Dep: key depressive symptoms; Phys_Dep: physiosomatic symptoms of the HDRS (Hamilton Depression Rating Scale); 

Melanch: melancholic HDRS symptoms; Key_Anx: key anxiety symptoms of the Hamilton Anxiety Rating Scale (HAM-A); 

Phys_Anx: physiosomatic HAM-A symptoms. 
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