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Time Series Analysis of Computer Network
Traffic in a Dedicated Link Aggregation

G. Millan, G. Lefranc, R. Osorio-Comparan, and V. Lomas-Barrie

Abstract—Fractal behavior and long-range dependence are widely observed in measurements and characterization of traffic
flow in high-speed computer networks of different technologies and coverage levels. This paper presents the results obtained
when applying fractal analysis techniques on a time series obtained from traffic captures coming from an application server
connected to the Internet through a high-speed link. The results obtained show that traffic flow in the dedicated high-speed
network link have fractal behavior when the Hurst exponent is in the range of 0.5, 1, the fractal dimension between 1, 1.5, and
the correlation coefficient between —0.5, 0. Based on these results, it is ideal to characterize both the singularities of the traffic
and its impulsiveness during a fractal analysis of temporal scales. Finally, based on the results of the time series analyses, the
fact that the traffic flows of current computer networks exhibit fractal behavior with a long-range dependency is reaffirmed.

Index Terms—Fractal dimension (D), High-speed computer networks, Hurst exponent (H), Long-range dependence (LRD).

1 INTRODUCTION

RAFFIC flow are useful for having a under-standing

of traffic on a computer network, providing a meas-
urement of traffic and to know what hosts are talking on
the network, with details of addresses, volumes and types
of traffics and protocols. This knowledge can be useful for
troubleshooting, detecting security incidents, and plan-
ning and network design [1].

Performance traffic models require to be accurate and
to have the ability to capture the statistical characteristics
of the actual traffic on the network. Many traffic models
have been developed based on traffic measurement data.

It is necessary to analyse network traffic the commu-
nications on computer network to find evidence of securi-
ty threat invasion; to decide the Quality of Service level;
and others issues such as data transmitted through out-
dated switches, routers, servers, and Internet exchanges
that can cause bottlenecks. The result is network conges-
tion. If it is detected suspicious traffic, the team is alerted
to the issue in real-time.

High-speed computer networks provide high-speed
links iff economy of scale; bursty, short holding time traf-
fic; shared-switch distributed-media, no shared-media
access; speed-distance-transmission size tradeoff.

In computer networking, the term link aggrega-tion re-
fers to various methods of combining multi-ple network
connections in parallel in order to increase throughput
beyond what a single connection could sustain, and to
provide redundancy in case one of the links should fail.

Time-series analysis is employed in a network perfor-
mance monitoring architecture, to provide services for
event triggering, alarming, and statistical auditing. One
such application is anomaly detection, which can be uti-
lized for performance and security management. Fore-
casting is also a relevant exercise, where the history of the
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network behavior and usage is exploited to predict future
performance [2].

Fractal behavior and Long-range dependence (LRD)
are observed in many phenomena, such as in nature [3]-
[8], in financial time series [9], in communication system
traffic [10]-[14], and in heart rate time series [15], [16].
This article characterizes the time-series dynamics of
traffic flows captured from a high-speed dedicated link
connecting an application server and the Internet, by
applying fractal analysis considering the following test:
Detrended Fluctuation Analysis (DFA), Power Spectral
Analysis (PSA), and Time-Scale Analysis (TSA).

There are two modeling streams: a conventional one,
which bases its assumptions on generally Markov pro-
cesses, and another self-similar one, which accepts the
LRD as an inherent singularity of data traffic flows.

The research related to traffic self-similarity can be
classified into four categories: measurement-based traffic
modelling, physical modelling, queuing analysis and
traffic control as well as resource provisioning [17].

In [18] reports the results from the analysis of the com-
puter network traffic using the statistical self-similarity
factor. The analyzed traffic has a self-similar nature to the
degree of self-similarity in the range of 0.5 to 1.

Fractal behavior and long-term dependence are widely
observed in the measurements and characterization of
traffic flow in high-speed computer networks of different
technologies and coverage levels [1]. It is proposes to
obtain the fractal behavior of network traffic data based
on topology, to reduce the complexity in the network [19].

Several approaches have explored to calculate the frac-
tal dimension of a subset with respect to a fractal struc-
ture. A discrete models of fractal dimension to explore the
complexity of discrete dynamical systems [20].

A simple and fast technique of multifractal traffic
modeling has been proposed and a method of fitting
model to a given traffic trace. A comparison of simulation
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model and Markov Modulated Poisson Process (MMPP)
models has been performed [15], [21].

In the paper presents the results obtained when apply-
ing fractal analysis techniques on a time series found
from traffic captures coming from an application server
connected to the Internet through a high-speed link.

The data analyzed correspond to the size of traffic
frames of the central online applications server at Univer-
sidad de Santiago de Chile, which serves 20000 users
connected online through the internet. This article ana-
lyzes two different types of traffic flows, SERV-1 and
SERV-2. SERV-1 is the temporary series of frame sizes
that are transferred to the server from the Internet and
SERV-2 is the temporary series of frame sizes that are
transferred from the server to the Internet. These traffic
flows play an important role in determining the degree of
smooth access to the corresponding application server
and therefore the Quality of Service provided to users
and the Quality of Experience that users perceive [22],
[23].

The traffic bursts over extensive periods reveal that the
traffic flows under study are identified with a completely
different nature from those predicted by a classic Poisson
model related to the traffic flows of the old telephone
system. For this reason, this research focuses on applying
a broad battery of fractal analysis that reaffirms that traf-
fic flows in current high-speed computer networks are
fractal with LRD, regardless of their sources such as de-
vice requesting services [24]. This research is about a
high-speed dedicated link and an on-line application
server. It should be noted that the time series come from
the capture of packets on said link and therefore can be
generalized in terms of the presence of traffic from both
the Internet and from within the corporate network of the
Universidad de Santiago de Chile.

This paper presents the results obtained when apply-
ing fractal analysis techniques on a time series obtained
from traffic captures coming from an application server
connected to the Internet through a high-speed link. The
results obtained show that traffic flow in the dedicated
high-speed network link have fractal behavior. Based on
these results, it is ideal to characterize both the singulari-
ties of the traffic and its impulsiveness during a fractal
analysis of temporal scales. Based on the results of the
time series analyses, the traffic flows exhibit fractal be-
havior with a long-range dependency.

The article is structured as follows. First, we present
the general aspects of Fractal Processes (FP), followed by
the key aspects of DFA, PSA, and TSA. Then, the main
results obtained are presented and their validity is dis-
cussed. Finally, the main aspects of the research and the
conclusions are presented.

2 THEORETICAL FOUNDATION

2.1 Fractal Processes

A Fractal Processes (FP) is characterized by having a non-
integrer dimension, D. Also, a FP has two characteristics
inherent to its phenomemology 1) a FP is like itself even

at different observation scales. This property is known as
invariance at the scale. The Self-similarity exists when the
process exhibits a similar behavior under isotropic scaling
and 2) a FP consists of a complex internal structure and
shows the same behavior even at different magnification
scales, i.e. FP has a self-similar hierarchical structure [25].

Due to the scale invariance, there is a power-law be-
havior between two parameters in a FP that is governed
by the relationship f(x) o« x¢, where f(x) is a function of a
study object and c is a constant.

In [20] they estimate D based on the power-law behav-
ior expressed by the above expression. Moreover from the
definition of fractional Brownian motion (fBm), these fBm
processes must be governed by [26]

B, () =[e(H+ 05)]"([* [(t=5)"% ~(-s)}dB(s)

)
+ J.Ot(t - s)”’o'sdB(s)),

where 0< H <1 is the Hurst exponent of the fBm process.
Additionally, By(t) satisfies

E[B,(t)]=0, 2
E[B;(t)] - ", ©)
E[B, (1B, ()] = 0.5(i " +|s[" ~|r—s"). )

From (4) the correlation coefficient,p, between the By(f)
successive increments can be written in the form

_[=Bu(=H)By(#)
p‘< B0 > ¥

where
e Ift=ty then BH(t = l’o),
o If t =—t, then By(t = —t) = Bu(-t), and
e By(t) =—Bnu(t), for all t.
Therefore, we have

p =211, ©6)

Then, be y(t) a FP with a Hurst exponent given by H
and then for an arbitrary process with

y(ct) =cy(t), >0, @)
is also a FP with the same statistical distributions than the
y(t) process, and in which it is verified that D is given by
the expression [20]

D=2-H. ®)

Table 1 shows the relationships between H, D, p, and
FP behavior.
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TABLE 1
INTERVALS OF H AND D VALUES AND THEIR ASSOCIATED
PROCESSES
H D (8) p(6) FP Behavior
>0.5 <1.5 Positive Persistent
=0.5 =15 Random fBm
<0.5 >1.5 Negative Non-persistent

2.2 Power-Spectral Analysis (PSA)

Time series can be described in the time-domain by
x(t), but can also be described in the frequency domain by
Fourier Transform (FT), X(w), where w angular frequency.

The autocorrelation function of a non-stationary time
series x(t), is given by

R (t+7)=[" E[x(t)x(t+7)ldt, )

The FT of (9) is the same as |X(w)[? therefore the power-
spectral density (PSD), S(@), can be written as

R 2
S(w) £ [X(o)| . (10)

Using the Wiener-Khintchine theorem, the time series
PSD can be expressed as the FT of (9) as follows

Su(@)=[" R, ()e"dr. (11)

The power-spectral function provides an important
parameter to characterize persistence in time series. For a
fractal time series, its power-spectral function [20] obeys
the frequency-based power-law behavior and is given by
the expression

S (w);w;lﬁ, withm=1,2,.,.N /2,

m (12)
where @, =n/N; N the length of the time series and £ the
spectral-exponent that characterizes series persistency.

The relationship between g, H, and D is given by [20]

L=2H+1=5-2D. (13)

This expression allows to obtain the value of f§ using
the least-squares method on the adjustment curves of H
orD.

The PSA method only provides the global value of H
from the FT using a harmonic function. However, it is
traditional in fractal analysis for its simplicity to obtain
based on an estimate of the real H value [27].

2.3 Detrended Fluctuation Analysis (DFA)

The DFA was widely used to determine the scaling prop-
erties of self-similar processes and to determine LRD on
noisy and non-stationary time series. In general, this type
of analysis is used to estimate the fluctuation of the RMS
(Root-Mean-Square) of series with and without a trend

(this latter case is a variant of the RMS analysis of the
processes based on the theory of random walks [28]), and
also because it can detect LRD.

The mathematical form of a time series Y(i), is given
according to [29] by

i

Y(i)=) (x,—(x)), withi=12,.,N, (14)
where x; is the kth sequence of the time series of length N,
and (x) is its average.

Then the series Y(i) given by (14) is regrouped in N; =
Int (Ns™) on non-overlapping segments of equal length, s,
as shown in Fig. 1, a process which is also known as ag-

gregation.

Xy Ko Xy Xy | X5 Xg X Xg [ X9 Xyg Xyp X2

(4) (4) (4)
X! X v

Fig. 1. Aggregation process of non-overlapping segments for a time
series.

i 2z

As it often happens, the lengths of the time series are
not a multiple of the time-scale, s, so a short part of it
remains at the end of the aggregate series.

To solve this problem, the same procedure is repeated
but this time starting from the opposite end and analyz-
ing the part that will remain at the beginning of the ag-
gregate series; therefore, the total number of segments is
2N..

After the aggregate time series composed of N, seg-
ments of length s have been obtained, an optimal adjust-
ment line is projected using the least-squares method in
each series to obtain the local tendency of each segment
that composes it.

The deviation of each time series is obtained from the
subtraction of the line of best fit of the minimum squares
and the variance which is calculated by the expression

1s . .
Fi(s,0)==> " {Y[(o-Ns+i]-y,()), (15)
s
for each segment v, withv=1,..., N,, and
Fz(s,v)EEZ;{Y[N—(v—Ns)s+i]—yv(i)}2, (16)

for each segment v = Ny+1,..., 2N,, where ,(i) corresponds
to the best adjustment line obtained by using the least-
squares method in segment v.

The last step of the DFA analysis is to obtain the aver-
age of all segments of each time series disaggregated to
find the function given by
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1 2N,

F(s) EZ_MZ":1 F(s,v),
where F(s) increases as s increases and is defined only for
segments of length s > 4. Therefore, the previous steps are
repeated several times to obtain a data set of F(s) versus s,
where the slope of the curve obtained from that graph
represents the scaling exponent « if the series is correlat-
ed according to a long-range power-law.

Therefore, F(s) and s are related by the power-law

17)

F(s) ~s”. (18)
Table 2 relates the scaling exponent « to different types
of processes.
TABLE 2
RELATIONSHIP BETWEEN o2 AND PROCESS TYPES

aInterval Process Type
0<a<05 Power-law anti-correlation
a=0.5 White noise
05<a<1 Long-range power-law correlation
a=1 1/f process
a>1 fBm process

2.4 Time-Scale Analysis (TSA)

The methods presented in the previous sections are based
on the development of a linear log-log type graph that
only outputs a unique H value. These methods are insuf-
ficient when estimating the locally time-dependent Hurst
exponent, H(t) [30], [31].

The Wavelet Transform approach results in a powerful
mathematical tool that serves for both the hierarchy of a
FP and spatial distribution of the singularities of the frac-
tal measurements. In this research only the Continuous
Wavelet Transform (CWT) is considered for temporal
scales analysis to estimate H(t) [32].

It should be noted that in the literature H is a global
(also called general) Hurst exponent, and H(f) as a local
Hurst exponent [33], [34].

So, the CWT is defined as [35]

W,(t,a,0)= [ x(5)p, (s)ds, (19)

where ¢* is the conjugate complex of ¢ function, that for
different observations scales is defined as

0.5
9,,5)=la] " ol(s—t)/a], (20)
where g is the scale-parameter and a o« @—1.
In this research the Morlet Wavelet is used for the TSA
and its scalogram is defined as

Ex - EJJWX(t,a, (/))|2 azdtdﬂ, (21)

where E; is the energy of function x [36].
Therefore, a scalogram is an energy distribution func-

tion of a signal in a time-scale plane associated with a?dt
da. Concerning the above, in general, any time series is a
representation of a signal. Thus, considering time series
with uniform H can be described as [37]

lx(s)—x(t)| <[s 1", withceR. (22)
Applying CWT for x(f) in (22)
W,(ta,0)|<[d " [t |o(e)|at, (23)
and the scalogram for this time series is given by [37]
o) =|w,taf =", whena—>0.  (24)

Based on (24), it is possible to estimate H(t) and write
H as follows

1 eT
H= ?jo H(t)dt. (25)

Thus, the TSA provides both H and H(#).

Therefore TSA is a more powerful mathematical tool
compared to PSA and DFA in FP analysis since most of
traffic flow processes exhibit multifractal scaling behav-
iors and it is possible to characterize them with the fluc-
tuations of H described by H(t).

3 FRACTAL ANALYSIS DEVELOPMENT

3.1 Preliminary
The test scenario is presented in the following figure

Link
Aggregation
&S
~ ™| |Rrx A
Application
Server
% Sniffer

Fig. 2. Network traffic testing scenario.

3.2 Fractal Analysis

The spectral exponent (f), H, D, and p of the SERV-1 and
SERV-2 time series estimated with the PSA method are
tabulated in Table 3. It is emphasized that the spectral
exponent is defined in (12) and is related to H and D by
means (13); it stands out that p is related to H through (6).
The results clearly show that the SERV-1 and SERV-2
time series exhibit fractal behavior with LRD that agrees
with the theory.

To test the accuracy of the DFA algorithm which used
in this research, the algorithm is used to calculate the
scaling exponent of three known scaling exponent gener-
ated signals, wich are Brownian motion, persistence pow-
er-law, and anti-persistence power-law processes with H
=0.50, H = 0.80, and H = 0.20 [37], respectively.
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The results are shown in Table 4.

The results show that the scaling exponents obtained
are consistent with the H for the three generated series,
which verifies that the DFA method carried out in the
fluctuation analysis without tendency is assertive to re-
produce results.

The scaling exponent () of SERV-1 and SERV-2 series
estimated with the DFA method are shown in detail in
Table 5.

The results show complete coherence with the theory
estaments and that the behavior of the time series under
study, responded to a fractal character with LRD trend.
The experiment on the scaling exponent reflects that both
series respond to a behavior of the fractal type with LRD.

The scalogram allows H and H(t) to be estimated for
SERV-1 and SERV-2 time series. The results applying the
TSA method are summarized in Table 6.

TABLE 3
NUMERICAL EXPERIMENTS FOR SERV-1 AND SERV-2 TIME
SERIES CONSIDERING H, D, 3, AND p

Time

Series H b B P
SERV-1 0.70+0.01 1.80+0.01 1.60+0.01 -02540.01
SERV-2  0.71+0.01 1.81+0.01 1.61£0.01  -0.24+0.01
TABLE 4
o FOR DIFFERENT PROCESSES
Time Series H a According to +
Type DFA Method a
Brownian Motion 0.50 1.20 0.10
Persistence
power-law 0.80 1.51 0.09
Anti-persistence
power-law 0.20 1.80 0.03
TABLE 5
a FOR SERV-1 AND SERV-2 TIME SERIES
STeI:'ri‘:s a te a te a te
SERV-1 0.65 0.04 1.08 0.05 2.01 0.05
SERV-2 0.64 0.03 1.07 0.05 2.00 0.04
TABLE 6

GLOBAL HURST EXPONENT, LOCAL HURST EXPONENT IN
TERMS OF MINIMUM AND MAXIMUM VALUES, AND D FOR
SERV-1 AND SERV-2 TIME SERIES

Time

Serios H Min {H(f)}  Max {H(D)} D
SERV-1 0.32 ~0.49 1.48 1.68
SERV-2 0.27 -0.26 115 1.73

From the results given in Tables 3, 4, 5 and 6, it is
shown that the two time series under analysis (SERV-1
that contains the frame sizes that are transferred to the
server from the Internet and SERV-2 that contains the
frame sizes that are transferred from the server to the
internet) exhibit fractal characteristics with LRD. It is
inferred that the increase of samples for any of both series
as a result of the extension of the observation time will

not result in a modification of their nature, given that
these two series have a behavior with LRD.

Even when the FT uses harmonic basis functions and
processes non-stationary signals, the PSA is a good way
to start with the initial measurements of non-stationary
time series that are suspected to have a fractal nature: as
is the case of the time series presented in this research.

Two of the main results obtained are:

1) H =0.70 £ 0.01 in SERV-1 time series. Result that

clearly reveals fractal character with LRD trend.

2) H =0.67 #0.01 in SERV-2 time series. Result that

clearly reveals fractal character with LRD trend.

It is interesting to examine the results of the fluctuation
analysis without tendency since they show that both time
series present the crossing phenomenon characteristic
described in [13].

The origin of this phenomenon can be explained by the
fact that there are very short periods between a service
request and the server's response. This generates a time
series for a highly fluctuating uncorrelated process. As
time passes, the signals show fluctuations that tend to
soften, reflecting the dynamics of every current telecom-
munications system, resulting in an exponent o =1 asso-
ciated with a process 1/f.

The results of TSA show that the considered time se-
ries are constitutive of extremely complicated systems
that present a time-dependent Hurst exponent which
ranges from negative to positive values —0.50 < H(t) < 1.50
for the SERV-1 series and —0.30 < H(f) < 1.15 for the
SERV-2 series. It is further noted that H(t) for the SERV-1
series has greater complexity than H(f) for the SERV-2
series. This difference can explain the following; for
SERV-1, the data comes from thousands of points dis-
tributed on the internet to a server entry port, which cre-
ates a bottleneck in the server gateway. Also, there is an
interaction between incoming signals and outgoing sig-
nals on the gateway during the period when the input
signal is overloaded and causes network congestion.
However, the SERV-1 series turns out to be more regular
since the data is transferred from the main gateway to
thousands of points distributed on the internet, this trans-
fer is simpler compared to the case of incoming traffic.

Since H(t) for the series under study are outside the
range —0.50 < H(t) < 1.50, they are very complicated sys-
tems that merit independent study to obtain a better de-
scription, both quantitative and qualitative.

Notwithstanding the above, the TSA provides valuable
information in comparison with the PSA and the DFA
allows us to study the behavior of the complex system
considered recorded data of traffic flows from and to the
internet from an online application server.

5 CONCLUSION

In this paper has been presented the application fractal
analysis techniques on a time series obtained fram traffic
captures coming from an application server connected to
the Internet through a high-speed link. The results ob-
tainede show that traffic flow in the dedicated high-speed
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network link have fractal behavior since the Hurst expo-
nent is in the range of 0.5, 1, the fractal dimension be-
tween 1, 1.5, and the correlation coefficient between —0.5,
0. Based on these results, it is ideal to characterize both
the singularities of the traffic and its impulsiveness dur-
ing a fractal analysis of temporal scales.

A detailed analytical study on long-range fractality
and dependence for two traffic time series is presented.
The time series SERV-1 and SERV-2 are examined by
three methods: PSA, DFA, and TSA.

It is made clear that there are other techniques to ex-
amine LRD that are not addressed in this research, such
as dispersion analysis and maximum likelihood estima-
tors.

The main results are summarized as follows:

1) The PSA reports that the series are fractal and have

LRD given that the following conditions:
o [B1<p<2,

e H:05<H<I1,

o p-05<p<0,and

e D:1<D<2

2) The analysis of fluctuation without trend shows
that the series presents the characteristic crossing
phenomenon of FP with LRD.

3) The TSA reports that the time series under study,
SERV-1 and SERV-2, present a time-dependent
Hurst exponent, outside the range (0, 1). Therefore,
these time series require an advanced quantitative
as well as qualitative description to improve the
understanding of the series of internet traffic com-
ing from a high demand environment as it is an
online application server, it is recorded that:

e H():-05<H(t)<15,
e H:05<H<1.0,and
e D:1<D<2

Finally, fractality and LRD are presented in the studied
series that represent traffic captures from a high-speed
dedicated link aggregation.
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