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Abstract The 3x+1 problem is a problem of continuous iteration for integers. Ac-
cording to the original description of the problem, we derive a formula that can perform
continuous iterative operations on odd numbers. We can convert this formula into a linear
equation. The process of solving this equation shows that the relationship between the it-
eration result and the odd number being iterated is linear. In addition, we can construct a
loop iteration equation by the formula and obtain the result of the equation: the equation
has only one positive integer solution. Extending this result to all positive even numbers,
we get the answer to the 3x+ 1 question.
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1 Introduction

The 3x + 1 problem is currently an unsolved problem in number theory. According
to the description of this problem: take a positive integer, if it is an even number, divide
it by 2, and if it is an odd number, multiply it by 3 and add 1 to get a positive integer.
Repeat this operation, and then get a string of natural numbers, and finally return 1.

People guess that same result will be obtained for all natural number iterations.[2]−[5]

This problem is also known as the Collatz conjecture, Syracuse problem or Ulams
problem. Since this issue was raised, no substantial progress has been made in proving
this issue. As of 2017, more than 264 natural numbers have been verified by the computer.
As a result, all tested integers will eventually return 1 without exception. Until September
2019, Terence Tao proved that this conjecture was almost correct for all integers.

This article, without violating the original intent of the problem, improves the original
description of the problem and analyzes the three possible results of successive iterations
of odd numbers, thereby solving this problem.

2 Iterative formula for positive odd integers

It is known that the number of factors equal to 2 contained in a positive integer is
constant. Let x be a positive integer, then 3x+ 1 is an even. After dividing by all factors
equal to 2, the quotient is a positive odd integer.
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Let x be a positive odd integer, T =
3x+ 1

2β
(β is a positive integer). If T is a positive

odd integer, then call it an iteration of x. Let T (x) be the iteration result of x, β be the
iterative exponent.

Let T (n)(x) be the result of the n-th iteration of x.
If T (n)(x) = 1 (x > 1) then x is convergence.
Let βn be the iterative exponent of the n-th iteration of x.

Let s(0) = 0, s(j) =

j∑
i=1

βi. (j ∈ Z+)

Theorem 1. The n-th iteration formula of x is as follows.

T (n)(x) =

3nx+

n∑
i=1

2s(i−1)3n−i

2s(n)
. (2.1)

Proof. For n = 1. Since 2s(1−n)3n−1 = 1, so, according to (2.1), we have

T (1)(x) =
3x+ 1

2β1
.

If (2.1) holds, then for n+ 1 we have

T (n+1)(x) =
3T (n)(x) + 1

2βn+1

=
3

3nx+

n∑
i=1

2s(i−1)3n−i

2s(n)
+ 1

2βn+1

=

3n+1x+

n+1∑
i=1

2s(i−1)3n+1−i

2s(n+1)
.

3 T (n)(x) tends to infinity of possibilities

Let [A] be the integer part of the real number A.
If T (n)(x) tends to infinity when n→∞, then x is divergent.

Theorem 2. No matter how big n is, If x is a finite value, then T (n)(x) is also a
finite value.

Proof. Let An = 2s(n), Bn = 3n, Cn =

n∑
i=1

2s(i−1)3n−i.

See the following indefinite equation

AnY = BnX + Cn. (3.1)
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Since An, Bn and Cn are both positive integers and (An, Bn) = 1, there are infinitely
many integer solutions to this equation:{

Y = Y1 +Bnt,

X = X1 +Ant.
(t ∈ Z)

The following is the process of getting Y1 and X1:[1]

(i). For Bn > An, the following equation can be constructed
An

[
Bn
An

]
−Bn = −q1,

An

([
Bn
An

]
+ 1

)
−Bn = q2,

(3.2)

Since (q1, q2) = 1, so, there are integers θ and λ such that the following formula holds

λq2 − θq1 = Cn. (3.3)

Through (3.2) and (3.3), we get a special solution of the equationX1 = λ+ θ,

Y1 = λ

([
Bn
An

]
+ 1

)
+ θ

[
Bn
An

]
.

and

λ =
Cn + θ(An − q2)

q2
.

Thus, we obtain
X1 =

Cn + θAn
q2

,

Y1 = X1

([
Bn
An

]
+ 1

)
− θ.

For all n > 4,

Cn > 0.8× 3n +

n∑
i=5

2s(i−1)3n−i > 0.8Bn. (3.4)

Since q2 < An, so, X1 >
Cn
An

+ θ. So, if X1 is a finite, then
Cn
An

is also a finite. In this

case, according to (3.4),
Bn
An

can only be a finite value, as is Y1.

(ii). For An > Bn, same as above, the following equation can be constructed
An −Bn

[
An
Bn

]
= q1,

An −Bn
([

An
Bn

]
+ 1

)
= −q2,

λq1 − θq2 = Cn.

(3.5)
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Through (3.5), we get a special solution of the equationY1 = θ + λ,

X1 = Y1

[
An
Bn

]
+ θ.

Since Y1 =
X1 − θ

[An/Bn]
, so, if X1 is finite, then Y1 is also finite.

Both cases show that when X is a finite value, Y can only be a finite value.

If both ends of the equal sign are multiplied by 2s(n) at the same time, then formula
(2.1) can be written as

2s(n)T (n)(x) = 3nx+

n∑
i=1

2s(i−1)3n−i. (3.6)

Let T (n)(x) = Y and x = X. Formulas (3.6) and (3.1) are the same. The previous
analysis indicates that when n→∞, if x is finite, then T (n)(x) is also finite.

4 Possibility of T (n)(x) = x

Theorem 3. Let r(i) be an integer, r(i + 1) > r(i) and r(0) = 0. If the following
equation have positive integer solution, it must satisfy r(i) = 2i (i = 0, 1, 2, 3, ......, n).

f(n) =

n∑
i=1

2r(i−1)3n−i

2r(n) − 3n
. (n ∈ Z+) (4.1)

Proof. For n = 1, we have

f(1) =
1

2r(1) − 3


= −1, r(1) = 1.

= 1, r(1) = 2.

≤ 1/5, r(1) > 2.

The above formula shows that, only f(1) = 1 is a positive integer solution of this
formula.

If the conditions required by the theorem is true for n, then for n+ 1,

f(n+ 1) =

n+1∑
i=1

2r(i−1)3n+1−i

2r(n+1) − 3n+1
. (4.2)

where r(i) = 2i (i = 0, 1, 2, 3, ......, n).
According to the conditions, the formula (4.2) can be written as

f(n+ 1) =
22n+2 − 3n+1

2r(n+1) − 3n+1
.
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Since r(n+ 1) > r(n) and r(n) = 2n, let r(n+ 1) = 2n+ d (d is a positive integer).
Refer to the equation below

h(n) =
22n+2 − 3n+1

22n+d − 3n+1
.

1. If d = 1, the above function can be written as

h(n) =
2(22n+1 − 3n+1) + 3n+1

22n+1 − 3n+1
= 2 +

3n+1

22n+1 − 3n+1
.

and
3(n+1)+1

22(n+1)+1 − 3(n+1)+1
÷ 3n+1

22n+1 − 3n+1
=

3

4 +
3n+1

22n+1 − 3n+1

.

The above results show that, for all n > 1, (i) h(n) > 2; (ii) h(n) is monotonically

decreasing. Since h(2) =
37

5
, h(3) =

175

47
and h(4)

.
= 2.9, so, h(n) is not a positive

integer.
2. If d = 2, then h(n) ≡ 1;
3. If d > 2 then, for all n > 1, h(n) < 1.
Based on the above analysis, the theorem holds.

If T (n)(x) = x (x > 1), then x is said to be cyclic.

After continuous n iterations for xc, if T (n)(xc) = xc, then, according to formula (2.1),
we have

xc =

3nxc +

n∑
i=1

2s(i−1)3n−i

2s(n)
.

From the formula above we get

xc =

n∑
i=1

2s(i−1)3n−i

2s(n) − 3n
. (4.3)

Let s(n) = r(n) and xc = f(n). Then the above equation is the same as equation
(4.1). According to Theorem 3, only if s(i) = 2i (0 ≤ i ≤ n) is satisfied, equation (4.3)
has a positive integer solution, and except for xc = 1, the equation has no other positive
integer solutions. This indicates that when xc = 1, for all n ≥ 1, the equation T (n)(1) = 1
is true; And for all x > 1, there is no T (n)(xc) = xc.

Thus, for every odd number greater than 1, a finite number of iterations cannot con-
stitute a loop.

5 Conclusion.

The above analysis shows that all positive integers are neither cyclic nor divergent.
Therefore, no matter how many iterations, every odd integer will return 1, that is, all
positive odd numbers converge.
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Because after dividing by all factors equal to 2, every positive even number is an odd
integer, so this conclusion also applies to even numbers. Therefore, all positive integers
are Converge.
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