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Abstract: Inspired from a recent article by Regis [1], earlier publised work of McLean [2–4] and
informal discussions much earlier with members of the Danish Technical University and KTH,
Sweden we summarize known results for viscous correction to the lift coefficient for thin aerodynamic
profiles. We thereby try to remember the work of [5] on triple-deck or higher order Boundary Layer
theory and compare it to simple 2D Computational Fluid Dynamic (CFD) models. As a conclusion, a
clearer definition of terms like understanding and explanation applied to the phenomena of aerodynamic
lift will be given.
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0. Introduction: What is an explanation?

People often ask: I do not understand! Can you explain it again? Then a lecturer has to
do his (or her) best to find ways, such that, the person asking the question gets a better
feeling of understanding. Some people even say: You have only understood something if you
can explain it to other people. But this only shifts the problem to these other people.

Even more complicated and since the emergence of Quantum Physics, some say that an
understanding of certain phenomena is simply impossible. Fortunately, Fluid Mechanics is
what is termed Classical Mechanics and may be related to every-day experiences and is
thus much easier to explain than quantum mechanical phenomena.

However, sometimes it seems that a discussion around aerodynamic lift is closer to
quantum mechanics then to classical mechanics which may be related to the fact, that the
mathematical description is classical but in terms of a non-linear field-theory.

Here we take the following point of view:

1. We have a theory (or model) for some phenomena if we have a set of assumptions re-
sulting in equations for quantitative descriptions to be compared with measurements.

2. Pure numerical solutions from the most basic equations are not sufficient as they only
produce very specific results.

We shortly refer to Newton’s 2nd law for a point mass:

F = ṗ . (1)

A force (in N) relates to the temporal change of momentum p = m · v. A cause and effect
relationship may be established in both directions, meaning that a force is a cause for a
change in momentum, or a change in momentum may be the cause for an inertial force.

Fluid mechanics as a continuum theory is formulated in terms of a velocity field v and
expresses momentum change (mChange) and mass conservation (mCons):

mChange: ρ

(
∂v
∂t

+ (v · ∇)v
)

=f−∇p + µ∆v , (2)

mCons: ∇ · v =0 . (3)
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Instead of the quantity force it introduces a static pressure p and a volume force density (N/m3).
To calculate a force on an extended body (airfoils) one has to integrate pressure (and viscous
shear stress) on its surface. By use of Eq. (3) pressure can be eliminated but the description
is non-local:

∆p = −ρ
∂2uiuj

∂xi∂xj
:= S(r) (4)

Formally this equation may then be solved by the introduction of Green’s function:

p(r) = pharmonic(r) + p(r) +
ρ

4π

∫

R3

S(r)
|r− r′| dr′ , (5)

where pharmonic(r) is a solution of the homogeneous pressure equation:

∆pharmonic(r) = 0 . (6)

f usually is regarded as given from outside and in many cases does not have to be included.
(With an exception of the so-called Actuator Disk see [6].)

In the rest of the paper we proceed as follows: We review basic models of lift in a more
logical manner than they appeared historically, compare them with numerical simulations
and conclude with a physical model which in our understanding provides a (long known)
explanation of aerodynamic lift.

We have to remark that our review mainly follows an approach in the spirit of Landau
[7] which from the beginning emphasizes the role of a wake emerging down stream of
an aerodynamic profile. Therefore it is rather different from that of McLean [2–4] who
emphasizes the non-local pressure field as a direct result of the lift force [4] and its reciprocal
interaction with the velocity field as a key ingredient of a qualitative explanation of lift.

1. Thin Airfoil Theory
1.1. A First Encounter with History of Explanations of Aerodynamic Lift

Specific shaped 2D sections exhibit a large force perpendicular to the inflow direction.
This force is called lift. Nowadays, not only airplanes use it but also most of the highly
efficient machines, e.g. helicopters, ship propellers and wind turbines. Nevertheless, even
today, there is a discussion [2] for an explanation (in the sense of a cause and effect relation
mentioned above) as it was in the beginning of the 20th century. Bloor [8] gives an excellent
and very readable review of some of the early historical developments from about 1900 to
1930. In short two schools used either Newton’s corpuscular picture or the newly emerged
circulation model.

1.2. Inviscid Thin Airfoil theory

A first important step in developing a theory of aerodynamic lift, of what one may
term even an understanding was the formulation of the so-called Kutta-Joukovsky theorem
[9] which states

L = −ρ · w · Γ . (7)

Here L is the lift force (per unit span), ρ the density of the fluid, w the inflow velocity (far
up-stream) and Γ the circulation, defined as

Γ :=
∮

C
v · dr . (8)

C is an arbitrary closed loop around the airfoil.
Therefore, a dynamical quantity (lift) is connected to fully kinematic quantities (w, Γ),

only. Sign conventions are as follows:

1. velocity: left to right,
2. lift: from bottom to top,
3. circulation: counter-clockwise.
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Figure 1. Comparison of measured lift coefficient vs angle-of-attack with thin airfoil theory showing
a large region of linear variation close to cmax

L . Results for RN 2 and 10 million are shown. For RN of
10 M separation on the lower (pressure) side occurs much earlier than for RN of 2 M.

This explains the negative sign in Eq. 7.
A unique circulation, needed for a unique defined lift, needs a formulation of addi-

tional assumptions and this resulted in the so-called Kutta-condition. It may be stated
in various forms. If the airfoil tail (x/c = 1) is regarded to have a non-smooth change in
geometrical slope from the upper to the lower side (known as the trailing edge), it is usually
expressed - as a more mathematical statement - demanding that all velocities should be
finite, i.e. < ∞, esp. in the vicinity of the tail. Note that in-viscid potential theory does not
forbid infinite velocities.

For an ellipse this clearly is not the case, therefore a severe logical loop-hole exists at
least for these kind of trailing edges. However, Howarth as early as 1935 [10] managed
to calculate lift and drag manually for this particular shape, an ellipse, by what is now
called interactive boundary layer theory and its expression is found in the well-known code
XFOIL [11]. Sears [12] took these ideas further and formulated corresponding conditions
for static pressure at the upper and lower edges of the boundary layers in the sense of
generalizing the Kutta-Joukovsky condition to viscous (boundary layer) flow.

The complete transient procedure on how circulation is generated from rest is still
under investigation, see for example [13] for a recent CFD work.

Thin airfoil theory (TAT, called that way because any influence of the finite thickness
of an airfoil is neglected) [14] gives a remarkable simple expression for the lift-coefficient

cl = 2π · (α + α0) . (9)

A lift-curve slope of 2π - independent of all geometrical details - therefore is predicted and
the angle-of-attack (AOA) appears to be the most important quantity. Nevertheless, one
particular geometrical quantity, camber (f), enters Eq 9 via α0 = 2 f shifting zero-lift AOA
to negative angles. If flow direction is counted positive as when coming from the left, a
positive AOA is given when the airfoil is rotated in clock-wise direction.

Fig 1 compares measurements [15] of a 30% thick airfoil - with 2.1 % camber - dedicated
for wind turbine blades with prediction of thin-airfoil-theory. A remarkably large (more
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than 20 degrees) range of agreement (within the experimental uncertainty) even for this
certainly not-thin airfoil exists.

1.3. Viscous Thin Airfoil Theory I: RN << 1

TAT is based on inviscid models of fluid flows (only density as a material enters) and
as a consequence, e.g. circulation is a conserved quantity, i.e. it can neither be created nor
destroyed. Therefore, more sophistcated models (and equations) must be included if the
emergence of lift is to be explained. It is well known that the Navier-Stokes Equations
provide this basis, adding a second material parameter, viscosity. In a series of journal and
technical papers Yates [16] (and independently Bryant and Williams [17] and Shen and
Crimi [18]) with the help of a Oseen-type approximation (in fact a linerisation) were able to
use these Navier-Stokes equations to

1. derive and thereby explain the Kutta condition and
2. to give asymptotic corrections to the lift-curve slope in terms of inverse Reynolds

number.

This is somewhat surprising as Oseen-Flow, see [9], chapter (4.10), is generally assumed
to be valid in low-Re (RN< 1, creeping) flow only, whereas in high-Re flow (RN > 105)
boundary layer theory [19] should be more appropriate. As a consequence numerical
agreement for changes in the lift-slope (with reference to 2 · π) were not convincing.

1.4. Finite thickness

In this context, to separate between thickness and viscous effects a lot of authors
including Abbot and von Doenhoeff [20] tried to improve (inviscid) TAT by investigating
the influence of thickness on the lift-curve-slope which typically results in equations like:
[20],

cL = 2π(1 + τ) , (10)

τ =
ε

a
=

4
√

3
9
· t

c
. (11)

Yates [21,22] combined Reynolds number and thickness corrections to

cL = 2π(1 + τ) ·
(

1− 4
log (64RN) + γE

)
(12)

γE = 0.57722 being Euler’s constant which shows a decrease of more than 10 % at t/c = 0.3
and RN around 105 from RN effects which - at least - is partly compensated by the first
(thickness) term. McLean [2], chapter 7.4, pp 313/314 gives further details.

Not included in all these discussions is the influence of the flow-state of the boundary
layer, whether it is laminar or turbulent. In our discussions we assume that lift (in the
linear part) is not influenced as strongly as drag. It is well known that drag can be much
higher when most parts of the boundary layer are turbulent.

Another important phenomena, flow separation, the starting point defined by

c f = µ · dvt

dn
≤ 0 , (13)

is closely related to limiting cL to values around 1.5 (of course with remarkable exceptions).
We implicitly assume that the effect of separation can be approximately described by

shifting the trailing edge to the points of separation [10,12]. This restricts our discussion to
small AOA only (−1◦ < α < 5◦).
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Figure 2. Stream function (F) and velocity profile (F’) from numerical Integration of Eq. (16). F”(y=0)
correspond to wall shear stress. In addition, it can be seen that the normal velocity v approaches a
finite value ∼ √RNx when the boundary layer edge is reached.

2. Viscous correction by Schmitz

Schmitz [23–25] calculated finite domain viscous correction and found small devia-
tions (10−2 of inviscid circulation) only for an airfoil flow at Re = 500 k [17]. As a result a
typical reduction in cL of

∆cL =∼ −2
(

Ue

U∞

)2( δTE
c

)2
, (14)

is predicted. Here, Ue resp. U∞ is the velocity at the edge of the boundary layer at the
trailing edge (TE) resp. the inflow velocity; δTE is the boundary layer thickness and c the
chord of the profile. A simple estimation for RN ∼ 106 shows that the resulting reduction
depends on the type of the flow and is comparable small for a pure laminar boundary layer.
It is interesting to note that Triple-Deck-Theory (see section 3.5) is able to derive a similar
contribution with reads as [? ]

3
8πc

(δ1 + θ)RN−1/2 · log (RN) . (15)

Here δ1 and θ is the displacement thickness and momentum thickness at the trailing edge,
resp.

3. Viscous Thin Airfoil Theory II: RN >> 1
3.1. Boundary Layer Theory

Boundary layer theory (BLT) started with the seminal paper of Prandtl [26]. As one of
the first applications a semi-infinite flat plate located at x > 0 and y = 0 was investigated
by Blasius [27]. He reduced the Navier-Stokes Equations to a still non-linear but much
simpler ordinary differential equation for the stream function F:

F′′′ + F · F′′ = 0 , (16)
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Figure 3. F’ (velocity profile) and its representation by a power series and asymptotic expansion. The
rather large (more than 14 digits) integer coefficient were calculated with the help of MATHEMATICA
c©.

together with boundary conditions F(0) = F′(0) = 0 and F(s) → s as s → ∞. Here
s = Y/

√
2x. Blasius was able to represent the solution as a power series (see [28–30] for

mathematical details)

F(s) =
1
2

λs2 − 1
240

λ2s5 +
11

161280
λ3s8 + ... (17)

with: λ = F′′(y = 0). (18)

With Rex = u∞ · x/ν it follows

δ99 = 5.0 · Re−1/2
x at y where u = 0.99 ·U∞ (19)

δ1 = 1.72 · Re−1/2
x displacemenet thickness . (20)

It must be noted, that today Eq. (16) is typically solved numerically to arbitrary accuracy,
see Fig 2. The asymptotic behavior y→ ∞ can be studied by assuming

F(y) = y− β0 + go(y) . (21)

It follows [31]

β0 = 1.21649 , (22)

g0(y) = exp(−y2

2
) . (23)

Fig. 3 shows the accuracy of both Taylor series around 0 and ∞.

3.2. Drag, Comparison with Experiment and Higher Order Boundary Layer Theory

As wall shear stress is related to F′′(y→ 0) drag can then be calculated by integration
and further compared to measurements. Two findings are important:

1. for Rex > 5 · 105 flow state starts changing to a turbulent one,
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Figure 4. Comparison of drag from BLT and measurements. Fat line: Blasius, dashed line: higher
order (Triple Deck) and empirical correlation for the turbulent case

2. for Rex < 104 deviations become larger as expected, see Fig 4.

Improvement is possible if BLT is regarded as an asymptotic expansion in powers of inverse
Reynolds number. First order then are terms ∼ Re−1/2. As one can see from the dashed
line in Fig 4, there is significant improvement - even down to Rex ∼ 10 - if one takes higher
orders into account as will be seen in section 3.5.

Blasius (solid line):

cD = 2 · 0.664 · (Re)−1/2 (24)

2nd order BL (dashed line):

cD = 2 · 0.664 · (Re)−1/2 + 2.67 · (Re)−7/8 (25)

values for Re = 10(1000):

cD(Re = 10(1000)) = 0.42(0.042) + 0.36(0.006) . (26)

Eq. (25) contains a new term ∼ Re−7/8 which contributes to more than 10 % and which
will be derived below.

3.3. Flat plate of finite length

Having described the problem of a semi-infinite plate (x > 0) we turn to a flat plate of
finite length: −1 < x < 0:

3.4. Goldstein’s inner and outer wake

Only some years later BLT was extended to a flat plate of finite length −1 < x <
0, y = 0 by Goldstein [32]. The situation is as follows: At the plate we have for y=0 u=0
which is simply the no-slip condition. Within the wake (x > 0) we will have u 6= 0. This
different behavior at y = 0 for x < 0 and x > 0 is the reason, that the wake exhibits a
two-fold structure, separated by a curve y ∼ x−1/3, see Fig. 6. Unfortunately, close to x = 0
a singularity appears:

v(x, 0) ∼ x−1/3 , x > 0 , (27)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 May 2021                   doi:10.20944/preprints202105.0496.v1

https://doi.org/10.20944/preprints202105.0496.v1


Journal Not Specified 2021, 1, 0 8 of 18

 0.001

 0.01

 0.1

 1

 10

 0.01  1  100  10000  1x10
6

 1x10
8

c D

RN

Flat plate drag

Blasius
Triple Deck

Oseen
data
data

Figure 5. Drag coefficient of a flat plate in the laminar state and from various approaches: Measure-
ments and Theories of Oseen, Blasius and the Triple-Deck-Theory for an extended RN region down
to less than RN of 10−2.

which is named Goldstein singularity and can be calculated from Ψ ∼ x2/3 and v ∼ −Ψx.
It clearly violates the assumptions from BLT that v ∼ RN−1/2, see Fig. 2.

Although we will proceed with this approach we have to remark that this analytical
model still is not sufficient for investigations on how the Kutta-Conditions emerges from
viscous flows. Only if the flow velocity is at least continuous in all components we may be
able to explain lift.

Analogously to Eq. (16) the wake is composed of two boundary layers (inner and
outer wake) and therefore needs to be described in terms of two functions H0, H1 via:

3H0
′′′ + 2H0H0

′′ − H0
′2 = 0 , (28)

3H1
′′′ + 2H0H1

′′ − 5H0
′H1
′ + 5H0

′′H1 = 0 . (29)

Using s = y/x1/3, it follows:

H0 ∼ λ2
0s +

λ4
0

33!
s3 − 2λ6

0
95!

s5 , (30)

H1 ∼ λ1λ0

(
s−− 5

18
λ2

0s3
)

leading to (31)

u(x, 0) ∼ x1/3
(

λ2
0 + λ0λ1x

)
. (32)

Numerical integration leads to [31] λ0 = 0.8789, λ1 = −0.1496
Fig. 6 displays the combined flat plate and wake boundary layers together with the

governing equations. At the trailing edge v ∼ x−1/3 as x → 0−.

3.5. Triple Deck Theory

The singularity close to x = 0 can only be removed by introducing a three fold
structure with an extension in x ∼ RN−3/8, see Fig. 7.
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√
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√
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√
2F0

(
Y√
2

)
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λ0
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(
Y√
2

)
+ · · ·+ o(1)

R1/2Ψ ∼
√

2F0

(
Y√
2

)
+ o(1)

s = Y
x1/3

R1/2Ψ ∼ x2/3
(
λ20s+ · · ·

)
+ x5/3(· · · ) + · · ·+ o(1)R1/2Ψ ∼ 1√

8
α
−3/2
o Y 2 − 1

45α
−3
0 Y 5

+ · · ·+ o(1)
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R1/2Ψ ∼ x2/3H0(s) + x5/3H1(s) + · · ·+ o(1)
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Figure 6. Goldstein’s near wake structure. Adapted from [31].

Figure 7. Boundary Layer structure around the trailing edge of a flat plate, from [33]
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3.6. Flat plate at zero incidence

A considerable amount of work has to be done to remove the singularity mentioned
above. First of all it is easy to show that the region close to the trailing edge - where BLT
fails - scales according to |x| ∼ Re−3/8, see Sobey [31].

Improving the analytical solution? (in the sense of calculus) is now achieved by
introducing the three-fold structure already mentioned above normal to the plate:

• Some kind of a viscous sub layer: the LOWER deck,
• A perturbation for the outer potential flow region in form of a displacement function

A1(X): the OUTER deck,
• And in between the MIDDLE (or MAIN) deck, sometimes called inviscid rotational

disturbance layer.

A sketch of the structure is visualized in Fig. 7.
Triple Deck equations start with introducing appropriate scaled coordinates:

Main deck: Y = RN1/2y (33)

Inner deck: Z = RN1/8Y (34)

Outer deck: W = RN−1/8Y and (35)

X = RN3/8x . (36)

A1(X) is defined via ψm
1 (X, Y) := A1(X) · U0(Y) and acts as a kind of a displacement

function.
A characteristics set of equations can be derived [31]:

uX + vZ = 0 (mass conservation) (37)

uuX + vuZ = − 1
π

∫ ∞

−∞

A
′′
1(ζ)

X− ζ
dζ + uZZ ; (38)

together with asymptotics:

u→ α−3/2
0√

2
[Z + A1(X)] as Z → ∞, (39)

A1(X)→ 0 as X → −∞, (40)

A1(X)→ µ0

λ0
X1/3 as X → ∞. (41)

In [31] FORTRAN routines for solving this non-liner set of integro-differential equations
are given. Some sample results are presented in Fig. 8 and Fig. 9. As can be seen from
the plots, all functions now are continuous at x = 0 (trailing edge) but still are not ∈ C1

(continuous slope). For reasons of comparison we added results from CFD in Fig. 9.
Pressure is shown in Fig 9 together with two asymptotics p ∼

− 2
3
√

3
µ0

λ0
RN−1/2|x|−2/3 x < 0 , (42)

1
3
√

3
µ0

λ0
RN−1/2x−2/3 x > 0 . (43)

Singularity v→ ∞ at the trailing edge (see Eq. 27) disappears, because [34]

v ∼ −A1
′(x) , (44)

is finite. Unfortunately, streamlines close to the TE are not ∈ C1 (space of functions which
are once continuous differentiable). Shifting this dis-continuity to even higher derivatives
demands introduction of even more structure in form of more sub-layers [31,35].

Nevertheless, one of the greatest success of TDT is an impressive improvement of
prediction of finite length flat flat flate-plate? drag coefficient. We will present these
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Figure 9. Pressure around trailing edge from triple-deck-theory [31] (black), together with asymptotic
values from Blasius and Goldstein (red) and CFD for a thin airfoil (blue) see section 4. The two blue
line upstream to the trailing edge correspond to the upper and lower side of the airfoil. Note that the
pressure around the airfoil calculated by CFD is not scaled.
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Figure 10. Same as Fig. 9, but enlarged. The apparently out-liner at X ≈ −0.29 might be due to
inaccurate geometric modelling of the profile.

findings in more detail in section 4.

3.7. Flat Plate at an Incidence and Embedding of the Kutta Condition

The final step now is to apply the findings from section 3.5 to a flat plate of finite
length and non-zero angle-of-attack which severs as a simple model of a 2D airfoil. This
has been done already 50 years ago by Brown and Stewardson [5]. A summary of the
historic development is presented in [35].

Apart from the discontinuity of the viscous boundary layer condition at the edge - a
zero tangential velocity on the plate (x → 0−) faces a zero pressure discontinuity on the
wake center-line (x →= 0+) - the phenomenon of separation comes into play.

The following set of steps are necessary to derive the Kutta-Joukovsky-condition and
a viscous correction to the lift coefficient:

Introduce triple deck length scale:

ε = RN−1/8 = (U∞`/ν)−1/8 (45)

Length scale Kutta conditon violation :

− x?/` = ε7α1a2
1λ−1/4 (46)

Angle-of-attack: α ∼ O(ε1/2) < 5◦ (47)

Blasius wall shear stress: λ = 0.3321 . (48)

(49)

This leads to:

Lift: cL = 2πα

(
1− 2B

`

)
(50)

Circulation term: B = ε3`λ−5/4 · a1 (51)

(52)
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Figure 11. Variation of the parameter a1 with (reduced) angle-of-attack from [36]. As a1 approches
0.47 this number diverges, indicating flow separation.

At the time of [5] no computer codes for solving the set of equations Eq. 37 to Eq. 41 was
available. This occurred only in 1976 with the paper [36]. Instead some kind of linearisation
in the form of a Hilbert transform was used. The constant a1 from 52 was analytically
estimated to

a1 = 2−1/2γ−3/4 cos (
π

8
) = 0.79 with γ = 32/3/Γ(1/3) = 0.7764 . (53)

(54)

Later Chow and Melnik [36] improved the value for a1 from a constant value (0.79) by
Brown/Stewardson [5] to one dependent on the AOA, see Fig. 11. Thereby, separation is
predicted for AOAs larger than αS > 0.47, which - in degrees - corresponds to rather small
values of 3.8◦ for RN = 105 Quoting Crighton [37] this approach provides detailed analytical
and computational understanding (emphasis by the present author) as it gives a smooth
transition from the flat plate boundary layer∼ RN−1/2 to Golstein’s wake∼ RN−1/2 · x1/3

already visualized in Fig. 9.

3.8. Turbulent boundary layers

The restriction of laminar boundary layers certainly forbids applications for RN >
5 · 105. Therefore it is tempting to try to apply methods from TDT to turbulent boundary
layers. This has been first attempted by Melnik and Chow [38] and is further discussed
in [39,40]. As a result Cousteix and Mass [40] conclude that - because no overlapping
layer (the famous logarithmic law of the wall) exist, a chosen turbulence model has to be
restricted to those which leads us to the desired result.

4. Comparison with CFD

We have prepared computational meshes for two cases:

• A flat plate of unit length
• A simple 2D aerodynamic profile (NACA0015)
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Figure 12. Center line velocity u(x,y=0) from Eq. (32) compared to a CFD model calculation. Note
the doulbe-logarithmic scaling of the axes and that the abscissa (scales according to TDT) covers 7
orders of magnitude. CFD profile reaches much earlier the asymptotic value, indicating a two small
computational area.

As a solver we use ANSYS-FLUENT V18

4.1. Finite Length Flat Plate

Fig. 12 shows the development of the wake at y = 0 for x ≥ 0 from TST and full CFD.
The deviation may be caused by a too small calculational area (10 chords only).

To have a more quantitative comparison of TDT we compared highly sensitive drag
data either calculated from the above mentioned CFD-model or from equations derived by
TDT by different variants:

Imai: cD ∼
1.33

(Rx)1/2 +
2.32
Rx
− 2.20

(Rx)3/2 log
√

Rx +O(R−3/2) and (55)

Dean: cD ∼
1.33√

Rx
+

2.32
Rx

+O(R−3/2) . (56)

as shown in table 1. Unfortunately, the contribution of the next-to-BL term ∼ RN−7/8, c2

Table 1: Comparison of calculated flat plate drag data for various RN compared to CFD

RN cD c2 cD Imai cD Dean
1.23 · 105 3.9 · 10−3 3.04 3.81 · 10−3 3.82 · 10−3

1.0 · 104 1.43 · 10−2 3.20 1.34 · 10−2 1.35 · 10−2

1.0 · 102 1.92 · 10−1 3.31 1.14 · 10−1 1.56 · 10−1

can only be compared at a 10% level. Even worse several hundreds of thousands of CFD-
iterations have to be performed to be able to use a Richardson-type of extrapolation for
the drag-coefficient. The meaning of this huge computational effort is clear: accurate
CFD calculations to compare with accurate analytical theories demand heavy resources:
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Figure 13. Lift coefficient of NACA0009 as function of angle of attack at RN = 6 · 106 together with
potential theoretic prediction and viscous correction from TDT.

An example for RN=100: After Niter = 250 k iterations drag force was 0.1307, but an
extrapolation to Niter → ∞ lowers this value by about 20% to 0.1174.

4.2. Thin Symmetric NACA Profile

As a last example to scrutinize the validity and accuracy of TDT we compare viscous
correction from TDT with measuremnts for a 9%-thin NACA airfoil, see Fig. 13. The
measurements show some scatter but has been fitted to a simple three-parameter parabolic
shape. As can be seen TDT (Eqs.57 to 59) describe the lowering of the lift-coefficient with
some accuracy. It has to be noted that a somewhat thicker profile (NACA0012) has been
investigated by Cebeci and Cousteix [? ].

5. Summary and Conclusions

Within the framework of matched asymptotic expansion, boundary layer theory can
be extended to match Goldstein’s wake to Blasius’ flat plate boundary layer. With the use
of ε = RN−1/8 as an expansion parameter Brown and Stewardson [5] were the first who
presented a physical picture of the Kutta condition together with a quantitative viscous
correction (in terms of a parameter B) for the slope of the lift coefficient:

cL
2πα

= 1− B , (57)

B = a1 · λ−5/4ε3 , (58)

with 0.508 ≤ a1 ≤ 1 for 0 ≤ α ≤ αS(: //www.overlea f .com/project/609a5270c5eac87a761a1bec4◦) .(59)

Therefore, the wake with its continuous pressure in y-direction enforces an equal continu-
ous pressure for y = 0 across the trailing edge in x-direction and induces fixed (and finite)
velocities, circulation and lift [35].

We now present the resulting physical picture emerging from the circulation approach
and higher order boundary layer theory (triple-deck theory):

• A Kutta-Joukovsky condition fixes circulation and thereby lift.
• Stated mathematically, it demands a finite velocity at the trailing edge.
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• The simplest model of a lifting surface consists of a flat plate of finite length and a
non-zero angle of attack.

• Matching Blasius’ boundary layer with Goldstein’s wake needs an intermediate triple-
structured layer of length of RN−5/8 to interpolate between both different boundary
conditions.

• Worked out, a set of equations results which predicts finite velocities and pressure
around the trailing edge but a non-continuous pressure gradient.

• A viscous correction to the potential-theoretic lift coefficient slope of 2 · π can be
derived and compared to experimental data.

• Extension to turbulent boundary layers is possible but relies on the closure models.
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cL Lift coefficient
cD Drag coefficient
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