Renal and red marrow dosimetry in peptide receptor radionuclide therapy: 20 years of history and ahead.

Stephan Walrand 1,* and François Jamar 2

1 Cliniques universitaires Saint-Luc, Brussels, Belgium. stephan.walrand@uclouvain.be
2 Cliniques universitaires Saint-Luc, Brussels, Belgium. francois.jamar@uclouvain.be

* Correspondence: stephan.walrand@uclouvain.be

Abstract: The development of dosimetry and studies in peptide receptor radionuclide therapy (PRRT) over these two last decades are reviewed. Differences in kidney and bone marrow toxicity reported between 90Y, 177Lu and external beam radiotherapy (EBRT) are discussed with regards to the physical properties of these beta emitter radionuclides. The impact of these properties on the response to small and large tumors is also considered. Capacities of the imaging modalities to assess the dosimetry to target tissues are evaluated. Studies published in the last two years that confirm a red marrow uptake in 177Lu-DOTATATE therapy, as already observed 20 years ago in 86Y-DOTATOC PET studies, are commented and analyzed in the light of the recent knowledges in transferrin transport mechanism. The review enlightens the importance i) of using state of the art imaging modalities, ii) of individualizing the activity to be injected with regards to the huge tissue uptake variability observed between patients, iii) of challenging the currently used but inappropriate blood based red marrow dosimetry and iv) of considering individually tandem therapy. Last, a smart individually optimized tandem therapy taking benefit of the bi-orthogonal toxicity-response pattern of 177Lu-DOTATATE and of 90Y-DOTATOC is proposed.

Keywords: somatostatin, PRRT, dosimetry, DOTATOC, DOTATATE

1. Introduction

Peptide receptor radionuclide therapy (PRRT) is a well-established therapy for metastatic cancers expressing somatostatin receptors. A somatostatin analog peptide, such as octreotide or octreotate, is covalently bounded to a chelator, such as DTPA or DOTA. This chelator can be viewed as an empty basket. Before intravenous injection, a radionuclide (111In, 90Y, 177Lu) is mixed with the chelator-peptide in a solution at a low pH and at a temperature both optimized to promote the entrance of the radionuclide within the chelator cage. High labelling fractions are easily reached, i.e. less than 2% of residual free radionuclide. The labeled compound exhibits a rather high stability when the pH solution is increased above 6.

The quantity to be injected is expressed in becquerel (Bq) which corresponds to one decay per second and is named activity. By analogy with pharmaceutical drug, this quantity is often named dose, which is incorrect: the term dose identifies the quantity of energy deposited in a tissue by the particles emitted during the decays. This dose is expressed in gray (Gy) corresponding to 1 joule (J) delivered in 1 kg of tissue.

The first PRRT trials used 111In-DTPA-octreotide [1], a tracer initially developed for diagnostic intent. Due to the cell internalization of the tracer, the short range 111In auger electrons were considered suitable for tumors therapy [2]. The observed tumors control appeared promising, however an escalating activity study quickly revealed hematological concerns [3]. Indeed, as most of the 111In decay energy is converted into gamma rays, the cross-irradiation of the red marrow from the remainder of the body was significant [4].

This issue was overcome using 90Y-DOTA-octreotide (90Y-DOTATOC) [5], which for therapy intent can be considered as a pure beta emitter. This was confirmed by the 90Y-
DOTATOC clinical phase I trial SMT-487 [6,7]. With this compound, the first organ at risk was no longer the red marrow, but the kidneys, which is less life threatening [8]. However, due to its long beta range, i.e., maximal 11 mm in water, the dose delivered to small tumors is limited. Thus, relapse of micro-metastases initially not visible on imaging modalities were observed, although all known metastases completely responded.

To improve small tumor control, 177Lu-DOTA-octreotate (177Lu-DOTATATE) was developed [9], the beta of which having a smaller range, i.e., 2 mm in water. Although the decay energy is mostly brought by the beta, the main tissue at risk identified in the phase III study was the red marrow, with about 10% of the patients undergoing grade 3 or 4 lymphopenia [10].

The aim of this paper is to provide a comprehensive and commented review of the literature evidencing and explaining the different toxicity and response patterns observed between 90Y-DOTATOC and 177Lu-DOTATATE PRRT. Last, by combining therapy improvements reported in the literature, a smart optimized tandem therapy design is proposed.

2. Kidney dosimetry and toxicity

The 90Y-DOTATOC clinical phase I trial 86Y-SMT-487 [6-8] was designed following the FDA requirements. The total injected activity was computed to deliver a maximum dose of 27 Gy to the kidneys, based on a pre-therapy 86Y-DOTATOC PET using the MIRD pamphlet no. 11 [11] which assumed a standard kidney volume for the dosimetry calculation. The PET scan was reconstructed using a dedicated prompt single gamma rays correction [12].

The trial included a cycle activity escalation, i.e., a reduction of the therapy cycles number needed to reach 27 Gy to the kidneys, starting from 5 cycles to a single cycle. The patient kidney follow-up was set as 5 years, with patients exhibiting a creatinine clearance lost per year up to 60%. Fig. 1A clearly shows that obviously no toxicity-dose correlation was observed as all the patients, besides one getting an extra cycle for compassionate use, got the same kidney dose.

Rather than to conclude that dosimetry was useless, which sometimes happen in nuclear medicine, the patient CT analogic films were scanned and the renal volume measured: at this time, no hybrid SPECT-CT or PET-CT was available, and due to limited data storage capacity, most patient CT slices were only analogically archived. Fig. 1B shows that by just rescaling the kidney dose with the standard to individual kidney volume ratio, a toxicity dose relation became visible.

Figure 1: A: toxicity observed in the 86Y-SMT-487 phase I trial as a function of the absorbed dose computed with the MIRD pamphlet no. 11 formalism [11], B: after rescaling with the individual kidney volume and C: converted into BED. The dots diameter corresponds to the cycles number.
Reprinted from [8] with permission of the SNM. D: Matching of the NTCPs observed in 90Y-DOTATOC with that of EBRT. Reprinted from [13] with permission of the SNM.

It was noted that globally the patients receiving less cycles number underwent higher creatinine clearance lost per year (fig 1B). The absorbed doses were thus converted into a biological effective dose (BED) using the Lea-Catcheside formalism [14], and a clear toxicity-dose correlation appeared (fig. 1C). This toxicity-dose relation observed in nuclear medicine was the first one matching that observed in EBRT (fig. 1D): the dose calculation based on fractionation commonly used in EBRT was proved applicable in nuclear medicine.

In all PRRT studies, i.e., 111In-DTPA-octreotide SPECT [15], 86Y-DOTATOC PET [12] and 177Lu-DOTATATE SPECT [16] showed that the kidney uptake is localized in the cortex such as initially observed by Hammond et al. in planar 111In-DTPA-octreotide scintigraphy [17]. Intra-patient 86Y-DOTATOC PET studies proved that amino-acid infusion significantly reduced the renal reuptake [6]. By competing with the megalin/cubilin complex on the apical membrane of proximal tubular cells (PTCs), basic amino acids, such as L-lysine and L-arginine can reduce by ≈50% the reuptake of the radiolabeled peptide. The other fraction is taken up by the PTCs by fluid-phase endocytosis, that is not influenced by the presence of high amounts of basic amino acids [18,19]. Studies in knock-out rat provided evidence that megalin is essential for renal tubule reabsorption of the peptide [20].

Ex vivo autoradiography of healthy kidney tissue, from patients who received 111In-DTPA-octreotide before nephrectomy (fig. 2A), showed an uptake gradient decreasing from the inner to the outer cortex boundary [21]. As the radiosensitive glomerulus is about 6 mm far from the inner boundary (fig. 2E), its crossfire irradiation by the activity taken up by the tubules will strongly depend on the radionuclide beta range, as clearly showed in the Monte-Carlo (MC) isodose simulations (fig. 2 B-C). These MC simulations explain why the first limiting tissue is the kidney with 90Y-DOTATOC and the red marrow in 177Lu-DOTATATE PRRT, respectively (table 1).

Figure 2: A: 111In autoradiography. B, C, D: corresponding isodoses simulated by Monte Carlo for 111In, 90Y and 177Lu, respectively. Reprinted from [21] with permission of the SNM. E: nephron anatomy showing the glomerulus and tubule location. Reprinted from [22] with permission of

3. Red marrow dosimetry and toxicity

A highly variable red marrow inter-patient uptake in PRRT was evidenced early in 2005 during the 86Y-DOTATOC phase I 86Y-SMT-487 trial which used state of the art PET imaging [23]. Furthermore, this red marrow uptake was intra-patient correlated to that measured with 111In-DTPA-octreotide by SPECT [24]. This was overlooked by the nuclear
medicine community arguing that RM uptake was no visible in 90Y bremsstrahlung or 177Lu SPECT [25, 26]. The case appeared to be solved in 2017 when the LutatheraTM insert package, which states that establishing red marrow dosimetry is useless in predicting observed toxicity, was agreed by the FDA and by the EMA [27].

These last years, several teams using state of the art SPECT/CT demonstrated clear red marrow uptake of 177Lu in 177Lu-DOTATATE therapy [16], the dosimetry based on which enabling some toxicity prediction [28-30]. The observed red marrow dosimetry was about fourfold that of the blood-based method used in the Netter study [10], explaining why about 10% Grade 3-4 hematological toxicity was observed in this study.

Such red marrow uptake could appear surprising with regards to the high DOTA affinity and stability for yttrium and for lutetium. However, in the transchelation competition with transferrin, DOTA is just a passive and naïve chelator stroke by an active and cunning thief. Iron is a vital compound for mammals and evolution spent hundreds of millions of years to improve transferrin, versus a few decades for chemists.

Transferrin is a protein having two active lobes (fig. 3A) [31]. In the iron free state, i.e., apo-transferrin, the N-lobe and the C-lobe are open, ready to catch a metallic ion. When a metallic ion enters a lobe, the lobe closes and surrounds the ion as a result of the Van der Waals forces. In this state, no other external force can easily remove the ion from the locked lobe. When an appropriate anion binds to the corresponding active site, the lobe opens and releases the metallic ion. This key-padlock mechanism ensures that iron will be released to the appropriate cells and not elsewhere in the body.

Not only the ion transferrin release is an active process, but also the ion catching one. Inorganic chelators, such as DOTA, have to wait for the release of a metal ion by another chelator in order to trap it, which is rare from a good competitor. In contrary, kinetics and spectrometry studies evidenced that transferrin can make a ternary (or mixed) complex with the initial metal-chelator complex [32]. During the life of this ternary complex, the metal ion is transferred from the chelator to the transferrin metal binding site, likely by the Van der Waals forces. Many in vitro competition studies between transferrin and DOTA evidenced the transferrin superiority [24, 33]. In vitro data using plasma from subjects injected with 111In-pentetreotide, demonstrated that after X days, the radioactive metal was effectively bound to transferrin [34].

Figure 3: A: transferrin release mechanism (reprinted from [31] with permission of Springer. B: PET imaging 4 and 24 h post 86Y-DOTATOC injection from the 86Y-SMT-487 clinical trial. Metastases (M) already exhibit a strong uptake 4h pi, while red marrow activity behaves in phase opposition to the blood pool visible in the heart. Previously irradiated vertebra by EBRT which has eradicated active marrow have a similar behavior as the blood pool. Reprinted from [24] with permission of Springer.

A recent study in human [35] showed that only 23% and 2% of 177Lu-DOTATATE remain intact after 24h and 96h postinjection, respectively. Fig. 3B clearly illustrates the uptake difference between the tumor receptor-based mechanism and the transferrin transport to red marrow mechanism observed in the 86Y-SMT-487 study [24].
during the first pass, the 86Y-DOTATATE binds to the tumor receptors resulting in a strong uptake within 4 hours p.i, while it takes much longer time for the transferrin to catch the metal and to deliver it to the red marrow cells. The 4 and 24 h images proved the red marrow activity behavior in opposition phase versus the blood pool, which makes the blood-based red marrow dosimetry method unlikely to be physiologically adequate. Table 1 shows red marrow dosimetry assessments and dose-toxicity correlations reported in the recent literature.

Table 1: blood and image-based RM dose comparisons

<table>
<thead>
<tr>
<th>Study</th>
<th>Blood based RM dosi. [mGy/MBq]</th>
<th>Image based RM dosi. [mGy/MBq]</th>
<th>Toxicity-dose correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santoro et al. [28]</td>
<td>n.a.</td>
<td>0.04 [0.01-0.09]</td>
<td>yes</td>
</tr>
<tr>
<td>Hagmarker et al. [29]</td>
<td>n.a.</td>
<td>0.06 [0.02-0.12]</td>
<td>yes</td>
</tr>
<tr>
<td>Page et al. [37]</td>
<td>0.02 [0.01-0.03]</td>
<td>0.06 [0.03-0.11]</td>
<td>yes for imaging</td>
</tr>
<tr>
<td>Garsk et al. [36]</td>
<td>0.016</td>
<td>n.a.</td>
<td>no</td>
</tr>
</tbody>
</table>

n.a. = not assessed

Using 4 SPECT/CT performed after the first and second cycles, Santoro et al [28] evaluated the organs at risk in 12 patients treated with 177Lu-DOTATATE. The mean dosimetry for kidney and red marrow was 0.43 ± 0.13 mGy/MBq and 0.04 ± 0.02 mGy/MBq, respectively. As the maximal tolerated dose for red marrow is about tenfold lower than that of kidney [24], this explains why hematological toxicity is the limiting factor in 26 % of individually optimized 177Lu PRRT [36].

Using a SPECT/CT-planar hybrid method, Hagmarker et al. [29] in 177Lu-DOTATATE therapy found similar red marrow dosimetry, i.e. 0.06 (0.02-0.12) mGy/MBq in 22 patients without skeletal metastases. They observed a dose-platelet counts nadir relationship (fig. 4) perfectly in line with that observed in the 90Y-DOTATOC clinical phase I trial using 86Y-DOTATOC PET based red marrow dosimetry [23,24].

In 200 patients treated with 177Lu-DOTATATE, Garsk et al. [36] observed fourfold lower mean blood-based red marrow dosimetry than that observed in the two reported SPECT study, i.e. 0.016 mGy/MBq, which was unable to predict the hematological toxicity observed in 40 patients. Page et al. [37] compared blood based and SPECT/CT based red marrow dosimetry in 11 patients treated with 177Lu-DOTATATE and observed the same fourfold ratio.

The results of these six studies [28-30,35-37] urge for using post cycles SPECT/CT based red marrow dosimetry for all 177Lu therapies. With optimized imaging and reconstruction methods of SPECT/CT, these studies provide evidence that direct RM uptake-based dosimetry clearly outpasses the blood-based estimations, as advocated in the
Luthatera package insert. One must keep in mind that the maximal red marrow tolerable
dose is about tenfold lower than that of other tissues. Thus, a long duration, i.e., > 30
minutes, dual-head SPECT is required to accurately assess the red marrow uptake, at sev-
eral timepoints. Red marrow activity should be measured on the thoracic vertebrae: the
region with the lowest attenuation and without surrounding tissues with high uptake,
such as the liver, spleen or kidneys, that can produce long tail artefacts in reconstructed
slices. Fortunately, nowadays, a single SPECT/CT scan encompass the thorax and the kid-
nneys. Clearly, state-of-the art imaging capacities as available now can help improving this
paradigm of RM dosimetry based on imaging, rather than on blood activity.

Figure 4: Blue solid circles: relative platelet counts decrease at nadir as a function of the hybrid
SPECT/CT-planar based red marrow dose in 177Lu-DOTATATE therapy (reprinted from [29] with
courtesy of Dr. P Bernhardt). Red empty circles: decrease observed in the 90Y-DOTATOC trial u-
sing 86Y-DOTATOC PET based dosimetry added by the authors [24]. Both trendlines are very similar.

4. 177Lu-90Y PRRT tandem therapy: a bi-orthogonal synergy

Hobbs et al. [38] introduced the “orthogonal radionuclides” concept to promote tan-
dem therapy with radionuclides taken up by different tissues and thus presenting differ-
ent toxicities. Such tandem allows to increase the tumor dose by splitting the unwanted
irradiation between different organs, as similarly performed in EBRT by rotating the beam
source around the targeted tumor.

Comparing toxicities of 177Lu-DOTATATE and 90Y-DOTATOC therapies is very chal-
lenging considering the sparse informations provided in the clinical trials publications. In
the Netter phase III study [10], in 116 patients receiving 4 repeated injections of 7.4GBq
every 8 weeks, 0.4 and 11 % underwent a renal and hematological toxicity of grade 3 or 4,
respectively. In the phase II 90Y-DOTATOC study [39] in 1109 patients receiving in average
2.5 cycles of 3.7GBq/m2, 9.2 and 12.8 % experienced a renal and hematological toxicity of
grade 3 or 4, respectively. However, the frequency of this hematological toxicity cannot
be directly compared: indeed assuming similar uptakes, the 90Y protocol delivered a much
higher tissue dose than that of 177Lu (table 2). The hematological to renal toxicity ratio is
about twentyfold higher for the 177Lu-DOTATATE therapy.

Regarding dosimetry-based studies, in individualized 177Lu-DOTATATE study aim-
ing to deliver 23 Gy to the kidney in 154 patients, 26 % presented a hematological toxicity
halting the therapy [36], while this event occurs only in 1 patient on 60 in the individual-
ized 90Y-DOTATOC study aiming to deliver 27 Gy to the kidney [7]. Again, a twentyfold
higher prevalence of hematological toxicity is observed in 177Lu-DOTATATE therapy.

This much higher prevalence of hematological toxicity in 177Lu-DOTATATE therapy
is in line with the low in-vivo stability of this compound: only 23% and 2% of 177Lu-DOT-
ATATE remain intact after 24h and 96h post injection in patients [35] whereas 90% of
86Y-DOTATOC remains intact 5h post injection in primates [40]. Intuitively, it makes sense
that the larger electron orbital of 177Lu makes it more sensitive to external Van der Waals
forces coming from an open transferrin lobe. Note that, as transferrin is not excreted by
the kidneys, radionuclide to protein binding analysis in urine is not appropriate to evalu-
ate the in vivo compound stability. In vitro transchelation competition with apo-transferrin
could also be biased with regard that in vivo, apo-transferrin is continuously renewed
by the release of the metal ion in the red marrow. Such in vitro studies have thus to be
performed with a huge apo-transferrin overload. Last, caution is also needed with in vivo
rodent stability studies regarding that experiments proved different iron binding and re-
lease properties vs humans [41], that could hold true too for yttrium and lutetium.

| Table 2: comparison of grade 3-4 toxicities between 177Lu-DOTATATE and 90Y-
DODTATOC therapies |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>177Lu-DOTATATE</td>
<td>90Y-DOTATOC</td>
<td>177Lu-DOTATATE</td>
<td>90Y-DOTATOC</td>
</tr>
</tbody>
</table>

All these facts clearly show that the orthogonal toxicity concept applies to the couple 177Lu-DOTATATE and 90Y-DOTATOC for which the prime tissue at risk is the red marrow and the kidney, respectively. This feature alone should be sufficient to promote the tandem approach as a new standard for PRRT therapy.

Last, but not least, this tandem is also orthogonal regarding the tumor response (justifying the bi-orthogonal appellation): by its short beta range 177Lu is efficient to deliver high doses in sub-centimeter tumors, whereas the 90Y beta with its one cm range is more efficient to cross-irradiate low vascularized regions often present in larger tumors [42,43].

This dose-response synergy was already observed in 2005 in a preclinical model [44]. Pancreatic cancer cells were successively grafted, i.e. spaced by 3 weeks, in the two opposite flanks of rats, resulting in rats bearing a small (\approx0.5 cm2) and a large (\approx8 cm2) tumor. Rats were split in four groups of about 12 individuals. Survival was impressively higher in rats treated with the 177Lu-DOTATATE & 90Y-DOTATOC tandem than that of rats treated with only one radionuclide (fig. 5A).

Kunikowska et al. [45] compared overall survival (OS) between single 90Y-DOTATOC therapy and 90Y-177Lu tandem therapy. The patients were not randomly drawn: first 25 consecutive patients were treated with 90Y alone (7.4 GBq/m2), and the following 25 consecutive patients were treated with the 90Y-177Lu tandem (3.7-3.7 GBq/m2). However, the same patient enrollment criteria were chosen for both groups. Such as in the rat study, the OS was impressively better in the tandem group, especially that assuming similar uptake, the tandem delivers absorbed doses 30% lower than that of the 90Y alone using this activity protocol.

![Figure 5](image-url)

Figure 5: A: survival in rats bearing a small and large tumor treated with single or tandem PRRT. Reprinted from [44] with permission of the SNM. B: survival in patients treated with 7.4 GBq/m2 of 90Y-DOTATOC or with 3.7 GBq/m2 of 90Y-DOTATOC + 3.7 GBq/m2 of 177Lu-DOTATATE.
Note that assuming similar uptake, the tandem delivers absorbed doses 30% lower than those of ²⁰⁶Y alone. Reprinted from [45] with permission of Springer.

In this study, the tandem was given together in 2 or 3 cycles which is not the right strategy: the well vascularized large tumor region taking less radionuclide in the following cycle due to the additional ¹⁷⁷Lu irradiation eradicating the taking up cells. The best strategy is to first perform the ²⁰⁶Y cycles to benefit from the high uptake of vascularized regions to cross irradiate the other tumor regions, then to end up with a ¹⁷⁷Lu cycle to efficiently irradiate, and hopefully eradicate small metastases [46].

5. Individual PRTT optimization planning

Multi-cycle PRRT is well adapted to individualized therapy planning as the first cycle delivered dose is safe for all patients. Afterwards, post cycle dosimetry can be performed to optimize the activity to be injected in the following cycles. Note that if ⁹⁸Ga-DOTATATE PET is of prime interest to select candidate for the PRRT therapy, it is useless for dosimetry estimation regarding its too short half-life. In ²⁰⁶Y-DOTATOC therapy, phantom and patient studies proved ²⁰⁶Y PET imaging providing an accurate kidney dose estimation [47], while medium energy collimator SPECT/CT is well adapted for ¹⁷⁷Lu-DOTATATE [16], provided the acquisition time is long enough.

PRRT dosimetry requires at least two imaging time-points, as tissue activity curves exhibit a bi-exponential asymmetric bell shape. This feature makes inaccurate proposed single time-point estimates [48], which is only for a single exponential starting from t = 0, the model used to propose it [49]. One time point after the maximal uptake is needed, e.g., 24h post injection, and another time-point somewhere around one effective half-life, i.e., 48 or 72h post ²⁰⁶Y injection and 5 to 8 days post ¹⁷⁷Lu injection.

Only the two tissues at risk have to be imaged, i.e. the thoracic vertebrae and the kidneys, which can be done with two PET/CT positions for ²⁰⁶Y and with one single SPECT/CT position for ¹⁷⁷Lu. Planar imaging, and combined planar and hybrid SPECT/CT should be avoided regarding the superimposition of the residual blood-pool activity for red marrow and of the liver and of the spleen activity for the kidneys. Any physician thinks mandatory to use state-of-the-art TOF-PET/CT to perform tumors staging or follow-up! It is time to tackle claims that short duration whole-body planar scan is sufficient to perform dosimetry. By always trying to simplify dosimetry to satisfy this claim, medical physics experts (MPE) are left to poor quality data for accurate dosimetry, which reinforces the common belief that dosimetry is useless.

Menda et al. [50] conducted a prospective post cycle renal dosimetry using ²⁰⁶Y-bremsstrahlung SPECT/CT in 25 patients having neuroendocrine tumours. A ²⁰⁶Y TOF-PET/CT [47] was used at the first time for bremsstrahlung SPECT/CT calibration purpose. The study confirmed the very high variability of inter-patient renal dosimetry as already observed using ⁸⁶Y-DOTATOC PET [8], advocating the interest to individually optimize the injected ²⁰⁶Y activity.

Almost twenty years after the individualized ²⁰⁶Y-SMT-487 trial [23], Del Petre et al. [51], Sundlov et al. [52] and Garske-Roman et al. [36] performed SPECT/CT based individualized planning in ¹⁷⁷Lu-DOTATATE therapy in 52, 51 and 200 patients aiming at a renal BED=27Gy, D=23Gy and D=23Gy, respectively. They demonstrated that applying the standard recommendation of four 7.4GBq-cycles results in undertreating 85, 73 and 49% of the patients.

Garske-Roman et al [36] observed an impressive progression free survival (PFS) and overall survival (OS) improvement of patients who were able to reach the 23Gy renal dose limit (n=114) versus those who could not due to hematological toxicities (n=40) (fig. 6).
6. Smart optimized tandem therapy design: a proposal

As in tandem therapy, the potential toxicity is split between two different tissues, the activity fractionation can be reduced versus a single radionuclide therapy, which has the benefit to reduce aggressive tumours regrowth between cycles. As a result, a smart full optimized tandem therapy, fractionated in three cycles, can be proposed (fig. 7). It requires only 4 patient visits to the hospital, 3 amino-acid infusions and 5 imaging sessions.

At day 0, a fixed activity of 90Y-DOTATOC/TATE is injected with amino-acid infusion. The day after before releasing the patient from the hospital, a 90Y kidney 30min-PET/CT is performed.

At day 3, a 90Y kidneys 30min-PET/CT is performed to compute the kidney dosimetry in order to assess the residual 90Y activity needed to reach a BED of 15 Gy to the kidneys. Afterwards, this 90Y-DOTATOC/TATE activity complement is injected to the patient together with a fixed 177Lu-DOTATATE activity along with amino-acid infusion, blood sample is withdrawn to obtain the cell count base line. As, this session corresponds to the last 90Y cycle, co-injection of 177Lu does not impact the 90Y cross irradiation. Note that with regards to the effective kidney half-life (≈ 30h, [8]), the initial dose rate is already reduced by a factor ≈ 5, corresponding to an effective dose fractionation. The day after, before releasing the patient, a 177Lu thorax-abdomen 30min dual-head SPECT/CT is performed. Additionally, for a highly valuable scientific point of view, a blood sample could be taken to assess the relative binding of 177Lu and 90Y to transferrin in the same patient at the same time using size-exclusion chromatography, with appropriate MW standards.

At day 8, a 177Lu thorax-abdomen SPECT/CT is performed, and the kidney and RM dosimetry is computed. The kidney dosimetry should be computed using the S factors taking into account the 90Y and 177Lu beta range for the cross irradiation of the glomerulus by the taking up tubules [21]. At day 31, a blood sample is taken by the treating team or by the general practitioner to estimate the blood cell count nadir.

At day 41, a blood sample is withdrawn to check the cells counts recovery, and depending on the values at nadir and recovery, a 177Lu-DOTATATE activity complement is injected satisfying for the whole therapy the two limits: D < 2 Gy to the red marrow and BED < 31 Gy to the kidneys. Note that the physician has the competence to modulate these
limits according to the patient status and to his cells counts recovery. The day after, before releasing the patient a thorax-abdomen 177Lu SPECT/CT is performed. Afterwards, the patient undergoes the normal follow-up.

Figure 7: proposed smart optimized tandem therapy work flow including 4 patient visits to the hospital, with one or two imaging at each visit.

7. Conclusion

These recent years, many studies provided evidences of the huge benefit for the patient outcome to individually optimize the activity to be injected. Furthermore, although not performed along an optimized planning, recent studies have also established the importance to profit of the bi-orthogonal toxicity-response patterns of the tandem 90Y-DO-TATOC-177Lu-DOTATATE. No doubt, that combination of these two approaches, such as proposed in fig.7, will still improve the patient outcome and will push PRRT to a real curative intent.

However, last year, the EANM published a position paper [53] on the article 56 of the Council Directive 2013/95 Euratom which required an individualized optimisation planning in all radiotherapies. This position paper aims to provide a guidance on how to interpret the Directive statements and states that 177Lu-DOTATATE, used according to the package insert, is a standard therapy not requiring any individualized planning, which is scientifically questionable regarding the present review.

However, let’s recall that legally the MPE responsibility is framed by the corresponding national transposition of the directive. But, MPE or practitioner cannot be prosecuted for having followed the directive 2013/95 rather than the national implementation. Indeed, as the directive 2013/95 provisions are unconditional and sufficiently clear and precise, the directive has direct effects, and any individual can invoke the directive provisions in front of any national court [54]. The European Court of Justice jurisprudence has extended this principle to cases with incorrect implementation of a directive [55].

Supplementary Materials: none.

Author Contributions: Conceptualization, SW and FJ; methodology, SW and FJ.; formal analysis, SW and FJ; investigation, SW and FJ.; resources, SW and FJ.; writing—original draft preparation, SW and FJ.; writing—review and editing, SW and FJ; supervision, SW and FJ. All authors have read and agreed to the published version of the manuscript.

Funding: No funding was received.

Institutional Review Board Statement: not applicable.

Informed Consent Statement: not applicable.

Data Availability Statement: all data came for published articles.

Acknowledgments:

Conflicts of Interest: The authors declare no conflict of interest

References

22. not yet identified.

