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Abstract: Spectral unmixing represents both an application per se and a pre-processing step for1

several applications involving data acquired by imaging spectrometers. However, there is still a lack2

of publicly available reference data sets suitable for the validation and comparison of different spectral3

unmixing methods. In this paper we introduce the DLR HyperSpectral Unmixing (DLR HySU)4

benchmark dataset, acquired over German Aerospace Center (DLR) premises in Oberpfaffenhofen.5

The dataset includes airborne hyperspectral and RGB imagery of targets of different materials6

and sizes, complemented by simultaneous ground-based reflectance measurements. The DLR7

HySU benchmark allows a separate assessment of all spectral unmixing main steps: dimensionality8

estimation, endmember extraction (with and without pure pixe assumption), and abundance9

estimation. Results obtained with traditional algorithms for each of these steps are reported. To10

the best of our knowledge, this is the first time that real imaging spectrometer data with accurately11

measured targets are made available for hyperspectral unmixing experiments. The DLR HySU12

benchmark dataset is openly available online and the community is welcome to use it for spectral13

unmixing and other applications.14

Keywords: Spectral Unmixing; Imaging Spectrometer; Hyperspectral; Benchmark Dataset;15

Dimensionality Estimation; Endmember Extraction; Abundance Estimation; HySpex.16

1. Introduction17

The process of spectral unmixing (SU) aims at providing accurate information at sub-pixel level on18

a hyperspectral scene, by decomposing the spectral signature associated to an image element in signals19

typically belonging to macroscopically pure materials, or endmembers. The contribution of a given20

material to the spectrum of an image element is a fractional quantity, usually named abundance. The21

unmixing process is applied regularly within a wide range of research fields, ranging from classification22

and target detection to generic denoising and dimensionality reduction techniques [1,2]. Usually, the23

full process of spectral unmixing includes the following main steps, one of which is optional:24

1. Estimation of the number of materials present in the scene.25

2. Dimensionality reduction, as an optional step carried out by removing non-relevant spectral ranges26

or projecting the data onto a new parameter space, which can be defined also based on results27

from the previous step.28

3. Endmember extraction, in which the spectra related to materials present in the scene, often referred29

to as endmembers, are estimated.30
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4. Abundance estimation, in which the fractional coverage of each pixel is estimated in terms of the31

pure materials present on ground.32

It is not uncommon to refer to the whole process as unsupervised or supervised spectral unmixing33

when the endmembers must be estimated or are known in advance (reducing the problem to abundance34

estimation), respectively [3]. Spectral unmixing received an increase in attention after Keshava and35

Mustard’s seminal overview [4]. In 2012, a comprehensive review on the topic including an in-depth36

analysis of most state-of-the-art algorithms on dimensionality reduction, endmember extraction, and37

abundance estimation was published by Bioucas Dias et al. in [1].38

Researchers have usually a limited number of annotated hyperspectral datasets to validate their39

algorithms, as high spatial resolution state-of-the-art data are only acquirable by airborne instruments,40

and spaceborne imaging missions have mostly been hosting experimental instruments until recent41

years. As pointed out by Zhu et al [5], hyperspectral datasets with associated ground truth at sub-pixel42

level, suitable for the validation of unmixing algorithms, would be of great benefit to the community.43

The datasets commonly referred to as Urban, Jasper Ridge and Samson [5] are often used to assess44

dimensionality estimation, endmember extraction and abundance estimation methods. Nevertheless,45

these do not have an associated ground truth: no measurement was carried out in-situ, the spectral46

mixtures are not validated for any pixel, and the images contain spectral signatures belonging to47

several materials beyond the few macro-classes defined in [5]. Therefore, detected materials and48

their degree of mixture are usually matched against results obtained by other researchers applying49

state-of-the-art algorithms [6].50

In this paper we introduce the DLR HyperSpectral Unmixing (DLR HySU) benchmark dataset,51

which includes airborne and ground-based measurements of synthetic reference targets of different52

materials and sizes. The dataset allows a separate assessment of the spectral unmixing main steps,53

including dimensionality estimation, endmember extraction, and abundance estimation. The dataset is54

open and available online [7]. Results of popular state-of-the-art algorithms are assessed on a HySpex55

hyperspectral image acquired over DLR Oberpfaffenhofen premises as follows. In a typical processing56

pipeline, the first step would be to define the number of materials present in a dataset. If unknown,57

this can be derived by dimensionality estimation algorithms. In the presented framework, the number58

of materials is known for selected subsets as the targets were deployed in a field of rather uniform and59

short grass, without patches of bare soil or particularly stressed vegetation, and additional materials in60

the image can be easily masked out. Subsequently, the spectra related to pure materials are derived61

by endmember extraction algorithms: the dataset allows testing methods working both with and62

without the pure pixel assumption by restricting the analysis to sets of targets having the relevant63

size. The reference spectra used to assess the performance of the methods are extracted directly64

from the image since the presence of pure pixels is ensured by the large ratio between the size of the65

largest targets and the ground sampling distance (GSD). The selected spectra are compared to the66

in-situ measurements to verify a physically meaningful representation of the real reflectance of the67

materials. Finally, abundance estimation methods allow estimating the amount of each image element68

which belongs to one of the materials related to the identified endmembers. As all targets have been69

accurately measured, absolute errors can be computed as the difference between the integral of the70

abundances in a region of interest and the real area of the targets. Additional reported experiments71

jointly solve the endmember extraction and abundance estimation steps. The dataset also offers the72

possibility to test target detection algorithms, as additional small targets have been scattered in the73

area of interest, with the relative details made available for this purpose.74

Spectral unmixing has been modeled in the literature as either a linear or non-linear process. In
linear spectral unmixing, the contributions forming the spectrum related to a given image element
are directly proportional to the fractions of the target occupied by different materials. Therefore,
the assumption is that all solar light reaching the target is either absorbed or reflected to or away
from the sensor, after taking into account interactions with the atmosphere. In non-linear spectral
unmixing, more complex scattering interactions are considered, in which rays of light can bounce
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from neighboring image elements or undergo multiple scattering within the same image element
before being reflected towards the sensor, especially for targets having high refraction such as water
[8], belonging to composed or multi-layered structures, or wherever direct illumination sources are
absent, such as shadowed areas [9]. In literature the simpler linear model is often adopted in practical
applications since it represents a reliable first approximation of the actual material interactions and
generally provides valuable results [10]. In this paper we consider the linear model only, as the whole
area of interest is flat and far away from high-rise objects and no refractive materials are present. We
thus model the spectrum of a pixel p with m bands as a linear combination of n reference spectra
S = [s1, s2, . . . , sn] ∈ Rm×n, weighted by n scalar fractional abundances x = [x1, x2, . . . , xn]T ∈ Rn×1,
plus a residual vector r ∈ Rm×1 containing the portion of the signal which cannot be represented in
terms of the basis vectors of choice:

p =
n

∑
i=1

xisi + r = Sx + r . (1)

Here, r collects several quantities which are hard to separate, such as noise, over- or under-estimation75

of atmospheric interaction, missing materials in S, variations in the spectra of a single material within76

the scene, wrong estimation of the abundances x, and non-linear effects [2].77

The paper is structured as follows. Section 2 introduces the DLR HySU benchmark, including78

target deployment, airborne HySpex/3K imaging and ground-based SVC reflectance measurements.79

Sections 3, 4, and 5 report an assessment of dimensionality estimation, endmember extraction80

and abundances estimation algorithms, respectively. Section 6 contains additional experiments on81

single-step unmixing and hidden target detection. We conclude in Section 7 and report details on the82

targets deployed for the dataset in Appendix A.83

2. DLR HySU Benchmark Dataset84

The DLR HySU benchmark dataset was specifically designed to test all phases of spectral85

unmixing in different mixing regimes [7]. This was achieved by acquiring an airborne dataset over86

targets of diverse materials and sizes over a homogeneous background. The football field inside DLR87

premises at Oberpfaffenhofen was deemed sufficiently ample and its grass homogeneous enough to88

serve as background to the targets. This section describes the targets on the ground, the HySpex/3K89

airborne measurements and the SVC in-situ measurements.90

2.1. Targets91

The overall layout of the targets across the football field is shown in Figs. 1(a) and 1(b). A total of92

five materials were deployed: bitumen, red metal, blue fabric, red fabric and green fabric. A close-up93

view of each material is displayed in Fig. 1(c). The materials were chosen to exhibit a considerable94

spectral variability across visible and near infrared wavelengths (cf. Fig. 5) and to include challenging95

cases. For example, both bitumen and red metal have a relevant specular component, with the former96

also exhibiting a mostly flat spectrum and the latter having an irregular surface, while green fabric97

bears some resemblance to the background vegetation spectra. A sixth material (cotton) was left98

out given its problematic deployment in previous campaigns. For each material, squares with side99

lengths of 3, 2, 1, 0.5 and 0.25 m were prepared and placed by decreasing size across the football field100

orthogonal to the planned flight line. Target sizes and flight altitude were chosen to cover a broad101

range of mixing scenarios, with the 3 m targets leading to a handful of pure pixels for each material in102

the hyperspectral imagery and the 0.25 m targets leading to highly mixed pixels. As indicated in Fig. 1,103

the groups of same-size targets were set 3 m apart in order to avoid any mixed pixel belonging to104

materials of different sizes. In addition, three small sub-pixel targets were hidden in the surrounding105

area in order to test target detection algorithms. The dimensions, materials and approximate positions106

of the hidden targets are documented in Fig. 1(a), cf. positions F, G and H.107
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(a) RGB overview (b) Schematic target configuration

(c) Close-up of target materials

Figure 1. DLR HySU benchmark targets. Panel (a) shows an RGB overview of the football field with
the targets as imaged by the 3K camera. The ground track of the aircraft is shown by the dashed yellow
line. The schematic configuration of the different targets is illustrated in (b) and a close-up of the target
materials with the same spatial arrangement is shown in the bottom panel (c).
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(a) Deployment of 3 m targets (b) Deployment of 0.25 and 0.5 m targets (c) SVC

Figure 2. Impressions from the field work during the DLR HySU benchmark campaign. The
deployment of the large 3 m targets and the small 0.25 and 0.5 m targets is shown in (a) and (b),
respectively. The typical measurement setup of the SVC field spectrometer can be seen in (c).

Lessons learned from several previous field campaigns were incorporated into the design of108

this experiment. In particular, the flight was planned in order to acquire the targets close to nadir,109

minimizing potential distortions caused by aircraft movements along the roll axis. Past experience110

also prevented us from employing materials characterized by too high albedo and encouraged the111

use of a short sensor integration time in order to prevent saturation (see next section). The 3 m targets112

were added with respect to previous campaigns in order to ensure the presence of pure pixels. With113

the exception of the 0.25 and 0.5 m targets, all targets were formed from multiple pieces that had to be114

cut and combined (see Fig. 2). Measurements of the areas of all individual targets and their ground115

spectra are reported in Appendix A.116

2.2. Airborne Measurements117

The DLR HySU benchmark dataset includes airborne imagery acquired with an imaging118

spectrometer and an RGB aerial camera system. Both instruments were installed simultaneously119

on-board the DLR research aircraft D-CFFU, a Dornier 228-212 modified for Earth observation research.120

The imaging spectrometer consists of two HySpex pushbroom cameras manufactured by the121

Norwegian company NEO. It is operated by DLR as airborne demonstrator for the German EnMAP122

satellite mission and covers the spectral range 420− 2500 nm. The visible and near infrared (VNIR)123

camera (HySpex VNIR-1600) features 1600 geometric pixels and 128 spectral channels covering the124

wavelength range 416− 992 nm. At an altitude of 1 km above ground it has a spatial resolution of125

0.5− 1.0 m along track and 0.3− 0.5 m across-track. The spectral resolution is 3.5− 6.0 nm. The126

short-wave infrared (SWIR) camera (HySpex SWIR-320m-e) measures the upwelling radiation in the127

wavelength range 968− 2498 nm at 256 spectral channels for 320 geometric pixels. It has a geometric128

resolution of 1.1− 1.7 m at 1 km above ground and a spectral resolution of 5.6− 7 nm. A detailed129

description of the DLR HySpex system can be found in [11].130

In addition to the HySpex spectrometer we acquired RGB images with the DLR 3K aerial camera.131

The 3K system consists of three 35 mm Canon EOS cameras equipped with Zeiss 50 mm lenses. For132

this experiment the cameras were positioned to look sideways left/right and nadir to maximize the133

accumulated field of view. The GSD of the 3K camera is approximately 13 cm at 1 km above ground.134

The interested reader is referred to [12] for a detailed description of the 3K camera system.135

The HySpex/3K data for the DLR HySU benchmark were acquired on 4 June 2018 over the DLR136

site at Oberpfaffenhofen, Germany, centered at WGS84 geographic coordinates 11.278◦ East longitude137

and 48.083◦ North latitude. A total of 12 flight lines were recorded at two different altitudes (1000 and138

1900 m above ground level) at a true heading of 83◦ East of North between 08:40 UTC and 9:50 UTC.139

The weather conditions were pristine with very few occasional cirrus clouds and an aerosol optical140

depth (AOD at 550 nm) between 0.10 - 0.12 and 0.09 - 0.10, according to the nearby AERONET [13]141

sites Munich University and Hohenpeissenberg (DWD), respectively. In order to avoid overexposure of142

bright targets, a relatively short integration time of 5 ms was used for the HySpex VNIR sensor, which143
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Figure 3. Survey area located on DLR premises in Oberpfaffenhofen, Bayern, Germany. Relevant flight
line and location of the deployed synthetic targets are overlaid.

may lead to a low Signal-to-Noise Ratio (SNR) for dark targets. This setting was chosen based on144

lessons learned during a similar experiment two years earlier. For this study, we use data from a single145

flight line acquired at 9:00 UTC during a central overpass 1000 m above the test field (see Fig. 3). A146

3K RGB subset covering the test area is shown in Fig. 1(a). A detailed description of all HySpex data147

processing steps is provided in the next section.148

2.2.1. HySpex Processing Chain149

After preparation of the GPS position and inertial measurement unit (IMU) orientation data for150

direct georeferencing of the flight lines, the HySpex data are processed using the generic processing151

system Catena, developed at DLR [14], up to level L2A corresponding to surface reflectance. The152

processing comprises systematic correction, orthorectification, co-registration of VNIR and SWIR data,153

and atmospheric correction. For the systematic correction, the following steps are applied to each154

frame in the given order: dark signal correction, linearity correction (VNIR only), stray light correction155

(VNIR only), radiometric calibration, bad pixel correction (SWIR only), and finally correction of point156

spread function (PSF) non-uniformities [15]. For the co-registration of VNIR and SWIR data, a BRISK157

matching is used [16]. After this step, the data are orthorectified using the physical sensor model, the158

GPS-/IMU-data, the mounting angles and the DEM by the DLR software ORTHO [17], followed by159

atmospheric correction using the DLR software ATCOR [18,19].160

For the dataset used in this paper, a bilinear spatial resampling was used during orthorectification161

and the pixel size was set based on the flight height to 0.7 m for the VNIR and 1.4 m for the SWIR data.162

As the data from VNIR and SWIR are acquired with different spatial resolutions, there are two options163

for the processing: (a) orthorectify both datasets with the (coarser) resolution of SWIR and merge the164

data into one cube for the atmospheric correction in ATCOR, resulting in continuous spectra across165

the full VNIR and SWIR ranges; or (b) keep the original spatial resolutions for the VNIR and SWIR166

datasets and process them independently in ATCOR, resulting in a discontinuity in the spectra at the167

transition between the VNIR and SWIR ranges. For this paper, it was decided to go with option (b) to168

exploit the high spatial resolution of the VNIR data, discarding the data from the SWIR sensor.169

The processed HySpex data is delivered in surface reflectance with 16-bit integer values, with a170

scale factor of 104 to be considered during data analysis. Note that the test field for the DLR HySU171
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(a) Full (b) Targets

(c) Small

(d) Large

Figure 4. True color composites of the HySpex subsets provided in the DLR HySU benchmark dataset.
The whole area of interest within a larger context is depicted in (a). All targets at different sizes and
mixture levels are contained in subset (b). Here, the bright target in the upper part of the image to the
right indicates the location of the white panel used as reference for the in-situ data collection. All area
northeastern from the overlaid white line, also including mixtures of grass and road in the northeastern
corner, can be masked out and excluded from endmember extraction assessments. A small subset with
a high degree of mixture containing the small 0.25 and 0.5 m targets only is reported in (c). The case of
the large 3 m targets only is represented in (d). Here, the locations of image elements collected for the
spectral library reported in Fig. 5 are marked in white. A full description of each subset in given in
2.2.2.

benchmark occupies an area smaller than 100 m×100 m, so the influence of the atmosphere can be172

considered homogeneous across the scene. The area is also essentially flat and thus terrain correction173

plays no significant role. Finally, the AOD at 550 nm retrieved from HySpex data during ATCOR174

atmospheric correction (0.11 ± 0.02) agrees well with the values from the nearby AERONET sites175

quoted above, indicating an accurate atmospheric correction and a homogeneous aerosol distribution176

over the survey area.177

2.2.2. HySpex Subsets178

The HySpex data was further post-processed in order to deliver a consistent benchmark dataset.179

As mentioned in the previous section, only the VNIR data was kept from the HySpex acquisition. In180

addition, spectral bands above 900 nm have been discarded, as the short integration time introduces a181

degradation in terms of SNR in particular for these wavelengths. This results in a total of 135 spectral182

bands in the range 417− 903 nm. The single flight line employed has been subset in different ways,183

facilitating the testing of a broad variety of algorithms over scenarios with variable complexity. Each184

subset corresponds to a given number of materials K present in the scene. We defined five different185

HySpex spatial subsets for the DLR HySU benchmark, depicted in Fig. 4, as follows (size given in rows186

× columns):187

• Full (86 × 123) contains the whole area of interest and its surroundings, with multiple materials188

present. It is not possible to give an accurate estimation for the expected value K, but we estimate189

it to be at least 12.190

• All Targets (42 × 24) includes all targets of all sizes, within a non-homogeneous background191

containing grass, a reference white panel and some image elements close to the road. The192

expected value of K should be higher than 6 and not larger than 9.193
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Figure 5. Spectral library manually extracted from the HySpex image (solid lines) compared to mean
SVC acquisitions (dotted lines). The HySpex spectra are selected in the center of the corresponding 3 m
targets (marked in white in Fig. 4(d)), while the grass spectrum represents the dominant background.
The individual SVC acquisitions leading to the mean SVC measurement shown here can be found in
Fig. A1. Wavelengths are expressed in micrometers.

• All Targets Masked (42 × 24, with a total of 884 valid pixels) is the same as above, but with194

non-homogeneous areas in the background masked out. The expected value of K is 6.195

• Small Targets (12 × 12) contains only the 0.25 and 0.5 m targets. As the HySpex data are196

resampled to a 0.7 m grid, in this subset all pixels are mixed with the exception of the surrounding197

grass. This allows testing endmember extraction algorithms without the pure pixel assumption.198

The value K does not apply here due to the high mixing degree of the pixels.199

• Large Targets (13 × 16) represents the subset containing only the 3 m targets (five in total) and200

the surrounding homogeneous grass. This subset is aimed at providing the easiest setting for201

dimensionality estimation, endmember extraction with pure pixel assumption, and abundance202

estimation. The expected value of K is 6. In Fig. 4(d) the locations of the representative image203

elements used for the creation of the spectral library used in this paper are marked in white.204

The six key materials in the region of interest (five targets plus surrounding grass) span a205

considerable range of different spectra, as shown in Fig. 5. The solid lines in the figure indicate206

the spectra collected directly from the HySpex image at the center of the large targets (cf. Fig. 4(d)).207

Bitumen features an almost flat, low-reflectance spectrum, while blue fabric presents ∼ 20% and 40%208

reflectance at blue (∼ 480 nm) and infrared (> 700 nm) wavelengths, respectively. The reflectance of209

red metal and red fabric exhibit a steep increase around 600 nm with red fabric much brighter than red210

metal in the infrared. Finally, the reflectance of both green fabric and grass increase around 700 nm,211

with the so-called red edge typical of vegetation evident only in the latter. This variability highlights212

the challenging nature of the DLR HySU benchmark dataset to test spectral unmixing frameworks.213

2.3. Field Measurements214

In addition to the airborne observations, we performed simultaneous ground-based reflectance215

measurements of the reference targets with an SVC HR 1024i field spectrometer equipped with a 4◦ lens216

optic (see Fig. 2(c)). The downwelling irradiance was measured with a white spectralon panel, which217
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was placed on the target before each measurement of the upwelling radiance reflected by the target.218

The reflectance of the spectralon panel was characterized against a calibrated gray panel before the first219

measurement. The SVC reflectance spectra shown as dotted lines in Fig. 5 are obtained by averaging220

various measurements at different sample spots for each material. The individual measurements are221

visualized as grey lines in Fig. A1. The main source of uncertainty regarding the SVC measurements222

is the intra-class variability of each material. As indicated by Fig. A1, the surface reflectance of the223

targets can vary considerably from sample to sample. These changes are e.g. caused by sunglint at224

uneven surfaces, variations in texture and thin layers of occasional wind-blown dust. The HySpex225

measurements lie within the envelope of the SVC reflectance data, and are therefore considered suitable226

for the spectral unmixing experiments conducted in this work.227

3. Dimensionality Estimation228

Dimensionality estimation is often carried out before identifying the materials within a scene229

using endmember extraction algorithms, whenever their number is not known a priori. The output of230

dimensionality estimation is an integer representing the estimated number of dimensions, which is231

usually considered equal to the number of different materials within the scene. Nevertheless, the use232

of this family of algorithms goes beyond unmixing workflows, as the estimated number of dimensions233

can be used to drive dimensionality reduction steps, for example by selecting the number of synthetic234

variables to be kept after a rotation of the parameter space through Principal Components Analysis235

(PCA) or Minimum Noise Fraction (MNF). This is due to the high dimensionality of hyperspectral236

data, with an image containing up to hundreds of narrow spectral bands, often strongly correlated,237

especially within limited spectral ranges.238

In this section, we report the results of two popular methods on different configurations of the239

DLR HySU dataset: the Hyperspectral Signal Identification by Minimum Error (HySime) [20] and240

the Harsanyi–Farrand–Chang (HFC) method [21], as implemented in [22] and [23], respectively. Both241

algorithms aim at identifying the real informational content of a scene using eigenvalues analysis242

after projecting the data onto a suitable space. A more complete overview on the topic is reported in243

[24]. HySime is one of the most popular choices in literature due to a satisfactory performance, the244

limited computational resources required, and the absence of required additional input parameters.245

The noise statistics needed to run the algorithm can be estimated directly from the data in a first step.246

While HySime is based on least square error minimization, HFC aims at separating noise and signal247

eigenvalues, being formulated as a detection problem [21]. An additional parameter t representing the248

false alarm rate must be given as input.249

We estimate the dimensionality of the data on four out of the five subsets of the DLR HySU250

dataset described in Section 2.2.2. The main purpose of testing on the different subsets is that the251

estimated dimensionality is expected to increase when including additional materials with respect to252

the ones considered in Fig. 5. Therefore, it is of interest to consider also the subsets where K is larger253

but its exact value is unknown. We leave out the Small Targets subset in order to satisfy the pigeon-hole254

principle on which these algorithms are based, which associates each dimension to a target material255

represented by a pure spectrum [1].256

The results reported in Tab. 1 show that HySime clearly overestimates the real dimensionality257

of the three smaller subsets, with an increasing error as the dataset gets smaller. This is in line with258

previous experiments finding HySime to strongly overestimate the number of endmembers when259

applied to small datasets, such as the Samson dataset [25]: the window in which the algorithm is260

estimating the noise must be large enough [26], otherwise the analysis can be driven by noise rather261

than signal [27]. As the size of the image increases, HySime results stabilize and provide a meaningful262

result for the case of the full subset. We report HFC performance when setting the false alarm rate263

t to 10−3, 10−4, and 10−5, because these values are commonly used in the literature [20,25,28]. On264

the DLR HySU dataset the HFC clearly outperforms HySime on the three smaller subsets, with265

a rather stable estimation, as the former is in principle not affected by the total size of the image266
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Dataset Full All Targets All Targets Masked Large Targets
Nr. of pixels 10578 1008 884 208

K 12+ 7-9 6 6

HySime 16 18 20 46
HFC (t = 10−3) 57 7 7 6
HFC (t = 10−4) 48 7 7 6
HFC (t = 10−5) 40 7 7 5

Table 1. Results of dimensionality estimation on four subsets of the DLR HySU dataset.

[26,29]. On the other hand, HFC is likely overestimating K on the full dataset. In spite of being267

limited, the assessment presented in this section enforces the idea that the most suitable algorithm for268

dimensionality estimation should be selected according to the properties of the data at hand.269

4. Endmember Extraction270

Endmember extraction (EE) methods aim at identifying spectra related to materials which are271

homogeneous at a relevant scale (which depends on the data at hand and the application) in a272

hyperspectral scene. Algorithms working under the pure pixel assumption try to identify image273

elements associated to the most representative spectra for all materials contained in the image. On the274

other hand, EE algorithms working without the pure pixel assumption [30] consider any image element275

as a mixture of several materials and try to identify them outside of the convex hull encompassing the276

data. The latter class of algorithms is of particular importance for current times, which are witnessing277

the first spaceborne dedicated hyperspectral missions such as DESIS [31], usually characterized by a278

GSD in the order of 30 meters, and therefore often not containing pure pixels for relevant materials279

present in a scene.280

In this section, we report results of traditional EE methods, both with and without pure281

pixel assumption. We consider the following four algorithms with pure pixel assumption. Vertex282

Components Analysis (VCA) [22,32] iteratively determines endmembers as extreme pixels on the283

convex hull and performs orthogonal subspace projection (OSP) with respect to the determined284

endmembers, taking into account noise influences in the process. N-FINDR [33], here used as285

implemented in [23], initializes the endmembers as random pixels in the variable space and iteratively286

substitutes them with their spectral neighbours, keeping the final set spanning the maximum volume.287

Automatic Target Generation Process (ATGP) [34] is also based on OSP, with its main difference288

with respect to VCA lying in the initialization step [35]. ATGP has been tested in this paper with the289

Python implementation in [36]. Finally, Pixel Purity Index (PPI) [37], which was made popular by290

its availability in software packages such as ENVI, selects extreme pixels in the data cloud projected291

in the variable space by drawing a set of random lines and choosing pixels marked more often as292

extremes. As several parameters, including the number of lines, must be set in advance, PPI has293

seen relatively less use in recent years. In this paper, we applied PPI with default parameters in two294

different software packages (in Python [36] and Matlab [23], obtaining similar results). In the group295

of algorithms without pure pixel assumption, we tested split augmented Lagrangian (SISAL) [38] as296

implemented in [22] and Non-negative Matrix Factorization (NMF) [39] as implemented in [40], both297

aiming at identifying the minimum volume simplex containing the hyperspectral vectors. In following298

experiments, the Itakuro-Saito distance [41] has been used as distortion measure for NMF, as it yielded299

the best performance. In an additional experiment, we applied the k-means clustering algorithm [42]300

to the subsets in order to highlight materials which could be confused in the scenario.301

The experiments have been carried out on all datasets containing, as far as we have been able302

to verify, only six relevant materials as reported in Fig. 5. These are the subsets Large Targets and All303

Targets Masked (containing pure and mixed pixels) and the subset Small Targets (containing only mixed304

pixels except for most grass image elements). The performance of each algorithm is evaluated by305
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associating to each material in the HySpex spectral library (i.e., the solid lines in Fig. 5) the extracted306

endmember yielding the minimum spectral angle [43]. Note that a single extracted endmember could307

be the nearest neighbour to two different materials in the library: this does not bias the results of the308

analysis, as both spectral angles cannot be simultaneously small.309

All algorithms with pure pixel assumptions were tested on the Large Targets dataset and their310

performance is reported in Fig. 6(a). Here, results from the best algorithm among the two based on311

minimum volume analysis, namely SISAL, are also reported. VCA and N-FINDR obtain the best312

results, with SISAL obtaining a poor performance, as does PPI with both the Python and Matlab313

implementations (both implementations give similar results, so we only report the former). For VCA314

and N-FINDR we have carried out a few trials in order to confirm that slight differences in the output315

would not affect the analysis, and show only a representative run. The results obtained by dictionary316

learning (DL), also shown in the plot, are competitive, but we defer their discussion to Sec. 6.1, while317

the performance of k-means is reported in Sec. 4.1. The locations of the retrieved endmembers are318

shown for the three best algorithms VCA, N-FINDR and ATGP in Fig. 9. As hinted in Fig. 6(a), ATGP is319

missing the green fabric endmember and the largest distortion for bitumen is because the endmember320

chosen is a mixed pixel with the adjacent red metal sheets.321

Results on the Small Targets subset are reported in Fig. 6(b). As expected, algorithms operating322

without the pure pixel assumption yield the best performance, with slightly better results obtained by323

SISAL. Improvements are however not substantial with respect to VCA and N-FINDR. All algorithms324

struggle at identifying the bitumen material, which is difficult to retrieve in a mixed setting due to325

the absence of clear absorption features in the analysed spectral range. Furthermore, green fabric326

appears also here as a difficult material to find, probably due to some spectral features in common327

with the dominating grass spectra. Fig. 7 shows the iterations of the SISAL algorithm, produced by its328

implementation in [22], showing the evolution of the endmembers in a squashed two-dimensional329

representation.330

Results on the subset containing all targets with masked background are reported in Fig. 8. If the331

ideal input number of endmembers k = 6 is used as in Fig. 8(a), VCA obtains the best results, followed332

by N-FINDR and ATGP, which have problems with the bitumen and green fabric endmembers,333

respectively (see Fig. 10). In Fig. 8(b) we report results obtained by setting the input number of334

endmembers k as the value between 6 and 10 yielding the best results. In this case, additional335

endmembers which are not matched to any of the six spectra in the HySpex reference library in Fig. 5336

(solid lines) are simply ignored. Distortions are as expected reduced with the exception of k-means337

(see dedicated section 4.1), and VCA yields again the best performance, followed by N-FINDR. Again,338

the results of DL are discussed in Sec. 6.1. In spite of the higher number of spectra extracted, ATGP339

does not manage to extract accurately the bitumen spectrum. This is shown also in Fig. 11, reporting340

the locations of the extracted endmembers, where some additional materials detected by ATGP are341

still located in mixed image elements.342

4.1. Clustering Experiment343

In order to assess the separability of the different materials, we report an additional experiment344

involving k-means [42] in representation of clustering algorithms. In order to use k-means for345

endmembers extraction, we selected the cluster centroids output by the algorithm. K-means is not346

traditionally directly applied to this problem (with some exceptions, e.g. [44]): on the one hand, it347

does not locate pure pixels (the centroids usually do not exactly match any image element); on the348

other hand, it is not able to locate endmembers outside of the convex hull encompassing the data349

for a highly mixed scenario. Therefore, unsupervised clustering is rather used as a pre-processing350

step for other EE algorithms [45] and, in order to avoid confusion, k-means results are presented351

separately in this paragraph. We ran the algorithm using as input number of clusters k = 6 on the352

Large Targets and All Targets Masked subsets. On the latter we also used k = 9, as this yielded the best353

results in terms of spectral angle if k is allowed to vary between 6 and 10. Results reported in Fig.354
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(a) Large Targets (b) Small Targets

Figure 6. Spectral angle between endmembers extracted by different EE algorithms and the HySpex
reference spectra reported in Fig. 5. The algorithms have been applied to the subset containing the
large 3 m targets only (a), which should be the easier case, and on the scenario containing no pure
endmembers (b), which is a highly mixed scenario. VCA and N-FINDR algorithms retrieve the correct
spectra with the least amount of distortion for the large targets (see also Fig. 9), while the SISAL [38]
and NMF algorithms operating without the pure pixel assumption obtain slightly better results in the
mixed scenario. The results of dictionary learning (DL) will be discussed in Sec. 6.1.

Figure 7. SISAL iterations shown in a two-dimensional projection of the spectral parameter space for
the Small Targets subset. The blue dots represent the data points and the red ones the endmembers
identified in consecutive iterations up to convergence to the chosen solution shown as green dots.

12 show a partial separation of the targets, with the bitumen and green fabric endmembers largely355

merged in a single cluster and the mixed pixels between red fabric and grass assigned to a separate356

cluster. As the number of clusters grow, larger amount of mixed pixels form additional clusters. This357

explains the marginal improvement when increasing the value of k in Fig. 8 in terms of spectral angle358

between cluster centroids and endmembers. Furthermore, it confirms that k-means is not reliable as a359

stand-alone endmember extraction method in spite of comparable results to traditional algorithms on360

the All Targets Masked subset.361

5. Abundance estimation362

The last step in the spectral unmixing process is abundance estimation. This task consists of363

estimating the individual material abundances in each pixel given a library of spectral endmembers.364

As stated in Sec. 1, we adopt solely the linear mixture model (cf. Eq. 1). Note that the abundances365

are not necessarily related to the relative areas occupied by the materials (for a discussion, see [1]366

and references therein). However, such assumption is made here along with linear mixing and the367
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(a) All Targets Masked [6] (b) All Targets Masked [6− 10]

Figure 8. Spectral angle between endmembers extracted by different EE algorithms and the HySpex
reference spectra reported in Fig. 5. In (a), the input number of endmembers k = 6 has been used, while
in (b) the best k between 6 and 10 was chosen according to the best results (k indicated in parenthesis
for each method).

(a) VCA (b) N-FINDR (c) ATGP

Figure 9. Locations of endmembers extracted from algorithms working under the pure pixel
assumption on the Large Targets subset using as input number of endmembers k = 6.

measured target areas are accordingly used as ground truth to evaluate the accuracy of abundance368

estimation. This simplified approach will be validated a posteriori by the obtained results. In the369

following we report on the application of widely used abundance estimation algorithms to the DLR370

HySU benchmark dataset. Unless otherwise stated, the reference spectral library extracted from the371

HySpex image (cf. solid lines in Fig. 5) is used as input to the algorithms. This choice enables the372

evaluation of the abundance estimation process itself while being decoupled from any uncertainties373

introduced by endmember extraction. The robustness of our results against the choice of the spectral374

library is nevertheless investigated at the end of the section.375

Four traditional algorithms commonly used for abundance estimation were evaluated:376

unconstrained least squares (UCLS), non-negative least squares (NNLS), fully constrained least squares377

(FCLS) [46] and least squares with least absolute shrinkage and selection operator (LASSO) [47]. All378

mentioned algorithms are based on least squares minimisation, but the constraints applied on the379

abundances are distinct: UCLS finds the plain least squares solution without any constraints; NNLS380

and FCLS both require abundances to be non-negative (the so-called non-negativity constraint), with381

FCLS requiring in addition that the abundances sum to one (the so-called sum-to-one constraint);382

the version of LASSO used in this work implements the abundance non-negativity constraint and383

an upper limit λ on the `1-norm of the abundance vector, which induces sparsity. Although other384

methods exist in the literature, the mentioned algorithms, which also cover sparse analysis, are among385

the most relevant techniques in use within the hyperspectral community for linear unmixing. The386

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 May 2021                   doi:10.20944/preprints202105.0444.v1

https://doi.org/10.20944/preprints202105.0444.v1


Version May 17, 2021 submitted to ISPRS Int. J. Geo-Inf. 14 of 28

(a) VCA (b) N-FINDR (c) ATGP

Figure 10. Locations of endmembers extracted from algorithms working under the pure pixel
assumption on the subset All Targets Masked using as input number of endmembers k = 6.

(a) VCA [10] (b) N-FINDR [10] (c) ATGP [9]

Figure 11. Locations of endmembers extracted from algorithms working under the pure pixel
assumption on the subset All Targets Masked using as input number of endmembers k the best value
between 6 and 10, indicated in brackets for each algorithm.

results reported here are based on the MatLab implementation of UCLS, NNLS and FCLS [23] and on387

the Python implementation of LASSO in the SPAMS toolbox [48–50].388

The abundance maps obtained with UCLS, NNLS, FCLS and LASSO (with λ = 1) are shown389

in Fig. 13. The six abundances (five materials plus vegetation background) for each algorithm are390

displayed in single RGB composites, where red metal and red fabric are associated to the red channel,391
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(a) Large Targets [6]

(b) All Targets Masked [6] (c) All Targets Masked [9]

Figure 12. K-means clustering on subsets Large Targets and All Targets Masked. The number of
endmembers k used in each case is shown in brackets. The centroids of each cluster are matched
to the endmembers in the HySpex reference spectral library in Fig. 5.

green fabric and grass (the latter rescaled from 0 to 0.3 for visualization purposes) to the green channel,392

and blue fabric and bitumen to the blue channel. Since all tested algorithms perform unmixing for393

each pixel independently, the results in Fig. 13 only had to be obtained once for the full subset. This394

is different from the case of the endmember extraction investigated in Sec. 4, where algorithms were395

tested in several subsets of the benchmark. Overall, the four unmixing techniques are able to derive396

abundance maps where most targets are well-defined with relatively crisp edges, little confusion397

between the materials and few false positives across the subset. It is clear that pure or close to pure398

pixels are identified in the 3 and 2 m targets, while smaller targets correspond to highly mixed pixels399

as expected. The absence of visible aliasing effects in Fig. 13 is due to a realistic abundance estimation400

of mixed pixels, yielding smooth transitions on boundaries between different materials. Fig. 14 reports401

a detail of NNLS abundances for the largest targets, offering a more detailed overview about what402

happens in pixels with a high degree of mixture. The qualitative positive outcome of the abundance403

estimation step attests the accuracy of the unmixing algorithms as well as the quality of the reference404

spectral library. Two additional features in Fig. 13 are worth pointing out. Firstly, in all cases a large405

abundance of bitumen is found to the right of the 1 m targets in the position of the SVC white panel406

(cf. position I in Fig. 1(a)), as both bitumen and the white panel exhibit a similarly flat spectrum.407

Secondly, the vegetation background has been clearly singled out by unmixing with one endmember408

only despite the slight spectral variability of grass across the football field.409

Moving to a quantitative analysis, the obtained abundances can be directly associated to the410

area of each target on the ground. The approximate areas of the deployed targets are 9, 4, 1, 0.25 and411

0.0625 m2, corresponding approximately to 18.4, 8.2, 2.0, 0.5, and 0.1 pixels in the HySpex processed412

dataset of 0.7 m spatial resolution, with the exact areas measured on site (cf. Appendix A) used for413

validation. The estimated area of a target t, denoted Ât, is derived from the abundance maps in Fig. 13414

as the integral of all fractional material abundances {xi} inside a region Rt surrounding the target.415

This assumes implicitly the correspondence between abundances and fractional area occupied by the416

material inside the pixel. The region Rt is defined by selecting the central pixel of each target and417

expanding the region until the abundance for the material of interest is x < 0.01. The regions for the418

two smaller targets (0.25 and 0.5 m) have been additionally dilated using as structuring element a disc419

with radius 1. The definition of Rt was designed to ensure that all pixels containing the target signal420

(both pure and mixed) are included and simultaneously spurious abundances far from the target are421

neglected. The regions Rt are depicted in Fig. 15 with a brightness proportional to the number of422

different regions assigned to each pixel, and as a consequence to the potential degree of mixture. The423
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(a) UCLS (b) NNLS (c) FCLS (d) LASSO

Figure 13. Abundance maps obtained by spectral unmixing for the DLR HySU benchmark. The
results for UCLS, NNLS, FCLS and LASSO (λ = 1) are combined in a single RGB representation. The
abundances (stretched from 0 to 1) are color-coded as follows: red metal and red fabric in red, green
fabric and grass in green, bitumen and blue fabric in blue. The grass abundance was rescaled from 0 to
0.3 in order not to hide the boundary with green fabric.

Figure 14. Detail of Fig. 13(b) for abundances computed with the NNLS algorithm on the 3 and 2 m
targets, with grid showing single image elements overlaid.

Figure 15. Regions Rt where abundances contribute to the estimation of the area for each target t.
Brightest pixels indicate that an image element is considered for several targets, i.e. it may have a higher
degree of mixture. Pixels where contributions from a single material are expected are represented in
dark red, while pixels where five materials can contribute, as in the smallest targets to the north, are
depicted in white.
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Material 3 m 2 m 1 m 0.5 m 0.25 m
UCLS

Bitumen 19.839 (+7.7%) 8.678 (+6.3%) 3.221 (+60%) 0.555 (+5.5%) 0.363 (+185%)
Red metal 16.255 (−10%) 7.682 (−5.7%) 1.649 (−11%) 0.457 (−10%) 0.009 (−93%)
Blue fabric 18.072 (−0.9%) 8.250 (−0.4%) 1.974 (−3.8%) 0.372 (−27%) 0.057 (−54%)
Red fabric 18.142 (−3.5%) 7.886 (−3.2%) 2.001 (−1.9%) 0.380 (−26%) 0.051 (−62%)
Green fabric 17.824 (−3.8%) 8.156 (−0.6%) 1.823 (−11%) −0.164 (−133%) −0.319 (−336%)
Average 5.2% 3.2% 18% 40% 146%

NNLS
Bitumen 18.356 (−0.4%) 8.000 (−2.0%) 2.534 (+26%) 0.416 (−21%) 0.166 (+30%)
Red metal 16.943 (−6.2%) 7.800 (−4.2%) 1.767 (−4.8%) 0.600 (+18%) 0.072 (−42%)
Blue fabric 18.175 (−0.4%) 8.401 (+1.4%) 2.065 (+0.7%) 0.474 (−7.0%) 0.124 (−1.2%)
Red fabric 17.603 (−6.4%) 7.833 (−3.8%) 1.907 (−6.6%) 0.418 (−19%) 0.142 (+7.3%)
Green fabric 17.616 (−4.9%) 7.739 (−5.7%) 1.832 (−10%) 0.239 (−53%) 0.175 (+29%)
Average 3.6% 3.4% 9.7% 23% 22%

FCLS
Bitumen 18.465 (+0.2%) 8.072 (−1.1%) 2.233 (+11%) 0.395 (−25%) 0.123 (−3.6%)
Red metal 17.157 (−5.0%) 7.825 (−3.9%) 1.766 (−4.9%) 0.627 (+23%) 0.141 (+15%)
Blue fabric 18.328 (+0.5%) 8.525 (+2.9%) 2.138 (+4.2%) 0.439 (−14%) 0.106 (−15%)
Red fabric 18.361 (−2.3%) 7.955 (−2.3%) 1.951 (−4.4%) 0.449 (−13%) 0.110 (−17%)
Green fabric 17.909 (−3.3%) 8.053 (−1.8%) 2.340 (+15%) 0.638 (+26%) 0.838 (+520%)
Average 2.3% 2.4% 7.9% 20% 114%

LASSO (λ = 1)
Bitumen 18.311 (−0.6%) 8.011 (−1.9%) 2.519 (+25%) 0.416 (−21%) 0.166 (+30%)
Red metal 16.727 (−7.4%) 7.667 (−5.8%) 1.646 (−11%) 0.600 (+18%) 0.072 (−42%)
Blue fabric 18.417 (+0.9%) 8.595 (+3.7%) 2.183 (+6.4%) 0.474 (−7.0%) 0.124 (−1.2%)
Red fabric 18.440 (−1.9%) 8.009 (−1.6%) 1.983 (−2.8%) 0.482 (−6.4%) 0.142 (+7.3%)
Green fabric 17.283 (−6.7%) 7.436 (−9.4%) 1.663 (−19%) 0.239 (−53%) 0.175 (+29%)
Average 3.5% 4.5% 13% 21% 22%

N-FINDR+NNLS
Bitumen 16.383 (−11%) 7.391 (−9.5%) 2.809 (+40%) 0.571 (+8.6%) 0.378 (+196%)
Red metal 16.990 (−5.9%) 7.869 (−3.4%) 1.956 (+5.3%) 0.828 (+62%) 0.258 (+111%)
Blue fabric 18.211 (−0.2%) 8.474 (+2.3%) 2.114 (+3.1%) 0.585 (+15%) 0.278 (+122%)
Red fabric 16.967 (−9.7%) 7.629 (−6.3%) 1.910 (−6.4%) 0.453 (−12%) 0.216 (+63%)
Green fabric 18.545 (+0.1%) 8.682 (+5.8%) 2.611 (+28%) 0.789 (+56%) 1.073 (+693%)
Average 5.4% 5.4% 16% 31% 237%

Table 2. Target areas derived from abundance estimation for the DLR HySU benchmark. The estimated
areas are shown in black in units of pixels and can be compared to the actual measured areas in Tab. A2.
For convenience, we report the signed relative error (Ât − At)/At in parentheses and color code it
to green when its absolute value is below 10%, orange between 10 and 25% and red above 25%. The
unsigned relative error |Ât − At|/At is also recorded for each algorithm and target size averaged over
the target materials.
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estimated areas Ât for all targets and unmixing algorithms are reported in Tab. 2 in units of pixels.424

Using the measured areas At in Tab. A2 as ground truth, the unsigned relative error |Ât − At|/At is425

plotted in Fig. 16 for each target size, material and algorithm.426

(a) 3 m targets (b) 2 m targets

(c) 1 m targets (d) 0.5 m targets

(e) 0.25 m targets (f) Legend

Figure 16. Target area error from abundance estimation for the DLR HySU benchmark. The unsigned
relative error |Ât − At|/At displayed here for each algorithm, target size and target material was
obtained by combining the estimated areas from Tab. 2 and the actual measured areas from Tab. A2.

The area estimation results in Tab. 2 and Fig. 16 reveal several interesting trends. It is remarkable427

that the areas of the targets on the ground can be reconstructed down to a few percent accuracy using428

hyperspectral data only, without obvious biases towards general over- or under-estimation of the areas.429

This lends credit to our initial assumption linking abundances to relative areas, and it constitutes430

a non-trivial, independent test of the linear mixing model. Overall, the linear model offers a good431

description of the DLR HySU benchmark. The area estimation accuracy is however not universally432

high and depends strongly on the unmixing algorithm of choice, target material and target size. These433

effects are now discussed in turn.434

All four tested algorithms lead to similar area estimation results for the DLR HySU benchmark435

targets. However, the NNLS and LASSO (λ = 1) algorithms give the most consistent estimates across436

the different target materials and sizes. The mean area estimation error for these algorithms ranges437

from ∼ 4% for the 3 m targets up to ∼ 20% for the 0.25 m targets. FCLS actually presents better mean438

accuracy for the 3, 2, 1 and 0.5 m targets, but it evidently fails for the 0.25 m green fabric target. The439

combination of the abundance non-negativity and abundance sum constraints in FCLS appears to be440
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disadvantageous for unmixing small sub-pixel targets resembling the background vegetation. UCLS441

obtains results in line with the other algorithms for the larger targets, but it breaks down for the 0.5 m442

green fabric target and all 0.25 m targets. The lack of any abundance constraint seems to make UCLS443

particularly prone to noise, thereby delivering less meaningful abundances, in some cases negative444

(see green fabric targets of 0.5 and 0.25 m in Tab. 2).445

We have further tested the use of LASSO by trying different `1-norm upper limits in the range446

λ = 0.8− 10. As illustrated in Fig. 17, results are similar for λ ≥ 1 and exactly the same for λ ≥ 1.2,447

but degrade clearly for λ < 1. This is likely a consequence of having a spectral library collected with448

endmembers from the hyperspectral image itself. For the corresponding pixels, the abundance vector449

is a single-entry vector with ‖x‖1 = 1, so any λ < 1 will not allow such solution. We therefore show450

the main LASSO abundance estimation results for λ = 1. It is interesting to notice that the results451

of NNLS and LASSO (λ = 1) are identical for all 0.5 and 0.25 m targets except the 0.5 m red fabric452

target, cf. Tab. 2. This happens as NNLS and LASSO with λ = 1 solve exactly the same least squares453

minimisation problem when the optimal abundance vector is such that ‖x‖1 ≤ 1. Both algorithms454

require abundance non-negativity and, in case ‖x‖1 ≤ 1, the LASSO upper limit ‖x‖1 ≤ λ with λ = 1455

becomes irrelevant, as illustrated in Fig. 18. The right panel of the figure identifies the pixels for456

which NNLS found optimal abundance vectors with ‖x‖1 ≤ 1, clearly confirming that for all 0.5 and457

0.25 m targets except the 0.5 m red fabric target both algorithms are expected to provide the same exact458

solution. Naturally, the same statement applies to LASSO with λ > 1.459

Figure 17. Effect of `1-norm upper limit λ on LASSO area estimation results. The unsigned relative
error |Ât − At|/At is shown averaged over target materials and separately for the different target sizes.

Trends of the target area error according to material and size are shown in Fig. 19(a) for LASSO460

(λ = 1). Other unmixing algorithms are qualitatively similar as can be seen in Tab. 2, so we focus on461

LASSO results for discussion. The area of the blue and red fabric targets can be reconstructed with an462

error smaller than 2% for the 3 m targets and better than 10% for all sizes. Overall, these are the targets463

for which the abundance estimation step works best. Bitumen target areas can also be reconstructed to464

within 2% for the 3 and 2 m targets, but the error rises to 20− 30% for the smaller targets where mixed465

pixels are present. The low and flat reflectance spectrum of bitumen appears to be easily identifiable466

for pure or close to pure pixels, while being very difficult to single out in the case of highly mixed467

pixels. The worse results are obtained for red metal and green fabric, where the area error hover468

above 5% for the 3 and 2 m targets and reaches 40− 50% for the smaller targets. As stated in Section 2,469

red metal and green fabric are indeed challenging materials: the former has a rugged surface and a470

tendency to produce specular reflections, while the later resembles the background vegetation. This471

might explain the worse results obtained for the two materials. Finally, we comment on the trend with472
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(a) NNLS/LASSO solutions in abundance space (b) `1-norm of NNLS abundance vector

Figure 18. Equivalence of NNLS and LASSO (λ = 1) abundance estimation framework. The left panel
(a) illustrates a toy example for NNLS and LASSO (λ = 1) solutions in an abundance space spanned by
two endmembers only. The UCLS solution and corresponding square error contours are shown in blue,
while the abundance vector found by NNLS and LASSO is marked with a red cross. In both cases the
NNLS and LASSO find the same solution since the LASSO constraint ‖x‖1 ≤ λ = 1 is satisfied. The
right panel (b) indicates the pixels in the DLR HySU benchmark with an abundance vector found by
NNLS with ‖x‖1 ≤ 1 in dark blue (yellow in the area surrounding the targets) and with ‖x‖1 > 1 in
light blue (red in the area surrounding the targets). Yellow pixels highlight target pixels with ‖x‖1 ≤ 1,
for which NNLS and LASSO (λ = 1) are equivalent. Except for the 0.5 m red fabric target, all pixels
corresponding to the 0.5 and 0.25 m targets are yellow in the right panel (b), thereby explaining the
exact same estimated areas for these targets with NNLS and LASSO (λ = 1) in Tab. 2.

target size. Apart from a handful of outliers, the general trend observed in Fig. 19(a) shows that the473

area reconstruction error increases rapidly with decreasing target size. This is intuitively expected,474

because smaller targets are associated to mixed pixels, contributing to each spectrum a weaker signal475

which is closer in amplitude to the image noise. Geometrically speaking, the perimeter-to-area ratio of476

a square target increases as its side length decreases, and so does the area reconstruction relative error.477

In addition, it is expected that the contrast between the target material and the background vegetation478

plays a role, but the modelling of the reconstruction area error lies outside the scope of the present479

work.480

Up to now the spectral library manually extracted from the HySpex image was used as input481

to the abundance estimation process. The robustness of the obtained results is now tested by using482

instead a spectral library containing the mean SVC aquisitions on the ground, see dashed lines in Fig. 5.483

Fig. 19(b) shows the resulting target area errors for the case of LASSO (λ = 1). The comparison of484

both panels in Fig. 19 leads to interesting conclusions dependent on target material and size. For all485

target sizes, it is apparent that the results are fairly robust for red metal, red fabric and green fabric, but486

bitumen and blue fabric display some degree of sensitivity to the spectral library used. There is also a487

clear dependence on target size. The target area error for the larger targets (3 and 2 m) for all materials488

degrades from < 10% when using the HySpex spectral library to around 10% when using the SVC489

library. The degradation is much more severe for the smallest 0.25 m targets, while the results are490

comparable for the mid-size targets (0.5 and 1 m). Overall, we conclude that the abundance estimation491

results for resolved targets are robust, which is consistent with the qualitative similarity of the two492

spectral libraries already apparent from Fig. 5. Abundance estimation for sub-pixel targets is sensitive493

to the spectral library used and better results are obtained when the library is selected directly from494

the image.495

6. Other applications496

The three critical steps of spectral unmixing (dimensionality estimation, endmember extraction497

and abundance estimation) have been scrutinised in the previous sections with the help of the DLR498
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(a) (b)

Figure 19. Target area error for different target materials and sizes for LASSO (λ = 1). The error
measure shown here is the the unsigned relative error |Ât − At|/At. The results are shown for the case
of using the spectral library collected from the HySpex image (left) and from the mean SVC aquisitions
(right).

HySU benchmark. There are several other problems that can be investigated in detail with our499

benchmark dataset, some of which we address here in an illustrative preliminary fashion leaving500

an exhaustive study for future work. The community is invited to experiment with the DLR HySU501

benchmark for testing these and other applications.502

6.1. Joint endmember extraction and abundance estimation503

The endmember extraction and abundance estimation steps were tested separately in Secs. 4 and504

5. A conceptually more difficult problem is that of jointly extracting endmembers and estimating505

abundances. Here we perform a limited set of experiments in this direction and show the typical506

accuracy attainable for endmember extraction and abundance estimation when carrying out both steps507

simultaneously. A thorough survey of state-of-the-art algorithms as done in Secs. 4 and 5 is outside the508

scope of the present work.509

A simplified strategy to address the problem is to extract endmembers with one of the algorithms510

of Sec. 4 and then use these endmembers to estimate abundances with one of the algorithms of Sec. 5.511

Selecting within the best performing algorithms, the results of the combination of N-FINDR and NNLS512

are shown in Tab. 2 and Fig. 16. N-FINDR+NNLS succeeds in recovering well the areas of the larger513

targets of red metal, blue fabric, red fabric and green fabric, but it has poor results for the smaller514

targets of those materials and for most targets of bitumen.515

The previous approach, although straightforward, does not simultaneously solve endmember516

extraction and abundance estimation, a feature which other techniques available in the literature can517

achieve. Among them, dictionary learning decomposes the data as the product of a dictionary (i.e., a518

spectral library in our hyperspectral case) by a vector of coefficients (i.e., abundances), see e.g. [49].519

For illustration purposes, the DL algorithm is implemented using the SPAMS toolbox [48–50] to derive520

endmembers and abundances for the DLR HySU benchmark. Similarly to the LASSO settings, we521

enforce the abundance non-negativity constraint and set an upper limit λ = 1 on the `1-norm of the522

abundance vector. It is clear from Figs. 6 and 8 that DL endmember extraction is very competitive for523

the different subsets and even delivers some of the most accurate endmembers for all materials. In524

particular, DL achieves results comparable to VCA and N-FINDR for the Large Targets subset (Fig. 6(a))525

and the All Targets Masked subset (Fig. 8). The DL results are excellent in terms of spectral angle, but it526

is important to note that our use of DL cannot fully recover the absolute spectra of Fig. 5 as do the527

other endmember extraction algorithms of Sec. 4. This is because the SPAMS DL algorithm outputs528
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`2-normalised endmember spectra, thereby implying the loss of the `2-norm of each spectra. Notice529

that this is not necessarily a limitation of DL itself, but of the implementation used here. Despite the530

success of DL for endmember extraction, its performance is very poor on abundance estimation and is531

not shown in Tab. 2 or Fig. 16. This is again due to the `2-normalised extracted endmembers, which532

spoil the abundance estimation in mixed pixels.533

Overall, both strategies studied briefly in this subsection (N-FINDR+NNLS and DL) offer in534

general a limited abundance estimation accuracy when compared to the best results of Sec. 5, where535

the reference spectral library was used as input. Notice however that a joint endmember extraction536

and abundance estimation might be the only option when no spectral library is available.537

6.2. Hidden target detection538

Along with the main targets used to investigate spectral unmixing, three small hidden targets539

were also included in the DLR HySU benchmark, namely a 0.25 m square red metal target, a 0.5 m540

square blue fabric target and a 0.5 m square green fabric target. The three targets were placed across541

the test field over different backgrounds in order to test anomaly detection. The positions of the targets542

can be found in Fig. 1(a) (F, G and H). The problem of hidden target detection can be formulated543

in different ways depending on whether the number, spectra and/or size of the targets is given as544

input. We suppose for concreteness that only the spectra of the targets to locate is given. In this case,545

spectral unmixing can be applied to estimate abundances and thereby pinpoint the desired material.546

For illustration, we show in Fig. 20 the abundance maps of red metal, blue fabric and green fabric547

for the LASSO algorithm (λ = 1) used in Sec. 5. It is clear from the figure that this straightforward548

approach is sufficient to locate the 0.5 m blue and green fabric targets, but inadequate to identify the549

smaller 0.25 m red metal piece. An added value of this approach is that it offers the possibility to550

estimate the target area. Other formulations of the hidden target detection and the study of dedicated551

anomaly detection algorithms are left for future research.552

7. Conclusions553

This paper introduces the DLR HySU (HyperSpectral Unmixing) benchmark dataset, consisting of554

a high-resolution airborne image acquired by the HySpex spectrometer in the VNIR range, completed555

by high-resolution airborne 3K RGB data, and in-situ SVC spectrometer measurements. The area556

of interest contains five synthetic targets of different materials in five different sizes, deployed on557

ground in a homogeneous area. The dataset allows testing all main steps of a typical spectral unmixing558

workflow, including dimensionality estimation, endmember extraction with and without pure pixel559

assumption, and abundance estimation. Further areas of research which can benefit from the DLR560

HySU dataset include target detection and denoising. Regarding the former, additional small targets561

have been scattered in the area of interest and are described in the paper. The latter can use the in-situ562

collected spectra as reference to verify denoising procedures on single targets, especially for bitumen563

which is characterized by a flat spectrum.564

Testing state-of-the art algorithms with the DLR HySU benchmark dataset for different steps of565

the unmixing procedure yielded several interesting results:566

• The confirmation of overestimation by the most used dimensionality estimation method for567

imaging spectrometer data, HySime, in non-ideal settings, i.e. when applied to images too small568

in size with non-zero noise contribution.569

• The comparison between algorithms working with or without the pure pixel assumption assessed570

on real data for different targets, suggesting that the latter family of algorithms may perform571

slightly better at handling complex, highly mixed data. To the best of our knowledge, this is572

the first time that a comparison between algorithms working with or without the pure pixel573

assumption is made on real data. In the past, such assessment was made on synthetic images [1].574

• The equivalence between the NNLS and the LASSO methods for specific cases.575
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Figure 20. Hidden target detection through spectral unmixing. The RGB composite shows the LASSO
(λ = 1) abundance maps for red metal (red), green fabric (green) and blue fabric (blue), clipped and
displayed in logarithmic scale to facilitate the identification of hot spots. The red boxes are centered at
the positions of the hidden targets (F, G, H) as inferred from the 3K image. The 0.5 m hidden targets
made of blue fabric (G) and green fabric (H) are fairly visible, while the 0.25 m red metal piece (F) can
not be located. The SVC white panel (I) can be clearly seen in the blue fabric abundance map.

• The effects of enforcing the sum-to-one constraint in FCLS, often used in abundance estimation576

in the literature, which may introduce severe distortions in the case of image elements with a577

high degree of mixture. The last aspect adds up to the distortions introduced by FCLS whenever578

an incomplete spectral library is used [2].579

With the experience gathered in previous campaigns and the one presented in this work, some580

aspects have been identified that should be taken care of when preparing a complex dataset of this581

kind. First of all, it would be desirable to have smaller GSD or larger targets deployed on ground582

in order to derive a spectral library from averaged spectra. As a rule of thumb, in order to ensure583

several pure pixels for all targets, the size of these should be set at least to five times the GSD. Secondly,584

the area containing the targets of interest should be as close as possible to sensor nadir in order to585

minimize spatial distortions due to aircraft roll movements. Furthermore, the integration time of the586

imaging spectrometer should be set to a low value if bright targets are chosen, as usually synthetic587

targets have a higher reflectance with respect to natural ones.588

The DLR HySU benchmark dataset is open and available at [7]. The community is invited to589

make use of the dataset to test spectral unmixing and other applications, expanding the exploratory590

analysis we have presented in this work.591

Appendix A Target additional information592

This appendix contains additional information on the characteristics of the targets used for the593

DLR HySU benchmark dataset. The sizes of all targets are reported in Tables A1 and A2, respectively594

in m2 and pixels. Single in-situ measurements carried out with an SVC spectrometer for each material595

are reported in Fig. A1.596
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Target area [m2] 3 m 2 m 1 m 0.5 m 0.25 m
Bitumen 9.030 4.000 0.985 0.258 0.062
Red metal 8.850 3.990 0.910 0.250 0.060
Blue fabric 8.940 4.060 1.005 0.250 0.061
Red fabric 9.211 3.990 1.000 0.253 0.065
Green fabric 9.075 4.020 1.000 0.248 0.066

Table A1. Target areas in units of m2. All targets are rectangular (in most cases almost square) and the
areas reported here were derived from the horizontal and vertical dimensions measured on the ground
during the campaign after target deployment. Note that the 1 m red metal target is slightly smaller
than planned since one special red metal piece was missing during deployment.

Target area [pix] 3 m 2 m 1 m 0.5 m 0.25 m
Bitumen 18.429 8.163 2.010 0.526 0.128
Red metal 18.061 8.143 1.857 0.510 0.123
Blue fabric 18.245 8.286 2.051 0.510 0.125
Red fabric 18.798 8.143 2.041 0.515 0.133
Green fabric 18.521 8.204 2.041 0.505 0.135

Table A2. Target areas in units of pixels. The areas in this table were derived from Tab. A1 using the
approximate pixel area of 0.72 m2 for the HySpex processed dataset.

(a) Bitumen (b) Red metal (c) Blue fabric

(d) Red fabric (e) Green fabric (f) Grass

Figure A1. HySpex spectra for each material in Fig. 5 compared to in-situ measurements carried out
with an SVC spectrometer.
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Abbreviations609

The following abbreviations are used in this manuscript:610

611

ATGP Automatic Target Generation Process
DESIS DLR Earth Sensing Imaging Spectrometer
DL Dictionary Learning
DLR German Aerospace Center
DLR HySU DLR HyperSpectral Unmixing
FCLS Fully Constrained Least Squares
GSD Ground Sampling Distance
GPS Global Positioning System
HFC Harsanyi–Farrand–Chang
HySime Hyperspectral Signal Identification by Minimum Error
IMU Inertial Measurement Unit
LASSO Least Absolute Shrinkage and Selection Operator
MNF Minimum Noise Fraction
NMF Non-negative Matrix Factorization
NNLS Non-negative Least Squares
OSP Orthogonal Subspace Projection
PCA Principal Components Analysis
PPI Pixel Purity Index
PSF Point Spread Function
SISAL Simplex Identification via Split Augmented Lagrangian
SNR Signal-to-Noise Ratio
SU Spectral Unmixing
SVC Spectra Vista Corporation
SWIR Shortwave Infrared
UCLS Unconstrained Least Squares
VCA Vertex Component Analysis
VNIR Visible and Near Infrared
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