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Abstract: Metabolic pathways provide key information to achieve a better understanding of life and1

all its processes; this is useful information for the improvement of medicine, agronomy, pharmacy,2

and other similar areas. The main analysis tool used to study these pathways is based on the idea3

of pathway comparison, using graph data structures. Metabolic pathway comparison has been4

defined as a computationally complex task [1,2]. In a previous work [3], two different approaches5

that simplify the problem of comparing pathways represented as graphs were introduced. The6

first algorithm consists of the transformation of a two-dimensional graph structure, representing a7

metabolic pathway, to a one-dimensional structure and thus aligning the corresponding data using a8

reduced 1 dimension string. The second algorithm consists of performing a paired analysis between9

reactions in pathways and thus eliminating all similarities, finally, showing these differences to the10

user. The suggestion is to use the information provided by these algorithms as a previous analysis to11

a deeper, more expensive, comparison tool use. Here we provide an extension of this work with more12

data and deeper analysis. These methods have shown to be an effective way to treat the problem13

of metabolic pathway comparison as listed in the discussion and results section. Our results show14

evidence of a quick, simple and effective way to resolve the described problem.15

Keywords: metabolic pathways, graph comparison; graph alignment; graph depth-first traversal;16

graph breadth-first traversal; global alignment; local alignment; semiglobal alignment17

1. Introduction18

Metabolomics is the study of the physio-chemical and biochemical reactions at the cellular level;19

an ordered series of reacting substrates or metabolites to be transformed into other by catalytic enzyme20

reactions [4], [5], called metabolic-pathways, which provide information to better understand those21

living processes.22

Bioinformatics, or computational biology, is an example of the great progress that molecular23

biology has achieved since computer techniques began to be applied towards this discipline. One24

example of this is genome sequencing, as well as the process of analysis used to interpret this25

information. Proteomics, epigenetics, and metabolomics, are areas that are showing to have a great26

impact in several other fields such as medicine, agriculture, health, among others.27

2. Metabolic Pathways and Graphs28

A metabolic pathway is an ordered sequence of biochemical reactions between metabolites, which29

are chemical compounds that act as substrates to get transformed into other compounds (in this case,30

products), through a series of reactions catalyzed by enzymes. [4], [5]. A big number of metabolic31
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pathways are at present unknown, and a lot of reactions are missing on the already known pathways.32

Online databases provide mechanisms to predict metabolic pathways by the previously described33

elements. Some of them have curated data that has been verified by several collaborating laboratories.34

Metabolic databases store the specifications of the metabolic pathways. Data has been stored35

in a way that is like that of a directed graph data structure, which is used in computer science to36

shape relationships and to describe networked processes. Inquiries can be made through protein,37

metabolite, related gene or gene abbreviation; it will depend on the target and the organization of38

every base. KEGG (www.genome.jp/kegg/) [6] and MetaCyc (part of BioCyc https://biocyc.org)39

[7], [8] are examples of the best and most important repositories of such data, providing access to40

metabolic pathways of several organisms from all kinds of taxa.41

Figure 1. In the background, a network of pathways as the result of work done by [9], where
computational prediction methods were used to combine data concerning the relationships between
different compounds obtained and between different organisms, from the databases KEGG, ENZYME,
and BRENDA. This allowed to obtain a network of reactions related, in this case, to the Glycolysis
process, which is essential in many organisms, as it is used to obtain energy (in the form of pyruvate, an
energy-rich intermediary) from sugars (mainly glucose). Highlighted, the common elements (in bolded
lines); a common pathway is shown between two organisms, yeast and MG (Mycoplasma genitalium)
for the calculated network.

To study metabolic processes, it is necessary to span several areas of knowledge to analyze all42

the available information. When studying the metabolism, besides knowing about the metabolites43

involved, it is important to acknowledge the steps or reactions between them, the metabolic pathway.44

These pathways can be organized into bigger and more complex processes that make up a network of45

metabolic pathways when several of these interact. Then, the interest is usually on a specific set of46

points that forms a pathway (see figure 1).47

Biologically, there is not one way only to obtain a product, there could be a lot of different48

procedures that lead to the same result; modifying in a greater or lesser way the procedure.49
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One of the most important areas of research on metabolomics is the pairwise comparison of metabolic50

pathways of processes of agronomic, pharmaceutical, medical and commercial importance, also know51

as pathway alignment, graph alignment or simply alignment. The reasons are abundant and relevant.52

For example, knowing these processes can give us tools to modify said processes with the goal of53

producing more or better food, learning how to control different viruses or diseases at a cellular54

level for a better bio-control, as well as improving the development of medicines or more effective55

treatments, since the acknowledgment of pathways and metabolic networks is important when dealing56

with medicines in clinical studies concerning the action-reaction effect of drugs on organisms.57

A clear example would be in plants, knowing a metabolic network can be used as a tool to58

improve growing techniques or used to extract components that are important in the improvement of59

the human food supply by maximizing food production.60

A better understanding of phylogenetic evolution, speciation and reconstruction [10], [11] and the61

discovery of more effective drugs [12] may be possible thanks to the comparative analysis of different62

organism’s pathways.63

In aid of representing all kinds of processes and relationships, graphs and other dynamic data64

structures have been used through the years. Recently, Biology has been using a lot of well-known65

data structures to represent all kinds of data. When it comes to the digital representation of66

metabolic-pathways, they are frequently modeled as directed graphs. Many different techniques67

have been developed for the alignment or pairwise comparison of these graphs and interesting68

pathways. As explained in [2] and [1], most of these comparisons can be represented as problems in69

the class of NP-Complete, which are very complex to solve, even for computers.70

Complex algorithm solutions have been then applied, which generally use heuristic techniques71

that seek to reduce the time of graph-alignment. This problem is much more complex when looking72

for a comparison between multiple pathways. Some tools like PathVisio [13], MetDraw [14] or73

NetCoffe [15], provide basic information about pathways, their components, graphs images, and other74

information, but not analysis tools such as a direct pairwise pathway comparison.75

When comparing graphs associated with metabolic-pathways, the difference between homologous76

paths and similar paths must be taken into consideration. The similarity is often considered to be a77

measurable and tangible evaluation of some properties of the graph or pathway, while homology is78

more intuitive. We can see people look homologous because we can find some similarities: a head,79

arms, legs, eyes, ears, etc. They are not necessarily similar, even if they are homologous. In the case80

of metabolic pathways, multiple paths can have the same number of interactions or reactions, which81

would likely mean that they have a homologous shape, but the reacting components or nodes may be82

very different.83

Pathways, when viewed as graph-type data structures, allow the application of a wide variety84

of existing algorithms. In traditional literature concerning graphs, it is not common to explore this85

type of comparative algorithms, but the traversal of all nodes within a graph or the exercise of finding86

the shortest path between two nodes are considered common practices. There are a few traditional87

algorithms, such as the minimum spanning tree, minimum distances or shortest paths, either between88

all nodes or a pair of given nodes.89

In bioinformatics, alignment techniques are valid for a step-by-step comparison of each stage of90

the metabolic pathway, but, an efficient comparison mechanism at the computational level, which can91

then be used with different sources of information for the proper study of the metabolic pathways of92

interest and their subsequent analysis, is still required.93

Through an alternative mechanism for the comparison of metabolic pathways, it is sought to94

broaden the spectrum of results for subsequent analysis to establish new relationships or connections95

not previously described between pathways or organisms. With a different treatment of the given96

information, expressed in the directed-graph or digraph associated with the metabolic pathway,97

relevant results can be obtained while achieving a lower computational cost.98
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The main tools to analysis related pathways are based on the idea of metabolic-pathway99

comparison, using graph data structures. Computer scientists have proposed several mechanisms for100

effective comparison. To this regard, Ay & Kahveci [1], proposed SubMAP (Alignment of Pathways101

with Subnetwork Mappings) which focuses on finding common sub-parts between different pathways.102

The algorithm CAMPways from Abaka et. al [2] promise to be efficient at run-time; they made a103

review of tools developed and described the NP costs associated to align graph associated to metabolic104

pathways.105

In some works, like [16] and [17], some heuristic techniques have been applied to reduce the time106

taken by the graph-alignment algorithms. This causes some loss of generality but makes the data easier107

to process. The complexity of the problem is bigger when looking to compare multiple pathways or108

graphs at the same time.109

Another approach, more general to graphs, was used by [16], in which the M-GRAAL algorithm110

was used. This method relies on the calculation of edge-correctness, which represents the percentage in111

which a graph is topographically like another graph. It is defined as the ratio of edges in graph 1 that are112

aligned to edges in graph 2 [18]. The goal of the M-GRAAL algorithm is to align two different networks113

in such a way that edge-correctness is maximized. This task has great computational complexity, but114

M-GRAAL provides a very good approximation, however on metabolic pathways the topology is not115

as important as the order of the reacting metabolites. Pinter et. al [17] proposed a bottom-up dynamic116

programming method to align pathways of different graphs; however, this implementation requires a117

transformation from the original graph to a multi-source tree (which is a directed acyclic graph).118

On the other hand, the edge-correctness does not reflect, whether the correctly aligned edges are119

near each other and form a connected graph. Therefore, often the size of the largest common connected120

subgraph that is preserved under the alignment is also used as an indicator of the alignment’s quality.121

Formally, it may be defined as the number of nodes or edges in the largest connected subgraphs [19].122

In a previous work [3], two different low-cost algorithms were developed as simple mechanisms123

for the comparison of two metabolic pathways that can be used as a previous step to a deeper and124

more time-consuming analysis to be applied for the graph comparison associated to the pathways.125

In this work we will be using some simple but important definitions that are important to clarify:126

• Node label: for any given node in a graph, we refer to “label” as the associated string used to127

identify each node (which corresponds to the compound or metabolite name of a metabolic128

pathway represented by said node). Each label is unique within a pathway, meaning that two129

nodes in the same graph can’t have the same label name.130

• Equivalent nodes: refers to any given labeled node that is present in both graphs being compared,131

meaning that both pathways involve the use of same compound described by the associated132

nodes.133

• Analogous order: for two aligned sequences S and T, the elements with analogous order between134

both sequences are those that conform the largest possible sub-sequence of both S and T.135

It is not the intention of this work to give a definitive answer to the result of the metabolic pathway136

pairwise comparison problem, or to indicate that one pathway is better than another one, rather we137

seek to provide an additional point of view as support, to be considered by an expert in the matter138

at the time of making their observations, evaluations, and conclusions about the process they are139

studying. It is not sought to give a "correct" answer on which is the best metabolic pathway, only to140

provide reference information for the interested party. This work is a detailed extension of the ideas141

introduced in 2017, with a deeper analysis and discussion.142

3. Algorithms143

Next, we present the algorithms applied to the problem of alignment or pairwise comparison of144

digraphs that correspond to metabolic pathways.145
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3.1. Algorithm 1: Transformation of the 2D pathway graph to a 1D or linear structure for later alignment and146

evaluation.147

In the case of metabolic pathways, it is common to observe in the description of the raw data148

obtained from the various databases that, although they are modeled as a graph with different relations149

between them and even containing internal cycles, it is characteristic that every pathway has two key150

elements: at least one starting origin point as substrate and at least one final product or destiny as151

output. If the pathway is then viewed as a graph, this graph will have at least a root and an important152

target product or leaf node (using common nomenclature for trees in data structures).153

Concerning graphs, we have mentioned some algorithms; in the case of a graph which represents154

a metabolic pathway, when applying a traversal algorithm to the graph (which visits all the nodes) it155

becomes trivial to obtain the list of elements that conform said graph. This would be a 2D to the 1D156

transformation of the graph. If we take the starting point of the route as the root of the graph, then all157

the nodes must be visited until arriving at the node of interest that should be the final product of the158

route as such.159

In the following example, it can be observed that both metabolic pathways have elements160

in common, equivalent nodes and reactions, that are easily homologous, but it is of interest to161

quantitatively measure their similarity. The first step for this analysis is to visualize both pathways as162

graphs (figure 2) and to label the nodes by its corresponding metabolites (figure 3). This means that all163

the nodes of the graphs are distinguished nodes. Equivalent nodes or equivalent reactions means that164

the same metabolite or same reacting metabolites are present in both graphs.165

Figure 2. Glycolysis I and Glycolysis IV model metabolic pathways as graphs.
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Figure 3. Nodes relabeled according to their corresponding metabolites to simplify processing.

For graphs that represent a metabolic pathway, a traversal lecture (which visits all the nodes) is166

helpful to get the series of elements using a selected root and, sometimes, the desired end. This is167

the required transformation from 2D to 1D. Common graph-traversal algorithms are, depth-first [20]168

and breadth-first [21]; more about this on [22], [23], [24]. It has been observed that when applying a169

depth-first algorithm the information obtained is not relatively proportional and relevant to the route170

because the product may appear in the middle of the 1D row and not at the end of said row (as one171

might expect in a series of reactions which hold said product at the end). For example, depth-first172

traversal would give a result as shown in figure 4. When performing a breadth-first traversal, the173

nodes are visited by levels, which corresponds more closely to how the metabolites reactions occur174

until the expected product is reached. Breadth-first traversal for the routes is shown in figure 5.175

Figure 4. Depth-first traversals of pathways for graphs in figure 3.

Figure 5. Breadth-first traversals of pathways for graphs in figure 3.

Per this observation, useful data corresponds mainly to that generated by the breadth-first176

traversal algorithm.177

It should be noted that there will be a loss of information in such a transformation. Figure 6 shows178

this fact, mainly on the order of the elements and their original relationships. We look to demonstrate179

that such loss of information during the process is tolerable and acceptable for a correct pairwise180

comparison result.181
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Figure 6. Possible loss of information due to 2D to 1D transformation.

Once the pathway data is raised to obtain the traversal in a 1D format we proceed to apply182

traditional sequence alignment techniques: global (GA) [25], local (LA) [18], and semi-global (SGA).183

With this, we get numeric values comparison of the sequences from the graphs.184

A sample of the results of this process is then summarized on figures 7 and 8.185

Figure 7. Global alignment generated for transformed graphs, optimal value reached: +3.

Figure 8. Local alignment generated for transformed graphs, optimal value reached: +5.

3.2. Algorithm 2: Differentiation by pairs186

In many situations, when we need to compare objects, the similarities may be evident. In such187

cases, the differences between both objects become more relevant to the observer than the coincidences.188

This second algorithm intends to ignore the common pairs of objects and focus on the difference189

between the elements of both of the graphs that are being evaluated. This algorithm consists of190

the elimination of equal pairing edges and nodes from both graphs, remaining then only with the191

differences in the comparing structures.192

For human beings, it is common to detect the obvious equalities but could be difficult to detect all193

of them. The main objective of this algorithm is to remove the common elements in both graphs, that194

is, equal reactions between two pathways or entire graphs, and without these, find all the differences195

between given pathways. With this algorithm denoting the distinct reacting metabolites we can see all196

the remaining differences for the proper analysis by the expert.197

This method differs from a traditional numeric alignment of paths, in which the coincidences take198

a more relevant role than the differences between a given pair of routes. We also calculate a numeric199

value, using a relation between the number of differences and the total number of reactions, which is200

therefore called “Numerical Differentiation by Pairs”. So far, no similar approach has been found to201

this one, so the resulting data is more an intuitive homology for the user than a value of similarity to202

be used. The results are correlated later to the numerical values of the first proposal to validate the203

differences found. The process is thoroughly explained in [3]. However on figure 9 a summary of the204

process is shown.205
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a.: Sample graphs.

b.: Progressively eliminating the common reactions between both graphs

c.: Differences found.

Figure 9. Peer differentiation process. a. shows the original sample graphs been compared. b. shows
one of the intermediary steps. c. shows the resulting differences found

4. Materials and Methods206

4.1. Obtaining the data207

We first considered two options, KEGG and MetaCyc, both are self announced as public208

repositories. However KEGG now has the KEGG FTP Academic Subscription available as a paid209

service by Pathway Solutions for academic users who wish to bulk-download. For our needs to get all210
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the available data for testing purposes, we did not consider to pay for this service as an option. Then,211

the database chosen for obtaining the pathways dataset was MetaCyc.212

Also, the MetaCyc database focuses on individualizing the pathways into biologically meaningful213

units (occasionally distinguishable for individual organisms), instead of combining reaction and214

pathways from multiple species into a single chimeric pathway, as KEGG. Nevertheless, MetaCyc215

does have super-pathways, which are pathways that comprise multiple sub-pathways, but they216

usually do occur in a single organism, as explained in the MetaCyc User Guide 1. The characteristic217

individualization of these pathways allow for a good random sample pool of graphs, as there are218

expected to be all kind of comparisons, between contrasting or similar pathways, whereas the chimeric219

nature of data from other sources implies the unification of the would-be-compared graphs into single220

large units, making harder the process of randomly sampling for comparisons.221

MetaCyc categorizes data in several ways, one of which is the organism the data belongs to. It222

does so by assigning an ID to each organism. For obtaining the pathways dataset, the organism ID223

“META” was selected, which refers to the multi-organism Pathway Database that contains general224

metabolic data and is not restricted to a single organism, as explained in the MetaCyc website 2. The225

database also categorizes metabolic pathways according to their biological functions and classes of226

metabolites involved in the reactions. It does so with a hierarchy of pathway classes, where each class227

composes a large group of sub-classes and pathways, first grouping them by general characteristics228

(for example, “Biosynthesis”), and further down the hierarchy, forming detailed classes containing only229

pathways (for example, “Glycogen and Starch Biosynthesis”) 3. In this work, we refer to those categories230

as “families” of metabolic pathways.231

The websites with the hierarchy information for the organism ID “META” was automatically232

traversed, storing the ID of each pathway when found and the most detailed subclass (“family”)233

containing it. Using the ID of each pathway, the XML file for each pathway was requested to234

the database, and the data was refined to store the described nodes and edges into JSON files235

on ReactionLayout (RNL) and DictionaryPathWay (DPW) formats. Basic pathways (those with236

no sub-pathways referenced in their XML file) were prioritized; afterwards, super pathways were237

assembled, using both the instructions for nodes and edges contained within the respective XML file,238

as well as the already processed instructions for the reference sub-pathways (stored in DPW files). This239

way, a dataset of 3241 basic metabolic pathways and super pathways was obtained.240

DictionaryPathWay or DPW format, a JSON file, consists of a directed graph data structure based241

on a dictionary where the keys are strings with the label of a node, and the values are lists with the label242

of other nodes that each key-node directs to. As a dictionary, this structure doesn’t allow duplicate243

nodes, and will merge the edges of duplicate nodes into a single key (merging also the associated lists).244

This is allowable for a metabolic pathway that occurs into a single chemical background, where the245

nodes represent chemical compounds that are dispersed in a theoretically ubiquitous manner across246

the system, as long as no compartmentalisation of the reactions is involved. This is the case indeed, as247

metabolic databases tend to miss compartmentalisation when representing metabolic pathways [26].248

ReactionLayout or RNL format, a JSON file, is another way of storing a directed graph data249

structure based on a dictionary, where this time, the keys are strings with the database identifier for250

the reactions, and the values are lists that contain two internal lists: the first one stores the nodes’ label251

for the substrates of the reaction, while the second one stores the labels for the products.252

1 https://metacyc.org/MetaCycUserGuide.shtml
2 https://metacyc.org/PToolsWebsiteHowto.shtml#dbselect
3 https://metacyc.org/META/new-image?object=Pathways
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4.2. Selection of matching candidates for the comparisons253

After gathering the metabolic pathway dataset, an automatic selection was conducted for choosing254

candidates for the experimental comparisons. Meaningful scenarios, close to what would be an actual255

practical use of the tool, were desired, so the selection process consisted of two criteria. The first one256

indicates that, for a comparison between two similar pathways, both graphs must contain the same257

pair of “origin” and “destiny” nodes; an origin being a node that directs to one or more nodes, but258

none other node directs to it (i.e. analogous to the root of a tree data structure), while a destiny node is259

one such that at least one node directs to it, but it itself doesn’t direct to any other node (i.e. a leaf on a260

tree data structure). Under this simplified biological context, the origin nodes would represent initial261

substrates for the pathway, while the destiny nodes would be the expected products of interest.262

The second criterion for the selection process aims to detect which graphs, from each pathway,263

can generate valid lectures or traversals between the given origin and destiny nodes. It takes into264

account that it is possible to start the traversal of the graph from a given origin node, but never reach265

a desired destiny node without starting another traversal from a different origin. Such a case can266

be seen in 10 4, where the destiny node succinate can only be reached by starting at the origin node267

phosphoenolpyruvate. Therefore, for this test, to consider a pair of pathways as a candidate for a given268

comparison, there must be an actual valid traversal lecture between the same given origin and destiny269

nodes. It is worth mentioning that this also implies there can be more than one valid traversal or270

lecture for a given pair of pathways, as long as they meet both selection criteria.271

A third argument applied to further filter the candidates for the experimental comparisons was to272

select only the data with full-coverage traversals. This refers to consider those graphs in which all nodes273

are covered in a single traversal or lecture, we call this a fair comparison.274

Figure 10. Possible traversals or lectures from a single pathway. Original figure from MetaCyc

4.3. Graphs vs Pathways275

The characteristics of the graphs associated to each pathway and the pairwise comparison are276

taken into account, as factors that could possibly influence the results. As so, these factors are also277

annotated for each comparison:278

• Size ratio between graphs: For a given graph, we refer to the “size” as the amount of nodes279

described within the graph. The size ratio between graphs consists of dividing the smaller280

4 https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-5913&detail-level=1
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graph’s size (graph with the least amount of nodes) over the bigger graph’s size (graph with the281

largest number of nodes), to obtain a value between 0 and 1 that represents how different are282

the sizes of the compared graphs. This value can also be interpreted as how much of the biggest283

graph’s size can be covered by the smallest graph’s size.284

• Complexity ratio between graphs: For a given graph, we refer to the complexity as the amount of285

edges described within the graph. The complexity ratio between the graphs consists of dividing286

the complexity number of the less complex graph (graph with the least amount of edges) over287

complexity of the more complex graph (graph with the largest number of edges),to obtain a288

value between 0 and 1 that represents how different are the complexity amounts of the compared289

graphs. This value can also be interpreted as how much of the more complex graph can be290

covered by the less complex graph.291

• Equivalent nodes ratio: This is obtained by dividing the amount of equivalent nodes over the size292

of the larger graph. It produces a value between 0 and 1 that can be interpreted as how much293

percentage of equivalent-nodes present in the larger graph can be found also within the smaller294

graph. Equivalent nodes means that the same metabolite is present in both graphs.295

4.4. Formulas296

For the evaluation process in the next section, we define then some formulas as the basis for our297

metrics of analysis.298

• Absolute Score: S = xm + yn + zg, where S is score, x is number of matches, m is value of a match,299

y is number of mismatches, n is value of a mismatch, z is number of gaps, g is value of a gap.300

• Relative Global: rG = xG /max(|S|, |T|), where rG is the relative global score, xG is the number of301

matches of the respective global alignment and S and T are the aligned sequences.302

• Relative Local: rL = xL /min(|S|, |T|), where rL is the relative local score, xL is the number of303

matches of the respective local alignment and S and T are the aligned sequences.304

• Relative Semiglobal: rSg = xSg /min(|S|, |T|), where rSg is the relative semiglobal score, xSg is305

the number of matches of the respective semiglobal alignment and S and T are the aligned306

sequences.307

4.5. Executing pairwise comparisons308

The pairwise comparison generally is any process of comparing entities in pairs to judge which309

of each entity is preferred, or has a greater amount of some quantitative property, or whether or not310

the two entities are identical. In psychology literature, for example, it is often referred to as paired311

comparison.312

For each pairwise comparison, both graphs representing each one a different pathway traversed313

in a breadth-first manner, starting each at the selected "origin" node (which is taken as the root of the314

tree data structure), and concluding when all accessible leaves are reached, wherein a destination node315

can be found. As noted before, it is possible that some nodes get excluded from a particular traversal,316

if they are located in a path only accessible by traversing from another “origin” node.317

Each traversal lecture yield a linear sequence of the traversed nodes, in the order they were visited.318

The first node of the sequence will always be the chosen origin, whereas the destiny node can be found319

anywhere in the sequence. The sequences obtained from the traversals are later aligned with global320

(GA) [25], local (LA) [18], and semi-global (SGA) sequence alignment algorithms. On the other hand,321

the Difference by Pairs algorithm is performed directly on the graph structures.322

Then, we define different metrics for each pairwise comparison executed:323

• Global Score: score generated by the absolute score formula for the optimal global sequence324

alignment between two traversals (algorithm 1). The base values used were: match = 1 and325

mismatch = -1; for gap value, the comparisons were performed using 3 different values: -2, -1326

and 0 (explained why later).327
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• Relative Global Score: value between 0 and 1 obtained from the relative global formula, a328

percentage value p%, interpreted as “there is a p% similarity between both traversals” or “at329

least p% elements of the small traversal is present in analogous order on the long traversal”.330

331

• Local Score: score generated by the absolute score formula for the optimal local alignment between332

two traversals (algorithm 1). The base values used were: match = 1, mismatch = -1, gap = -2.333

• Relative Local Score: value between 0 and 1 obtained from the relative local formula, a percentage334

value p%, interpreted as “at least p% elements of the small traversal is present in analogous335

order on the long traversal”.336

337

• Semiglobal Score: Score generated by the absolute score formula for the optimal semiglobal338

alignment between two traversals (algorithm 1). The base values used were: match = 1, mismatch339

= -1, gap = -2.340

• Relative Semiglobal Score: Value between 0 and 1 obtained from the relative semiglobal formula,341

a percentage value p%, interpreted as “at least p% elements of the small traversal is present in342

analogous order on the long traversal”.343

344

• Differentiation by Pairs: For each one of the two pathways, a list of distinguished reactions present345

on said pathway but absent in the other one was obtained as a result. Each reaction, or edge in346

the graph, is represented as a string of the form “node_0 -> node_1 ”, meaning a metabolite0 is347

being transformed into metabolite1.348

• Numerical Differentiation by Pairs: For a given pairwise comparison between two pathways,349

consists of the total amount of elements of the previous differentiation by pairs results, divided350

by the sum of complexity of both graphs. This provides a value between 0 and 1 that represents a351

percentage of the distinguished reactions (edges) constituted between the two graphs are unique352

in each graph. Complexity of the graph should be understood as the number of reactions in a353

single pathway.354

Its also important to consider further interpretation of relative global scores in particular. Let’s355

consider figure 11:356

Figure 11. Relative global scores for different scenarios

All shown cases on figure 11 have 5 matches over a maximum sequence length of 6, so all would357

be 83% (5/6) similar according to the Relative Global: rG = xG /max(|S|, |T|), formula. Therefore, a358

difference under this standard could mean a substitution (case a), a deletion or addition (case b), a359

transposition (case c) or a deletion and addition (case d).360

5. Results and Discussion361

First, we evaluate the cost of the algorithms used to show that they are less costly than the ones362

used so far. The second step is to demonstrate that the procedure provides an accurate and useful363

result of the comparison.364

For the procedure of the first algorithm Transformation of the 2D pathway graph to a 1D or linear365

structure for later alignment and evaluation, we make use of graph traversal by breadth, as previously366

indicated, using a depth-first traversal may not provide information in order like the one described by367
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a pathway and the results for different graphs can be seemingly random. In the case of breadth-first368

search, a level crossing is performed, like the way a metabolic route works in nature. So, depth-first369

traversal is not relevant to the proposed process. The cost of this first algorithm approaches in the370

order of O(|V|+ |E|), where V: is the set of vertices or nodes of the graph and E = VxV: is the set of371

edges or arcs.372

For the second algorithm Differentiation by pairs, it must be considered that for each reaction that373

exists in the first path or graph G1, it must be found in the second path or graph G2. That is, if R1 is374

the number of reactions counted for G1 and R2 the quantity for G2, there will be a maximum R1xR2375

comparisons when it is common for a half-time on average to perform such comparisons. Thus, we376

can establish a worse case in the order of O(R1xR2).377

5.1. Execution tests378

From the 3241 pathways available on the dataset, we look that each comparison “match”379

comprises two distinct corresponding graphs with an origin node selected, and a destiny node380

expected. Let’s remember that each pathway may have different traversals from the same pathway,381

producing extra comparisons for a single pathway.382

For analysis purposes, we considered pathways with valid traversal between an origin (root383

node) and destiny (leave node) for both graphs and, for a fair comparison criteria, we also considered384

full-coverage traversals only. It means that we are considering pathways as connected graphs.385

Taking into account all the data could mean several million comparisons and many hours of386

computer work. So, to simplify the process, we considered a random statistic sample with a selection387

criteria and in the same proportion of elements presented in the total population data, they were:388

number of nodes (size) and 1 origin node (root) only (the latter guarantees full-coverage traversals).389

Figure 12. Quantity of Metabolic Pathways ordered by size
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Figure 13. Metabolic Pathways ordered by size and its associated complexities

On figures 12 and 13 we can see the distribution of the data categorized by size and complexity,390

representing the amount of pathways with each characteristic.391

The most representative values selected were: size from 2 to 20 for 3125 pathways (96.4%),392

selecting then pathways with 1 origin only provides a total of 2340 pathways, distributed as shown by393

the bars’ height on figure 14.394

Figure 14. Size distribution quantity of metabolic pathways selected. The height of each bar represents
the total pathways selected using the defined criteria of size and origin. Blue represents the random
statistic sample of 20 % of the dataset in a scale proportion of sizes

Then we selected a random statistic sample of 20% (468 pathways) in a scaled proportion of the395

selected size criteria (2 to 20), meaning 20% of each one of these sizes, as shown on figure 14 in blue396

color, for a total of 109 278 pairwise comparisons.397

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 May 2021                   doi:10.20944/preprints202105.0415.v1

https://doi.org/10.20944/preprints202105.0415.v1


Version May 13, 2021 submitted to Biomimetics 15 of 23

All pairwise comparisons were measured using the proposed algorithms with their variants.398

Also each matching pair was tested using the third-party external tool. We reviewed many previous399

works to evaluate our results, considering similarity in the outputs, not all of them were available,400

updated, open-source, accessible, etc. We selected a tool that was available and also provides a pairwise401

comparison with a 1 to 1 score in a scale 0.0 to 1.0. This tool is called TM&MPAlign (in this work called402

simply “TMPAlign”), a newer version of the tool MPAlign introduced in 2014 [27].403

Figure 15. Equivalent nodes ratio vs Global scores and TMPAlign scores, with a random statistic
sample of 20%. Pairwise comparisons where both origin and destiny are equivalent are denoted with
an orange X marker.

With the random statistic sample of 20% of the data we can see on figure 15 an interesting404

observation. All of the pairwise comparisons reporting 0% equivalent nodes generate a score of 0 for405

all scores, for our Global scores and even for the TMPAlign tool. So, for the rest of the comparisons406

we are avoiding these comparisons generating 0, since they are not providing significant values and407

consume an important amount of computation time in our batch runs. This allows a bigger statistic408

sample for subsequent runs, with more significant results.409

5.2. Analysis of algorithms for pairwise comparisons410

Several execution metrics were conducted to evaluate the tests for each pairwise comparison411

previously defined. After the first tests with the sample of 20%, and considering that the comparisons412

without equivalent nodes always generate the same scores (0, as described before), we increased our413

random statistic sample to 50% while simultaneously only performing the comparisons with at least414

one equivalent node, so we can test a broader diversity of metabolic pathways. This new selection415

represents 1169 pathways, that means 682696 possible comparisons.416

For the first algorithm we mainly rely on the score provided by the global, local or semiglobal417

alignments, however, to provide a better meaning to this, some extra metrics were developed in order418

to adjust the relationship between the scores and the data, like the coverage of one pathway with419

others, specially when they are of different sizes. So, the values are indicated in a ratio relationship420

from 0.0 to 1.0.421

Lets consider what we are looking for with each general alignment scores:422
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• The global score seeks to analyze the traversal or complete lecture of the pathway and take into423

account the percentage of similar elements, as a whole. In the tests carried out, it was observed424

that applying a negative gap assessment such as the -2 standard does not generate any meaning425

in a metabolic process as such. Hence, the best values have been obtained using a gap value of 0426

in the global score. This was the gap value selected for more detailed analysis: 0.427

• The local alignment seeks to obtain the best conserved internal fragments (the most similar428

subgraphs between both routes), this has been achieved well using a standard evaluation of gap429

= -2, miss = -1 and match = + 1.430

• Semiglobal mainly looks for overlaps between the extremes of metabolic pathways to look for431

similarities in these areas (prefixes against suffixes). The standard values were also used here.432

Figure 16. Influence of the graph size in the global comparison scores

For the first algorithm, figure 16 shows the relation between the graphs’ size and relative Global433

pairwise comparison scores. By this, we can see that there is no direct correlation between the size434

of the graphs and the Global scores. We found that this disordered behaviour is also present in all435

algorithms.436

It is worth noting that, for the relative global score, the “highest possible score” is delimited to the437

size ratio of the graphs. For example, let’s consider two different pathways, one with 3 nodes and the438

other one with 10 nodes. The best chance of a good comparison here is that the nodes of the smaller439

pathway are all in the bigger one, in the same order; the highest possible score in this case would be of440

30%. This can also be seen in figure 16 as a “diagonal” that bounds the dispersion of the points across441

the graph.442
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Figure 17. Influence of the graph complexity in the DbP pairwise comparison scores

Then, for the second algorithm, figure 17 shows the relation between the complexity ratio of the443

graphs and its influence in Numerical DbP scores. The numerical evaluation of the second algorithm444

seeks for differences between the graphs, according to the difference in edges. We can see that there is445

no direct correlation between the complexity of the graphs and the numerical DbP scores either.446

Also, on figure 18 we can see the relation between the number of equivalent nodes and the Global447

scores of algorithm 1 in the left side and for TMPAlign tool on the right side. Similar to the threshold448

observed for the global scores according to the size ratio, a similar behaviour can be seen with the449

equivalent nodes ratio, with more points getting aligned in the central diagonal than before. This also450

occurs at a lesser degree for the comparison values obtained with TMPAlign, where we can observe451

that the scores are less correlated to the equivalent nodes ratio; this implies that TMPAlign could be452

considering other factors when generating the scores. Nevertheless, there is an important observation453

here: when the graphs should not be similar (i.e. at low equivalent nodes ratio), both tools tend to454

show this.455
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Figure 18. Equivalent nodes ratio vs Global scores and TMPAlign scores, with a random statistic
sample of 50% and excluding comparisons without equivalent nodes. Pairwise comparisons where
both origin and destiny are equivalent are denoted with an orange X marker.

Figure 19. Common families on Global scores.

If we also consider the common families of the pathway, from a range of about 638 different456

families in the total population of 3241 pathways, it is easy to denote a great diversity of metabolic457

pathways. If we consider to group the pathways in a common families criteria, we can observe in458

figure 19 that most of the scores related to each category remains very close. Also, as the compared459

pathways have more families in common, the scores tend to be higher.460

As a validation for the scores obtained from the algorithms we applied a simple Design of461

Experiments (DoE) and One-way ANOVA tests. Figure 20 shows the resulting ANOVA for the Global462

scores. The DoE, in this case, considered the sizes of the graphs as factors, using 19 levels for each one,463

sizes from 2 to 20, as selected in the statistic sample. The design suggested 361 runs, we executed it464

with 5 replicas. All selected data for each run and replica was randomly selected from the sample data.465
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As we can see on the figure, all the replicas shows a normal variation, it means that different data with466

similar characteristics will provide results in a similar scope.467

Figure 20. One-way ANOVA: global scores

5.3. Comparison with other tool of reference468

The TMPAlign tool used was outdated, it was made available in 2017, written in a python version469

2.7 using services of the KEGG database that are not available today as it was expected. Documentation470

of the tool points out it can work with any database, so we change it to work with the same data files471

from MetaCyc we are using. Also, TMPAlign is not using the data about enzymes (i.e. when comparing472

two reactions, it only takes into account the reactions’ id when generating the score), since that service473

is inspired on how KEGG handles this information, and the data obtained from MetaCyc does not474

fulfill the same criteria. Furthermore, it is worth noting that, for some pairwise comparisons, the tool475

TMPAlign raised errors during the execution; these were excluded from the subsequent analysis for all476

algorithms.477

It is important to remark that the main goal of using a tool of reference is not to generate the exact478

same values, but instead prove that, if two pathways are significantly different, both tools can denote479

it, and the contrary for similar pathways.480

Using the previous DoE runs for global scores, we also obtained the scores for the TMPAlign481

algorithm. On figure 21 we tested the difference between the scores of the Global and TMPAlign482

algorithm as a way to test its similitude, but mainly to confirm that for non similar given pair of483

metabolic pathways we get low scores as expected and for similar pathways higher scores. Runs484

and replicas are the same. All selected data for each run and replica was randomly selected from the485

sample data.486
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Figure 21. One-way ANOVA: Global scores vs TMPAlign scores

5.4. Execution and timing evaluations487

About the cost related to the execution time of the algorithms, this is one of the most important488

gains obtained with the proposed algorithms. Figure 22 shows the time consumption between our489

algorithms and the tool TMPAlign and its relation with the graph size. For this comparison, consider490

that we are including the summarized timing of our algorithms and their versions, all at the same time,491

for each pairwise comparison, and not a single execution at a time. So, we can see here the sum of the492

execution times of our algorithms versus a single run of TMPAlign. Even with the accumulated times,493

our algorithms show an improvement, being, in average, at least 10 times faster than TMPAlign.494

Figure 22. Execution running time comparison between tools and graph size
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6. Conclusions495

The pairwise comparison of metabolic pathways is an enormous yet interesting problem. In496

this work, we have procured to provide some insight about it, implementing alternative methods to497

simplify how the data is used, and by doing so, sacrificing precision on the information representation498

but not in results.499

We can observe that the mechanisms proposed as algorithm 1, with its variants, and algorithm500

2 can be used as a prior evaluation process to predict good comparisons in case a deeper analysis501

is desired. In this case, the analysis could continue by considering extra information like enzymes,502

chemical similitude between compounds and others.503

The comparisons that report 0% equivalent nodes unanimously report a 0% similarity under any504

of the evaluated algorithms, meaning that, when there are no equivalent nodes between the graphs, it505

can be safely reported that both pathways are completely different, without the need of executing the506

comparison algorithms.507

It was shown that structural characteristics of the graphs, such as number of nodes (size) or508

number of edges (complexity), do not bias the comparison results when using the algorithms, as509

should be for a reliable tool. The only influence that these factors have over the results is that, when510

comparing graphs with different sizes or complexities, the relative global score or numerical DbP score511

respectively will be penalized (decreased) because of the structural difference, whether the nodes or512

edges are actually similar or not. This is naturally to be expected, as these considerations are part of513

the design for the score system. In other words, the scores obtained from every pairwise comparison514

are dependent from the inner data nodes; two comparisons of graphs with equals size might produce515

different scores.516

On the other hand, some characteristics that can be obtained from the pairwise comparisons have517

a slight effect on the comparison results, such as the equivalent nodes ratio between the compared518

graphs, how many metabolic categories share the graphs, and whether the graphs have equivalent519

origin and destiny nodes. When the first two have their numerical value increased, the comparison520

scores tend to increase as well; similarly, when the latter characteristic checks to be true, the comparison521

scores tend to be higher. This is also to be expected, as said characteristics hint at how related are the522

pathways. Likewise, it is important to denote that this tendency is not always the case, as there can be523

comparisons that do not follow this pattern, which is also perfectly normal and shows how diverse524

can be the metabolic pathways and their comparisons.525

The algorithms Transformation of the 2D pathway graph to a 1D or linear structure for later alignment526

and evaluation and Algorithm 2: Differentiation by pairs also showed to be extremely resource efficient,527

surpassing the speed of execution and in a more predictable manner than the tool of reference.528

This means that the goal of the algorithms (to simplify the graph comparison problem for it to be529

computationally lighter but still reliable) was achieved. The faster, reliable and more predictable530

behaviour of the algorithms also means the tool can be successfully employed for batch comparisons,531

using large datasets of metabolic information, even though this was not the original intended use for532

the algorithms.533
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Abbreviations535

The following abbreviations are used in this manuscript:536

537

BFT Breadth-First Traversal
DbP Differentiation by Pairs
DFT Depth-First Traversal

538
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