Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2021 d0i:10.20944/preprints202105.0378.v1

Binomial Fibonacci Power Sums

Kunle Adegoke
Department of Physics and Engineering Physics
Obafemi Awolowo University
220005 Ile-Ife, Nigeria,
adegoke000@gmail.com

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B37.
Keywords:  Fibonacci number, Lucas number, summation identity, series, binomial coeffi-
cient.

Abstract

We evaluate various binomial sums involving the powers of Fibonacci and Lucas num-
bers.

1 Introduction

Our main goal in this paper is to evaluate the following sums of powers of Fibonacci and
Lucas numbers involving the binomial coefficients:

- E(T 2m - EfT 2m
> (1) e D0 (0 ) e,

k=0 k=0

n n
S (1) < k) Floieer D (ED (k) Ll
k=0 k=0
thereby extending the work of Wessner [11], Hoggatt and Bicknell [3, 4], Long [6], Kili¢ et
al [7] and several previous researchers. Here n is any non-negative integer, j, m, r and s are
any integers and F; and L, are the Fibonacci and Lucas numbers.

There is a dearth of binomial cubic Fibonacci and Lucas identities. We will show that,
for any non-negative integer n and any integer s,

" /n 1
Z (k) Fl§+s - 5<2nF2n+38 + 3Fn—8)=
k=0

" n
Z (k> L2+S = 2nL2n+35 + 3Ly,

k=0
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— (n okr3 5"2(Lpi3s + (—1)*3L,), n even;
—\k ks =1 50HD/2(Fy, 5, — (—1)°3F,) n odd.

We will also derive the following binomial summation identities which we believe are new:

- EfT n—k k 12 1 n is nrn
Z (_1) (k‘) F2j7"+pr Fj(rk+s) = S(FerLpn—%s - (_1)] 2Fj’rLjT+p)7

k=0
- E(T n—k k n js n rn
04 () P B Lk = Bl + (~1)°203 Ll
k=0
- 1)k n n—k 71k2 _ 5n/2_1F2nerp”*2jS - <_1)j85n_12}7¥:‘}7ﬁ“+p7 n evell;
£ ( 1) <l€) L2jr+prP}(rk+s) - { 5(n_1)/2F2nerpn72js - (—1)js5n_12FﬁFﬁ+p, n Odd,
and

—~ k(" puk rhpo f BMEER Lpnogjs + (—1)755"2FRF, . n even;
Z( 1) <l€> L2jr+prLj(rk+s) - { 5(n+1)/72F2nerpn_2js + (_1)js5n2FnFn n odd.

k=0 Jr= gr+p’

The Fibonacci numbers, F},, and the Lucas numbers, L,,, are defined, for n € Z, through the
recurrence relations

Fn:Fn—1+Fn—27(nZ2)7 FOZO)FIZ]-; (1)

and
Ln == Lnfl + Ln727 (TL 2 2)7 LO = 2, Ll = 17 (2)

with
F,=)""FE, L.,=(-1)"L,. (3)

Throughout this paper, we denote the golden ratio, (1 + v/5)/2, by a and write § = (1 —
V5)/2 = —1/a, so that a3 = —1 and a + 3 = 1.
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Explicit formulas (Binet formulas) for the Fibonacci and Lucas numbers are

a® — ﬁn
F,=——+ L,=a" " € Z. 4
e o+ n (4)
Koshy [8] and Vajda [10] have written excellent books dealing with Fibonacci and Lucas
numbers.
Our results emanate from the following general Fibonacci and Lucas summation identities
(Lemma 2):
Z <k> n—k k pm T ba) = m Z Z(Jerl)( )a(mZi)jS (.%‘ + (_1)ijroé(mf%)jrZ)n7
k=0 i=
(BF)
- LR m - zs m—2i)js ijr . (m—2i)jr )\
(k‘)x ¥ kL (rk+s) Z J ( > ( 20); (l"f’ (—1)] 04( 2i)j Z) . (BL)
k=0 1=0

For lower m, the identities (BF) and (BL) are more useful in the equivalent form

Z (Z) s kFTEerJrs _ m Z (Z >ﬁijsa(m—i)js (I + BijrOz(m—i)jrz)n7 (BF/)

k=0 i=

S (1)t By = 2 () et (e oty qm)

k=0 i=0
When m = 1, we have the weighted linear binomial identities:

- n n—k _k 1 s ir \Nn js ir \N
Ty = —= (¥ (x + 7" 2)" — (e + T 2)") F1
;(0 J(rkts) \/5( ( )" = (x5 2)") (F1)
5 ()t Liones = (o + 024 3+ ) (L)
k=0

which are valid for n a non-negative integer, j, r, s integers and real or complex x and z.
Most linear binomial Fibonacci identities can be obtained from identities (F1) and (L1) by
substituting appropriate choices of n, j, r, s, x and z. For example, if we write 2r for r and
set # = (—1)", z =1 in (F1) and (L1), we obtain

n

i n TN TN
(—1>] k(k> Fj(2rk+s) = (_1)] Lerj(Tn—&-S)a (5>
k=0

T n TR TN
(_1)] k<k) Lj(2rk+s) == (_1)] Lerj(rnJrs); (6)
0

3
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which are valid for n a non-negative integer and integers r, s and j. The special case (s = 0) of
identity (6) was also derived by Layman [9]. As another example of linear binomial Fibonacci
identities that may be derived from (F1) and (L1), write 2r for r and set x = (—1)7", z = —1.
This gives

N 5”/2F]-’;Fj(m+s), n even;

> (=pur (Z) Fiarkts) = (7)

k=0 (—1)j”+15(”_1)/2FJ?";Lj(m+s), n odd;

5/ *F}' Ljnts), 7 even;

n . n
D (=1uruE ( k) Lijarkss) = (8)

k=0 (—1)”“5(”“)/21?’]?}173-(?%5), n odd.

Setting (v = F,4;r, 2 = —F,) and also (v = L, ., 2 = —L,) and making use of the identities
of Hoggat et al, (see Lemma 3), where p is any integer, we find

i n n— js n
Z (—1)F (k:) Fy iy Fitrs) = (=1 T ) By (9)
k=0

i n n— js n
> (=1 <k) FynFy Ligiss) = (1) Ly (10)
k=0

and e
(—=1)**152 Fl Fp_js, 71 even;

n n .
10 (1) B L P = (1)

k=0 (—1)j8+15nT_1F]?";Lpn_js, n odd;
_1)isE5 ) .
n N (=1)°52 F} Ly —js, 7 even;
(=D, ) B Lp Lty = o (12)
k=0 (—1)JSSTF]?7;Fpn,js, n odd.

Identities (9), (10) were obtained by Carlitz [1] while these and (11) and (12) may be found
in Dresel [2]. The special case (s = 0) of (9) was also derived by Layman [9].

2 Required identities and preliminary results

Lemma 1. For real or complex z, let a given well-behaved function h(z) have, in its domain,
Cc2

the representation h(z) = Y % g(k)2"® where f(k) and g(k) are given real sequences and
1,09 € [—00,00]. Let j be an integer. Then,

> alk)2! O F = ( \/%)m > (1) <T> h (870" "z), (F)

k=c1

c2

Z g(k:)zf(k)L;’}(k) = i (7) h (ﬁija(m_i)jz). (L)

k=cy =0

S
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Proof. We have

;Z; g(k)T B i = :q g(k)z!" (ajf(k() \;5)5:(’“))”1
_ (\/%)m kz::l (k) ® :0 (1) (TZ”) G (R) o (m=)i £ (k)
- i 2 V(1) Dot e
- i ()
The proof of (L) is similar. O

Since Fia™™* = (—1)'a™ 2, identities (F) and (L) can also be written as

. SR pm 1 S i m 1) (=203 /
S0 R = e S (e
Z g(k‘)zf(k)L’]?}(k) _ Z (T)h ((_1)ija(m—2z‘)jz)' (Ll)

Lemma 2. For non-negative integers m and n, integers j, r and s and real or complexr x

and z,
- N\ n—k_km 1 - i(js+1) (m) (m—2i)js ijr . (m—2i)jr ,\™
Y < i(rk+s) — (_1)] .|« / $+(—1>]O[ Iz 5
> ()t Bl = 7 2 : ( )

(BF)

& n n— m . zs m—2i)js ijr (m—2i)jr \"
(k)x k kL (rk-+s) E J ( > (m=2i)j (a:—i—(—l)] o(m=20j 2) ) (BL)
k=0

=0

Proof. Consider the binomial identity
Zg )2/ W) = 28(x 4+ 27, (13)

where

k) =rk+s, g(k) = (Z) vk, (14)
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Thus, B N B N 3 N
h ((_l)lja(m—Ql)]z) — (_I)ZJSa(m—Zz)]szs(x + (_1)zjra(m—21)]rz7")n‘ (15)

Use of (14) and (15) in identity (F'), with ¢; = 0, ¢y = n gives

Z (Z)x"_kz’"k %HS = o Z i(js+1) ( ) (m—2i)js (x—l— (_1)ijra(m—2i)jrzr)"7
k=0

=0

from which identity (BF) follows when we write z'/" for z. To prove (BL), use (14) and (15)
in identity (L"). O

It is sometimes convenient to use the (« vs (3) version of identities (BF) and (BL):

> (k> P F g = w%)m Z(—n"@ﬁ“sa(m‘% (w + 897alm=r2)", (BF)

k=0 =0

" /n “m\ g g AN ,
(k) ajn—kzsz;r(er_’_s) _ § ( Z )ﬁz;sa(m—z)js (1’ + ﬁzgra(m—z)jrz> ) (BL )
k=0

1=0

Lemma 3 (Hoggatt et al [5]). For p and q integers,

Lyyq — Lya® = =3P F,V/5, (16)
Lyiq — Lp,B7 = aPF,\/5, (17)
Fpyqg — Fpat = BPF, (18)
Forqg — B0 = oI, (19)

Quadratic binomial Fibonacci identities may be obtained from m = 2 in (BF') and (BL'):

i n ) )
52 (k) n—k kFQ(r]H-S) _ OzQJS(I‘ + aerZ>n +52]8(I + ﬁ2]7"z)n
k=0

= 2(=1"(z + (=1)7"2)",

(F2)

(n) xn—ksz?(rk+s) — 0Pz 4 QPN 4 GY (g 4 )

i\l (L2)

+2(—=1)7%(x + (—1)7"2)"

Theorem 1. For non-negative integer n and integers j, r, s, p,

n 1 somn TN
Z (_1) (k) F2jTﬁkaF2(,’,k+s) 5(F2]7~Lpn—2j8 - ( 1)] 2F77’L]7‘+p) p 7& 0, (20)
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- n n— n B nirn
(_1)k( )F f F;CL?(rkJrs) = FerLpn—2js + (_1)] 2‘Ferjr+p’ p 7& 07 (21)
0

k 2j7’+p
k=
n n sn/2-1pn (—1)7s5n—12Fn 1 n even;
- k( )L%’“ LEF2 .. I{ Y orn—lo i mt?’ ’
k:0< '\ ) Lo Lo Fliriss BI-D2ER By — (—1)512FRER L odd,
(22)
and

- n 5Y2ER Lpn_ojs + (—1)735"2F " P n even;
()i { T
prd ) 5( +1>/2F2jTFpnf2js + (—1)*5"2FLF" . n odd.
(23)

Proof. Choose x = Fyj,1p, 2 = —F), in (F2), noting Lemma 3, to obtain
- n n— n |s Qpn n S
53 U () it B Fh s = B (a7 + )
k=0
= 2(=1)"* (Fpjrp — (1) F)",

from which identity (20) follows. The same (x, z) choice in (L2) produces identity (21).
Set = Lojryp, 2 = —L, in (F2), utilizing Lemma 3. This gives

- n n— n n m—278 n apn—24s
53 (<10 () L L = BB (VB (a4 4 (-1 =2)
k=0
= 2(=1)"(Lajrrp — (=1)"Ly)";
and hence identity (22). The same (x, z) choice in (L2) produces identity (23). O

Cubic binomial Fibonacci identities may be obtained from m = 2 in (BF') and (BL'):

5\/52 (Z) xnikzkﬂs(rkJrs) _ Oégjs(l‘ + aSer)n o ﬁ3js($ + /63j1‘2>n
k=0

o o (F3)
— (=1)"3a’*(x 4+ (—=1)"a’"2)"
+ (=130 (4 (=17 37 2)",
(Z) xn—ksz?(Tk_’_s) _ O{3js($ + a3jrz)n + ﬁSjs(:L, + 53jrz)n
k=0 (L3)

+ (=1)7*3a*(z + (—1)"a?"2)"
+ (=130 (@ + (= 1) 2)"
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Theorem 2. For non-negative integer n and any integer s,

" /n 1
Z (k) F]§+S = E(QnFQn—i—Ss + 3Fn_5), (24)
k=0
- n 3 n
Z k Lk+5 =2 L2n+3s + 3Ln737 (25)
k=0
—~ (n k 3 1 non s
k (_1) Fk+s - g((_l) 2 Fn+3s - (_1) 3F2n+8)7 (26)
k=0
= n
(1 (1) B = (12 L+ (13 (27)
k=0
— (1 o 3 [ 52 Y (Fyyss — (—1)°3FL),  n even;
£ (k;)2 Fiess = { 50=3/2(Ly as + (—1)°3Ly)  n odd, (28)
—~ (1 krs  J 5% (Lansss + (=1)°3Ly), n even;
p (k>2 Lies = { 50 0/2(Fyy 3, — (—1)3F,)  n odd. (29)

Lemma 4. Let a, b, ¢ and d be rational numbers and X an irrational number. Then,
a+Ab=c+ A < a=c, b=d.

Lemma 5. If m is an integer and (f(i)) a real sequence, then,

> ) = fom)+ 3 (50 + fem — 1), (30
Y 70) = fm o+ 1) = fom) + D0 () + f2m ), (31)
In particular, if f(2m — i) = f(i), then,
> 1) = rm) +2 3 1) (32)
Y 70) = fm+1) - fom) + 23 1) (33)
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Lemma 6. For p and q integers,

14 (—1)pa2q B (—1)paqu\/§, p and q have different parity; (34)
| (=1)Pa?L,, p and q have the same parity.
| = (—1)P0% = (=1)P~'alL,, p and q have different parity; (35)
“ = (—=1)P"*9F,\/5, p and q have the same parity.
Proof. We have
(_1)P+q + (_1);!706211 — ap+l}ﬁp+q + aerZQﬁp
— arHig(at + ) (36)
= (—1)Pa’L,.
Similarly,
(=1 — (=1)Pa® = (—1)Pa?F,V/5. (37)
Corresponding to (36) and (37) we have
(1P 4 (-1 5% = (~1PBL, (33)
and
(=17 = (1) 5% = (= 1) B7Fy 5. (39)
[

Identities (36), (37), (38) and (39) imply
(D)7 +a =a’Ly, (40)
(=1)7 — o® = —aF,\/5, (41)
(=17 + 5% = BIL,, (42)
(—1)7 = g% = BUFV5. (43)

3 Main results

Theorem 3. Let m and n be non-negative integers and let 7, v and s be any integers. Then,

. n 2m
) ( k) Ejirits)
k=0

( m—1

o ;) (_1)i(js+jm+1) (2?2) L?mfi)er(mfi)(jrnJers) + (—1)m(js+1) (2::) 57M2"  gmr even;

m—1 )

—{ mn/2-m Z% (—1)i+D) (27‘) EG e Lm—i)Gra+2js),  Jmr odd, n even;
Cm—1 )

Hlntl)/2=m S~ (—1)is () e Fn—iGma2js),  Jmr odd, n odd.

\ =0

(44)
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Z ( 1) idstirm) (Qm) L?m z)er(m*i)(jT"+2js) + (_1)mjs (271:) 2n’ jmr even,
= (45)
={ 5n/2 ;) (—1) (22”) Eiyjr Lm—i)(rn+2js),  Jmr odd, n even;
m—1
5(nt1)/2 5 (—1)ils+1) (Zm)F& ijrFm—i)(Grnt2js),  jmr odd, n odd.
\ =0

Proof. In (BF) write 2m for m and set x = 1 and z = 1. This gives

2m
5m E ( )F2777:Lk+5 _ § (_l)z(]s—l—l)( m> a(m—z)Q]s (1 + (_1)era(m—z)2jr) ) (46)

i
i=0
Now, on account of Lemma 6, identity (34), we have

o —1)4rQm=IT L s jrm even;
1 —1)ur (m—1)2jr _ < } N (m—i)jrs ’ 4
+ (D)7 (—1)iam=0ir Fy, /5, jrm odd. (47)
Thus, using (47) in (46), we have
» Z ( >F2m ;} (_1)1(]s+jrn+1) (QT)Q(m_Z)(jrn+2]S)L?m—i)jr’ jrm even;
rk+s) — 2m
(VB)" 3 (—1)s D) ()=t fn L e odd.

i=0

(48)

Observe that the left side of (48) evaluates to a rational number since it is the finite sum of
rational numbers. Since,

2a(m71)(jrn+233) = L(mfi)(j'rn+2js) + F’(mfi)(jrn+2js) \/g, (49)

identity (44) now follows by comparing both sides of identity (48) in each case of jmr even
or jmr odd, invoking Lemma 4 with A = /5. Note the use of Lemma 5, identity (30) to
re-write the (i = 0 to 2m) sum. The proof of identity (45) is similar; set x =1 and z =1 in
(BL) and write 2m for m. O

Theorem 4. Let m and n be non-negative integers and let 7, v and s be any integers. Then,

n n "
Z (_1)k (/{) Fj2(rk+s)

k=0
5= (1) Y () L D g + (<) N2, jmr odd:

— 5n/2 m Z ( 1)”54—1 ( ! )Fn

(m—i)er(m—i)(jT”+2j5)7 jmr even, n even;

5(n+1)/2-m Z (—1)ilistir+1) (zm)F(?n ojr Flm—i)Grnvajsys  Jmr even, n odd.
(50)

10
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- (TN rom
(-1) (k>LJ(Tk+S)

k=0
( m—1 . .
(0" X (=) IV LE, i Ln—syGrns2gs) + (=1)° ()27, jmr odd;
= (51)
= 5n/2 3 (_1>ijs (2;”)an—z‘)er(m—i)(jer?jS)’ Jjmr even, n even;
i=0
m—1
_5(n+1)/2 (—1)ilstir) (Qm)F(% iyirFm—i)(jr+2js),  Jmr even, n odd.

\ =0
Proof. In (BF) write 2m for m and set = 1 and z = —1. This gives

2m

m i(js 2m m—i)2js ijr (m—i)25r\"
S0 () e = S 0 (31 ol (1 ot ey

=0

Now, on account of Lemma 6, identity (35), we have

1 — (—1)ra(m=2r — (_1)%jrfla(mi)er(m—i)jr\/57 Jjrm even; (53)
(=1 a0 L e, jrm odd.
Thus, using (53) in (52), we have
2m
—1)intisti—n 2m a(m—1)(Grn+2js) Ln , Ygir Odd,
5mz < )F2m B Z;Q( ) (1) —i)jr J
(rk+s) 2m - o
(\/g)n Z (_I)Z]nrJrz]erzfn (2:ﬂ)a(m l)(]Tn+2]8)F(T;‘n 2)ir ij even.
=0
(54)

The left side of (54) evaluates to a rational number since it is the finite sum of rational
numbers. Making use of identity (49), identity (50) follows by comparing both sides of
identity (54) in each case of jmr even or jmr odd, invoking Lemma 4 with A = /5. The
proof of identity (51) is similar; put x = 1 and z = —1 in (BL) and write 2m for m. O

The proofs of Theorems 5 and 6 are similar to those of Theorems 3 and 4. We therefore

omit the details and indicate only the appropriate choices of x, z, m and r to be made in
identities (BF) and (BL) in each case.

Theorem 5. Let m and n be non-negative integers and let j, r and s be any integers. Then,

— (n 2m+1
> (k) Fitaorkts)

k=0

5 m Z (1) i(js+1) (2m+1)L7(12m+1 ZZ)JTF(QmH_%)(ijS), jr even; (55)

_ ) gn/2-m Z( 1)itas+1) (27’11+1)F(gm+1 o) jr L (2mA1-2i) Grntjs)s I odd, n even,

5(n— 1)/2 mz( 1)ids+h) (2m+1)F(7§m+1 o) jr L@m+1-20)(jrn+js),  JT odd, n odd;

7
\ =0

11
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2m+1
(k)L j(2rk+s)
k=0
r m
Z( 1)2]5 (2m+1)L?2m+1 22)]TL(2m+1—2i)(an+js)’ j?” even,
= (56)
_J 5n2 ;)( 1)235(2ml+1)F(75m+1 QZ)JTL(QWH_QZ-)(]-WHS), Jr odd, n even;
5(n+1)/2 z%)( 1)”5 (2”12+1) F(gm+1 22)]1“F(2m+1_2i)(jrn+j5)7 j?ﬁ Odd, n Odd
\ =

Proof. Set x = 1, z = 1 and write 2m + 1 for m and 2r for r in identities (BF) and (BL).
Note that

o126} . )
alm ’)”L(gmﬂ,g@-)ﬁ, Jr even;

2m+1-2i)jr V5, jr odd.

1 +a(2m+1—2z’)2jr _ {
(2m+1—24)jr

al
[l

Theorem 6. Let m and n be non-negative integers and let 7, v and s be any integers. Then,

n

> (=1

k=

k

0

n

2m—+1
‘Fj (2rk+s)

(+)

(=1)"5~ ’”Z(

5n/2 m i ( 1)2(]8+1) (2m+1)

=0

;

LTL

) ]S+1)(2m+1> (2m+1-24)5r

Fomy1-20)(jrntjs),  Jr odd;

F’I’L

(2m-+1—20)jr Jr even, n even;

F(2m+172i)(jrn+js) ’

(n—1)/2— mi(

O 1)itis+1) (2m+1)F(7§m+1 giyjr Lemi1-2)(rtis),  JT even, n odd;
\ =
(57)
EfT 72mt1
(_1) <k’>L (27—"’;€+S)
0
/ m
(—1)nZ( 1>U8(2mz+1)L?2m+1 aiyjr L@m+1-20)(Grntjs)s  IT odd,
4 (58)
5n/2 ZO( 1)1_75 (2m+1)F(gm+1 22)]TL(2m+172i)(jrn+js)’ j’r‘ even, n even,
_g(n+1)/2 z%( 1)4s (%“)Fg;mﬂ 21)]TF(2m+172i)(jrn+js)> Jr even, n odd.
\ 1=

Proof. Put x =1, z = —1 and write 2m + 1 for m and 2r for r in identities (BF) and (BL).
Note that

1 — o@m+1-20)2jr _ { _a(2m+172i)jrF(2m+1—2i)jr\/ga JT even;

—a(2m+1*2i)j’”L(2m+1—2i)jra jr odd.
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