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Abstract: This study aimed to identify new drug molecules against Leishmania parasites, leish-
maniasis's causal agent, using Pistacia atlantica leaves as source.  The evaluation of the an-
ti-leishmania potential against the promastigote form of Leishmania. infantum and Leishmania. 
major was performed. A new in silico study was accomplished using molecular docking, with 
Autodock vina program, to find the binding affinity of two important phytochemical compounds 
from this plant (Masticadienonic acid, 3-Methoxycarpachromene) towards the trypanothione re-
ductase as target drugs, responsible for defence mechanism against oxidative stress and virulence 
of this parasites. Results: Several concentrations showed a significant decrease in cell viability 
(P<0.0001), with IC50 values of 0.3 mg/ mL for L. infantum and 0.12 mg/ mL L. major; The molec-
ular docking confirms the significant relationship between Leishmania survival and the inhibition 
of this crucial enzyme. There were promising and new positive results on binding modes of se-
lected ligands and the trypanothione reductase for the first time. Through this work, we propose 
3-Methoxycarpachromene and Masticadienonic acid as anti Trypanosomatidae species drug. 

Keywords: Pistacia atlantica leaves; L. infantum; L. major; promastigote; antileishmanial; Mastica-
dienonic acid, 3-Methoxycarpachromene; molecular docking. 
 

1. Introduction 
Leishmaniasis is a non-contagious infectious vector-borne disease [1], is still re-

sponsible for extensive morbidity and mortality in the world [2]. A paramount public 
health concern: is endemic in 98 countries; Approximately 2 million new cases are regis-
tered annually; about 50,000 deaths each year [3]. Two epidemiological forms, cutaneous 
and visceral leishmaniasis, are diffuse in Algeria, which ranks second, after Afghanistan, 
to the prevalence of cutaneous leishmaniasis [4]. 

Until now, no effective vaccine is available for leishmaniasis treatment [5]. Chemo-
therapy is the foremost approach to trait this infection [6].Current drug treatments for all 
forms of leishmaniasis get a severe impact on humans: 

Renal failure, Hepatotoxicity, leucopenia, neurotoxicity and cardiotoxicity…etc 
[7-9].   But lack of potential alternatives forced them to be dependent on these chemo-
therapeutic drugs [10].  Several scientific reports declared a therapeutic failure linked to 
the emergence of drug-resistant strains [11-14]. 

In this context, regarding these multiple factors, it is necessary to search for a new 
alternative drug to treat leishmaniasis. More attention has been paid to the natural herbal 
compounds to avoid the inconveniences of chemotherapy [10]. Molecular docking has 
become an important tool for high-throughput virtual screens and drug discovery [9].  
Up to 24 Leishmania enzymes (52 distinct protein structures from the Protein Data Bank 
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(PDB)) have been exploited as potential enzyme drug targets utilising the Molegro Vir-
tual Docking software [15]. Table 1 presents the targets enzymes for Leishmania infan-
tum and Leishmania major from literature. The Trypanothione reductase, one of the most 
important targets for leishmania treatment, given those parasites lacking this enzyme, are 
avirulent and highly sensitive towards reactive oxygen species [16]. Besides, reducing 
this enzyme activity to 50% or less of normal ranges decreased several Leishmania spp's 
abilities to proliferate within activated macrophages [17-19]. This fact makes trypano-
thione reductase an attractive target for the development of new potential drugs. 

Table 1. Targets enzymes for L.infantum and L. major from literature 

Target Enzyme References Number of published papers (google 

scholar) 

Leishmania infantum 

Tyrosine aminotransferase [20] 298 

Trypanothione synthetase [21] 1 340 

DNA topoisomerases [22] 1400 

Trypanothione reductase [23] 1 790 

Leishmania major 

Glyoxalase I [24] 547 

Trypanothione reductase [25] 3 830 

Pistacia atlantica Desf (P. atlantica) is the famous taxa of the Pistacia genus belongs 
to the family Anacardiaceae that grows in the Middle Eastern regions and the Mediter-
ranean. Traditionally, the plant parts were employed for therapeutic purposes due to 
their healing potentials [26], such as stomach aches, indigestion, throat infections, and 
peptic ulcers, a repellent of insects, against chest diseases, expectorant, and anti-asthma 
[27]. Previous researchers have described various biological activities for different P. at-
lantica extracts: antimicrobial, antifungal, antiviral, antiplasmodial and antileishmanial 
[28]. Different parts of P. atlantica have been investigated for various phytochemical 
studies. Most of the papers are devoted to terpenoids. For example, they marked the 
presence of α-pinene, β-pinene, limonene, Terpinolene, Camphene, Terpinen-4-ol, Bornyl 
acetate, Sabinene, p-Mentha-1 (7), 8 diene, Masticadienonic acid, Masticadienolic acid 
and Morolic acid in the different plant parts[29, 30]. Great importance has also been at-
tributed to Phenolic Compounds. The Gallic acid, Quercetin-3-glucoside,catechin, epi-
catechin, Naringenin; apigenin, caffeic acid, ferulic acid, and  3-Methoxycarpachromene 
are present in the plant parts [29, 31]. The in-silico analysis literature shows a important 
number of natural antiparasitic compounds like polyphenolic and Terpenoids [15, 32, 33] 
.The present study aimed to evaluate P. atlantica leaf extract antileishmanial activity (on 
humans collected isolates), then to identify new selective inhibitors of trypanothione 
reductase using an in silico approach. From the above-cited terpenoids and phenolic 
compounds, we have selected Masticadienonic acid and 3-Methoxycarpachromene (Ta-
ble 2) as ligands because there is not any docking of these ligands with the selected target. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 May 2021                   doi:10.20944/preprints202105.0348.v1

https://doi.org/10.20944/preprints202105.0348.v1


 3 of 13 
 

 

2. Results and Discussion 

2.1. Phenolic content and antioxidant activity by the DPPH method 
The leaf extract of P.atlantica recorded a high yield of about 27.3 %. The determina-

tion of total polyphénols and flavonoids in the extract were carried out spec-
tro-photometrically from calibration curves of gallic acid and rutin, respectively. The 
amount of total phenolic compound was 45.11±0.05 (mg GAE/g dw), The content of fla-
vonoids was 41.0.2 ±0.07 (mg RE/g dw). Our result marks a difference compared to that 
obtained by Ben Ahmed et al. 2017 [34], total leaf phenolic compound from the female 
gender collected in the same sampling area is considerably higher than ours, but the 
flavonoids were less than that ours.  This dissimilarity could be due to the difference in 
the organic solvent. Other than our results seem to be in the same order according to the 
result found in the ethanolic of a leaf extract from Tunisian P. atlantica, particularly the 
flavonoids amount [35]. 

Phenolic compounds are well-known antioxidants that have long been of interest 
because of their benefits to human health, as they address and prevent many diseases. 

It is interesting to note that flavonoids constitute half of this chemical class in agly-
cone, glycosides and methylated derivatives formes [36]. General free radical scavenging 
activity has been broadly utilised as a robust and rapid measure for assessing herbal ex-
tracts' general in vitro antioxidant capacity [37], particularly attributed to phenolic 
compounds i.e. flavonoids and phenolic acids [38]. The extract scavenging properties of 
DPPH was calculated from the linear regressions of the percentage of inhibition and 
concentration.  

The IC50 leaf extract is 58.24 ± 0.02 µg / µM DPPH ; this value is lower than those of 
Trolox, 93.48 ± 0.07 µg / µM DPPH. The mechanism of radical scavenging, the reaction 
between the antioxidant and DPPH, depends on the antioxidant's structural confor-
mation  [39]. Thus, this activity depends not only on the content of phenolic compounds 
but also on the structure and interaction between the different compounds [39]. 

     Regarding the activity against DPPH free radical, the result is near that ob-
tained by Toul et al. (2016) and Peksel et al. (2010), cited in Table 2 [40,41]. The extract has 
lower activity than other crude extract compared to the work carried by other studies 
quoted in Table 2 [40,42-44]. It is also different from those who used the same extraction 
solvent but whose fractionation steps were different [40,42-44]; this is probably related to 
the biochemical composition of the extracts, which is mainly dependent on the nature of 
extraction solvent as well as the steps of confrontations by organic solvents. 

  
Table 2. Comparison of the activity against DPPH free radical from P.atlantica leaf extract 

cited in other studies 

Extraction Solvent 
IC50/ 

reactionel 
volume 

DPPH 
Concentration 

/ reactionel 
volume 

IC50 
(µg / M 
DPPH) 

Sampling 
area References 

Ethyl Acetate 
fraction 

58.24µg / M 
DPPH /(100 

µL) 
500µM/(1 mL) 58.24 Aïn Oussara 

Alegria 
Present 
study 

methanol 2.4( µg/ mL) / 
0.75(  mL) 

(20 mg/L )/ 
(1.5 mL) 23,66 Istanbul, 

Turkey 
[40] 

Ethyl Acetate 4.12( µg / mL)/ 
(0.75  mL) 

(20 mg/L )/ 
(1.5 mL) 40,61 Istanbul, 

Turkey 
[40] 

acetone-water(70/30)- 
Ethyl Acetate 

0.124 (mg/ 
mL)( 50µL  

mL) 
(0.025 g/L)/ 
(1950 µL) 50,15 Tlemcen 

Alegria 
[41] 

Ethanol –Water 
(70/30) 

4.6(µg/ mL)/ 3( 
mL) 

(0.3mg/ 
mL)/(1 mL) 18,14 Iran [42] 

Ethyl Acetate 
fraction 

1.54 (µg/ mL) 
/(3 mL) 

(0.3mg/ 
mL)/(1 mL) 6,07 Iran [44] 
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2.2. Antileishmanial effects against promastigote form  

The effects of leaf extract on cell viability were tested on the promastigote form of two 
different Leishmania species using the MTT assay. Several concentrations showed a sig-
nificant decrease in cell viability (P<0.0001), Promastigotes of L. infantum and L. major 
were inhibited, with IC50 values of 0.3 mg/ mL, and 0.12 mg/  mL, respectively (Fig. 1). 
Tukey's Multiple Comparison Test confirms that the results are significant and that 
Leishmanicidal activity of the extract is dose-dependent (p<0.0001). These results prove 
essential as a crude extract compared to the standard drug Glucantime when the IC50 
value was 0.05 mg/ mL [45]. 
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Figure 1.Dose-response curves of P.atlantica leaf extract on promastigotes of Leishmania 

2.3. Molecular docking 

    In the aim to confirm the experimental results, a molecular docking study was 
conducted to simulate the interactions of studied compounds in the catalytic site of 
trypanothione reductase. These simulations predicate that the binding energies of the 
enzyme are -8.4 kcal/mol for  3-Methoxycarpachromene and -6.2 kcal/mol for Mastica-
dienonic acid (Table 3). These low binding free energies confirm the stability of the 
studied complexes. 3-Methoxycarpachromene interacts with three hydrogen bonds 
(Glu466: 1.85A°; His461:2.58A°; Asn340: 2.44 A°) and different hydrophobic types inter-
actions (Π-Alkyl, Π-sigma, Π-cation, and Alkyl-alkyl with Asn340, Arg472, Cys469, 
Thr457, Ile339, and Ala343. This ligand is better than Masticadienonic acid in both bind-
ing energy and number of interactions (Figure 2 and 3). 

     It should be noted that trypanothione reductase structure is identical for all the 
characterised species of Trypanosomatidae (67% similarity of primary sequence from 
Trypanosomatidae, 82% identity between Leishmania spp. and >80% among Trypano-
soma spp) [46]. So this result proves to be important in the treatment of all diseases 
linked to Trypanosomatidae species.  
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Table 3. The results of interactions between compounds and trypanothione reductase 

Ligand 
Free binding 
energy (kcal 

mol−1) 
Closest residues 

Hydrophobic 
interactions 

Hydrogen 
bonds 

Length 
(Å) 

3-Methoxycar
pachromene 

-8.4 

Glu466, His461, 
Asn340, Arg472, 
Cys469,Thr457, 
Ile339, Ala343 

Π-Alkyl, 
Π-sigma,  
Π-cation, 

Alkyl-alkyl 
 

Glu466 
His461 
Asn340 

1.85 
2.58 
2.44 

Masticadieno
nic acid 

-6.2 

Trp21, Leu17, 
Gly49, Val53, 
Val58, Ile106, 

Ser14 

Π-Alkyl, 
alkyl-alkyl  

Ser14 
Gly49 

2.96 
2.9 

 

 

 

Figure 2.Best pose of docking for 3-Methoxycarpachromene in the catalytic site of trypanothione reductase  
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Figure 3.Best pose of docking for Masticadienonic acid in the catalytic site of trypanothione reductase  

2.4. ADMET study 

     The result generated from the Lipinski, and ADMET filtering analyses are 
represented in Table 4. The two ligands fulfilled the requirement for Lipinski analysis of 
the rule of-five with corresponding favourable predicted ADMET parameters. The pre-
dicted physiochemical properties for bioavailability of the lead compounds were further  
represented in Figure 4. The ADME/tox and pharmacokinetic properties from the filter-
ing analyses suggested the 3-Methoxycarpachromenewith a high probability of human 
intestinal absorption, subcellular distribution while the Masticadienonic acid presented 
low intestinal absorption.  

 

 

3-Methoxycarpachromene Masticadienonic acid 

Figure 4.Summary of pharmacokinetic properties of the studied complexes. 
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Table 4. ADMET profiling enlisting absorption, metabolism and toxicity related drug like parameters of the two selected ligands 

 

 
 
 
 
 
 
 
 
 
 
 

3. Materials and Methods 

3.1. Plant Collection and Identification 

The leaf of P atlantica Desf. were sampled from Ain Oussara in Algeria in 2019 (GPS co-
ordinates 35° 27' 15.355" N 2° 54' 27.394" E). The leaves were authenticated by voucher 
specimen in the Fundamental Sciences Research Laboratory's herbarium at Laghouat 
University, Algeria. The collected sample was first cleaned, and then it is dried in the 
shade at room temperature.  

3.2. Extract Preparation and quantification          

After drying, the collected leaves were crushed manually. Tow gram of the obtained 
powder was extracted according to the method described Djeridane, et al, 2006 [39]. The 
dried extract residue was then dissolved in 5  mL of absolute methanol and kept at 
-10°C.  

3.3. Evaluation of antioxidant activity (DPPH assay) 

      DPPH (2, 2 -diphenyl-1- picrylhydrazyl) free radical scavenging activity of leaf ex-
tract was done via a slightly modified method of Brand Williams et al. (1995) [49]. de-
scribe by Djeridane, et al, 2006 [39].  A new radical DPPH solution in methanol was 
prepared before the measurements of absorbance. About 1 mL DPPH solution (500µM) 
was mixed with 1 mL of leaf extract dilution. The mixture was shaken vigorously at room 
temperature and allowed in the dark for 30 min. When an antioxidant compound reacts 
DPPH• with, it donates hydrogen atom, which reduces the free radical. The decrease in 
colour (from purple to light-yellow) was measured at 517 nm on a UV-visible light spec-
trophotometer (UV1601).  

The leaf extract's antioxidant potential was expressed as an IC50 value defined as the 
concentration (in µg/ M DPPH) of the extract that inhibited DPPH radicals' formation by 
50%. The result was compared to the Trolox as a positive control, and the experiment was 
conducted in triplicate  

  

Models 3-Methoxycarpachromene Masticadienonic acid 
A. Absorption   

Blood-Brain Barrier No No 
Human Intestinal Absorption high low 
Skin Permeation -5.60 cm/s -3.68 cm/s 

B.  Metabolism   
P-gp Substrate Non Substrate Non Substrate 
CYP450 1A2 Inhibitor Inhibitor Non Inhibitor 
CYP450 2C9 Inhibitor Non Inhibitor Inhibitor 
CYP450 2D6 Inhibitor Non Inhibitor Non Inhibitor 
CYP450 2C19 Inhibitor Non Inhibitor Non Inhibitor 
CYP450 3A4 Inhibitor Inhibitor Non Inhibitor 
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3.4.Antileishmanial effects against promastigote form  

We sought to evaluate the antileishmanial potency of leaf extract on Leishmania isolates 
for the most widespread species transmitted in Algeria. This investigation's selected 
strains are responsible for the visceral form or the cutaneous forms of this disease:  L. 
infantum MON1and L. major MON25, respectively. They were sampled from infected 
humans. 

We adopted the colourimetric cell viability MTT assay to evaluate the antileishmanial 
effect.   According to the procedure mentioned by Shokri et al.[50] , at first, 100µL of 106 
the promastigotes cells/ mL (taken from logarithmic growth phase) was put into a 96-well 
microtiter. Then, 100µL of different concentrations (0.005-7.3 mg/ mL) of leaf extract was 
added to each well and incubated at 25°C±1°C for 72 hours. After incubation, 10µL of 
MTT solution (5mg/ mL) was added to each well and incubated at 25°C for 3 hours. The 
promastigotes were cultured in the complete medium with no drug used as a positive 
control. Finally, the absorbance was photometrically measured by an ELISA reader 
(ELX800) at 492nm.  

The 50% inhibitory concentration (IC50) was determined by sigmoidal dose-response 
regression analysis using Graph Pad Software, La Jolla, CA, USA). 

       The concentration of inhibitors was calculated in mg of ethyl acetate crude extract 
per mL (mg / mL).  

3.5. Molecular docking 

We achieved a molecular docking using trypanothione reductase enzyme, one of the 
most important targets for leishmania treatment (Table 1); after detailed screening in the 
Protein Data Bank (PDB), we have found many PDB files of this enzyme, we have chosen 
the enzyme with PDB ID: 5EBK because it is complexed with inhibitors, in addition, the 
inhibition mechanism is well described in the work of Saccoliti et al., 2017[51]. From the 
above-cited terpenoids and phenolic compounds, we have selected Masticadienonic acid 
and 3-Methoxycarpachromene (Table 5) as ligands, for the reason that flavonoids and 
high molecular weight terpenoids are both extractible by ethyl acetate, besides, there is 
not any docking of these ligands with the selected target. The ligands were obtained from 
the PubChem database [52], and assembled with Discovery Studio visualiser v4.0. We 
have prepared the protein by removing all unnecessary water molecules, heteroatoms, 
ligands, and co-crystallised solvent. Polar hydrogens and partial charges were added to 
the structure using Autodock tools (ADT) (version 1.5.4). We performed the molecular 
docking (blind docking) using the AutoDock Vina program [53] in an eight CPU station. 
The software uses rectangular boxes for the binding site; the center of the box has been 
set and displayed using ADT. The enzyme's grid box was set with 1 Å separated grid 
points positioned in the middle of the active site for the studied protein. Regarding the 
flexibility of the side chain during this specific docking, flexible torsions in the ligands 
were assigned, and the acyclic dihedral angles were allowed to rotate freely [54]. The 
default settings were used, except that the number of output conformations was set to 
one. The number of docking runs was set at 10 runs. The number of solutions obtained is 
equal to 10 conformations for each ligand and enzyme. All these solutions are very well 
handled. The "random seed" is random. The preferred conformations were those of lower 
binding energy within the active site. Finally, the generated docking results were directly 
loaded into Discovery Studio visualiser, v 4.0. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 May 2021                   doi:10.20944/preprints202105.0348.v1

https://doi.org/10.20944/preprints202105.0348.v1


 9 of 13 
 

 

Table 5. The selected ligands from Chemical ingredients of P.atlantica cited in the literature 

Ligand name 2D structure References 

Masticadienonic acid 

 

[30] 

3-Methoxycarpa-chromene 

 

[29] 

3.6. ADMET study 

To evaluate the two studied compounds' drug-likeness prediction, they were subjected to 
Lipinski filter in which an orally bio-active drug is expected not to violate more than one 
of the criteria for drug-likeness namely: cLogP, hydrogen donor and acceptor molecular 
mass, and molar refractive index [55]. The predicted Absorption Distribution Metabo-
lism, Excretion and Toxicity (ADMET) study were analysed using SwissADME server 
(http://www.swissadme.ch/index.php) [56], which is reported as an important tool in 
drug discovery. We have inserted The SDF file and canonical SMILES of the two terpe-
noids into the server online to calculate ADMET properties using default parameters. 

3.7. Statistical analysis  

 Data are expressed as mean ± standard deviation (S. D). Statistical analysis involved 
a one-way analysis of variance (ANOVA). A value of p < 0.05 was considered statistically 
significant. 

4. Conclusions 
The findings are very promising. The 3-Methoxycarpachromene and Masticadienonic 
acid display a strong inhibitory activity on trypanothione reductase, which alters the 
parasitic defense mechanism against oxidative stress this study's results, we propose a 
therapeutic strategy to treat the Leishmania infection. The potent metabolites 
3-Methoxycarpachromene and Masticadienonic acid might be an effective strategy to 
solve Antimony-resistant strains. Those natural molecules also might become drug can-
didates as anti Trypanosomatidae species drug. 
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