Review Article # Gender differences in urothelial bladder cancer. Effects of natural killer lymphocyte immunity Charles T. Lutz 1*, Lydia Livas 2*, Steven R. Presnell 3*, Morgan Sexton 4 and Peng Wang 5 - Department of Pathology and Laboratory Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Markey Cancer Center, University of Kentucky ctlutz2@uky.edu - ² Department of Pathology and Laboratory Medicine, University of Kentucky lydia.livas@uky.edu - 3 Department of Pathology and Laboratory Medicine, University of Kentucky Steven. Presnell.uky.edu - Department of Pathology and Laboratory Medicine, University of Kentucky morgan.t.sexton@Vanderbilt.Edu - ⁵ Department of Internal Medicine, Markey Cancer Center, University of Kentucky p.wang@uky.edu - * Contributed equally to this work **Abstract:** Men are more likely to develop cancer than women. In fact, male predominance is one of the most consistent cancer epidemiology findings. Additionally, men have a poorer prognosis and an increased risk of secondary malignancies compared to women. These differences have been investigated in order to better understand cancer and to better treat both men and women. In this review, we discuss factors that may cause this gender difference, focusing on urothelial bladder cancer (UBC) pathogenesis. We consider physiological factors that may cause higher male cancer rates, including differences in X chromosome gene expression. We discuss how androgens may promote bladder cancer development directly by stimulating bladder urothelium and indirectly by suppressing immunity. We are particularly interested in natural killer (NK) cells because they are important, but often overlooked anti-cancer lymphocytes. **Keywords:** Urothelial bladder cancer; Natural Killer Cells; Androgens; Immunosuppression; X Chromosome # 1. Introduction The Gender Divide: "Instead of ignoring our differences, we need to accept and transcend them." Sheryl Sandberg [1] UBC is common, with a 2.4% lifetime risk [2]. UBC is much more common in men: out of the estimated 83,750 new UBC cases in America in 2021, about 64,280 are in men and 19,450 are in women [4]. UBC also kills more men than women: in 2021 it is estimated to kill 12,260 men and 4,940 women [4]. Even when controlling for increased male exposure to carcinogens, such as tobacco and industrial chemicals, men are at an increased risk [5]. Gender differences in cancer outcomes can be due to biological or social factors. For example, well-known variances in occupation, workplace exposures, and social networks could all influence cancer incidence and survival, but not be directly due to biological sex. In this review, we focus on biological sex differences that may affect UBC incidence and mortality. As we discuss below, observed UBC gender differences could be related to how androgens and the androgen receptor (AR) affect UBC development and progression. UBC gender disparity also could result if androgens suppress anti-cancer immunity. Moreover, greater transcription of some X chromosome genes may protect females from UBC. Most UBC are identified early and are transurethrally resected. Adjuvant treatment often includes intravesicular infusion of cytotoxic chemotherapy or of Bacillus Calmette-Guerin (BCG) immunotherapy. While superficial tumors often respond to these treatments, UBC has a lifetime recurrence risk of up to 50% and requires long-term monitoring [6, 7]. As a result, UBC treatment and monitoring cost more than for any other cancer [8, 9]. It should be emphasized that UBC 5-year mortality rates have remained fairly consistent over the last 3 decades, despite advancements in treatment [3]. To help current and future patients, we must further study UBC pathogenesis. This review focuses on proposed biological reasons for high male incidence, which leads to more male deaths. What we learn from gender differences may allow us to better understand and treat UBC in both sexes. ## 2. The androgen receptor in bladder cancer Encoded on the X chromosome, the androgen receptor (AR) binds to testosterone and related hormones. Testosterone stimulates cells through multiple mechanisms (Fig. 1). In the classical mechanism [10], the hormone passively diffuses into the cell and binds cytoplasmic AR. Increasing potency, testosterone is reduced by $5-\alpha$ reductases in the cytoplasm to dihydrotestosterone (DHT), which binds to AR with high affinity. Hormone binding changes AR conformation, which allows hormone-AR complexes to enter the nucleus and either enhance or depress transcription of multiple genes [10]. In addition, AR interacts with important cytoplasmic signaling molecules, including PI3K, Src, and Ras to initiate MAP kinase signaling [11]. In another non-classical mechanism, ZIP9 (SLC29A9) was identified as a non-AR cell surface androgen receptor (Fig. 1). Upon testosterone binding, ZIP9 increased intracellular zinc and imparted an apoptotic signal [12, 13]. A putative T lymphocyte surface androgen receptor [14-16] may in retrospect have been ZIP9. Finally, IL-6 and IL-8 inflammatory cytokines activate AR signalling in the absence of androgens (Fig. 1), via ERK, Src, FAK, and STAT3 [18, 19]. AR is widely expressed in both sexes, despite large differences in androgen levels. Both sexes express AR in the bladder, including urothelium, muscularis propria (detrusor muscle), and bladder neurons [20-22]. In castrated male rats, androgen replacement therapy significantly improved urothelial thickness and muscle fiber quantity, indicating an androgen effect on these structures [23]. High overall male cancer risk naturally suggested that AR and testosterone accelerate cancer initiation, progression, or metastasis. For prostate cancer (PCa), this relationship is well established [24-26]. In addition to PCa, many cancers are influenced by androgens. For example, castration of male rats reduced both chemical-induced pancreatic tumor burden and renal cell carcinoma; testosterone administration at least partly reversed this effect [30]. However, particularly aggressive cancers often do not respond to androgen deprivation therapy (ADT). Castration-resistant PCa is a classic example. It most often arises after ADT, which selects for highly aggressive castration-resistant cancer cells that proliferate, have stem cell-like properties, and survive chemotherapy [31]. Recent work has suggested a mechanism by which this may occur: Schroeder et al [32] found that in mice, the AR antagonist, flutamide, caused PCa cells to convert to a cancer stem cell (CSC) phenotype. The process was mediated through STAT3 signaling induced by IL-6 [32, 33]. As noted above, STAT3 stimulates AR in an androgen-independent mechanism [19]. Blocking mouse IL-6 mice significantly reduced PCa stem cell numbers [32]. As a general principle, hormone-resistant cancers may arise from hormone-sensitive tissue. Breast cancers often are treated with tamoxifen, a selective estrogen receptor modulator that inhibits estrogen actions in breast tissue. However, some breast cancers resist hormone-based therapy. Many molecular mechanisms allow breast cancers to lose estrogen sensitivity [34]. Breast cancers that lose estrogen sensitivity typically have a more aggressive course and poorly respond to chemotherapy [36]. A notable example is triple-negative breast cancer (negative for ERBB2 (Her2/neu), estrogen receptor, and progesterone receptor protein expression), which is typically an aggressive tumor that does not respond to targeted chemotherapy agents [36]. Interestingly, triple-negative breast cancers of women often express AR and might respond to ADT or AR blockade [36]. Yet, triple-negative breast cancers that lose AR expression often have characteristics of primitive basal-like cancers with poor clinical course [37]. This suggests that AR sig- naling may help induce new breast cancers, but "dedifferentiated" primitive cancers may downregulate AR expression because they are driven by hormone-independent mechanisms. Similar phenomena have been observed in other cancers that become independent of the signaling molecules that characterize cells from the same tissue of origin [38-40]. Hormone independence sometimes arises early in tumor progression. Breast ductal in situ carcinomas likely are precursors of invasive carcinomas. A few of these non-invasive tumors are "triple-negative" and express other markers characteristic of highly aggressive invasive breast cancers [41, 42]. This evidence suggests that steroid hormone receptors and other important drivers of breast tissue growth can be lost early in the evolution of a few tumors. Resistance to drugs that affect hormone stimulation and signature signaling pathways fits into Hanahan and Weinberg's carcinogenesis and cancer progression paradigm [38]. Tumors are characterized by increasing independence from the growth factors that normally control cell proliferation in their tissue of origin. Independence from particular growth signals may occur early, as noted above. Due to their high mutation rate, other cancers unleash a repertoire of new growth mechanisms and acquire growth signal independence later in tumor evolution [38]. #### 3. UBC as an endocrine tumor Growing evidence indicates that UBC, like PCa, is driven by androgens and AR signaling. Distinct from most epithelial tissues, urothelium is derived from the urogenital sinus, which also gives rise to prostate in males [46]. We speculate that prostate and urothelium share properties, such as AR-dependence. Many human UBC cell lines and 13-78% of UBC tumors express AR in both men and women [47-49]. Moreover, stromal cells express AR in about half of UBC tumors [47]. The AR gene is polymorphic for exon 1 CAG repeat number, which encodes a tract of glutamine amino acid residues [50]. CAG repeat number inversely correlates with AR transcription and AR signal strength [50]. This suggests that the CAG-encoded polyglutamine tract
interferes with AR transcription and possibly with AR protein function. Men with low AR CAG repeats are more likely to develop locally invasive or metastatic PCa [49, 51]. Similarly, male UBC patients had fewer AR CAG repeats than control males, suggesting that AR signaling also may drive UBC [49, 52]. In addition to spontaneously-arising cancers, carcinogen-driven UBC in mice were accelerated by AR and androgens. The carcinogen, (N-butyl-N-(4-hydroxybutyl)nitrosamine), more quickly induced UBC in male mice than in female mice. BBN-induced male UBC was reduced by surgical or medical ADT and an AR-blocking drug [49] or by knockout of the AR gene [53]. Interestingly, AR knockout protected both male and female mice from BBN exposure, eliminating UBC incidence and greatly reducing bladder hyperplasia [53]. Finasteride (a 5α -reductase inhibitor that prevents the conversion of testosterone to the more potent androgen, DHT; Fig. 1), was marginally protective [49]. In female mice, androgen treatment increased bladder tumor incidence. The significant ADT effect and the marginal protection offered by finasteride suggest an AR signaling threshold. 5α -reductase inhibitors prevent conversion of testosterone to the more active DHT, but are associated with higher testosterone levels [54]. Therefore, mouse UBC might be driven equally by physiological male androgen signaling and by moderate androgen signaling found in the presence of 5α -reductase inhibitors. This parallels findings in human PCa-men with the lowest 10% of testosterone levels were relatively protected from PCa, but men with the highest testosterone levels had no increased risk compared to men with moderate levels [55]. Furthermore, testosterone replacement therapy does not increase PCa risk [56]. If there is an androgen threshold in UBC, we would speculate that the relatively high androgen levels in men impart a greater UBC risk. In summary, a growing body of evidence shows how AR and androgen signaling promote UBC development and progression. Based on this evidence, we suggest that targeting AR will reduce UBC recurrence and progression. Transcriptional coactivator proteins help mediate AR-dependent gene transcription and support AR protein stability [57]. The steroid hormone receptor coactivator, NCOA3 (AIB1), was overexpressed in about a third of human UBC, which was an independent predictor of poor progression-free survival in multivariate regression analysis [58]. Furthermore, NCOA3 knockdown slowed human tumor xenograft growth in mice and NCOA3 enforced expression increased tumor growth [58]. SiRNA knockdown of coactivator RNA in AR-positive UBC cell lines decreased androgen-induced proliferation [48]. AR coactivators NCOA1, NCOA2, NCOA3, CREBBP, and EP300 were expressed in 86-100% of UBC, even though AR was present in a minority of UBC [48, 49]. The presence of these coactivators when AR was absent suggests that they cooperate in non-AR-directed transcription. We do not completely understand how androgens and AR control UBC. UM-UC-3 UBC cells selected for AR expression had higher clonogenic growth and greater migration than parental UM-UC-3 cells after androgen treatment in vitro, suggesting that AR drives UBC growth and metastasis [59]. As in prostate cancer [57], some data suggest that UBC may initially present with androgen dependence but progressive UBC may lose this dependency [49, 60]. Izumi et al [61] reported that AR, estrogen receptor- α (ER α), and ERβ nuclear staining was more frequent in normal appearing urothelium than in UBC. In men receiving ADT, AR-negative UBC went on to recur in 12 of 28 patients (43%), but AR-positive UBC recurred in only 11 of 44 patients (23%). In multivariate analysis of men receiving ADT [61], only 2 factors were significant, UBC AR expression and UBC tumor number (single vs. multiple). This suggests that ADT delays or prevents UBC recurrence in AR-positive tumors (Table 1). AR expression level in normal urothelium did not correlate with tumor recurrence and tumor cell $ER\alpha$ and $ER\beta$ expression did not predict recurrence. In another study, Izumi et al [62] investigated UBC recurrences in patients who also were treated for PCa (Table 1). UBC recurrence was less frequent in the ADT-treated PCa group (5-year actuarial recurrence-free survival: $76\% \ v \ 40\%; \ P < 0.001$). In those men with UBC recurrence, ADT was associated with fewer recurrence episodes (5-year cumulative recurrence: $0.44 \ v \ 1.54$; P < 0.001). Most patient characteristics would have been predicted to disfavor the ADT group (worse PCa disease, older age), but brachytherapy was higher in the non-ADT group and radiation is a UBC risk factor [63]. In addition, a greater percentage of the ADT group received BCG infusions [62], which prevent UBC recurrence [64-66]. Although intriguing, conclusions are weakened because the study was retrospective and multicenter [62]. Shiota et al [67] followed 228 men for recurrence of bladder cancer for an average of 3.6 years; 32 of 196 men received ADT or dutasteride (a 5α -reductase inhibitor) for concomitant PCa. UBC recurred in 4 men with ADT or dutasteride (12.5%) and 59 men without (30.1%). Progression to muscle invasive cancer occurred in none of the men on ADT or dutasteride and in 6 men who were not on these therapies (3.1%). ADT (or dutasteride) was associated with significantly decreased risk of intravesical recurrence (hazard = 0.4, p=0.024). Although sample size was small and follow-up time was short, this study suggests that ADT or dutasteride may prevent UBC recurrence in high risk patients. In patients already diagnosed with UBC, retrospective studies suggest that both overall and cancer-specific survival were superior in 5α -reductase inhibitor users [68]. ADT may protect UBC with low-risk disease, but not patients with high risk disease [68]. This correlates with declining AR expression by more advanced UBC tumors [49, 59]. Based on 13 years follow-up of the Prostate, Lung, Colorectal, and Ovarian (PLCO) database (Table. 1), men who were treated with finasteride (a 5α -reductase inhibitor) at any time during the survey had lower UBC incidence (hazard = 0.634), when also controlling for age and smoking [69]. However, there was a non-significant trend toward higher UBC grades in finasteride users and there was no significant difference in UBC-caused mortality [69]. The retrospective study was limited because finasteride dose and some risk factors (such as alcohol consumption) were not known. In two retrospective insurance record reviews in Taiwan (Table. 1), investigators found that 5α -reductase inhibitors did [70] or did not [71] reduce the risk of UBC recurrence. One of the studies (Table. 1) found that 5α -reductase inhibitors prevented UBC deaths [71]. Interestingly, amplification of the gene that encodes 5α -reductase was found in 12% of UBC queried in the TCGA database [70]. In a systemic review, ADT or 5α -reductase inhibitors had mixed results in preventing UBC [68]. Interpretation of these studies is difficult because of the expected lower complications of urinary tract infection and hematuria in 5α -reductase inhibitor users may have led to fewer exploratory cystoscopies and therefore fewer incidental UBC diagnoses. This may have decreased UBC discovery in the 5α -reductase inhibitor group. Despite the number of manuscripts showing that ADT and 5α -reductase inhibitors reduces UBC incidence or recurrence, it should be noted that most of these studies have methodological limitations [72]. A double-blind prospective study was conducted on subjects in the MTOPS trial [54]. Subjects were monitored for compliance, something that was impossible with retrospective studies. As expected, serum DHT levels were lower and testosterone levels were higher among the subjects treated with 5α -reductase inhibitor drug [54]. UBC incidence was not statistically different in men with and without 5α -reductase inhibitor treatment (Table. 1). We conclude that there is limited support for use of ADT in UBC, especially when the tumor expresses AR. However, the literature on 5α -reductase inhibitor treatment is inconsistent (Table 1). Literature inconsistency correlates with weak findings in experimental animals [49]. One possible interpretation of these results is that there is a threshold effect of androgen signaling in promoting UBC--the moderate amount of androgen signaling retained in 5α -reductase inhibitor users may be sufficient to promote UBC, whereas the lower level of androgen signaling under ADT may reduce UBC risk. Table 1 | <u>Treatment</u> | Effect on UBC | Support* | Ref. | |-----------------------------|---|----------|------| | ADT | ↓ recurrence # | Yes | [61] | | ADT | ↓ recurrence | Yes | [62] | | ADT or 5α -R $^{\$}$ | ↓ recurrence, progression | Yes | [67] | | 5α-R | \downarrow incidence, \leftrightarrow mortality | Yes/No | [69] | | 5α-R | ↓ recurrence | Yes | [70] | | 5α-R | \leftrightarrow recurrence, \downarrow deaths | No/Yes | [71] | | 5α-R | | No | [54] | ^{*} Support for the hypothesis that UBC respond to the drug treatment. Researchers have investigated a possible correlation between AR expression and increased transformation of normal bladder urothelium to UBC. In a meta-analysis, AR status in UBC correlated neither with patient gender, nor with tumor size, stage, grade, or progression [60]. In contrast, three studies showed that lack of tumor AR expression was strongly associated (odds ratio, 0.41) with more frequent UBC recurrence [60], although discordant results have been reported [49, 73]. Most studies showed that AR status did not predict survival [73]. Hsu et al [74] found that bladder-specific *AR* knockout mice developed fewer and less aggressive BBN
chemical-induced UBC. They also showed that AR acted through a p53-mediated pathway, allowing more bladder cancer cells to survive apoptosis [74]. This suggests that AR signaling increases tumorigenesis and tumor cell survival. Luna-Velez et al reported that AR expression was significantly lower in muscle invasive disease than in nonmuscle invasive UBC; AR expression was ^{*} Recurrence was less in men with AR+ UBC $^{5\}alpha$ -R, 5α -reductase inhibitor drug the lowest in the most advanced T3 and T4 disease, compared with T1 UBC [59]. On the other hand, Mir et al [75] did not find a significant AR-related difference in time to death or rate of recurrence in a study of almost 500 patients with UBC muscle invasive tumors. Among the patients studied, 12.9% of the tumors expressed AR and there was no significant sex difference. We propose that AR affects UBC in complex ways which depend on cancer stage. AR signaling seems to initiate more UBCs, but we do not know whether AR signaling causes more aggressive disease. Given that many tumors grow increasingly independent of hormones and signaling pathways during cancer progression [38], it would not be surprising that androgens drive early UBCs, but not late UBCs. In a separate aspect of AR signaling, Miamoto's group [76] showed that androgens increased resistance to cisplatin-based chemotherapy of AR-expressing UBC cell lines. In a complementary fashion, AR blocking drugs increased cisplatin sensitivity [76, 77]. Among the mechanisms responsible, Miamoto's group [78] found that androgens reduced expression of an RNA- and ribosome-processing protein, BRIX1 (BXDC2) in UBC cell lines. Furthermore, AR and BRIX1 showed complementary expression patterns in UBC tissue sections [78]. Cisplatin-resistant cell lines had increased BRIX1 expression [78], but BRIX1 mechanisms in UBC are not clear. Although treatment of cell lines in vitro cannot be directly translated to the clinic, these studies suggest that AR antagonists may act synergistically with cytotoxic chemotherapy in UBC patients. As mentioned above, intravesicular BCG treatment commonly follows superficial UBC resection. BCG vaccination has many nonspecific effects, including nonspecific induction of "trained" immunity and lower levels of inflammatory serum proteins [79]. It is notable that the reduction of inflammatory proteins was much more pronounced in men than in women and correlated with pre-vaccine testosterone levels in males [79]. Preclinical data showed that BCG was more effective when AR was downregulated or absent, or in the presence of AR antagonist drugs [80, 81]. The mechanism is possibly related to the Rab27b vesicle protein, which may allow UBC to exocytose previously ingested BCG [80]. In a retrospective analysis of human biopsy samples, both AR and Rab27b protein expression correlated with higher UBC recurrence rates [80]. UBC incidence and the total number of UBC-related deaths are much higher in males than in females [4], but women who develop advanced, muscle-invasive bladder cancer fare worse than men [82]. As an exception to that general finding, women may have a better cancer-specific mortality than men following neoadjuvant chemotherapy plus radical cystectomy [83]. This conclusion, which was based on two small studies [83], requires confirmation. Consistent with overall worse outcome for women, multivariate analysis suggested that female sex was a risk factor for recurrence after BCG therapy [84]. de Jong and colleagues [85] found that, compared with men, women were more likely to have the aggressive basal/squamous subtype, whereas men were more likely to have luminal papillary and neuroendocrine-like subtypes. It may be significant that advanced UBC in men had higher androgen response activity across all luminal subtypes, compared to advanced UBC in women [85]. These findings support the concept that androgens help initiate UBC. However, some UBC progress to a more aggressive form, becoming androgen-independent through AR loss or other means. One molecular consequence of AR loss in advanced UBC is that AR suppresses transcription of CD44 [86], which encodes a cancer stem cell marker that mediates UBC aggression [87]. AR mRNA negatively correlated with CD44 mRNA in UBC, both before and after chemotherapy [86]. Because of lower androgen levels in women, it should not be surprising that the smaller numbers of UBC female patients are enriched for more aggressive androgen-independent cancers. In contrast to androgens, the role of estrogens in UBC is less clear. Hsu et al [88, 89] reported that female mice lacking ER\$\beta\$ were less susceptible to carcinogen-induced UBC, whereas female mice lacking ER α were more susceptible. These apparently discordant results suggest that there are distinct roles for $ER\alpha\alpha$ and $ER\beta\beta$ homodimers, in addition to ER $\alpha\beta$ heterodimers. #### 4. Androgenic Immune Suppression Gender-based immune disparity is well-documented [90-92]. Men suffer more infectious disease complications [93, 94] and cancers [4, 95-97] than do women, including at elderly ages. Women generally respond better to vaccines, although exceptions exist [90, 98-102]. Autoimmune disease can be attributed to excess immunity and women are more susceptible to the most common autoimmune diseases [101]. Sex differences are observed in children as well. Infant boys are significantly more susceptible to infections than infant girls, a difference which is attributed to the androgen surge that boys experience at birth [101, 103-105]. In addition to androgens, male-female immune response differences might be linked to estrogens, progesterones, X linked genes, and socioeconomic factors. In the current pandemic, male gender has been found to be a strong risk factor for COVID-19 disease and death, whether or not overall SARS-CoV-2 infection rate is higher in men than in women [106, 107]. Early hematopoietic precursor cells express AR RNA in mouse bone marrow and in human bone marrow and cord blood [108]. However, some differentiated hematopoietic cells lose AR expression [108]. Using immunohistochemistry, Mantalaris and colleagues [109] detected AR protein in several bone marrow elements, including stromal cells, endothelial cells, $M\phi$ and other myeloid cells (although not eosinophils). AR expression was affected neither by sex nor by age (range 1-92 years). However, Mantalaris et al [109] did not detect AR protein in bone marrow lymphocytes. #### 5. Androgens and Innate Immunity—Myeloid Cells Myeloid cells are pivotal in anti-cancer immunity [38, 110-112]. Depending on the local cytokine and cellular microenvironment, myeloid cells promote tumor angiogenesis and growth, and suppress immunity. Alternatively, myeloid cells present tumor antigens to T cells and cooperate with NK cells to eliminate cancer cells [38, 110-120]. Developing myelocytes respond to androgens, but specific myeloid subsets become androgen independent at distinct differentiation stages. The common myeloid progenitor is stated to express AR RNA [30]. The common dendritic cell and the granulocyte-macrophage progenitor do not express AR, but mature myeloid cells do: macrophages (M ϕ), monocytes, neutrophils (both band cells and segmented), and mature mast cells [30, 109]. Among the myeloid cells, M ϕ are particularly important because they regulate tissue homeostasis and produce several proinflammatory cytokines [113, 119, 121-126]. Myeloid-specific AR gene deletion and AR-blocking enzalutamide reduced monocyte precursors in the mouse bone marrow [127]. AR knockout also reduced the proportion of classical monocytes [127], which are thought to enter tumor and inflammatory sites and develop into macrophages or dendritic cells. Gonadectomy elevated pro-inflammatory responses by increasing expression of toll like receptor 4 (TLR4) by male murine M ϕ [128]. Some results, however, suggest that testosterone promotes specific proinflammatory cytokines in certain contexts [130-132]. Thus, testosterone and AR signaling may differentially affect M ϕ depending upon the M ϕ source, the type of stimulus, and the cytokine secreted. M ϕ involved in wound healing express AR. Wound healing is slower in males than in females, but healing was accelerated by an AR antagonist, flutamide, and by myeloid-specific AR gene deletion [130, 131]. Importantly, wound healing correlated negatively with testosterone levels in elderly men [130]. Neutrophils, the most abundant blood leukocyte, respond rapidly to bacterial infections and many cancers [136]. Androgens promote neutrophil differentiation -- AR-deficient mice, androgen insensitive mice, and AR blocker-treated patients are neutropenic [137, 138]. Following treatment with stanozolol, a testosterone analog, female mice increased neutrophil maturation rate [140]. However, we do not fully understand how AR signaling affects neutrophil function [141]. Some authors have shown that androgens suppress neutrophil production of proinflammatory cytokines and instead promote anti-inflammatory IL-10 production [142]. These data suggests that androgens promote neutrophil differentiation, but dampen neutrophil inflammatory actions. Dendritic cells (DCs) present antigens to T cells and affect NK cell function [114-118, 139, 143]. DCs synthesize IL-15 and present it on their cell surface to stimulate NK cells and memory T cells to mature, divide, and survive [115, 145-147]. DC stimulate NK cells to synthesize granzyme B and become cytotoxic [115, 145, 147, 148]. Only a few studies have addressed possible direct effects of AR and androgens on DCs, but in general they seem to depress DC immune function [30]. This is controversial because some investigators have shown that DCs do not express AR [149]. DCs isolated from male mice after brain LCMV infection were less activated than in female mice [150]. Male sex reduced expression of DC MHCII and CD86 [150],
These molecules respectively present antigen at the cell surface to CD4 T cells [151] and costimulate T cell CD28, which promotes T cell differentiation and survival [152]. Castration increased expression of MHCII, CD86, and other co-stimulatory molecules [153]. ## 6. Androgens and Innate Immunity—NK Cells NK cells kill both virus infected cells and cancer cells, including metastases, without antigen specificity or prior immunization [120, 154-160]. Comprising 5 - 15% of blood lymphocytes in healthy people, NK lymphocytes are defined by CD56, CD16, or NKp46 (CD335) expression in the absence of the CD3 T cell receptor [154-156]. NK cell activation is regulated by multiple receptors [154-156]. Cell surface MHC class I molecules (MHCI, termed HLA class I in humans) present antigenic peptides to CD8 cytolytic T lymphocytes, which then divide, secrete IFN- γ and other cytokines, and kill antigen⁺ cells [151, 161]. In addition to stimulating CD8 T cells, MHCI molecules strongly modulate NK cell responses by engaging NK cell KIR, NKG2A, and LILRB1 inhibitory receptors [154, 156, 162, 163]. NK cells also express many stimulatory receptors [154-156]. For example, NKG2D binds to stress-activated ligands that are preferentially expressed on tumor cells and virus infected cells [154, 156, 158, 165]. When confronting stress-activated ligand-positive tumor cells, antibody blockade of NKG2D prevents robust NK cell activation [165]. AR may affect NK cell development. Acyline-mediated chemical castration (ADT) for two weeks increased circulating NK cells in men [166]. Testosterone replacement prevented these changes. After 4 weeks of recovery from ADT, NK cell number returned to normal levels; CXCR1 and NKG2D expression did not significantly change [166]. These findings indicate that androgens control human NK cell number. In the elderly, the immature CD56bright to mature CD56dim NK cell ratio was significantly higher in women than in men [167]. Female CD56dim NK cells had higher cytotoxic granule exocytosis in response to K562 tumor cells and higher IFN- γ made in response to cross linking of NKp46. Plasma IL-15, a cytokine required for NK cell development and survival, did not differ by gender [167]. Therefore, although the mechanisms of the gender differences were not identified, the results suggest that testosterone suppresses NK cell activity in elderly humans. We did not detect AR mRNA either CD56bright or CD56dim peripheral blood NK cells (data not shown); therefore, testosterone effects on mature NK cells likely are indirect. We further investigated whether androgens affected NK cell activity in the context of cancer treatment. After obtaining informed consent, 5 men were studied before and after ADT for metastatic PCa. The study was IRB-approved and consistent with the Helsinki Declaration. Peripheral blood was removed by venipuncture and the ability of NK cells in a mononuclear cell preparation to produce a chemokine (MIP-1β) was compared pre- and post-ADT. Both IL-15 and IL-12/IL-18 stimulated significantly higher MIP-1β responses post-ADT, with the IL-2-stimulated responses trending higher (Figure 2). Several stimuli failed to significantly increase IFN- γ or cytotoxic responses post-ADT. This shows that NK cells from men receiving ADT were not globally activated, but selectively produced MIP-1β in response to IL-15 and IL-12/IL-18 cytokine stimuli. Although many changes take place with ADT initiation, including a reduction of PCa mass, our results are consistent with the hypothesis that androgens suppress NK cell MIP- 1β responses to cytokines and that ADT relieves the suppression. #### 7. Androgens and Adaptive Immunity-B cells B cells both activate and carry out adaptive immunity. First, B cells stimulate a special class of CD4 T follicular helper cells in the germinal center [168]. Later in the immune response, B cells develop into plasma cells that secrete antibody, which protects the host by several mechanisms [169]. In general, women produce relatively more antibody after vaccination [90, 99]. Low testosterone levels in men predict more B cells, and higher response to vaccines and to infection [99, 101]. Research suggests that mature B cells do not express AR; therefore these effects may be exerted by other leukocytes or on B cell precursors, when the AR is expressed [170-172]. Several lines of evidence show that AR signaling impedes B cell development. [170, 173-175]. Experiments with chimeric mice which express AR exclusively on either stromal cells or lymphoid cells in the bone marrow showed that stromal cell AR is essential to inhibit the B cell lymphopoiesis typically observed with androgen treatment [175]. This suggests that the B cell response to androgens is mediated by stromal cells. In contrast to these findings, B cell specific AR knockouts had elevated B cell lymphopoiesis, suggesting that mouse B cell precursors are direct androgen targets [175]. The effect of the general AR knockout was more pronounced than the B cell specific AR knockout, suggesting that both B cell and stromal AR suppress B cell development. Further studies showed that DHT causes stromal cells to produced transforming growth factor-β, an anti-inflammatory cytokine that dampens immune responses. Relevant to this discussion, transforming growth factor-β suppresses IL-7 production, a cytokine that is required for B cell proliferation and differentiation [176]. ## 8. Androgens and Adaptive Immunity-T cells In comparison with B cells, T cell response to androgens is more sustained and direct [177]. AR is highly expressed lymphoid precursor cells and in supporting cells: marrow stromal cells and thymic epithelial cells [178]. It was established more than a century ago that castration causes thymic hypertrophy, which suggests that androgens regulate T cell development [91, 179-182]. Although AR has been detected in thymocytes, experiments with chimeric mice showed that thymic involution required AR expression in stromal cells, but not in bone-marrow derived T lymphocyte precursors [178, 181]. In a key molecular step, androgens reduce thymic epithelial expression of δ -like 4, a Notch ligand that is required for T cell maturation [91, 183]. Mature T cells appear to express both classic cytoplasmic AR and a plasma membrane androgen receptor [14-16, 172, 184-186]. Exogenous androgen treatment skews mouse T cell activation, proliferation, and differentiation, and inhibits T cell-dependent antibody production [11, 30, 99, 101]. These effects are likely due to a combination of intrinsic T cell effects [184] and depression of antigen presenting cell MHC and costimulatory molecule expression or cytokine production [128, 130-132, 150, 153]. Thus, androgens affect both T lymphocyte development and mature T cells. The study of androgen regulation is complicated by the many classes of T cells, each with unique function. CD4 T-helper 1 (Th1) cells are proinflammatory and produce cytokines that stimulate cell-mediated and innate responses, which help prevent tumors, and clear intracellular bacteria and viruses [187]. Kissick et al [184] showed that testosterone reduced CD4 Th1 differentiation by upregulating protein tyrosine phosphatase, non-receptor type 1 (Ptpn1), which negatively regulates many cellular processes. T cells expressed less Ptpn1 in PCa patients undergoing ADT than in control PCa patients [184] and (Haydn T. Kissick, personal communication 12 April 2019). CD4 T-helper 2 (Th2) cells control humoral immunity and the clearance of extracellular pathogens [187]. As with Th1 cells, androgens diminish Th2 responses [188]. Th2 cells also quell inflamma- tory immune responses by secreting antiinflammatory cytokines [187, 189]. Experimental autoimmune encephalomyelitis is a commonly used model for multiple sclerosis, a demyelinating autoimmune disease. In experimental autoimmune encephalomyelitis cell culture and mouse models, androgen treatment increased IL-10 production and decreased demyelinating disease in female mice [190]. The underlying mechanisms are not known, but IL-10 generally seems to protect against autoimmune disorders [189]. Androgens stimulated mast cells, which activated Innate Lymphoid Cell type 2 (ILC-2) cells, which in turn activated a Th2-like response [191, 192]. Interestingly, testosterone, Fc receptor cross-linking, and Mycobacterium tuberculosis all induce IL-33 production in male, but not in female, bone marrow-derived mast cells [192]. In specific inflammatory diseases, IL-33-driven Th2 responses ameliorate disease pathology [193]. Regulatory T cells (T_{reg}) modulate the immune response by reducing inflammation and by modulating response to self-antigens [194, 195]. Regulatory T cells put the brakes on a variety of cells, including NK cells [196, 197]. Androgens increase T_{reg} cells in vivo and in vitro. Waleki et al showed that this modulation was related to androgen-dependant acetylation of histone H4 at the *FOXP3* locus, a gene that is needed for T_{reg} cells to differentiate in the thymus and to function in the peripheral tissue [186, 206]. Androgen modulation of FoxP3 expression is one of many mechanisms by which androgens suppress immunity. #### 9. Chromosomal effects on UBC In healthy females, each cell randomly silences one X chromosome at an early stage of embryogenesis [207]. However, X chromosome silencing is incomplete and about 15-25% of these genes are transcribed at least 10% of the level on the active X, and a few at nearly 100% [208, 209]. Some genes always escape complete inactivation, and some vary between XX females. Escape from complete silencing also differs by tissue and stage of development and increases with entry into the cell cycle [210, 211]. Thus, compared to males, females express significantly more mRNA from certain X-linked genes. UBC and other solid tumor incidence are *increased* in patients with Turner syndrome, which is
characterized by XO, a single sex chromosome [213, 214]. Similarly, solid tumor incidence is decreased in Klinefelter syndrome patients, who carry at least 2 X chromosomes and 1 Y chromosome, have small testicle size, and reduced testosterone [213]. As in females, X chromosome inactivation is incomplete on supernumerary X chromosomes in Klinefelter males [215]. Both Turner syndrome and Klinefelter syndrome patients have altered sex hormone levels, so sex hormones, X chromosome number, or both might affect cancer risk. To separate biological sex and associated hormone expression from sex chromosome composition, investigators have created "four core genotype" mice [217]. These animals have the sex-determining SRY gene deleted on the Y chromosome and inserted into an autosome, allowing biological sex (and sex hormones) to be separated from X and Y chromosome composition. Using "four core genotype" mice, Kaneko and Li [225] studied UBC responses to the BBN carcinogen. XY male mice were most susceptible, followed in order by XX males, XY females, and XX females. Survival was significantly different in each group. Thus, both biological sex and sex chromosome composition contributed to UBC risk in mice. Investigating mechanism, Kaneko and Li [225] showed that the X-linked lysine demethylase 6A (KDM6A) gene is expressed more highly in the urothelium of XX males and females, than in the urothelium of XY males and females [225]. These mouse findings are relevant to human disease. UBC from female patients had more KDM6A expression than did UBC from male patients [225]. Furthermore, low tumor KDM6A expression was associated with higher UBC tumor stage in women, but not in men. KDM6A mutations and low mRNA levels correlated with poor disease-free survival in women, but not in men [225]. KDM6A is mutated in several cancers, but the highest rates of mutation (20-29%) are found in UBC, with most of the genetic alterations being pathogenic nonsense, frameshift, or splice site mutations [227-230]. An exciting finding is that loss of KDM6A in a UBC xenograft model predisposed tumor cells to epigenetic therapy, which diminished in vivo tumor growth and increased natural killer cell attack [230]. In addition to *KDM6A*, Dunford et al [232] found 5 other X-linked genes (*ATRX, CNKSR2, DDX3X, KDM5C*, and *MAGEC3*) with loss of function mutations or copy number changes that were more frequent in men than in women, in many cancer types. This sex-linked association was highly significant, as it was found in 6 out of 783 X chromosome genes but in zero of 18,055 genes from autosome chromosomes or pseudoautosomal X chromosome regions [232]. Although we do not fully understand how most of these X chromosome genes contribute to cancer, their incomplete allelic inactivation may protect women. The Y chromosome also affects cancer risk, but functions differently [233]. From analysis of 1,153 elderly men, partial loss of Y chromosome in peripheral blood was associated with increased non-hematological cancer mortality. Men who had lost the Y chromosome had a median survival time of 5.5 years shorter than patients who had intact Y chromosome [233]. More relevant to this discussion, the Y chromosome is uniformly missing from many male UBC [234]. In other cancers with a defective KDM6A allele on the X chromosome, the Y chromosome may be present in the cell, but may severely limit gene expression [229]. These findings suggest the possibility of one or more Y-linked tumor suppressor genes. One candidate Y chromosome tumor suppressor gene is KDM6C (also known as UTY), which is a paralog of KDM6A, mentioned above. Ahn et al [235] found that 23% of male UBC had deleted KDM6C; the KDM6C deletion rate was 67% in UBC that also had an X chromosome KDM6A mutation. Similarly, Ler et al [228] found KDM6C copy number loss in 12% of male UBC and this was more common in UBC that carried *KDM6A* mutations. Thus the X chromosome *KDM6A* and the Y chromosome KDM6C each may suppress tumor growth and partially compensate for each other in males #### 10. Sex Differences Not Directly Attributed to Hormones or Sex Chromosomes Some sex-related differences do not appear to be directly related to sex hormone differences or sex chromosomes. For example, chromosome 3 VGLL3 shows female biased expression in skin, salivary gland, and in monocytes [238]. Keratinocytes from female subjects expressed more VGLL3 RNA, whether there was estradiol, testosterone, or no sex hormone in culture [238]. VGLL3 is of interest as it may act as a tumor suppressor gene in epithelial ovarian cancer [239], but VGLL3 expression is a marker for poor outcome in stomach adenocarcinoma and in PCa [240, 241]. Therefore, VGLL3 is differentially expressed by sex in some tissues and alters tumor outcome. In another example, Sabag et al [242] found that hemizygous deletion of the chromosome 10 EGR2 (Krox20) gene, whether in whole animals or in myeloid cells, increased bone resorption by osteoclasts in female mice, but not in male mice. The phenomenon continued to be manifest in preosteoclast cell lines cultured several days in vitro in the absence of any sex hormones. However, further investigation [242] showed that the sex differences were manifest only in preosteoclast cells that had been derived from post-pubertal mice (8 weeks old) but not harvested from mice before puberty (4 weeks old). These and other data [243, 244] suggest that sex hormones cause epigenetic differences in the genomes of male and female animals, which persisted long after sex hormones are removed. It is relevant to note that most genes which show sex-specific expression are driven by distinct sets of transcription factors in male and female tissues, even when the transcription factor levels do not vary by sex [245]. This strongly suggests that the sex differences established distinct epigenetic landscapes, which persisted after direct sex hormone action. Many of the sex-differentially expressed proteins are involved in methylation and presumably control epigenetic gene expression [245]. # 11. UBC and Natural Killer Cells NK cells are the most common leukocyte in UBC tumors [246]. Using gene expression data to deduce immune cell infiltration, several groups reported that the presence of NK cells predicts better UBC outcomes [230, 247-250]. Importantly, the level of CD56^{bright} NK cells correlated with both cancer-specific survival and overall survival [246]. These data are consistent with the idea that NK cells slow UBC progression. This idea is reinforced by findings that epigenetic therapy of KDM6A-deficient UBCs caused NK cell attack and tumor regression in a preclinical model [230]. As mentioned above, superficial UBC is often treated with intravesical BCG instillation [64-66]. Now used for more than 40 years, BCG intravesicular infusion is the longest continuously-used cancer immunotherapy [64-66]. NK cells are among many immune and non-immune cells that are required for BCG immunotherapy success [64, 251-255]. In other settings, BCG vaccination induces an elevated "trained immunity" against multiple pathogens, including elevated in vitro NK cell responses against non-cross-reactive microbes [256]. Surprisingly, intravesicular infusion of cytokine-activated healthy donor human NK cells were reported to eliminate orthotopic human UBC mouse xenografts [255]. If this study is confirmed and expanded to human patients, it would suggest the potential for NK cell-based ther- UBC patient NK cells differ from those of healthy subjects. NK cells from UBC patients expressed low levels of L-selectin (CD62L), which allows lymphocyte circulation through lymph nodes, and low levels of stimulatory NKp30, NKp44, and NKp80 natural cytotoxicity receptors, which are crucial for target cell killing and other NK cell activities [156, 255, 257]. IL-2 boosts NK cell responses in cancer patients [258]. Following subcutaneous IL-2 injection, circulating NK cell number increases [259]. Importantly, some melanomas and kidney cancers respond to IL-2 injections [260]. However, IL-2 is a strong activator of regulatory T cells, which dampen immune responses by both T cells and NK cells [195, 258, 261, 262]. IL-15 is an alternative cytokine because it signals NK cells and memory T cells though the same receptor β and γ chains as IL-2, but it renders effector cells refractory to regulatory T cell suppression [263-265]. Using NK cells as a therapeutic agent, healthy donor NK cells were stimulated in vitro and then infused into hematopoietic stem cell transplant patients, with NK cell responses boosted by IL-2 injection. This combined treatment prevented acute myeloid leukemia relapse [266]. CSC drive cancer progression and long-term proliferation by maintaining an undifferentiated state and replacing partially differentiated cancer cells [38, 267-271]. CSC resist radiation and many chemotherapeutic drugs, and account for metastases and post-treatment tumor relapse [38, 267, 268]. NK cells preferentially target CSC [255, 272-275], which suggests a possible therapeutic approach. UBC-derived NK cells killed the RT4 UBC cell line much better after blocking MHCI [246], consistent with functional MHCI-specific inhibitory receptors on UBC tumor-infiltrating NK cells. Although CSC may have relatively low or high MHCI expression, CSC are NK-susceptible because they express abundant stimulatory ligands [272-275]. The NK-stimulatory ligands expressed by CSC include NKG2D ligands: MHC class I chain-related protein A and B (MICA and MICB) and ULBP1. NK cell killing of CSC is primarily controlled through the interaction of the NKG2D receptor and its ligands [255, 275]. In mouse models, NK cells significantly decreased UBC CSC number [255]. These data suggest that NK cells kill CSC and thereby prevent bladder cancer recurrence. # 12. Conclusions In most non-reproductive tissues, men are more likely than women to develop cancer and die of disease, and UBC is an
outstanding example. Gender disparity has many potential causes including androgen-induced immunosuppression, androgen-induced urothelial and neoplastic proliferation, greater male exposure to carcinogens, and the protective effects of X chromosome genes in females. We need to investigate X-linked and Y-linked cancer protective genes, as these might help explain male predominance in most cancers, including UBC. Recognition that UBC is an endocrine tumor could have profound effects on UBC treatment. As previously suggested [49], we might be able to treat recurrent UBC with ADT, similar to PCa. NK cells represent a promising target for immunotherapy in UBC and other cancers. Further research on the role of androgens in NK cell development could help explain cancer gender differences. NK development has been well characterized from hematopoietic stem cell to mature NK cell, but there has not been adequate research on which NK cell developmental stages express AR and are androgen regulated. It is likely that the UBC male predominance is a consequence of multiple factors. Figure 1. Schematic representation of androgen and AR signaling mechanisms in cells. Figure 2. Blood from five patients was studied before and 92-96 days (or 51 days in one patient shown as a dashed line in IL-2 panel) after the start of ADT, which included Lupron®, with or without additional ADT drugs. In all cases, short-term Casodex® pre-treatment was used to prevent a Lupron-associated testosterone flare. Peripheral blood mononuclear cells were stimulated for 20 hours with IL-2 (200 U/mL), IL-15 (100 ng/mL), or IL-12/IL-18 (10/100 ng/mL), as indicated above each panel. The cells were harvested and NK cell intracellular MIP-1 β was measured by flow cytometry, using standard methods [167]. Shown are responses by mature CD56dim NK cells. Each symbol represents responses by the same patient and patient age is indicated in the panels. Significance was assessed by paired student's t-test. NS = not significant. **Author Contributions:** Charles T. Lutz conceived of the manuscript, reviewed literature, and wrote the manuscript; Lydia Livas reviewed literature, and wrote the manuscript; Steven R. Presnell performed the experiments, reviewed literature, and edited the manuscript; Morgan Sexton reviewed literature and edited the manuscript; Peng Wang recruited patients. Funding: Department of Pathology and Laboratory Medicine, University of Kentucky. The UK Flow Cytometry & Immune Monitoring core facility is supported in part by the Office of the Vice President for Research, the Markey Cancer Center and an NCI Center Core Support Grant (P30 CA177558) to the University of Kentucky Markey Cancer Center. **Institutional Review Board:** The trial was conducted with IRB approval (#49275) under supervision of the Markey Cancer Center. **Informed Consent:** Informed consent was obtained from all research subjects. Availability: Data will be made available upon request to the first author. **Acknowledgments:** We thank William St. Clair for help with patient recruitment and Natasha Kyprianou and Rachel Stewart for comments and suggestions. We thank the Markey Cancer Center's Research Communications Office for graphic design assistance. Conflicts of Interest: The authors declare no conflict of interest. # References - 1. Sandberg S: Lean In: Women, Work, and the Will to Lead. Deckle Edge; 2013. - 2. Bladder https://seer.cancer.gov/statfacts/html/urinb.html - Bladder - 4. Siegel RL, Miller KD, Fuchs HE, Jemal A: Cancer Statistics, 2021. CA Cancer J Clin 2021, 71:7-33. - 5. Hartge P, Harvey EB, Linehan WM, Silverman DT, Sullivan JW, Hoover RN, Fraumeni JF: **Unexplained Excess Risk of Bladder Cancer in Men.** *JNCI: Journal of the National Cancer Institute* 1990, **82:**1636-1640. - 6. Cambier S, Sylvester RJ, Collette L, Gontero P, Brausi MA, van Andel G, Kirkels WJ, Silva FC, Oosterlinck W, Prescott S, et al: **EORTC nomograms and risk groups for predicting recurrence, progression, and** - disease-specific and overall survival in non-muscle-invasive stage Ta-T1 urothelial bladder cancer patients treated with 1-3 years of maintenance Bacillus Calmette-Guerin. Eur Urol 2016, 69:60-69. - 7. Peyromaure M, Zerbib M: **T1G3 transitional cell carcinoma of the bladder: recurrence, progression and survival.** *BJU Int* 2004, **93:**60-63. - 8. Sievert KD, Amend B, Nagele U, Schilling D, Bedke J, Horstmann M, Hennenlotter J, Kruck S, Stenzl A: Economic aspects of bladder cancer: what are the benefits and costs? World Journal of Urology 2009, 27:295-300. - 9. James AC, Gore JL: The costs of non-muscle invasive bladder cancer. *Urol Clin North Am* 2013, 40:261-269. - 10. Davey RA, Grossmann M: **Androgen Receptor Structure, Function and Biology: From Bench to Bedside.** *Clin Biochem Rev* 2016, **37:**3-15. - 11. Henze L, Schwinge D, Schramm C: The effects of androgens on T cells: clues to female predominance in autoimmune liver diseases? *Front Immunol* 2020, 11:1567. - 12. Thomas P, Pang Y, Dong J: Membrane androgen receptor characteristics of human ZIP9 (SLC39A) zinc transporter in prostate cancer cells: Androgen-specific activation and involvement of an inhibitory G protein in zinc and MAP kinase signaling. Mol Cell Endocrinol 2017, 447:23-34. - 13. Thomas P, Pang Y, Dong J, Berg AH: Identification and characterization of membrane androgen receptors in the ZIP9 zinc transporter subfamily: II. Role of human ZIP9 in testosterone-induced prostate and breast cancer cell apoptosis. *Endocrinology* 2014, 155:4250-4265. - 14. Benten WP, Becker A, Schmitt-Wrede HP, Wunderlich F: **Developmental regulation of intracellular and surface androgen receptors in T cells.** *Steroids* 2002, **67:**925-931. - 15. Benten WP, Lieberherr M, Giese G, Wrehlke C, Stamm O, Sekeris CE, Mossmann H, Wunderlich F: Functional testosterone receptors in plasma membranes of T cells. *FASEB J* 1999, **13**:123-133. - 16. Benten WP, Lieberherr M, Sekeris CE, Wunderlich F: **Testosterone induces Ca2+ influx via non-genomic surface receptors in activated T cells.** *FEBS Lett* 1997, **407**:211-214. - 17. Grynkiewicz G, Poenie M, Tsien RY: A new generation of Ca2+ indicators with greatly improved fluorescence properties. *J Biol Chem* 1985, 260:3440-3450. - 18. Lee LF, Louie MC, Desai SJ, Yang J, Chen HW, Evans CP, Kung HJ: Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene 2004, 23:2197-2205. - Ueda T, Bruchovsky N, Sadar MD: Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 2002, 277:7076-7085. - 20. Salmi S, Santti R, Gustafsson JA, Makela S: **Co-localization of androgen receptor with estrogen receptor beta** in the lower urinary tract of the male rat. *J Urol* 2001, **166**:674-677. - 21. Pelletier G: Localization of androgen and estrogen receptors in rat and primate tissues. *Histology and histopathology* 2000, **15:**1261-1270. - 22. Rosenzweig BA, Bolina PS, Birch L, Moran C, Marcovici I, Prins GS: Location and concentration of estrogen, progesterone, and androgen receptors in the bladder and urethra of the rabbit. *Neurourology and urodynamics* 1995, 14:87-96. - 23. Abdel-Hamid AA, Ali EM: Effect of testosterone therapy on the urinary bladder in experimental hypogonadism of rats. *J Mol Histol* 2015, **46**:263-272. - 24. Huggins C: Effect of orchiectomy and irradiation on cancer of the prostate. *Ann Surg* 1942, **115**:1192-1200. - 25. Huggins C, Hodges CV: Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. *Cancer Research* 1941, 1:293-297. - 26. Saad F, Fizazi K: Androgen deprivation therapy and secondary hormone therapy in the management of hormone-sensitive and castration-resistant prostate vancer. *Urology* 2015, 86:852-861. - 27. Kyprianou N, English HF, Isaacs JT: **Programmed cell death during regression of PC-82 human prostate** cancer following androgen ablation. *Cancer Res* 1990, **50:**3748-3753. - 28. Saad F, Fizazi K: Androgen deprivation therapy and secondary hormone therapy in the management of hormone-sensitive and castration-resistant prostate cancer. *Urology* 2015, 86:852-861. - 29. Ross RW, Xie W, Regan MM, Pomerantz M, Nakabayashi M, Daskivich TJ, Sartor O, Taplin ME, Kantoff PW, Oh WK: Efficacy of androgen deprivation therapy (ADT) in patients with advanced prostate cancer: association between Gleason score, prostate-specific antigen level, and prior ADT exposure with duration of ADT effect. *Cancer* 2008, 112:1247-1253. - 30. Gubbels Bupp MR, Jorgensen TN: **Androgen-induced immunosuppression.** Frontiers in Immunology 2018, 9:794-794. - 31. Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR, Calhoun-Davis T, Li H, Palapattu GS, Pang S, et al: **The PSA**-/lo prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. *Cell Stem Cell* 2012, **10**:556-569. - 32. Schroeder A, Herrmann A, Cherryholmes G, Kowolik C, Buettner R, Pal S, Yu H, Muller-Newen G, Jove R: Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. *Cancer Res* 2014, 74:1227-1237. - 33. Ojo D, Lin X, Wong N, Gu Y, Tang D: Prostate cancer stem-like cells contribute to the development of castration-resistant prostate cancer. *Cancers (Basel)* 2015, 7:2290-2308. - 34. Lee J-Y, Kong G: MEL-18, a tumor suppressor for aggressive breast cancer. *Oncotarget* 2015, 6:15710-15711. - 35. Lee J-Y, Won H-Y, Park J-H, Kim H-Y, Choi H-J, Shin D-H, Kang J-H, Woo J-K, Oh S-H, Son T, et al: **MEL-18** loss mediates estrogen receptor-α downregulation and hormone independence. *J Clin Invest* 2015, **125**:1801-1814. - 36. Garrido-Castro AC, Lin NU, Polyak K: **Insights
into molecular classifications of triple-negative breast cancer: improving patient selection for treatment.** *Cancer Discov* 2019, **9:**176-198. - 37. Riaz N, Idress R, Habib S, Lalani EN: Lack of androgen receptor expression selects for basal-like phenotype and is a predictor of poor clinical outcome in non-metastatic triple negative breast cancer. *Front Oncol* 2020, 10:1083. - 38. Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144:646-674. - 39. James C, Ugo V, Le Couédic J-P, Staerk J, Delhommeau F, Lacout C, Garçon L, Raslova H, Berger R, Bennaceur-Griscelli A, et al: A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. *Nature* 2005, **434**:1144-1148. - 40. Reischmann N, Andrieux G, Griffin R, Reinheckel T, Boerries M, Brummer T: **BRAF**V600E **drives dedifferentiation in small intestinal and colonic organoids and cooperates with mutant p53 and Apc loss in transformation.** *Oncogene* 2020, **39:**6053-6070. - 41. Bryan BB, Schnitt SJ, Collins LC: **Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer.** *Mod Pathol* 2006, **19**:617-621. - 42. Dabbs DJ, Chivukula M, Carter G, Bhargava R: **Basal phenotype of ductal carcinoma in situ: recognition and immunohistologic profile.** *Mod Pathol* 2006, **19:**1506-1511. - 43. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, et al: Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006, 355:2408-2417. - 44. Quintas-Cardama A, Kantarjian HM, Cortes JE: **Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia.** *Cancer Control* 2009, **16:**122-131. - 45. Ma L, Shan Y, Bai R, Xue L, Eide CA, Ou J, Zhu LJ, Hutchinson L, Cerny J, Khoury HJ, et al: **A therapeutically targetable mechanism of BCR-ABL-independent imatinib resistance in chronic myeloid leukemia.** *Sci Transl Med* 2014, **6:**252ra121. - 46. Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH: **Larsen's Human Embryology.** 5th edition. Philadelphia, PA USA: Elsevier Sanders; 2015: 375-428 - 47. Boorjian S, Ugras S, Mongan NP, Gudas LJ, You X, Tickoo SK, Scherr DS: **Androgen receptor expression is** inversely correlated with pathologic tumor stage in bladder cancer. *Urology* 2004, **64**:383-388. - 48. Boorjian SA, Heemers HV, Frank I, Farmer SA, Schmidt LJ, Sebo TJ, Tindall DJ: **Expression and significance of androgen receptor coactivators in urothelial carcinoma of the bladder**. *Endocrine-related cancer* 2009, **16**:123-137. - 49. Li P, Chen J, Miyamoto H: **Androgen receptor signaling in bladder cancer.** *Cancers* 2017, **9:**20-20. - 50. Chamberlain NL, Driver ED, Miesfeld RL: **The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function.** *Nucleic Acids Res* 1994, **22:**3181-3186. - 51. Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Dahl D, Brufsky A, Talcott J, Hennekens CH, Kantoff PW: The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. *Proceedings of the National Academy of Sciences of the United States of America* 1997, **94**:3320-3323. - 52. Teng XY, Liu GQ, Diao XL, Wu ZY, Li L, Zhang W, Zhang X, Su Q: **CAG repeats in the androgen receptor** gene are shorter in patients with pulmonary, esophageal or bladder carcinoma and longer in women with uterine leiomyoma. *Oncol Rep* 2010, **23**:811-818. - 53. Miyamoto H, Yang Z, Chen YT, Ishiguro H, Uemura H, Kubota Y, Nagashima Y, Chang YJ, Hu YC, Tsai MY, et al: **Promotion of bladder cancer development and progression by androgen receptor signals.** *J Natl Cancer Inst* 2007, **99:**558-568. - 54. Sathianathen NJ, Fan Y, Jarosek SL, Lawrentschuk NL, Konety BR: **Finasteride does not prevent bladder** cancer: **A secondary analysis of the Medical Therapy for Prostatic Symptoms Study.** *Urol Oncol* 2018, **36:**338 e317. - 55. Watts EL, Appleby PN, Perez-Cornago A, Bueno-de-Mesquita HB, Chan JM, Chen C, Cohn BA, Cook MB, Flicker L, Freedman ND, et al: Low free testosterone and prostate cancer risk: a collaborative analysis of 20 prospective studies. *Eur Urol* 2018, **74**:585-594. - 56. Walsh TJ, Shores MM, Krakauer CA, Forsberg CW, Fox AE, Moore KP, Korpak A, Heckbert SR, Zeliadt SB, Kinsey CE, et al: Testosterone treatment and the risk of aggressive prostate cancer in men with low testosterone levels. *PLoS One* 2018, **13:**e0199194. - 57. Nakazawa M, Paller C, Kyprianou N: **Mechanisms of therapeutic resistance in prostate cancer.** *Current Oncology Reports* 2017, **19:**13. - 58. Tong ZT, Wei JH, Zhang JX, Liang CZ, Liao B, Lu J, Fan S, Chen ZH, Zhang F, Ma HH, et al: **AIB1 predicts bladder cancer outcome and promotes bladder cancer cell proliferation through AKT and E2F1.** *Br J Cancer* 2013, **108**:1470-1479. - 59. Luna Velez MV, Dijkstra JJ, Heuschkel MA, Smit FP, van de Zande G, Smeets D, Sedelaar JM, Vermeulen M, Verhaegh GW, Schalken JA: Androgen receptor signalling confers clonogenic and migratory advantages in urothelial cell carcinoma of the bladder. *Molecular Oncology* 2021, Accepted Author Manuscript. - 60. Sanguedolce F, Cormio L, Carrieri G, Calo B, Russo D, Menin A, Pastore AL, Greco F, Bozzini G, Galfano A, et al: Role of androgen receptor expression in non-muscle-invasive bladder cancer: a systematic review and meta-analysis. *Histol Histopathol* 2020, **35**:423-432. - 61. Izumi K, Ito Y, Miyamoto H, Miyoshi Y, Ota J, Moriyama M, Murai T, Hayashi H, Inayama Y, Ohashi K, et al: Expression of androgen receptor in non-muscle-invasive bladder cancer predicts the preventive effect of androgen deprivation therapy on tumor recurrence. *Oncotarget* 2016, 7:14153-14160. - 62. Izumi K, Taguri M, Miyamoto H, Hara Y, Kishida T, Chiba K, Murai T, Hirai K, Suzuki K, Fujinami K, et al: Androgen deprivation therapy prevents bladder cancer recurrence. *Oncotarget* 2014, **5**:12665-12674. - 63. Keehn A, Ludmir E, Taylor J, Rabbani F: Incidence of bladder cancer after radiation for prostate cancer as a function of time and radiation modality. *World J Urol* 2017, **35:**713-720. - 64. Alexandroff AB, Jackson AM, O'Donnell MA, James K: **BCG immunotherapy of bladder cancer: 20 years on.** *Lancet* 1999, **353:**1689-1694. - 65. Sylvester RJ, van der MA, Lamm DL: Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the published results of randomized clinical trials. *J Urol* 2002, **168**:1964-1970. - 66. Shelley M, Court JB, Kynaston H, Wilt TJ, Fish R, Mason M: Intravesical Bacillus Calmette-Guérin in Ta and T1 bladder cancer. Cochrane Database of Systematic Reviews 2000. - 67. Shiota M, Kiyoshima K, Yokomizo A, Takeuchi A, Kashiwagi E, Dejima T, Takahashi R, Inokuchi J, Tatsugami K, Eto M: Suppressed recurrent bladder cancer after androgen suppression with androgen deprivation therapy or 5α-reductase inhibitor. *J Urol* 2017, **197:**308-313. - 68. Kourbanhoussen K, McMartin C, Lodde M, Zlotta A, Bryan RT, Toren P: **Switching cancers: a systematic** review assessing the role of androgen suppressive therapy in bladder cancer. *Eur Urol Focus* 2020. - 69. Morales EE, Grill S, Svatek RS, Kaushik D, Thompson IM, Ankerst DP, Liss MA: **Finasteride Reduces Risk of Bladder Cancer in a Large Prospective Screening Study.** *European Urology* 2016, **69**:407-410. - 70. Chen CC, Huang CP, Tsai YT, Hseih TF, Shyr CR: **The genomic alterations of 5α-reductases and their inhibitor Finasteride's effect in bladder cancer.** *Anticancer Res* 2017, **37:**6893-6898. - 71. Wang CS, Li CC, Juan YS, Wu WJ, Lee HY: 5α-reductase inhibitors impact prognosis of urothelial carcinoma. *BMC Cancer* 2020, **20:**872. - 72. Santella C, Rouette J, Brundage MD, Filion KB, Azoulay L: **Androgen deprivation therapy for prostate cancer** and the risk of bladder cancer: A systematic review of observational studies. *Urol Oncol* 2020. - 73. Toren P, Brisson H, Simonyan D, Hovington H, Lacombe L, Bergeron A, Fradet Y: **Androgen receptor and immune cell PD-L1 expression in bladder tumors predicts disease recurrence and survival.** *World J Urol* 2021, **39:**1549-1558. - 74. Hsu JW, Hsu I, Xu D, Miyamoto H, Liang L, Wu XR, Shyr CR, Chang C: Decreased tumorigenesis and mortality from bladder cancer in mice lacking urothelial androgen receptor. *Am J Pathol* 2013, **182**:1811-1820. - 75. Mir C, Shariat SF, van der Kwast TH, Ashfaq R, Lotan Y, Evans A, Skeldon S, Hanna S, Vajpeyi R, Kuk C, et al: Loss of androgen receptor expression is not associated with pathological stage, grade, gender or outcome in bladder cancer: a large multi-institutional study. *BJU International* 2011, **108**:24-30. - 76. Kashiwagi E, Ide H, Inoue S, Kawahara T, Zheng Y, Reis LO, Baras AS, Miyamoto H: **Androgen receptor** activity modulates responses to cisplatin treatment in bladder cancer. *Oncotarget* 2016, 7:49169-49179. - 77. Tyagi A, Chandrasekaran B, Kolluru V, Rai S, Jordan AC, Houda A, Messer J, Ankem M, Damodaran C, Haddad A: Combination of androgen receptor inhibitor and cisplatin, an effective treatment strategy for urothelial carcinoma of the bladder. *Urol Oncol* 2019, 37:492-502. - 78. Jiang G, Teramoto Y, Goto T, Mizushima T, Inoue S, Ide H, Nagata Y, Kashiwagi E, Baras AS, Netto GJ, et al: Identification of BXDC2 as a key downstream effector of the androgen receptor in modulating cisplatin sensitivity in bladder cancer. *Cancers (Basel)* 2021, 13. - 79. Koeken VA, de Bree LCJ, Mourits VP, Moorlag SJ, Walk J, Cirovic B, Arts RJ, Jaeger M, Dijkstra H, Lemmers H, et al: **BCG vaccination in humans inhibits systemic inflammation in a sex-dependent manner.** *J Clin Invest* 2020, **130**:5591-5602. - 80. Mizushima T, Jiang G, Kawahara T, Li P, Han B, Inoue S, Ide H, Kato I, Jalalizadeh M, Miyagi E, et al:
Androgen receptor signaling reduces the efficacy of Bacillus Calmette-Guerin therapy for bladder cancer via modulating Rab27b-induced exocytosis. *Mol Cancer Ther* 2020, **19**:1930-1942. - 81. Shang Z, Li Y, Zhang M, Tian J, Han R, Shyr CR, Messing E, Yeh S, Niu Y, Chang C: **Antiandrogen therapy** with hydroxyflutamide or androgen receptor degradation enhancer **ASC-J9** enhances **BCG** efficacy to better suppress bladder cancer progression. *Mol Cancer Ther* 2015, **14**:2586-2594. - 82. Grajales V, Bandari J, Hale NE, Yabes JG, Turner RM, 2nd, Fam MM, Sabik LM, Gingrich JR, Davies BJ, Jacobs BL: Associations between female sex and treatment patterns and outcomes for muscle-invasive bladder cancer. *Urology* 2020, **151**:169-175. - 83. Kimura S, Iwata T, Abufaraj M, Janisch F, D'Andrea D, Moschini M, Al-Rawashdeh B, Fajkovic H, Seebacher V, Egawa S, Shariat SF: Impact of gender on chemotherapeutic response and oncologic outcomes in patients treated with radical cystectomy and perioperative chemotherapy for bladder cancer: a systematic review and meta-analysis. Clin Genitourin Cancer 2020, 18:78-87. - 84. Fernandez-Gomez J, Solsona E, Unda M, Martinez-Pineiro L, Gonzalez M, Hernandez R, Madero R, Ojea A, Pertusa C, Rodriguez-Molina J, et al: **Prognostic factors in patients with non-muscle-invasive bladder cancer treated with bacillus Calmette-Guerin: multivariate analysis of data from four randomized CUETO trials.** *Eur Urol* 2008, **53:**992-1001. - 85. de Jong JJ, Boormans JL, van Rhijn BWG, Seiler R, Boorjian SA, Konety B, Bivalacqua TJ, Wheeler T, Svatek RS, Douglas J, et al: **Distribution of molecular subtypes in muscle-invasive bladder cancer is driven by sex-specific differences.** *Eur Urol Oncol* 2020, **3**:420-423. - 86. Sottnik JL, Vanderlinden LA, Joshi M, Chauca-Diaz A, Owens C, Hansel DE, Sempeck C, Ghosh D, Theodorescu D: **Androgen receptor regulates CD44 expression in bladder cancer.** *Cancer Res* 2021. - 87. Wu CT, Lin WY, Chen WC, Chen MF: Predictive Value of CD44 in Muscle-Invasive Bladder Cancer and Its Relationship with IL-6 Signaling. *Ann Surg Oncol* 2018, **25:**3518-3526. - 88. Hsu I, Chuang KL, Slavin S, Da J, Lim WX, Pang ST, O'Brien JH, Yeh S: **Suppression of ERβ signaling via ERβ knockout or antagonist protects against bladder cancer development.** *Carcinogenesis* 2014, **35:**651-661. - 89. Hsu I, Yeh CR, Slavin S, Miyamoto H, Netto GJ, Tsai YC, Muyan M, Wu XR, Messing EM, Guancial EA, Yeh S: Estrogen receptor alpha prevents bladder cancer via INPP4B inhibited akt pathway in vitro and in vivo. *Oncotarget* 2014, 5:7917-7935. - 90. Klein SL, Jedlicka A, Pekosz A: **The Xs and Y of immune responses to viral vaccines.** *Lancet Infect Dis* 2010, **10:**338-349. - 91. Brown MA, Su MA: **An inconvenient variable: sex hormones and their impact on T cell responses.** *J Immunol* 2019, **202:**1927-1933. - 92. Jørgensen TN: Sex disparities in the immune response. Cellular Immunology 2015, 294:61-62. - 93. van den Berg CH, Grady BP, Schinkel J, van de Laar T, Molenkamp R, van Houdt R, Coutinho RA, van Baarle D, Prins M: Female sex and IL28B, a synergism for spontaneous viral clearance in hepatitis C virus (HCV) seroconverters from a community-based cohort. *PLoS One* 2011, 6:e27555. - 94. Kaplan V, Angus DC, Griffin MF, Clermont G, Scott Watson R, Linde-Zwirble WT: Hospitalized community-acquired pneumonia in the elderly: age- and sex-related patterns of care and outcome in the United States. *Am J Respir Crit Care Med* 2002, **165**:766-772. - 95. Cook MB, Dawsey SM, Freedman ND, Inskip PD, Wichner SM, Quraishi SM, Devesa SS, McGlynn KA: **Sex disparities in cancer incidence by period and age.** *Cancer Epidemiol Biomarkers Prev* 2009, **18**:1174-1182. - 96. Cook MB, McGlynn KA, Devesa SS, Freedman ND, Anderson WF: **Sex disparities in cancer mortality and survival.** *Cancer Epidemiol Biomarkers Prev* 2011, **20**:1629-1637. - 97. Edgren G, Liang L, Adami H-O, Chang ET: Enigmatic sex disparities in cancer incidence. European Journal of Epidemiology 2012, 27:187-196. - 98. Ainbender E, Weisinger RB, Hevizy M, Hodes HL: **Difference in the immunoglobulin class of polioantibody in the serum of men and women.** *Journal of immunology (Baltimore, Md*: 1950) 1968, **101:**92-98. - 99. Furman D, Hejblum BP, Simon N, Jojic V, Dekker CL, Thiebaut R, Tibshirani RJ, Davis MM: Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. *Proc Natl Acad Sci U S A* 2014, 111:869-874. - 100. Klein SL, Marriott I, Fish EN: **Sex-based differences in immune function and responses to vaccination.**Transactions of the Royal Society of Tropical Medicine and Hygiene 2015, **109:**9-15. - 101. Trigunaite A, Dimo J, Jorgensen TN: **Suppressive effects of androgens on the immune system.** *Cell Immunol* 2015, **294**:87-94. - 102. Gabriel G, Arck PC: Sex, immunity and influenza. J Infect Dis 2014, 209 Suppl 3:S93-99. - Wang JP, Zhang L, Madera RF, Woda M, Libraty DH: **Plasmacytoid dendritic cell interferon-α production to R-848 stimulation is decreased in male infants.** *BMC Immunology* 2012, **13:**35-35. - 104. Roth A, Sodemann M, Jensen H, Poulsen A, Gustafson P, Weise C, Gomes J, Djana Q, Jakobsen M, Garly ML, et al: **Tuberculin reaction, BCG scar, and lower female mortality**. *Epidemiology* 2006, **17:**562-568. - 105. Leposavic G, Perisic M, Kosec D, Arsenovic-Ranin N, Radojevic K, Stojic-Vukanic Z, Pilipovic I: Neonatal testosterone imprinting affects thymus development and leads to phenotypic rejuvenation and masculinization of the peripheral blood T-cell compartment in adult female rats. *Brain Behav Immun* 2009, 23:294-304. - 106. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, Curtis HJ, Mehrkar A, Evans D, Inglesby P, et al: Factors associated with COVID-19-related death using OpenSAFELY. *Nature* 2020, 584:430-436. - 107. Chakravarty D, Nair SS, Hammouda N, Ratnani P, Gharib Y, Wagaskar V, Mohamed N, Lundon D, Dovey Z, Kyprianou N, Tewari AK: Sex differences in SARS-CoV-2 infection rates and the potential link to prostate cancer. *Commun Biol* 2020, 3:374. - 108. Igarashi H, Kouro T, Yokota T, Comp PC, Kincade PW: **Age and stage dependency of estrogen receptor expression by lymphocyte precursors.** *Proc Natl Acad Sci U S A* 2001, **98:**15131-15136. - 109. Mantalaris A, Panoskaltsis N, Sakai Y, Bourne P, Chang C, Messing EM, Wu JH: Localization of androgen receptor expression in human bone marrow. *J Pathol* 2001, **193:**361-366. - 110. Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S: Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 2012, 61:1155-1167. - 111. Gabrilovich DI, Nagaraj S: **Myeloid-derived suppressor cells as regulators of the immune system.** *Nat Rev Immunol* 2009, **9:**162-174. - 112. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, et al: **The immune landscape of cancer.** *Immunity* 2018, **48:**812-830 e814. - 113. Mosser DM, Edwards JP: Exploring the full spectrum of macrophage activation. *Nat Rev Immunol* 2008, 8:958-969. - 114. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. *Nature* 1998, 392:245-252. - 115. Mortier E, Advincula R, Kim L, Chmura S, Barrera J, Reizis B, Malynn BA, Ma A: Macrophage- and dendritic-cell-derived interleukin-15 receptor alpha supports homeostasis of distinct CD8+ T cell subsets. *Immunity* 2009, 31:811-822. - 116. Askenase MH, Han SJ, Byrd AL, Morais da Fonseca D, Bouladoux N, Wilhelm C, Konkel JE, Hand TW, Lacerda-Queiroz N, Su XZ, et al: **Bone-marrow-resident NK cells prime monocytes for regulatory function during infection.** *Immunity* 2015, **42**:1130-1142. - 117. Wong JL, Berk E, Edwards RP, Kalinski P: **IL-18-primed helper NK cells collaborate with dendritic cells to promote recruitment of effector CD8+ T cells to the tumor microenvironment.** *Cancer Res* 2013, **73**:4653-4662. - 118. Goldszmid RS, Caspar P, Rivollier A, White S, Dzutsev A, Hieny S, Kelsall B, Trinchieri G, Sher A: **NK** cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. *Immunity* 2012, **36**:1047-1059. - 119. Mattiola I, Pesant M, Tentorio PF, Molgora M, Marcenaro E, Lugli E, Locati M, Mavilio D: **Priming of human** resting NK cells by autologous M1 macrophages via the engagement of IL-1β, IFN-β, and IL-15 pathways. *J Immunol* 2015, **195**:2818-2828. - 120. Hanna RN, Cekic C, Sag D, Tacke R, Thomas GD, Nowyhed H, Herrley E, Rasquinha N, McArdle S, Wu R, et al: **Patrolling monocytes control tumor metastasis to the lung.** *Science* 2015, **350:**985-990. - 121. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL: **Cellular senescence and the senescent secretory phenotype: therapeutic opportunities.** *J Clin Invest* 2013, **123:**966-972. - 122. Senovilla L, Galluzzi L, Zitvogel L, Kroemer G: **Immunosurveillance as a regulator of tissue homeostasis.** *Trends Immunol* 2013, **34:**471-481. - 123. Stefater JA, 3rd, Ren S, Lang RA, Duffield JS: Metchnikoff's policemen: macrophages in development, homeostasis and regeneration. *Trends Mol Med* 2011, 17:743-752. - 124. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM: Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. *J Immunol* 1992, 148:2207-2216. - 125. Savill J, Hogg N, Ren Y, Haslett C: **Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis.** *J Clin Invest* 1992, **90:**1513-1522. - 126. Ramirez MC, Sigal LJ: Macrophages and dendritic cells use the cytosolic pathway to rapidly cross-present antigen from live, vaccinia-infected cells. *J
Immunol* 2002, 169:6733-6742. - 127. Consiglio CR, Gollnick SO: **Androgen receptor signaling positively regulates monocytic development.** *Front Immunol* 2020, **11:**519383. - 128. Rettew JA, Huet-Hudson YM, Marriott I: **Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity.** *Biol Reprod* 2008, **78:**432-437. - 129. Gilmore TD: Introduction to NF-кВ: players, pathways, perspectives. Oncogene 2006, 25:6680-6684. - 130. Ashcroft GS, Mills SJ: Androgen receptor-mediated inhibition of cutaneous wound healing. *J Clin Invest* 2002, **110**:615-624. - 131. Lai JJ, Lai KP, Chuang KH, Chang P, Yu IC, Lin WJ, Chang C: Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-α expression. J Clin Invest 2009, 119:3739-3751. - 132. Corcoran MP, Meydani M, Lichtenstein AH, Schaefer EJ, Dillard A, Lamon-Fava S: **Sex hormone modulation** of proinflammatory cytokine and C-reactive protein expression in macrophages from older men and postmenopausal women. *J Endocrinol* 2010, **206**:217-224. - 133. Kutteh WH, Rainey WE, Carr BR: Glucocorticoids inhibit lipopolysaccharide-induced production of tumor necrosis factor-alpha by human fetal Kupffer cells. *J Clin Endocrinol Metab* 1991, 73:296-301. - 134. Cutolo M, Capellino S, Montagna P, Ghiorzo P, Sulli A, Villaggio B: **Sex hormone modulation of cell growth and apoptosis of the human monocytic/macrophage cell line**. *Arthritis Res Ther* 2005, **7:**R1124-1132. - 135. McKay LI, Cidlowski JA: Cross-talk between nuclear factor-kB and the steroid hormone receptors: mechanisms of mutual antagonism. *Mol Endocrinol* 1998, **12**:45-56. - 136. Male D, Brostoff J, Roth D, Roitt I: *Immunology*. 8th edn: Elsevier; 2013. - 137. Lai JJ, Lai KP, Zeng W, Chuang KH, Altuwaijri S, Chang C: Androgen receptor influences on body defense system via modulation of innate and adaptive immune systems: lessons from conditional AR knockout mice. *Am J Pathol* 2012, **181**:1504-1512. - 138. McDonnell ND, Livingston RB: Severe reversible neutropenia following treatment of prostate cancer with flutamide. *The Journal of urology* 1994, **151**:1353-1354. - 139. Humann J, Lenz LL: Activation of naive NK cells in response to Listeria monocytogenes requires IL-18 and contact with infected dendritic cells. *J Immunol* 2010, **184**:5172-5178. - 140. Inamdar Doddamani LS, Jayamma Y: Acceleration of neutrophil precursors' maturation and immunostimulation of CD3+, CD4+ lymphocytes by stanozolol in mice. *J Steroid Biochem Mol Biol* 2012, 129:172-178. - 141. Marin DP, Bolin AP, dos Santos Rde C, Curi R, Otton R: **Testosterone suppresses oxidative stress in human neutrophils.** *Cell Biochem Funct* 2010, **28:**394-402. - 142. Scalerandi MV, Peinetti N, Leimgruber C, Cuello Rubio MM, Nicola JP, Menezes GB, Maldonado CA, Quintar AA: Inefficient N2-like neutrophils are promoted by androgens during infection. *Front Immunol* 2018, 9:1980. - 143. Guo Z, Tilburgs T, Wong B, Strominger JL: Dysfunction of dendritic cells in aged C57BL/6 mice leads to failure of natural killer cell activation and of tumor eradication. *Proc Natl Acad Sci U S A* 2014, 111:14199-14204. - 144. Nakayama M, Takeda K, Kawano M, Takai T, Ishii N, Ogasawara K: Natural killer (NK)-dendritic cell interactions generate MHC class II-dressed NK cells that regulate CD4+ T cells. Proceedings of the National Academy of Sciences 2011, 108:18360-18365. - 145. Mortier E, Woo T, Advincula R, Gozalo S, Ma A: **IL-15Rα** chaperones **IL-15 to stable dendritic cell membrane** complexes that activate NK cells via trans presentation. *J Exp Med* 2008, **205**:1213-1225. - 146. Stonier SW, Schluns KS: **Trans-presentation: a novel mechanism regulating IL-15 delivery and responses.** *Immunol Lett* 2010, **127:**85-92. - 147. Castillo EF, Stonier SW, Frasca L, Schluns KS: Dendritic cells support the in vivo development and maintenance of NK cells via IL-15 trans-presentation. *J Immunol* 2009, 183:4948-4956. - 148. Gerosa F, Gobbi A, Zorzi P, Burg S, Briere F, Carra G, Trinchieri G: The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. *J Immunol* 2005, 174:727-734. - 149. Paharkova-Vatchkova V, Maldonado R, Kovats S, Offner H: Estrogen preferentially promotes the differentiation of CD11c+ CD11bintermediate dendritic cells from bone marrow precursors. *Journal of immunology* (Baltimore, Md: 1950) 2004, 172:1426-1436. - 150. Lin AA, Wojciechowski SE, Hildeman DA: **Androgens suppress antigen-specific T cell responses and IFN-γ production during intracranial LCMV infection.** *J Neuroimmunol* 2010, **226:**8-19. - 151. Germain RN: MHC-dependent antigen processing and peptide presentation: Providing ligands for T lymphocyte activation. *Cell* 1994, 76:287-299. - 152. Chen C, Gault A, Shen L, Nabavi N: Molecular cloning and expression of early T cell costimulatory molecule-1 and its characterization as B7-2 molecule. *Journal of immunology (Baltimore, Md : 1950)* 1994, 152:4929-4936. - 153. Koh YT, Gray A, Higgins SA, Hubby B, Kast WM: Androgen ablation augments prostate cancer vaccine immunogenicity only when applied after immunization. *The Prostate* 2009, 69:571-584. - 154. Caligiuri MA: **Human natural killer cells.** *Blood* 2008, **112:**461-469. - 155. Trinchieri G: **Biology of natural killer cells.** *Adv Immunol* 1989, **47:**187-376. - 156. Morvan MG, Lanier LL: **NK cells and cancer: you can teach innate cells new tricks.** *Nat Rev Cancer* 2016, **16:**7-19. - 157. Chockley PJ, Chen J, Chen G, Beer DG, Standiford TJ, Keshamouni VG: Epithelial-mesenchymal transition leads to NK cell-mediated metastasis-specific immunosurveillance in lung cancer. J Clin Invest 2018, 128:1384-1396. - 158. Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, Knoblaugh S, Cado D, Greenberg NM, Raulet DH: NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. *Immunity* 2008, 28:571-580. - 159. Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM: In vivo natural killer cell activities revealed by natural killer cell-deficient mice. *Proc Natl Acad Sci U S A* 2000, 97:2731-2736. - 160. Tai LH, de Souza CT, Belanger S, Ly L, Alkayyal AA, Zhang J, Rintoul JL, Ananth AA, Lam T, Breitbach CJ, et al: Preventing postoperative metastatic disease by inhibiting surgery-induced dysfunction in natural killer cells. *Cancer Res* 2012, 73:97-107. - 161. Harty JT, Tvinnereim AR, White DW: **CD8+ T cell effector mechanisms in resistance to infection.** *Annu Rev Immunol* 2000, **18:**275-308. - 162. Long EO: Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev 2008, 224:70-84. - 163. Yu J, Heller G, Chewning J, Kim S, Yokoyama WM, Hsu KC: Hierarchy of the human natural killer cell response is determined by class and quantity of Inhibitory receptors for self-HLA-B and HLA-C ligands. *J Immunol* 2007, **179:**5977-5989. - 164. Sturmhöfel K, Hämmerling GJ: Reconstitution of H-2 class I expression by gene transfection decreases susceptibility to natural killer cells of an EL4 class I loss variant. Eur J Immunol 1990, 20:170-177. - 165. Raulet DH: Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 2003, 3:781-790. - 166. Page ST, Plymate SR, Bremner WJ, Matsumoto AM, Hess DL, Lin DW, Amory JK, Nelson PS, Wu JD: Effect of medical castration on CD4+ CD25+ T cells, CD8+ T cell IFN-gamma expression, and NK cells: a physiological role for testosterone and/or its metabolites. *Am J Physiol Endocrinol Metab* 2006, 290:E856-863. - 167. Al-Attar A, Presnell SR, Peterson CA, Thomas DT, Lutz CT: **The effect of sex on immune cells in healthy aging: Elderly women have more robust natural killer lymphocytes than do elderly men.** *Mech Ageing Dev* 2016, **156**:25-33. - 168. Crotty S: **Follicular helper CD4 T cells (TFH).** Annu Rev Immunol 2011, **29:**621-663. - 169. Forthal DN: **Functions of antibodies.** *Microbiol Spectr* 2014, **2:**1-17. - 170. Viselli SM, Reese KR, Fan J, Kovacs WJ, Olsen NJ: **Androgens alter B cell development in normal male mice.** *Cell Immunol* 1997, **182:**99-104. - 171. Fitzpatrick F, Lepault F, Homo-Delarche F, Bach J-F, Dardenne M: Influence of castration, alone or combined with thymectomy, on the development of iabetes in the nonobese diabetic mouse. *Endocrinology* 1991, 129:1382-1390. - 172. Liva SM, Voskuhl RR: Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. *J Immunol* 2001, **167**:2060-2067. - 173. Ellis TM, Moser MT, Le PT, Flanigan RC, Kwon ED: **Alterations in peripheral B cells and B cell progenitors following androgen ablation in mice.** *Int Immunol* 2001, **13**:553-558. - 174. Smithson G, Couse JF, Lubahn DB, Korach KS, Kincade PW: **The role of estrogen receptors and androgen receptors in sex steroid regulation of B lymphopoiesis.** *J Immunol* 1998, **161**:27-34. - 175. Olsen NJ, Gu X, Kovacs WJ: **Bone marrow stromal cells mediate androgenic suppression of B lymphocyte development.** *J Clin Invest* 2001, **108**:1697-1704. - 176. Altuwaijri S, Chuang K-H, Lai K-P, Lai J-J, Lin H-Y, Young FM, Bottaro A, Tsai M-Y, Zeng W-P, Chang H-C, et al: Susceptibility to autoimmunity and B cell resistance to apoptosis in mice lacking androgen receptor in B c - ells. Molecular Endocrinology 2009, 23:444-453. - 177. Trigunaite A, Dimo J, Jørgensen TN: Suppressive effects of androgens on the immune system. *Cellular Immunology* 2015, **294:**87-94. - 178. Olsen NJ, Kovacs WJ: Effects of androgens on T and B lymphocyte development. *Immunologic Research* 2001, 23:281-288. - 179. Henderson J: On the relationship of the thymus to the sexual organs: I. The influence of castration on the thymus. *J Physiol* 1904, 31:222-229. - 180. Dulos GJ, Bagchus WM: **Androgens indirectly accelerate thymocyte apoptosis.** *Int Immunopharmacol* 2001, 1:321-328. - 181.
Olsen NJ, Olson G, Viselli SM, Gu X, Kovacs WJ: **Androgen receptors in thymic epithelium modulate thymus size and thymocyte development.** *Endocrinology* 2001, **142**:1278-1283. - 182. Sutherland JS, Goldberg GL, Hammett MV, Uldrich AP, Berzins SP, Heng TS, Blazar BR, Millar JL, Malin MA, Chidgey AP, Boyd RL: Activation of thymic regeneration in mice and humans following androgen blockade. *J Immunol* 2005, 175:2741-2753. - 183. Velardi E, Tsai JJ, Holland AM, Wertheimer T, Yu VW, Zakrzewski JL, Tuckett AZ, Singer NV, West ML, Smith OM, et al: Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. *J Exp Med* 2014, 211:2341-2349. - 184. Kissick HT, Sanda MG, Dunn LK, Pellegrini KL, On ST, Noel JK, Arredouani MS: **Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation**. *Proc Natl Acad Sci U S A* 2014, **111**:9887-9892. - 185. Viselli SM, Olsen NJ, Shults K, Steizer G, Kovacs WJ: Immunochemical and flow cytometric analysis of androgen receptor expression in thymocytes. *Mol Cell Endocrinol* 1995, **109**:19-26. - 186. Walecki M, Eisel F, Klug J, Baal N, Paradowska-Dogan A, Wahle E, Hackstein H, Meinhardt A, Fijak M: Androgen receptor modulates Foxp3 expression in CD4+CD25+Foxp3+ regulatory T-cells. *Mol Biol Cell* 2015, 26:2845-2857. - 187. Constant SL, Bottomly K: **Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches.** *Annu Rev Immunol* 1997, **15:**297-322. - 188. Hepworth MR, Hardman MJ, Grencis RK: **The role of sex hormones in the development of Th2 immunity in a gender-biased model of Trichuris muris infection.** *European journal of immunology* 2010, **40**:406-416. - 189. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB: Interleukin-10 and related cytokines and receptors. *Annu Rev Immunol* 2004, 22:929-979. - 190. Bebo BF, Schuster JC, Vandenbark AA, Offner H: **Androgens alter the cytokine profile and reduce encephalitogenicity of myelin-reactive T cells.** *Journal of immunology (Baltimore, Md* : 1950) 1999, **162:**35-40. - 191. Russi AE, Walker-Caulfield ME, Ebel ME, Brown MA: Cutting edge: c-Kit signaling differentially regulates type 2 innate lymphoid cell accumulation and susceptibility to central nervous system demyelination in male and female SJL mice. J Immunol 2015, 194:5609-5613. - 192. Russi AE, Ebel ME, Yang Y, Brown MA: Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. *Proc Natl Acad Sci U S A* 2018, 115:E1520-E1529. - 193. Miller AM: Role of IL-33 in inflammation and disease. J Inflamm (Lond) 2011, 8:22. - 194. Shimizu J, Yamazaki S, Sakaguchi S: Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. *J Immunol* 1999, 163:5211-5218. - 195. Nelson BH: **IL-2, regulatory T cells, and tolerance.** *J Immunol* 2004, **172:**3983-3988. - 196. Kerdiles Y, Ugolini S, Vivier E: **T cell regulation of natural killer cells.** *Journal of Experimental Medicine* 2013, **210**:1065-1068. - 197. Josefowicz SZ, Lu LF, Rudensky AY: **Regulatory T cells: mechanisms of differentiation and function.** *Annu Rev Immunol* 2012, **30:**531-564. - 198. Kotsakis A, Koinis F, Katsarou A, Gioulbasani M, Aggouraki D, Kentepozidis N, Georgoulias V, Vetsika EK: Prognostic value of circulating regulatory T cell subsets in untreated non-small cell lung cancer patients. *Sci Rep* 2016, **6:**39247. - 199. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW: **The prognostic influence of tumour-infiltrating** lymphocytes in cancer: a systematic review with meta-analysis. *Br J Cancer* 2011, **105:**93-103. - 200. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH: **Immune infiltration in human tumors: a prognostic factor that should not be ignored**. *Oncogene* 2010, **29**:1093-1102. - 201. Rusakiewicz S, Semeraro M, Sarabi M, Desbois M, Locher C, Mendez R, Vimond N, Concha A, Garrido F, Isambert N, et al: Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. *Cancer Res* 2013, **73**:3499-3510. - 202. Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A, Macrae S, Nelson M, Canning C, Lowy I, et al: Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. *Proc Natl Acad Sci U S A* 2008, **105**:3005-3010. - 203. Quezada SA, Peggs KS, Curran MA, Allison JP: **CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells.** *J Clin Invest* 2006, **116**:1935-1945. - 204. Shang B, Liu Y, Jiang SJ, Liu Y: **Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis.** *Sci Rep* 2015, **5:**15179. - 205. Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y: **CD4*****CD25*** **T regulatory cells** suppress NK cell-mediated immunotherapy of cancer. *J Immunol* 2006, **176**:1582-1587. - 206. Rudensky AY, Gavin M, Zheng Y: FOXP3 and NFAT: partners in tolerance. Cell 2006, 126:253-256. - 207. Maduro C, de Hoon B, Gribnau J: **Fitting the puzzle pieces: the bigger picture of XCI.** *Trends Biochem Sci* 2016, **41:**138-147. - 208. Carrel L, Willard HF: X-inactivation profile reveals extensive variability in X-linked gene expression in females. *Nature* 2005, **434**:400-404. - 209. Balaton BP, Cotton AM, Brown CJ: **Derivation of consensus inactivation status for X-linked genes from genome-wide studies.** *Biol Sex Differ* 2015, **6:**35. - 210. Garieri M, Stamoulis G, Blanc X, Falconnet E, Ribaux P, Borel C, Santoni F, Antonarakis SE: Extensive cellular heterogeneity of X inactivation revealed by single-cell allele-specific expression in human fibroblasts. *Proc Natl Acad Sci U S A* 2018, **115**:13015-13020. - 211. Zito A, Davies MN, Tsai PC, Roberts S, Andres-Ejarque R, Nardone S, Bell JT, Wong CCY, Small KS: Heritability of skewed X-inactivation in female twins is tissue-specific and associated with age. Nat Commun 2019, 10:5339. - 212. Hagen SH, Henseling F, Hennesen J, Savel H, Delahaye S, Richert L, Ziegler SM, Altfeld M: **Heterogeneous** escape from X chromosome inactivation results in sex differences in thourype I IFN responses at the single human pDC level. *Cell Rep* 2020, 33:108485. - 213. Ji J, Zöller B, Sundquist J, Sundquist K: **Risk of solid tumors and hematological malignancy in persons with Turner and Klinefelter syndromes: A national cohort study.** *International Journal of Cancer* 2016, **139:**754-758. - 214. Schoemaker MJ, Swerdlow AJ, Higgins CD, Wright AF, Jacobs PA, Group UKCC: Cancer incidence in women with Turner syndrome in Great Britain: a national cohort study. *Lancet Oncol* 2008, 9:239-246. - 215. Souyris M, Cenac C, Azar P, Daviaud D, Canivet A, Grunenwald S, Pienkowski C, Chaumeil J, Mejia JE, Guery JC: **TLR7 escapes X chromosome inactivation in immune cells.** *Sci Immunol* 2018, **3**. - 216. Kocar IH, Yesilova Z, Ozata M, Turan M, Sengul A, Ozdemir I: The effect of testosterone replacement treatment on immunological features of patients with Klinefelter's syndrome. Clin Exp Immunol 2000, 121:448-452. - 217. De Vries GJ, Rissman EF, Simerly RB, Yang LY, Scordalakes EM, Auger CJ, Swain A, Lovell-Badge R, Burgoyne PS, Arnold AP: A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. *J Neurosci* 2002, 22:9005-9014. - 218. Smith-Bouvier DL, Divekar AA, Sasidhar M, Du S, Tiwari-Woodruff SK, King JK, Arnold AP, Singh RR, Voskuhl RR: A role for sex chromosome complement in the female bias in autoimmune disease. *J Exp Med* 2008, **205**:1099-1108. - 219. McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A: **Type I interferons in infectious disease.** *Nat Rev Immunol* 2015, **15:**87-103. - 220. Madera S, Rapp M, Firth MA, Beilke JN, Lanier LL, Sun JC: **Type I IFN promotes NK cell expansion during** viral infection by protecting NK cells against fratricide. *J Exp Med* 2016, **213**:225-233. - 221. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, Jordan TX, Oishi K, Panis M, Sachs D, et al: Imbalanced host response to SARS-CoV-2 drives development of COVID-19. *Cell* 2020, 181:1036-1045 e1039. - 222. Boudreau CM, Alter G: Extra-neutralizing FcR-mediated antibody functions for a universal influenza vaccine. Front Immunol 2019, 10:440. - 223. Oghumu S, Varikuti S, Stock JC, Volpedo G, Saljoughian N, Terrazas CA, Satoskar AR: Cutting Edge: CXCR3 escapes X chromosome inactivation in T cells during infection: potential implications for sex differences in immune responses. *J Immunol* 2019, 203:789-794. - 224. Marquez EJ, Chung CH, Marches R, Rossi RJ, Nehar-Belaid D, Eroglu A, Mellert DJ, Kuchel GA, Banchereau J, Ucar D: Sexual-dimorphism in human immune system aging. *Nat Commun* 2020, **11**:751. - 225. Kaneko S, Li X: X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. Science Advances 2018, 4:eaar5598-eaar5598. - 226. Sera Y, Nakata Y, Ueda T, Yamasaki N, Koide S, Kobayashi H, Ikeda K, Kobatake K, Iwasaki M, Oda H, et al: UTX maintains functional integrity of murine hematopoietic system by globally regulating aging-associated genes. *Blood* 2020. - 227. Garczyk S, Ortiz-Bruchle N, Schneider U, Lurje I, Guricova K, Gaisa NT, Lorsy E, Lindemann-Docter K, Heidenreich A, Knuchel R: Next-generation sequencing reveals potential predictive biomarkers and targets of therapy for urothelial carcinoma in situ of the urinary bladder. *Am J Pathol* 2020, 190:323-332. - 228. Ler LD, Ghosh S, Chai X, Thike AA, Heng HL, Siew EY, Dey S, Koh LK, Lim JQ, Lim WK, et al: Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. *Sci Transl Med* 2017, 9. - 229. Tricarico R, Nicolas E, Hall MJ, Golemis EA: X- and Y-linked chromatin-modifying genes as regulators of
sex-specific cancer incidence and prognosis. Clin Cancer Res 2020, 26:5567-5578. - 230. Ramakrishnan S, Granger V, Rak M, Hu Q, Attwood K, Aquila L, Krishnan N, Osiecki R, Azabdaftari G, Guru K, et al: Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer. Cell Death Differ 2019, 26:2100-2114. - 231. Kobatake K, Ikeda KI, Nakata Y, Yamasaki N, Ueda T, Kanai A, Sentani K, Sera Y, Hayashi T, Koizumi M, et al: Kdm6a deficiency activates inflammatory pathways, promotes M2 macrophage polarization, and causes bladder cancer in cooperation with p53 dysfunction. Clin Cancer Res 2020, 26:2065-2079. - 232. Dunford A, Weinstock DM, Savova V, Schumacher SE, Cleary JP, Yoda A, Sullivan TJ, Hess JM, Gimelbrant AA, Beroukhim R, et al: Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. *Nat Genet* 2017, **49**:10-16. - 233. Forsberg LA, Rasi C, Malmqvist N, Davies H, Pasupulati S, Pakalapati G, Sandgren J, de Ståhl TD, Zaghlool A, Giedraitis V, et al: Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. *Nature Genetics* 2014, **46**:624-628. - 234. Fadl-Elmula I, Gorunova L, Mandahl N, Elfving P, Lundgren R, Mitelman F, Heim S: Karyotypic characterization of urinary bladder transitional cell carcinomas. *Genes Chromosomes Cancer* 2000, **29:**256-265. - 235. Ahn J, Kim KH, Park S, Ahn YH, Kim HY, Yoon H, Lee JH, Bang D, Lee DH: Target sequencing and CRISPR/Cas editing reveal simultaneous loss of UTX and UTY in urothelial bladder cancer. Oncotarget 2016, 7:63252-63260. - 236. Gazova I, Lengeling A, Summers KM: Lysine demethylases KDM6A and UTY: The X and Y of histone demethylation. *Mol Genet Metab* 2019, **127**:31-44. - 237. Tricarico R, Nicolas E, Hall MJ, Golemis EA: X- and Y-linked chromatin-modifying genes as regulators of sex-specific cancer incidence and prognosis. Clin Cancer Res 2020. - 238. Liang Y, Tsoi LC, Xing X, Beamer MA, Swindell WR, Sarkar MK, Berthier CC, Stuart PE, Harms PW, Nair RP, et al: A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. *Nat Immunol* 2017, **18**:152-160. - 239. Gambaro K, Quinn MC, Wojnarowicz PM, Arcand SL, de Ladurantaye M, Barres V, Ripeau JS, Killary AM, Davis EC, Lavoie J, et al: VGLL3 expression is associated with a tumor suppressor phenotype in epithelial ovarian cancer. *Mol Oncol* 2013, 7:513-530. - 240. Zhang L, Li L, Mao Y, Hua D: VGLL3 is a prognostic biomarker and correlated with clinical pathologic features and immune infiltrates in stomach adenocarcinoma. *Sci Rep* 2020, **10**:1355. - 241. Peng Z, Skoog L, Hellborg H, Jonstam G, Wingmo IL, Hjalm-Eriksson M, Harmenberg U, Cedermark GC, Andersson K, Ahrlund-Richter L, et al: **An expression signature at diagnosis to estimate prostate cancer patients' overall survival.** *Prostate Cancer Prostatic Dis* 2014, **17**:81-90. - 242. Sabag E, Halperin E, Liron T, Hiram-Bab S, Frenkel B, Gabet Y: **Hormone-independent sexual dimorphism in the regulation of bone resorption by Krox20.** *J Bone Miner Res* 2019, **34**:2277-2286. - 243. Sacchi M, Klapan I, Johnson JT, Whiteside TL: **Antiproliferative effects of cytokines on squamous cell carcinoma.** *Arch Otolaryngol Head Neck Surg* 1991, **117**:321-326. - 244. Gegenhuber B, Tollkuhn J: Signatures of sex: Sex differences in gene expression in the vertebrate brain. Wiley Interdiscip Rev Dev Biol 2020, 9:e348. - 245. Lopes-Ramos CM, Chen CY, Kuijjer ML, Paulson JN, Sonawane AR, Fagny M, Platig J, Glass K, Quackenbush J, DeMeo DL: Sex differences in gene expression and regulatory networks across 29 human tissues. *Cell Rep* 2020, **31:**107795. - 246. Mukherjee N, Ji N, Hurez V, Curiel TJ, Montgomery MO, Braun AJ, Nicolas M, Aguilera M, Kaushik D, Liu Q, et al: Intratumoral CD56^{bright} natural killer cells are associated with improved survival in bladder cancer. Oncotarget 2018, 9:36492-36502. - 247. Wu X, Lv D, Cai C, Zhao Z, Wang M, Chen W, Liu Y: A TP53-associated immune prognostic signature for the prediction of overall survival and therapeutic responses in muscle-invasive bladder cancer. Front Immunol 2020, 11:590618. - 248. Qing L, Gu P, Liu M, Shen J, Liu X, Guang R, Ke K, Huang Z, Lee W, Zhao H: Extracellular matrix-related six-lncRNA signature as a novel prognostic biomarker for bladder cancer. *Onco Targets Ther* 2020, 13:12521-12538. - 249. Wang Y, Ba HJ, Liu ZC, Deng XB, Zhou M: **Prognostic value of immune cell infiltration in bladder cancer: A gene expression-based study.** *Oncol Lett* 2020, **20:**1677-1684. - 250. Zhang Y, Ou DH, Zhuang DW, Zheng ZF, Lin ME: In silico analysis of the immune microenvironment in bladder cancer. *BMC Cancer* 2020, **20:**265. - 251. Ratliff TL, Ritchey JK, Yuan JJ, Andriole GL, Catalona WJ: **T-cell subsets required for intravesical BCG** immunotherapy for bladder cancer. *J Urol* 1993, **150**:1018-1023. - 252. Biot C, Rentsch CA, Gsponer JR, Birkhauser FD, Jusforgues-Saklani H, Lemaitre F, Auriau C, Bachmann A, Bousso P, Demangel C, et al: Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. *Sci Transl Med* 2012, lodk4:137ra172. - 253. Brandau S, Riemensberger J, Jacobsen M, Kemp D, Zhao W, Zhao X, Jocham D, Ratliff TL, Bohle A: **NK cells** are essential for effective BCG immunotherapy. *Int J Cancer* 2001, **92:**697-702. - 254. Garcia-Cuesta EM, Lopez-Cobo S, Alvarez-Maestro M, Esteso G, Romera-Cardenas G, Rey M, Cassady-Cain RL, Linares A, Vales-Gomez A, Reyburn HT, et al: NKG2D is a key receptor for recognition of bladder cancer cells by IL-2-activated NK cels and BCG pomotes NK cell activation. Front Immunol 2015, 6:284. - 255. Ferreira-Teixeira M, Paiva-Oliveira D, Parada B, Alves V, Sousa V, Chijioke O, Munz C, Reis F, Rodrigues-Santos P, Gomes C: Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells. *BMC Med* 2016, **14**:163. - 256. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Jacobs C, Xavier RJ, van der Meer JW, van Crevel R, Netea MG: BCG-induced trained immunity in NK cells: Role for non-specific protection to infection. Clin Immunol 2014, 155:213-219. - 257. Juelke K, Killig M, Luetke-Eversloh M, Parente E, Gruen J, Morandi B, Ferlazzo G, Thiel A, Schmitt-Knosalla I, Romagnani C: CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 2010, 116:1299-1307. - 258. Miller JS: Therapeutic applications: natural killer cells in the clinic. *Hematology* 2013, **2013**:247-253. - 259. Caligiuri MA, Murray C, Robertson MJ, Wang E, Cochran K, Cameron C, Schow P, Ross ME, Klumpp TR, Soiffer RJ, et al.: Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. *J Clin Invest* 1993, 91:123-132. - 260. Rosenberg SA, Yang JC, White DE, Steinberg SM: Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann Surg 1998, 228:307-319. - 261. Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, Bellucci R, Raderschall E, Canning C, Soiffer RJ, et al: IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. *Blood* 2006, 108:1571-1579. - 262. Ghiringhelli F, Ménard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, et al: CD4⁺CD25⁺ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-β-dependent manner. *J Exp Med* 2005, 202:1075-1085. - Waldmann TA, Dubois S, Tagaya Y: Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. *Immunity* 2001, **14**:105-110. - 264. Romee R, Cooley S, Berrien-Elliott MM, Westervelt P, Verneris MR, Wagner JE, Weisdorf DJ, Blazar BR, Ustun C, DeFor TE, et al: First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. *Blood* 2018, 131:2515-2527. - 265. Ben Ahmed M, Belhadj Hmida N, Moes N, Buyse S, Abdeladhim M, Louzir H, Cerf-Bensussan N: **IL-15** renders conventional lymphocytes resistant to suppressive functions of regulatory T cells through activation of the phosphatidylinositol 3-kinase pathway. *J Immunol* 2009, **182**:6763-6770. - 266. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, et al: Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. *Blood* 2005, **105**:3051-3057. - 267. Yu Z, Pestell TG, Lisanti MP, Pestell RG: Cancer stem cells. Int J Biochem Cell Biol 2012, 44:2144-2151. - 268. Reya T, Morrison SJ, Clarke MF, Weissman IL: **Stem cells, cancer, and cancer stem cells.** *Nature* 2001, **414**:105-111. - 269. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: **Prospective identification of tumorigenic breast cancer cells.** *Proc Natl Acad Sci U S A* 2003, **100**:3983-3988. - 270. O'Brien CA, Pollett A, Gallinger S, Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. *Nature* 2007, **445**:106-110. - 271. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB: **Identification of human brain tumour initiating cells.** *Nature* 2004, **432**:396-401. - 272. Avril T, Vauleon E, Hamlat A, Saikali S, Etcheverry A, Delmas C, Diabira S, Mosser J, Quillien V: **Human** glioblastoma stem-like cells are more sensitive to allogeneic NK and T cell-mediated killing compared with serum-cultured glioblastoma cells. *Brain Pathol* 2012, 22:159-174. - 273. Jachetti E, Mazzoleni S, Grioni M, Ricupito A, Brambillasca C, Generoso L, Calcinotto A, Freschi M, Mondino A, Galli R, Bellone M:
Prostate cancer stem cells are targets of both innate and adaptive immunity and elicit tumor-specific immune responses. *Oncoimmunology* 2013, 2:e24520. - 274. Tallerico R, Todaro M, Di Franco S, Maccalli C, Garofalo C, Sottile R, Palmieri C, Tirinato L, Pangigadde PN, La Rocca R, et al: Human NK cells selective targeting of colon cancer-initiating cells: a role for natural cytotoxicity receptors and MHC class I molecules. *J Immunol* 2013, 190:2381-2390. - 275. Ames E, Canter RJ, Grossenbacher SK, Mac S, Chen M, Smith RC, Hagino T, Perez-Cunningham J, Sckisel GD, Urayama S, et al: **NK cells preferentially target tumor cells with a cancer stem cell phenotype.** *J Immunol* 2015, **195**:4010-4019. - 276. Falso MJ, Buchholz BA, White RW: Stem-like cells in bladder cancer cell lines with differential sensitivity to cisplatin. *Anticancer Res* 2012, **32**:733-738. - 277. Ferreira-Teixeira M, Parada B, Rodrigues-Santos P, Alves V, Ramalho JS, Caramelo F, Sousa V, Reis F, Gomes CM: Functional and molecular characterization of cancer stem-like cells in bladder cancer: a potential signature for muscle-invasive tumors. *Oncotarget* 2015, **6**:36185-36201. - Zhang Y, Wang Z, Yu J, Shi JZ, Wang C, Fu WH, Chen ZW, Yang J: Cancer stem-like cells contribute to cisplatin resistance and progression in bladder cancer. *Cancer Letters* 2012, **322**:70-77. - 279. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, Gill H, Presti J, Jr., Chang HY, van de Rijn M, et al: Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. *Proc Natl Acad Sci U S A* 2009, **106**:14016-14021. - 280. Overdevest JB, Knubel KH, Duex JE, Thomas S, Nitz MD, Harding MA, Smith SC, Frierson HF, Conaway M, Theodorescu D: **CD24 expression is important in male urothelial tumorigenesis and metastasis in mice and is androgen regulated.** *Proceedings of the National Academy of Sciences of the United States of America* 2012, **109:**E3588-3596.