Use of Nanomaterials for the Immobilization of Industrially Important Enzymes

Zarish Fatima

Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan.

*Email: Xarishfatima@gmail.com

Abstract

Immobilization enables enzymes to be held in place so that they can be easily separated from the product when needed and can be used again. Conventional methods of immobilization include adsorption, encapsulation, entrapment, cross linking and covalent binding. However, conventional methods have several drawbacks including reduced stability, loss of biomolecules, less enzyme loading or activity and limited diffusion. The aim of this study is the evaluation of importance of nanomaterials for the immobilization of industrially important enzymes. Nano materials are now in trend for the immobilization of different enzymes due to their physiochemical properties. Gold nanoparticles, silver nanoparticles, nano diamonds, graphene, carbon nanotubes and others are used for immobilization. Among covalent and non-covalent immobilization of enzymes involving both single and multiwalled carbon nanotubes, non-covalent immobilization with functionalized carbon nanotubes is superior. Therefore, enzymes immobilized with nanomaterials possess greater stability, retention of catalytic activity and reusability of enzymes.

Key words: Carbon nanotubes, catalytic activity, nanomaterials, covalent immobilization, hydrolases.

1. Introduction

Enzymes are the architecture of proteins which act as catalyst molecules that carry out specific biochemical reactions in the body. Enzymes are extremely wellorganized catalysts explored for commercial catalytic properties because of their numerous benefits [9]. Many enzymes are being used in the different industries, providing a huge number of benefits. Some of the most important industrial enzymes include pectinase, hydrolyses, cellulose, lipase, phytases and lignocelluloses. Pectin is the very complex polysaccharide existing in the cell wall of the plant while the pectinases are the depolymerizing enzyme that can be distributed into two classes; one is the hydrolyses and other one is lyases. A huge number of pectinases are present in the plants and the microorganisms classes and have dynamic part in the extension of cell wall and in the softening of the plant tissues [23]. Acidic pectinases have their role in juice clarification while alkalophilic provide benefits in dissolving of plant materials [7]. Phytase is the most important enzyme in the food industry and is the major storage form of the phosphorous in the grains. Phytase acts on the phytate and release organic phosphorous for the animals to reduce dependent on inorganic phosphorous supplements and to provide nutritional benefits [25].

Lignocellulose immobilization is used for production of ethanol industrially. The production process is only applied at domestic scale due to technical problems which can be resolved by using dry mass (20%) [5]. Lipases are the natural enzyme that catalyze the hydrolysis of triglycerides while in the non-aqueous state they catalyze the reverse reactions (esterification reactions) and in this way are used in situ lipid metabolism and ex situ multidimensional industrial application [49].

The term immobilized enzymes states to restrict enzyme physically or confine enzyme in a specific state with the holding of the catalytic property that can be utilized repeatedly. As it is better to remove the presence of unimportant complexes or molecules in the final products the possibility to abolish the enzyme is very substantial in the food industry. Till to date, industrial enzymes have been immobilized on numerous supports that may include nylon ion

exchange resin, silk, and chitin [23]. Enzyme immobilization is the ultimate method for the expansion of bioreactors and biosensors. Besides easily separation from the product, immobilized enzymes have the benefit of heat and functioning constancy in the presences of dangerous levels of pH, temperature and organic solvent [57]. They are, thus, the accurate applicant to use industry for large scale applications. Commercial applications of immobilized enzymes can result in both enhanced product excellence and lesser treating price [58]. The grape skin cell wall establishes a blockade against flow of polyphenols that can be removed by hydrolysis of their fundamental polysaccharides (pectin, hemicellulose, and cellulose), a process that can be enabled by maceration enzymes So the seed extracted in this way is examined for its ability as a cold-active acidic enzyme source [33].

The methods used for the immobilization include 1). Adsorption which includes Van der Waals forces, ionic bond and hydrogen bonding interactions. [55]. This method is done by mixing the enzyme(s) and a support material with each other in adsorption properties, at optimum pH, ionic strength [8]. 2). The pore size of a gel lattice is controlled to ensure that the structure become tight enough to prevent loose of enzyme or cells, it also allow free movement of the substrate and product [55]. 3). Encapsulation of enzymes as well as cells can be accomplished by wrapping the biological components inside different forms of semi permeable membranes [39]. Entrapment in that the enzymes/cells are free in movements but limited in space [55]. 4) Cross linking is the method of immobilization depend only on enzyme and it is support- free as it done by joining the enzyme (or the cells) to each other to prepare a large, three-dimensional complex structure [55]. 5). Covalent Bonding is formed between the functional groups present on the surface of carrier and the surface functional groups of the enzyme [37].

Nano materials are now in trend for the immobilization of different enzymes. They increase surface area to volume ratio [31] which increase the stability of the immobilized enzyme and increase enzymatic performance. Gold nanoparticles [53,45], silver nanoparticles, graphene, carbon nanotube, carbon Nano fiber [54], magnetic bio nanoparticles

[10], porous and polymeric nanoparticles and carbon nano composites [12] are being used in immobilization technique. Physicochemical properties of nanomaterials make useful matrices for immobilization [21].

Carbon nanotubes (CNTs) consist of graphene sheets rolled up into hollow cylindrical shape having diameter less than 100nm with length up to few micrometers [13]. CNTs are preferred nanomaterial for immobilizing enzymes due to their chemical inertness [40], exceptional structure, biocompatibility, thermal properties, mechanical properties [56], large surface area and electrical and magnetic properties [34]. Thus, enable greater loading density of enzymes with enhanced stabilization and retention of their catalytic activity [18]. This led towards the development of biosensors, biofuel cells, drug carriers [48] and industrial biocatalysts [3]. Single walled carbon nanotube (SWNT) provide better surface area and multi walled carbon nanotube nanotubes (MWNT) are economically important. Non-covalent and covalent immobilization have been adopted for immobilization [13]. Covalent immobilization gives strong attachment however enzyme structure may become denatured [43]. Direct conjugation of Rchymosin and soyabean peroxidase onto SWNT reduced activity. their So, non-covalent functionalization of CNTs [26] with polymeric, organic and biological molecules provide biocompatible nanotube composites for immobilization [43].

Immobilized enzymes are used because of the reason that they remain active for longer time periods even at high temperatures [4]. Lactase enzymes are used milk industry as they hydrolyze lactose which is the major component of milk. Pectinolytic enzymes are used frequently in juice and wine industry [16]. They are used to improve the texture and quality of paper [32]. Lipases are used in the synthesis and hydrolysis of ester bond. Xylanases, amylases and cellulases are used for the degradation of biomass [30].

2. Conventional methods for immobilization of enzymes

Enzyme immobilization is in practice since 1916, Nelson and Griffin discovered that Invertase l has the ability to hydrolyze the sucrose, when it is absorbed to charcoal. Grubhofer and Schelth introduced the ability of enzyme to react even after immobilization. The repeated assay can be done with the immobilized enzyme [37]. In the early Phase,1916-1940, Glass, Alumina. Hydrophobic compound coated glass were used for immobilization of enzymes. Underdeveloped Phase was 1950 in which Non-specific physical adsorption of enzymes on solid carriers was used along with amylase to adsorb in carbon. Developing Phase 1960, involved entrapment of enzymes. The fully developed era includes work on immobilization of enzymes including the nanotechnology and nanoparticles [39].

Immobilized enzymes are more likely to be stable than those enzymes which are in dissolved form. However, there are some draw backs including retardation of enzyme activity, change in kinetic properties, and diffusion or mass transfer limitations. Enzyme immobilization is the technique which is specifically designed to retarder its movement or motility [51]. Immobilization reduces the cost of assay and the enzyme can be reused. It is also very simple and it can be attained through ultrafiltration technique [37]. There are the conventional methods mentioned below Adsorption is the easiest technique for immobilization and here the interaction is totally opposite between carrier and enzyme. Weak forces are formed that are electrostatic, for example Van der Waals forces, ionic bond and hydrogen bonding interactions, hydrophobic bonding could be significant, but these forces are very weak but large in number to cover-up all the flaws. Enzyme(s) and a support material were mixed in adsorption properties, optimum pH, ionic strength, etc. After that the immobilized enzyme was collected and washed to remove unbound enzymes. The enzyme was perfectly immobilized by hat method [8]. Advantages of that method were observed as: it caused little or no damage. The carrier or enzyme/ cells undergoes no change. It's also inexpensive, Easy, and it was found reversible. Disadvantages are: It caused leakage of enzyme/cells from the support the isolation of endproduct was found very difficult. It caused nonspecific binding. Nonspecific binding may also lead to dispersal restriction and reaction kinetic problem. immobilization method of covalent binding holds the creation of a covalent bond or bonds, robust bond, between the enzyme and a carrier. This covalent bond is formed amid the functional groups which are present on the surface of carrier and that of the

enzyme. These functional groups are on the surface of

enzyme such as amino groups (NH2) of arginine or lysine, carboxylic group (COOH) of glutamic acid or aspartic acid, hydroxyl group (OH) of threonine or serine, and sulfhydryl group (SH) of cysteine[35]. Specific carrier selection is very much affected by many factors.it is mentioned by the research work that hydrophilicity is an important factor for holding up enzyme activity. Polysaccharide polymers are popular materials for enzyme immobilization that are highly hydrophilic. For example, cellulose, starch, spadix, and agarose (sepharose). The sugar remains in these polymers comprise ideal functional groups, hydroxyl groups, for covalent bond formation. Also, hydroxyl groups can produce hydrophilic atmosphere in acquis solution by forming hydrogen bonds. Bead formed supports are used [37].

In entrapment enzymes are blocked in the engineered or regular polymeric systems, it is a porous layer which enables the substrates and the items to pass, yet it holds the catalyst inside the system, the entrapment can be accomplished by the gel, one of the least demanding methods of immobilization entanglement. As of late, calcium alginate has fascination as an immobilization bolster material. It has been used for immobilization of assortment of cell types, sub-cell organelles, multi-segment frameworks, and [39]. In ionic binding the holding required between the compound and the help material is salt linkages. The idea of this noncovalent immobilization, the procedure will be turned around by changing the temperature extremity and ionic quality conditions. This guideline is like protein-ligand cooperation's standards utilized in chromatography. In affinity binding metal connected chemical immobilization, the metal salts are hastened over the surface of the matrix and it can possibly tie with the nucleophilic bunches on the framework. The precipitation of the metal particle on the transporter can be accomplished by warming. This strategy is straight-forward, and the movement of the immobilized proteins is generally high (30-80%). The transporter and the protein can be isolated by diminishing the pH, henceforth it is a reversible procedure. In the technique of cross linking for immobilization depend just on catalyst and it is sans bolster as it done by joining the compound (or the cells) to one another to set up a huge, threedimensional complex structure, enzymatic crosslinking typically incorporates development of covalent linkage between the cells by methods for a bior multifunctional reagent, for instance glutaraldehyde and toluene diisocyanate. Catalytic ballasts are used for more yield in less time the percentage of ballasts used are 90-99 % [35]. Be that as it may, restricting elements can be utilized in this strategy for living cells and numerous catalysts in view of destructive materials. To limit the nearby issues that can be found as a result of crosslinking of single enzyme type, both egg whites and gelatin have been utilized [6].

3. Nanomaterials for immobilization of enzymes

In recent searches nanomaterials are now in quick use and are involved in a lot of experiments. There are different types of nanoparticles on the basis of materials used.

3.1. Nanometals

By using the MOF (Metal-organic framework) Nano composites were formed. MOFs were formed by a metal ions series like Fe³⁺, Zr⁴⁺ and La³⁺, these three ions connected with a material that is 2-aminoterephthalate (H₂ATA) which formed three MOFs. These MOFs then went through annealing process in a N₂ atmosphere and this was done on 550° C. From microstructure and morphological analysis, it was revealed that MOFs original structure retained in this reaction. Then these materials which were derived from the MOF were used for the immobilization [12].

Random movements of the enzymatic molecules that are bounded with the nanoparticles are more stable and the activities of these enzymes are better than the unbounded enzymes. Iron nanoparticles are used for this purpose and the benefit of this bounded iron is that it can be removed easily afterwards by the simple use of electromagnetic radiations [11].

Nanomaterials are being used as matrices for immobilization of many enzymes like lipase (*Candida rugosa*) enzymes. SWNT and MWNT are mostly used nanoparticles. Firstly, SWNT were used then MWNT formed which are used more as nano-biocatalysts [21].

Tin dioxide is used as support for the immobilization of the *C. rugosa* lipase (Nano-SnO₂-CRL). On its comparison with the polypropylene (PP-CRL) it was

clear that the use of nanomaterial that is tin dioxide increased the efficiency eight times than that of the polypropylene. After one hour of activity nano-based immobilized enzyme retained the 45% activity but polypropylene based immobilization completely inactivated the enzyme. Researchers suggested that the size of the material is need to be optimized for the maximum loading of the tin dioxide [20].

Material of nanoparticles effect the functioning and immobilization of the specific enzyme. Here is the example of Pectate lyase (PL) in which formerly Ca nanoparticles were used in the immobilization procedure but then for the improvement of PL stability Ca nanoparticles were replaced by Calcium Hydroxyapatite and SWNT were used for its entrapment, this replacement was fruitful as it doesn't only stabilize enzyme at low temperature but also at high temperature. As the enzyme is psychrophilic in nature so it was stable only at low temperature but at high temperature it remains stable by maintaining its activity [36].

3.2. Gold and silver Nanoparticles

Gold and silver nanoparticles are in use for different enzyme immobilization techniques, in these processes either enzyme or whole cell is used, here is the example of one enzyme that is alcohol dehydrogenase [44,27].

Gold nanoparticles were used in the immobilization of tyrosinase enzyme. Immobilization of enzyme was done by using the solution of gold nanoparticles along with silicate sol-gel matrix and then assembly was done on the surface of ITO electrodes. Aim of using gold nanoparticles was to make the enzyme more stable with better catalytic properties, conductivity, electron transfer ability, optical and electrochemical properties [53].

3.3. Nanodiamond

Diamonds and graphene are one of the most stable crystalline structures [46]. Nano diamonds are preferably used in nanobiotechnology as they are biocompatible because of their non-toxic nature and extraordinary cellular uptake. Nano diamonds are used in the immobilization of alcohol dehydrogenase which

is obtained from the *Saccharomyces cerevisiae*. Nano diamonds immobilized under optimum pH were observed which retain 70% activity as compare to the lower efficiency other methods. [38].

3.4. Nanofibers

Electro spun nano-fibers are recognized as the best support for the immobilization of the enzyme because it gives best surface area to volume ratio, multiple attachment sites and low limitations of mass transfer [41]. Polyaniline which is used for immobilization of L-asparaginase showed best stability at different pH and different temperatures. In comparison with some other methods this material shows stability even after 40 cycles at pH 8.5 and temperature 37°C [17].

Cellulose nanofibers which are mostly used for different methods are prepared by mechanical or enzymatic methods by using plant fibers [50]. Glucose oxidase is that enzyme, which is immobilized by using porous matrix, which is of polyaniline nanofibers enzyme. This nanofiber matrix helps in immobilizing the enzyme in three steps. 1st step is absorption 2nd one is precipitation, third and the last one process is cross linking (EAPC) [29].

3.5. Nanographene

Cellulase immobilization was done on the nanosupport made up of magneto-responsive graphene. This type of support is very effective in many bioactive components immobilization [19]. Nanographene oxide (GO) is being used for the immobilization of different kinds of enzymes and this is used as a model support for many proteins and important enzymes as it provides great surface functionalization, solubility, larger surface area and rich oxygen. GO based immobilization depends on covalent coupling or it depends on the physical absorption which is non-specific [61,59].

4. Carbon Nanotubes for immobilization of enzymes

Nanotube chemistry and method employed for immobilization of enzyme on Carbon nanotube influence activity of CNT-enzyme conjugate [13].

Goh *et al.* merged iron oxide nanoparticles with SWNTs to generate magnetic SWNTs. They immobilized Amylo-glucosidase on magnetic SWNT by covalent immobilization and non-covalent immobilization (physical adsorption). Immobilized enzyme retained its catalytic activity up to 40% upon repeated use, up to many cycles during starch hydrolysis. Separation of nanotube from reaction mixture by magnet detached the enzyme making its reusability possible. Enzyme retained its activity for 1 month at 4° C storage thus making the enzyme cost effective for applying on industrial scale for biofuel production [18].

In another study, immobilization of lipases and esterases on CNTs suggested that curvature of nanotube affect the immobilization yield, structure and catalytic behavior of enzyme. Hydrolases possess high catalytic activity. Covalently immobilized enzymes on amine-functionalized CNTs possess greater catalytic activity and operational stability as compared to physically adsorbed enzymes [42].

There are two ways for the immobilization of industrially important enzymes on carbon nanotubes named as covalent immobilization and non-covalent immobilization.

4.1. Covalent immobilization

Covalent immobilization of Organophosphate hydrolase (OPH) on functionalized SWNT and MWNT led towards the development of sensors with high sensitivity and durability. Covalently immobilized OPH on SWNT retained higher catalytic activity than OPH immobilized on MWNT [43].

Lipase immobilized covalently on MWNT when subjected to analysis by FTIR spectroscopy and CD, revealed that Lipase-MWNT conjugate show less dependence on temperature than free lipase. Further, immobilized lipase had better stability [24].

Another approach employed controlled placement of enzymes on CNT by using Comb-branched DNA. Foundation DNA strand was covalently attached to MWNT on glassy carbon electrode. In this approach, Comb-Branched DNA was prepared by using Deoxyribozyme to bind DNA strand at peculiar location on foundation strand. By altering foundation strand, placement of DNA strands could be adjusted which

allowed distance optimization between enzyme and the surface of electrode. Using bioconjugation, Glucose dehydrogenase and alcohol dehydrogenase were bound to comb-branched DNA which resulted in enzyme immobilization on the surface of electrode. Amperometric analysis revealed that length of Foundation strand and distance determine the current response of enzymes in the presence of suitable substrate [22].

4.2. Non-covalent Immobilization

Non-covalent immobilization is superior approach for enzyme immobilization on CNTs than covalent immobilization due to maintenance of structural confirmation of immobilized enzyme and help in preventing loss of catalytic activity. Direct physical absorption is the most common non-covalent immobilization which involve π - π interactions and hydrophobic interactions between enzyme and nanotube surface [13].

Catalase was adsorbed onto SWNT, oxidized SWNT (O-SWNT) and MWNT. Upon analysis, reduction in catalytic activity was observed most in case of O-SWNT, more in case of SWNT and less in case of MWNT. Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) revealed loss in structure of enzyme which was adsorbed onto MWNT than that on SWNT. Increase in number of β sheets was found for Catalase adsorbed onto O-SWNT due to hydrogen bonding between enzyme and nanotube which maintained the enzyme structure and hence function [60].

Laccase enzyme was immobilized onto MWNT and O-MWNT for investigating catalytic activity of immobilized enzyme. Activity was reduced more in case of MWNT and less in O-MWNT. Structure loss was not observed [40].

5. Applications of immobilized enzymes

5.1. Applications of Lactase enzyme in dairy industry

B-galactosidase is the enzyme also known as lactase is the most important enzyme used in the dairy industry. This enzyme is used to hydrolyze the lactose which is a disaccharide sugar. This is quite beneficial

for the people who are lactose intolerant. Lactose is the major component of the milk products and the people who are deficient of lactase enzyme cannot consume milk products. By, the addition of lactase in milk the sweetness of milk is increased. In this way, more flavor can be added to the food items. Even the byproducts of the food processes can be utilized, and their nutritional value can be increased. For example, whey can be converted to the whey beverages by the addition of lactase [1].

5.2. Applications of pectinolytic enzymes

Pectinolytic enzymes are being used worldwide at the industrial scale for the production and clarification of juices and wines. Immobilized enzymes are preferred at the larger scale productions because they remain stable and active for longer time period and at high temperature. Moreover immobilized enzymes can be recovered for reuse [4].

Phyto-therapeutic properties of pectic substances and their modified products are being studied these days to produce nutraceuticals with application in dietary nutrition and pharmacy [16].

Sugarcane bagasse can be used in pulp and paper production [30,52].

Pectinase pretreatment has potential for improving the efficiency and environmental friendliness of bagasse soda-AQ pulping. The brightness and physical strength properties of the pulp were noticeably improved by the pectinase pretreatment. The properties of the pulp fibers after pretreatment, such as higher fiber length, lower fine length, and higher percent of flexible fiber, would be beneficial to subsequent pulping [32].

Saccharification of agricultural substrates: Pectinases are also being used in biorefineries for hydrolyzing pectin present in pectin-rich agro-industrial wastes [14].

Processing of textile material: Bio-scouring is an ecofriendly method for removal of non-cellulosic impurities from the fiber with the help of enzymes. Improved results are achieved, when pectinase have been used to remove sizing agents from cotton in a safe and eco-friendly manner, replacing toxic caustic soda [14].

During wastewater treatment especially when water is coming from food industries, to overcome the problem of membrane fouling (MF), biocatalytic membrane reactors with covalently immobilized pectinase were used to develop self-cleaning MF membrane. The biocatalytic membrane with pectinase on its surface gave a 50% higher flux compared to its counterpart inert membrane [15].

5.3. Applications of Lipases

Lipase enzymes are the most suitable enzymes for catalyzing the biochemical reactions due to their distinguished properties as they are cost effective, easily available and very specific in their action. They are used in pharmaceutical industries and fuel industries as they are involved in wide range of synthesis reactions, like ester bond formation and hydrolysis [47]. Lipases have exclusive property that they can carry out reactions at the edge between aqueous and non-aqueous media. Lipases are extensively used in the formulation of detergents which are used on the daily basis in houses to wash the clothes and dishes [2].

5.4. Applications of xylanases, amylases and cellulases

These enzymes are used to hydrolyze the plant biomass. Their potential to be used in energy, fuel and food industries is being studied [30]. These immobilized enzymes are used in the saccharification processes. Cellulases are widely used in food and agricultural biotechnology for cosmetics, detergents, chemicals, pulp and paper synthesis [28].

6. Conclusion

The efficacy and stability of a chemical reaction is increased by using the enzymes instead of the conventional methods. The enzyme activity is greatly enhanced by immobilizing them. Conventional methods are not reliable in a sense that they make enzymes less stable and show decreased diffusion. Nano particles have taken excellence in this regard

because of their exclusive physiochemical properties. There are covalent and non-covalent immobilization methods using single walled and multi walled carbon nanotubes. Noncovalent immobilization method is superior. Industrialists are more concerned towards the use of immobilized enzymes because at larger production scale, enzymes remain active and stable for longer time period and can be reused. Along with the recent development of immobilized enzymes we will keep on striving to revolutionize this interesting field.

Acknowledgement

Sagib Hussain Hadri assisted in writing this review.

Funding Sources

This review writing has not taken grants from any agency whether public, private or any other.

References

- 1. Adhikari S (2019) Application of Immobilized Enzymes in the Food Industry. In: Enzymes in Food Biotechnology. Elsevier, pp 711-721 https://doi.org/10.1016/B978-0-12-813280-7.00041-4
- 2. Andualema B, Gessesse A (2012) Microbial lipases and their industrial applications. Biotechnology 11:100-118. DOI: 10.3923/biotech.2012.100.118
- 3. Antonucci A, Kupis-Rozmyslowicz J, Boghossian AA (2017) Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications. ACS Appl Mater Interfaces 9:11321-11331. doi:10.1021/acsami.7b00810
- 4. Bonnin E, Garnier C, Ralet M-C (2014) Pectin-modifying enzymes and pectin-derived materials: applications and impacts. Applied microbiology and biotechnology 98:519-532 DOI: 10.1007/s00253-013-5388-6
- 5. Cannella D, Jørgensen H (2014) Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?

- Biotechnology and bioengineering 111:59-68. https://doi.org/10.1002/bit.25098
- 6. Cao L, van Rantwijk F, Sheldon RA (2000) Crosslinked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Organic Letters 2:1361-1364. DOI: 10.1021/ol005593x
- 7. Cerreti M, Markošová K, Esti M, Rosenberg M, Rebroš M (2017) Immobilisation of pectinases into PVA gel for fruit juice application. International Journal of Food Science & Technology 52:531-539 https://doi.org/10.1111/ijfs.13309
- 8. Cesarini S, Infanzón B, Pastor FJ, Diaz P (2014)
 Fast and economic immobilization methods described for non-commercial Pseudomonas lipases. BMC biotechnology 14:27 https://doi.org/10.1186/1472-6750-14-27
- 9. Chapman J, Ismail A, Dinu C (2018) Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 8:238 https://doi.org/10.3390/catal8060238
- 10. Chawla S, Pundir CS (2011) An electrochemical biosensor for fructosyl valine for glycosylated hemoglobin detection based on core-shell magnetic bionanoparticles modified gold electrode. Biosensors & bioelectronics 26:3438-3443. doi:10.1016/i.bios.2011.01.021
- 11. Cipolatti EP, Silva MJA, Klein M, Feddern V, Feltes MMC, Oliveira JV, Ninow JL, de Oliveira D (2014) Current status and trends in enzymatic nanoimmobilization. Journal of Molecular Catalysis B: Enzymatic 99:56-67 https://doi.org/10.1016/j.molcatb.2013.10.01
- 12. Dong S, Peng L, Wei W, Huang T (2018) Three MOF-Templated Carbon Nanocomposites for Potential Platforms of Enzyme Immobilization with Improved Electrochemical Performance. ACS applied materials & interfaces 10:14665-14672. DOI: 10.1021/acsami.8b00702
- 13. Feng W, Ji P (2011) Enzymes immobilized on carbon nanotubes. Biotechnol Adv 29:889-895. doi:10.1016/j.biotechadv.2011.07.007
- 14. Garg A, Singh A, Kaur A, Singh R, Kaur J, Mahajan R Microbial pectinases: An ecofriendly tool of nature for industries. 3

- Biotech. 2016; 6: 1–13. Web of Science Google Scholar. DOI: 10.1007/s13205-016-0371-4
- 15. Gebreyohannes AY (2015) Bio-hybrid membrane process for food-based wastewater valorisation: a pathway to an efficient integrated membrane process design.
 Université Paul Sabatier-Toulouse III, https://tel.archives-ouvertes.fr/tel-01514928
- 16. Georgiev YN, Ognyanov MH, Kussovski VK,
 Kratchanova MG PECTINOLYTIC
 ENZYMES-APPLICATION FOR
 STUDYING AND PREPARATION OF
 IMMUNOMODULATING PECTIC
 POLYSACCHARIDES FROM FRUITS,
 VEGETABLES AND MEDICINAL
 PLANTS. A REVIEW.
- 17. Ghosh S, Chaganti SR, Prakasham R (2012)
 Polyaniline nanofiber as a novel
 immobilization matrix for the anti-leukemia
 enzyme l-asparaginase. Journal of molecular
 catalysis b: enzymatic 74:132-137
 https://doi.org/10.1016/j.molcatb.2011.09.00
- 18. Goh WJ, Makam VS, Hu J, Kang L, Zheng M, Yoong SL, Udalagama CN, Pastorin G (2012) Iron oxide filled magnetic carbon nanotube-enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process. Langmuir 28:16864-16873. doi:10.1021/la303046m
- 19. Gokhale AA, Lu J, Lee I (2013) Immobilization of cellulase on magnetoresponsive graphene nano-supports. Journal of Molecular Catalysis B: Enzymatic 90:76-86 https://doi.org/10.1016/j.molcatb.2013.01.02
- 20. Guncheva M, Dimitrov M, Zhiryakova D (2011)

 Novel nanostructured tin dioxide as
 promising carrier for Candida rugosa lipase.
 Process biochemistry 46:2170-2177
 https://doi.org/10.1016/j.procbio.2011.08.02
- 21. Gupta MN, Kaloti M, Kapoor M, Solanki K (2011) Nanomaterials as matrices for enzyme immobilization. Artificial Cells, Blood Substitutes, and Biotechnology 39:98-109

- https://doi.org/10.3109/10731199.2010.5162 59
- 22. Hausmann NZ, Minteer SD, Baum DA (2014)
 Controlled placement of enzymes on carbon nanotubes using comb-branched DNA.
 Journal of The Electrochemical Society
 161:H3001-H3004
 doi:10.1149/2.0011413jes
- 23. Hiteshi K, Chauhan S, Gupta R (2013)
 Immobilization of microbial pectinases: a review. CIBTech J Biotechnol 2:37-52
 DOI:http://dx.doi.org/10.15413/ajfr.2013.01
 05
- 24. Ji P, Tan H, Xu X, Feng W (2010) Lipase covalently attached to multiwalled carbon nanotubes as an efficient catalyst in organic solvent. AIChE journal 56:3005-3011 https://doi.org/10.1002/aic.12180
- 25. Kalieva A, Saduyeva Z, Suleimenova Z, Mustafin K (2017) Cell immobilization of Aspergillus niger/7 for enhanced production of phytase. Cell 5
- 26. Karachevtsev V, Glamazda AY, Zarudnev E, Karachevtsev M, Leontiev V, Linnik A, Lytvyn O, Plokhotnichenko A, Stepanian S (2012) Glucose oxidase immobilization onto carbon nanotube networking. arXiv preprint arXiv:12082837
- 27. Keighron JD, Keating CD (2010) Enzyme:
 nanoparticle bioconjugates with two
 sequential enzymes: stoichiometry and
 activity of malate dehydrogenase and citrate
 synthase on Au nanoparticles. Langmuir
 26:18992-190001
 DOI: 10.1021/la1040882
- 28. Khoshnevisan K, Vakhshiteh F, Barkhi M,
 Baharifar H, Poor-Akbar E, Zari N, Stamatis
 H, Bordbar A-K (2017) Immobilization of
 cellulase enzyme onto magnetic
 nanoparticles: Applications and recent
 advances. Molecular Catalysis 442:66-73
 https://doi.org/10.1016/j.mcat.2017.09.006
- 29. Kim H, Lee I, Kwon Y, Kim BC, Ha S, Lee J-h, Kim J (2011) Immobilization of glucose oxidase into polyaniline nanofiber matrix for biofuel cell applications. Biosensors and Bioelectronics 26:3908-3913 https://doi.org/10.1016/j.bios.2011.03.008

- 30. Kumari A, Kaila P, Tiwari P, Singh V, Kaul S, Singhal N, Guptasarma P (2018) Multiple thermostable enzyme hydrolases on magnetic nanoparticles: An immobilized enzyme-mediated approach to saccharification through simultaneous xylanase, cellulase and amylolytic glucanotransferase action. International journal of biological macromolecules 120:1650-1658 https://doi.org/10.1016/j.ijbiomac.2018.09.1
- 31. Liu W, Wang L, Jiang R (2012) Specific enzyme immobilization approaches and their application with nanomaterials. Topics in Catalysis 55:1146-1156

 DOI: 10.1007/s11244-012-9893-0
- 32. Liu X, Jiang Y, Yang S, Meng X, Song X, Wu M (2017) Effects of Pectinase Treatment on Pulping Properties and the Morphology and Structure of Bagasse Fiber. BioResources 12:7731-7743
- 33. Martín MC, de Ambrosini VIM (2013) Coldactive acid pectinolytic system from psychrotolerant Bacillus: Color extraction from red grape skin. American Journal of Enology and Viticulture:ajev. 2013.13002 DOI: 10.5344/ajev.2013.13002
- 34. Min K, Yoo YJ (2014) Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biotechnology and Bioprocess Engineering 19:553-567. doi:10.1007/s12257-014-0173-7
- 35. Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology & Biotechnological Equipment 29:205-220 https://doi.org/10.1080/13102818.2015.1008 192
- 36. Mukhopadhyay A, Bhattacharyya T, Dasgupta AK, Chakrabarti K (2015) Nanotechnology based activation-immobilization of psychrophilic pectate lyase: A novel approach towards enzyme stabilization and enhanced activity. Journal of Molecular Catalysis B: Enzymatic 119:54-63

- https://doi.org/10.1016/j.molcatb.2015.05.01
- 37. Nguyen HH, Kim M (2017) An Overview of Techniques in Enzyme Immobilization.
 Applied Science and Convergence
 Technology 26:157-163
 https://doi.org/10.5757/ASCT.2017.26.6.15
- 38. Nicolau E, Méndez J, Fonseca JJ, Griebenow K, Cabrera CR (2012) Bioelectrochemistry of non-covalent immobilized alcohol dehydrogenase on oxidized diamond nanoparticles. Bioelectrochemistry 85:1-6 https://doi.org/10.1016/j.bioelechem.2011.1 1.002
- 39. Nisha S, Karthick SA, Gobi N (2012) A review on methods, application and properties of immobilized enzyme. Chemical Science Review and Letters 1:148-155
- 40. Pang R, Li M, Zhang C (2015) Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation. Talanta 131:38-45. doi:10.1016/j.talanta.2014.07.045
- 41. Park J, Kwon K, Kim S-H, Yi M-H, Zhang E, Kong G, Kim DW, Park J (2013) Astrocytic phosphorylation of PDK1 on Tyr9 following an excitotoxic lesion in the mouse hippocampus. Brain research 1533:37-43 https://doi.org/10.1016/j.brainres.2013.08.02
- 42. Pavlidis IV, Vorhaben T, Tsoufis T, Rudolf P,
 Bornscheuer UT, Gournis D, Stamatis H
 (2012) Development of effective
 nanobiocatalytic systems through the
 immobilization of hydrolases on
 functionalized carbon-based nanomaterials.
 Bioresour Technol 115:164-171.
 doi:10.1016/j.biortech.2011.11.007
- 43. Pedrosa VA, Paliwal S, Balasubramanian S, Nepal D, Davis V, Wild J, Ramanculov E, Simonian A (2010) Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloids Surf B Biointerfaces 77:69-74. doi:10.1016/j.colsurfb.2010.01.009
- 44. Petkova GA, Záruba K, Žvátora P, Král V (2012) Gold and silver nanoparticles for

- biomolecule immobilization and enzymatic catalysis. Nanoscale research letters 7:287
- 45. Putzbach W, Ronkainen NJ (2013)
 Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review. Sensors 13:4811-4840 https://doi.org/10.3390/s130404811
- Rao CR, Govindaraj A (2011) Nanotubes and nanowires. vol 18. Royal Society of Chemistry,
- 47. Rios NS, Pinheiro BB, Pinheiro MP, Bezerra RM, dos Santos JCS, Gonçalves LRB (2018)
 Biotechnological potential of lipases from Pseudomonas: sources, properties and applications. Process biochemistry https://doi.org/10.1016/j.procbio.2018.09.00
- 48. Saifuddin N, Raziah AZ, Junizah AR (2013)
 Carbon Nanotubes: A Review on Structure and Their Interaction with Proteins. Journal of Chemistry 2013:1-18.
 doi:10.1155/2013/676815
- 49. Sharma S, Kanwar SS (2014) Organic solvent tolerant lipases and applications. The Scientific World Journal 2014 http://dx.doi.org/10.1155/2014/625258
- 50. Shibakami M, Tsubouchi G, Nakamura M, Hayashi M (2013) Polysaccharide nanofiber made from euglenoid alga. Carbohydrate polymers 93:499-505 https://doi.org/10.1016/j.carbpol.2012.12.04
- 51. Singh P, Gupta P, Singh R, Sharma R (2012)
 Activity and stability of immobilized alphaamylase produced by Bacillus acidocaldarius. International Journal of Pharmacy & Life Sciences 3
- 52. Singh S, Gupta R (2004) Apple juice clarification using fungal pectinolytic enzyme and gelatin. 3:5
- 53. Singh S, Jain D, Singla M (2013) Sol—gel based composite of gold nanoparticles as matix for tyrosinase for amperometric catechol biosensor. Sensors and Actuators B:

 Chemical 182:161-169

 https://doi.org/10.1016/j.snb.2013.02.111
- 54. Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A (2014) A Review: Potential Usage of Cellulose

- Nanofibers (CNF) for Enzyme Immobilization via Covalent Interactions. Applied Biochemistry and Biotechnology 175:1817-1842. doi:10.1007/s12010-014-1417-x
- 55. Tamer M T, Omer A, Hassan M (2016) Methods of Enzyme Immobilization, vol 7.
- 56. Verma ML, Barrow CJ, Puri M (2013)

 Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97:23-39. doi:10.1007/s00253-012-4535-9
- 57. Verma ML, Puri M, Barrow CJ (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Critical reviews in biotechnology 36:108-119 https://doi.org/10.3109/07388551.2014.9288
- 58. Verma ML, Puri M, Barrow CJ (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 36:108-119. doi:10.3109/07388551.2014.928811
- 59. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide:

- biofunctionalization and applications in biotechnology. Trends in biotechnology 29:205-212
- https://doi.org/10.1016/j.tibtech.2011.01.008
- 60. Zhang C, Luo S, Chen W (2013) Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties. Talanta 113:142-147. doi:10.1016/j.talanta.2013.03.027
- 61. Zhou L, Jiang Y, Gao J, Zhao X, Ma L, Zhou Q (2012) Oriented immobilization of glucose oxidase on graphene oxide. Biochemical engineering journal 69:28-31 https://doi.org/10.1016/j.bej.2012.07.025