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Abstract: The redefined vacuum approach, which is frequently employed in the many-body1

perturbation theory, proved to be a powerful tool for formula derivation. Here, we elaborate this2

approach within the bound-state QED perturbation theory. In addition to general formulation, we3

consider the particular example of a single particle (electron or vacancy) excitation with respect4

to the redefined vacuum. Starting with simple one-electron QED diagrams, we deduce first- and5

second-order many-electron contributions: screened self-energy, screened vacuum polarization,6

one-photon exchange, and two-photon exchange. The redefined vacuum approach provides7

a straightforward and streamlined derivation and facilitates its application to any electronic8

configuration. Moreover, based on the gauge invariance of the one-electron diagrams, we can9

identify various gauge-invariant subsets within derived many-electron QED contributions.10

Keywords: Bound-state QED, Lamb shift, relativistic atomic theory, vacuum redefinition, ground11

state redefinition, gauge invariance12

1. Introduction13

Highly-charged ions are considered as one of the best available natural laboratories to access14

strong field effects at the moment. It triggers the need to go beyond the perturbative regime since15

for high Z, the αZ expansion parameter is comparable to one (where Z is the nuclear charge number16

and α the fine-structure constant). Hence, calculations to all orders in αZ are sought, which requires17

special methods of the bound-state quantum electrodynamics (QED) to be developed within the18

corresponding framework, known as the Furry picture [1]. Moreover, by pushing QED, in the presence19

of the binding nuclear field, to its limits is a great way to earn in-depth knowledge about the theory20

and to probe potential new physics [2]. Evaluation of the dynamical properties and the structure of21

highly relativistic, tightly bound electrons in highly-charged ions with utmost accuracy represents one22

of the most important and demanding problems in modern theoretical atomic physics. Although many23

approximate methods have access to higher-order corrections within the Breit approximation, such as24

relativistic many-body perturbation theory (RMBPT), relativistic configuration-interaction (CI) method,25

or multi-configuration Dirac-Fock (MCDF) method, the increasing precision in modern spectroscopy26

enforces accurate ab initio description of few- to many-electron systems within the bound-state QED.27

In general, QED can be applied to any many-electron atoms even though it is most deeply28

developed for hydrogen [3] and hydrogen-like ions [4], where the accuracy of the calculations has29

reached a remarkably high level. In the case of highly-charged ions, the comparison of the experimental30
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value of the 1s Lamb shift, 460.2± 4.6 eV [5], allows one to test the first-order QED effects on a level31

of 1.7% [6]. However, the probe of the second-order QED effects, which contribute −1.26(33) eV32

[7], are limited by the experimental accuracy, where improvements represent rather challenging task33

[8]. A way to reach a better comparison is to investigate the transition energies in many-electron34

ions, which spread from soft x-ray to ultraviolet and, therefore, are accessible by laser spectroscopy35

techniques over a wide range of Z values [9]. The question arises: can we perform ab initio QED36

calculations for many-electron systems? The second-order contributions in α are evaluated only37

within the state-of-the-art QED calculations for helium-like [10–15], lithium-like [16–19], beryllium-like38

[20–22], boron-like [23–25], and sodium-like [26] ions. The computations are so far limited to such39

selected, relatively simple systems not only due to the complexity of numerical calculations but also40

because of difficulties in deriving formal expressions.41

The concept of a vacuum redefinition naturally arose in quantum field theory due to the notion42

of the fully occupied negative-energy continuum of fermion states, the so-called Dirac sea. The43

vacuum redefinition technique is widely accepted and demonstrated within the relativistic many-body44

perturbation theory (RMBPT) formalism [27–30]. Since rigorous bound-state QED calculations for45

many-electron systems are not numerous up-to-date, the corresponding application examples of this46

concept are even more scarce. In Ref. [31] it is considered for the case of one electron over the closed47

shells in the context of the two-time Green’s function method developed in that work. In Ref. [26] the48

problem of the rigorous QED formulation for many-electron systems within the S-matrix approach was49

considered and the usefulness of the vacuum redefinition by analogy with RMBPT was emphasized.50

In this work, we further elaborate the redefined vacuum approach within the QED perturbation theory.51

The essential notion in introducing a redefined vacuum is to separate the electron dynamics into the52

“core” and “valence” parts. The first part is relegated to the reference vacuum energy and can be53

neglected, e.g., when the transition energy is considered. This is formulated via a new Fermi level54

EF
α , which lies above all core electron states. The many-electron contributions are extracted as the55

difference of two integrals over altering integration contours, each in link with its respective vacuum56

state. The great advantage of the method is that instead of the all-electron states one deals with the57

few-valence-electron states, which represent a much smaller Hilbert space.58

Furthermore, as we will demonstrate, the method allows us to identify various gauge-invariant59

subsets of diagrams, which provides an efficient control on derived formulas and their numerical60

implementation.61

Following the motivation outlined above, in our recent paper [32], we have derived the62

two-photon-exchange contribution within the redefined vacuum QED approach for the case of an atom63

with a single electron above closed shells. The current work aims to formulate the redefined vacuum64

approach within the rigorous bound-state QED framework for an arbitrary state. Final expressions65

for one- and two-particle states are presented. In order to illustrate the developed method, the first-66

(one-photon exchange) and second-order (screened QED and two-photon exchange) many-electron67

QED diagrams are derived for the case of single-vacancy atoms. Such an example is chosen due to the68

fact that two-photon exchange correction is still uncalculated for fluorine-like ions [33–35] as well as69

due to recent experimental efforts for such systems [36,37].70

The paper is organized as follows. Section II introduces the working framework, the concept of71

vacuum redefinition, and the summary of necessary tools is presented. Based on the two-time Green’s72

function approach [31,38], the QED perturbation theory is formulated in Section III. In particular, the73

general expressions are derived for one- and two-particle states on top of the redefined vacuum. In74

Section IV, applications of the formalism are delivered for first- and second-order QED diagrams.75

Section V includes the discussion of the obtained results and the conclusion. Moreover, in Appendices76

A and B, the complete sets of formulas are provided for the screened QED and two-photon exchange77

diagrams, respectively. A comparison between QED and RMBPT results for the two-photon exchange78

is included in Appendix C.79
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Natural units (h̄ = c = me = 1) are used throughout this paper, the fine structure constant is80

defined as α = e2/(4π), e < 0. The metric tensor is taken to be ηµν = ηµν = diag(1,−1,−1,−1).81

Unless explicitly stated, all integrals are meant to be on the interval ]−∞, ∞ [.82

2. General formulation and method83

The Dirac equation stands as a basis for the field theoretical relativistic description of the
electron-positron field,

hD(x)φj(x) = [−iα ·∇+ β + V(x)]φj(x) = εjφj(x) , (1)

where φj is the static solution and j uniquely characterizes the solution, i.e., stands for all quantum
numbers. The corresponding time-dependent solution is φj multiplied by exp (−iεjx0) phase. αk and
β are Dirac matrices. The Furry picture [1] allows one to consider the eigenstates as the solutions of
the Dirac equation in presence of an external classical field. In the original Furry picture, the potential
considered is the Coulomb potential VC(x) of the nucleus V(x) = VC(x). The extended Furry picture
incorporates some screening potential U(x) in addition to the Coulomb one, i.e., V(x) = VC(x) +U(x).
The unperturbed normal-ordered Hamiltonian is given by [39]

H0 =
∫

d3x : ψ(0)†(x)hD(x)ψ(0)(x) : , (2)

where the fermion field operator is expanded in terms of creation and annihilation operators

ψ(0)(x) = ∑
εj>EF

ajφj(x) exp (−iεjx0) + ∑
εj<EF

b†
j φj(x) exp (−iεjx0) , (3)

where aj (bj) is the electron (positron) annihilation operator for an electron (positron) in the state j and84

a†
j (b†

j ) is the electron (positron) creation operator for an electron (positron) in the state j, fulfilling the85

usual anti-commutations relations. The Fermi level EF is usually set to EF = 0 separating the Dirac86

sea from the rest of the spectrum. Here and in what follows the RMBPT notations of Lindgren and87

Morisson [27] and Johnson [30] are used: v and h designate respectively the valence electron and the88

hole state, a, b, ... stand for core orbitals, i, j, k, l correspond to any arbitrary states.89

The concept of vacuum redefinition is exacerbated when the interest is focused on the transitions
with a significant many-electron background remaining unchanged. The key feature is that the
contributions, arising from the interaction between core electrons are canceled in the difference
between the excited and the ground state energies, are not considered from the very beginning. Thus,
a new vacuum state is chosen such that all core orbitals are occupied and the remaining ones are free
[27]. Let us denote it by |α〉,

|α〉 = a†
a a†

b ... |0〉 . (4)

The corresponding Fermi level EF
α precise location is determined by the redefined vacuum state |α〉: EF

α

lies slightly above the highest occupied orbital of the new ground state |α〉. The meaning of creation
and annihilation operators is changed for the core shell electrons (aa → b†

a , a†
a → ba) and the fermion

field operator reads

ψ
(0)
α (x) = ∑

εj>EF
α

ajφj(x) exp (−iεjx0) + ∑
εj<EF

α

b†
j φj(x) exp (−iεjx0) . (5)

Moreover, annihilation operators obey their usual rules but accordingly to their respective energy εi
compared to Fermi level EF

α , see Eq. (5),

bj |α〉 = 0 , aj |α〉 = 0 . (6)
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Attributing a multitude of one-electron states to the redefined vacuum, we are interested in describing
the dynamics of N-particle (electrons and holes) state A on top of the redefined vacuum, which is
defined by the expression

|A〉 = a†
v1

a†
v2

...b†
hN−1

b†
hN
|α〉 . (7)

The zeroth-order energy E(0)
A is thus given by the state average of the zeroth-order Hamiltonian,

E(0)
A = 〈A|H0 |A〉 = ∑

v=v1,v2,...
εv − ∑

h=...,hN−1,hN

εh . (8)

Here, one sums up the one-electron energies of the electrons and subtracts the one-electron energies of90

the holes.91

Before we proceed with the formulation of the QED perturbation theory, let us shortly focus on92

the electron propagator in the redefined vacuum formalism. The electron propagator is defined as the93

vacuum expectation value of the time-ordered product of two electron-positron field operators. The94

expression presented below is suitable for both the redefined vacuum and the standard vacuum, with95

the replacement EF
α → EF = 0,96

〈α| T [ψ
(0)
α (x)ψ(0)†

α (y) ] |α〉 = i
2π

∫
dω ∑

j

φj(x)φ†
j (y) exp [−i(x0 − y0)ω]

ω− εj + iε(εj − EF
α )

, (9)

with ε > 0 implies the limit to zero. The core orbitals are now the discrete part of the negative energy97

spectrum (Dirac sea) due to the change in the poles circumvention prescription. The difference between98

the propagators for the redefined and standard vacua corresponds to a cut of the electron line on the99

diagram. Application of Sokhotski-Plemelj theorem is introduced as a tool to simplify this difference100

and to make the cut explicit. The following equality is meant to be understood while integrating in the101

complex ω plane. For p = 1, 2, . . . we have,102

∑
j

φj(x)φ†
j (y)

(ω− εj + iε(εj − EF
α ))

p − ∑
j

φj(x)φ†
j (y)

(ω− εj + iε(εj − EF))p

=
2πi(−1)p

(p− 1)!
d(p−1)

dω(p−1) ∑
a

δ(ω− εa)φa(x)φ†
a (y) . (10)

Thus we have introduced all necessary notations and are ready to proceed with the QED perturbation103

theory with the redefined vacuum.104

3. Perturbation theory105

The interaction with the quantized electromagnetic field Aµ and the counterpotential are
encapsulated in the interaction term

hint(x) = eαµ Aµ(x)−U(x) , (11)

with the corresponding normal-ordered interaction Hamiltonian

Hint =
∫

d3x : ψ
(0)†
α (x)hint(x)ψ(0)

α (x) : . (12)

The bound-state energy corrections due to this interaction Hamiltonian are usually accounted for106

via the bound-state QED perturbation theory. Here, a special care is required in the treatment of the107

contributions where an intermediate-state energy coincides with the reference-state energy, so-called108

reducible contributions. To date there are several methods employed within the bound-state QED109

perturbation theory: the adiabatic S-matrix approach [39], the two-time Green’s function (TTGF)110
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method [31,38], the covariant-evolution-operator method [40], and the line profile approach [41]. Here,111

we employ the TTGF method, where the key instrument is the Green function for N-particle system,112

which is defined as follows:113

Gα(E) =
∫

d3x1...d3xNd3y1...d3yN : ψ
(0)†
α (0, x1)...ψ

(0)†
α (0, xN)gα(E, x1, ..., xN , y1, ..., yN)

× ψ
(0)
α (0, y1)...ψ

(0)
α (0, yN) : , (13)

with gα(E, x1, ..., xN , y1, ..., yN) being the Fourier transformation of the two-time Green function,114

gα(E, x1, ..., xN , y1, ..., yN)δ(E− E′) =
1

2πi
1

N!

∫
dx0dx

′0 exp (iEx0 − iE′x
′0)

× 〈α| T [ψα(x0, x1)...ψα(x0, xN)ψ
†
α(x

′0, y1)...ψ†
α(x

′0, yN) ] |α〉 .

(14)

The two-time Green function is expressed via the standard definition,

〈α| T [ψα(x0, x1)...ψα(x0, xN)ψ
†
α(x

′0, y1)...ψ†
α(x

′0, yN) ] |α〉

=
〈α| T [ψ

(0)
α (x0, x1)...ψ

(0)
α (x0, xN)ψ

(0)†
α (x

′0, y1)...ψ
(0)†
α (x

′0, yN) exp (−i
∫

dtHint) ] |α〉
〈α| T [exp (−i

∫
dtHint) ] |α〉

.

(15)

Replacing the exponents in Eq. (15) by the Taylor series one gets the perturbation expansion, which
is based on the fine structure constant α as an expansion parameter. As a result, we find also for the
Green function Gα(E):

∆Gα(E) = Gα(E)− G(0)
α (E) = ∆G(1)

α (E) + ∆G(2)
α (E) + ... . (16)

In order to extract the energy shift, one has to consider the pole structure of the Green function (13).115

For this purpose, let us rewrite Eq. (13) in term of the creation and annihilation operators:116

Gα(E) = ∑
εi1

,...,εiN
>EF

α

∑
εj1

,...,εjN
>EF

α

a†
i1 ...a†

iN
aj1 ...ajN gα,i1...iN j1...jN (E)

+ (−1)N ∑
εi1

,...,εiN
<EF

α

∑
εj1

,...,εjN
<EF

α

b†
i1 ...b†

iN
bj1 ...bjN gα,i1...iN j1...jN (E) . (17)

with117

gα,i1...iN j1...jN (E) =
∫

d3x1...d3xNd3y1...d3yNφ†
i1(x1)...φ†

iN
(xN)

× gα(E, x1, ..., xN , y1, ..., yN)φj1(y1)...φjN (yN) . (18)

Analyzing the pole structure of gα,i1...iN j1...jN (E) similarly to Ref. [31], we find118

gα,i1...iN j1...jN (E) = ∑
N

Ai1...iN j1...jN
E− EN + iε

− (−1)N ∑
N

Bi1...iN j1...jN
E + EN − iε

, (19)

with119

Ai1...iN j1...jN =
1

N!

∫
d3x1...d3xNd3y1...d3yNφ†

i1(x1)...φ†
iN
(xN)

× 〈α|ψα(0, x1)...ψα(0, xN) |N 〉 〈N |ψ†
α(0, y1)...ψ†

α(0, yN) |α〉 φj1(y1)...φjN (yN) (20)
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and120

Bi1...iN j1...jN =
1

N!

∫
d3x1...d3xNd3y1...d3yNφ†

i1(x1)...φ†
iN
(xN)

× 〈N |ψα(0, x1)...ψα(0, xN) |α〉 〈α|ψ†
α(0, y1)...ψ†

α(0, yN) |N 〉 φj1(y1)...φjN (yN) . (21)

As one can see from Eqs. (20) and (21), the first summation over N in Eq. (19) runs exclusively over121

the electron excitations from the redefined vacuum, while the second term corresponds to the states122

with vacancies only. Thus, the pole positions for the electron and hole states are essentially different123

and in what follows we will distinguish among these two cases.124

3.1. Electron states125

Applying the contour integral formalism, as it was done in Ref. [31], we express the energy shift
∆EAv = EAv − E(0)

Av
for the electron state A ≡ Av as follows:

∆EAv =

1
2πi

∮
ΓAv

dE(E− E(0)
Av

) 〈Av|∆Gα(E) |Av〉

1 +
1

2πi

∮
ΓAv

dE 〈Av|∆Gα(E) |Av〉
, (22)

where ΓAv is the contour surrounding only the pole E = E(0)
Av

. Here, we should note that in contrast to
the expression given in Ref. [31], the matrix elements in Eq. (22) are understood as the matrix elements
in the Fock space. Substituting now Eq. (16) into Eq. (22) and separating out the individual orders in
Hint, one gets the corresponding expansion series for the energy shift,

∆EAv = ∆E(1)
Av

+ ∆E(2)
Av

+ ... , (23)

where the first order is given by

∆E(1)
Av

=
1

2πi

∮
ΓAv

dE(E− E(0)
Av

) 〈Av|∆G(1)
α (E) |Av〉 , (24)

and the second order reads126

∆E(2)
Av

=
1

2πi

∮
ΓAv

dE(E− E(0)
Av

) 〈Av|∆G(2)
α (E) |Av〉

− 1
2πi

∮
ΓAv

dE(E− E(0)
Av

) 〈Av|∆G(1)
α (E) |Av〉

1
2πi

∮
ΓAv

dE′ 〈Av|∆G(1)
α (E′) |Av〉 . (25)

Thus, we have expressed the energy correction in terms of the matrix elements of the Green function127

Gα(E) in the occupation number space. In the following we consider particular examples of state Av.128

The first illustrative example is the well-known single valence-electron state. Consider an129

electronic configuration, which has one valence electron above the closed shells. After assignment of130

the closed shells to the redefined vacuum |α〉, the one-valence-electron state is described by131

|v〉 = a†
v |α〉 . (26)

Expressing the Green function by Eq. (17), it is now easy to evaluate the Fock-space matrix elements132

〈Av|∆Gα(E) |Av〉 with Av = v, which enters the expression for the determination of the energy133

shift (22). The expectation value of the one-particle Green function (N = 1) in Eq. (17) with respect to134

the one-valence-electron state is evaluated and the matrix element is just135

〈v|∆Gα(E) |v〉 = ∆gα,vv(E) , (27)
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where ∆gα,ij(E) is given by Eq. (18). Substituting this expression into Eq. (22) one easily gets,

∆Ev =

1
2πi

∮
Γv

dE(E− εv)∆gα,vv(E)

1 +
1

2πi

∮
Γv

dE∆gα,vv(E)
, (28)

where Γv surrounds only the pole E = εv. This expression coincides with the one-valence-electron136

result of Ref. [31].137

The second example discussed is the two-valence-electron state formed by the one-electron138

orbitals v1 and v2. In this case, the first issue to consider is the construction of a coupled two-electron139

state. Employing the jj-coupling scheme we build the state with the total angular momentum J and its140

projection M. Thus, the two-valence-electron state under consideration is given by141

|(v1v2)JM〉 = η ∑
mv1 mv2

〈jv1 mv1 jv2 mv2 |JM〉 a†
v1

a†
v2
|α〉 ≡ Fv1v2 a†

v1
a†

v2
|α〉 , (29)

where jvi and mvi are the one-electron total angular momentum and its projection, 〈jv1 mv1 jv2 mv2 |JM〉142

is the Clebsch-Gordan coefficient, and η is the normalization factor, which depends on the degeneracy143

of the orbitals forming the jj-coupled state [30],144

η =

{
1 if εv1 6= εv2

1/
√

2 if εv1 = εv2

. (30)

Then the expectation value of the two-particle Green function (Eq. (17), N = 2) with the state (29)145

reads,146

〈(v1v2)JM|∆Gα(E) |(v1v2)JM〉 = 2Fv1v2 Fv1v2 [∆gα,v1v2v1v2(E)− ∆gα,v1v2v2v1(E)] . (31)

Substituting this expression into Eq. (22) one easily obtains,

∆Ev1v2 =

1
πi

∮
Γv1v2

dE(E− εv1 − εv2)Fv1v2 Fv1v2 [∆gα,v1v2v1v2(E)− ∆gα,v1v2v2v1(E)]

1 +
1

πi

∮
Γv1v2

dEFv1v2 Fv1v2 [∆gα,v1v2v1v2(E)− ∆gα,v1v2v2v1(E)]
, (32)

where Γv1v2 surrounds only the pole E = εv1 + εv2 . As one can see from the above formulas (28) and147

(32), the energy shifts are expressed in terms of the one- and two-electron matrix elements ∆gα,ij(E)148

and ∆gα,ijkl(E), for which one can use the Feynman rules formulated in Ref. [31]. The only difference149

one has to keep in mind is that the electron propagator has to be replaced by the new one defined150

by Eq. (9). Consequences of the employment of the redefined propagator will become clear in the151

next section. A generalization to three and more valence-electron states is straightforward in terms of152

N-particle Green function (17) and the energy shift (22).153

3.2. Hole states154

To extract the energy shift for the hole states, we have to consider the second sum in Eq. (19).155

Performing now the contour integration over E around−EN and keeping all other singularities outside156
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the contour, we arrive at the following expression for the energy shift ∆EAh = EAh − E(0)
Ah

of the hole157

state A ≡ Ah:158

∆EAh = −

1
2πi

∮
ΓAh

dE(E + E(0)
Ah

) 〈Ah| (−1)N∆Gα(E) |Ah〉

1 +
1

2πi

∮
ΓAh

dE 〈Ah| (−1)N∆Gα(E) |Ah〉
, (33)

where ΓAh is the contour surrounding only the pole E = −E(0)
Ah

. As previously, substituting Eq. (16) in

Eq. (33) and separating the individual orders ∆EAh = ∆E(1)
Ah

+ ∆E(2)
Ah

+ ... we find the first-order and
second-order corrections,

∆E(1)
Ah

= − 1
2πi

∮
ΓAh

dE(E + E(0)
Ah

) 〈Ah| (−1)N∆G(1)
α (E) |Ah〉 , (34)

∆E(2)
Ah

= − 1
2πi

∮
ΓAh

dE(E + E(0)
Ah

) 〈Ah| (−1)N∆G(2)
α (E) |Ah〉

+
1

2πi

∮
ΓAh

dE(E + E(0)
Ah

) 〈Ah| (−1)N∆G(1)
α (E) |Ah〉

× 1
2πi

∮
ΓAh

dE′ 〈Ah| (−1)N∆G(1)
α (E′) |Ah〉 . (35)

Let us now consider some examples. First case is the mirror image of the one-valence-electron159

configuration, termed as the one-hole state: the closed shells with a single vacancy. In this case,160

symmetrical to the one-valence-electron state considered above, the Fock state is defined as follows [27]:161

|h〉 = (−1)jh−mh b†
h |α〉 , (36)

with the phase factor introduced in order to restore the rotational invariance of the matrix elements,162

where jh and mh are the hole’s total angular momentum and its projection. The zeroth-order energy163

E(0)
h , given by Eq. (8), for one-hole state reads164

E(0)
h = 〈Ah|H0 |Ah〉 = −εh . (37)

Obviously, E(0)
h is negative since the hole dynamics occurs below the zero-point energy assigned to the165

vacuum state |α〉. Evaluating now the matrix elements,166

〈h| (−1)∆Gα(E) |h〉 = ∆gα,hh(E) , (38)

one gets for the energy shift of the one-hole state:

∆Eh = −

1
2πi

∮
Γh

dE(E− εh)∆gα,hh(E)

1 +
1

2πi

∮
Γh

dE∆gα,hh(E)
, (39)

where Γh surrounds only the pole E = εh.167
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The second example considered is the two-hole state. Similar to the case of the168

two-valence-electron state, we couple the two hole’s angular momenta via the jj-coupling scheme,169

which leads to the following two-hole state,170

|(h1h2)JM〉 = η ∑
mh1

mh2

(−1)jh1
+jh2

−mh1
−mh2 〈jh1 −mh1 jh2 −mh2 |JM〉 b†

h1
b†

h2
|α〉

≡ Fh1h2 b†
h1

b†
h2
|α〉 , (40)

where jhi
and mhi

are the one-hole total angular momentum and its projection, and the normalization171

factor η is defined by Eq. (30). Then the matrix element of the Green function (17) is evaluated with the172

two-hole state (40) with the result,173

〈(h1h2)JM|∆Gα(E) |(h1h2)JM〉 = 2Fh1h2 Fh1h2

[
∆gα,h1h2h1h2(E)− ∆gα,h1h2h2h1(E)

]
. (41)

Substituting this expression into Eq. (33) and using E(0)
h1h2

= −εh1 − εh2 one easily gets174

∆Eh1h2 = −

1
πi

∮
Γh1h2

dE(E− εh1 − εh2)Fh1h2 Fh1h2

[
∆gα,h1h2h1h2(E)− ∆gα,h1h2h2h1(E)

]
1 +

1
πi

∮
Γh1h2

dEFh1h2 Fh1h2

[
∆gα,h1h2h1h2(E)− ∆gα,h1h2h2h1(E)

] , (42)

where Γh1h2 surrounds only the pole E = εh1 + εh2 . As one can see from above equations, we express175

the energy shift of the hole state in terms of the matrix element of the Green function ∆gα(E). These176

matrix elements can be evaluated according to the same Feynman rules as in the electron-state case.177

Concluding this section, we notice that despite the arbitrary number of the core electrons, the178

energy shift of the electron Av (or hole Ah) state is reduced to the matrix elements of corresponding179

valence electrons (or holes).180

4. Many-electron QED181

Having derived the formal expressions for the energy shifts, in this section we apply the formalism182

for the derivation of the first- and second-order contributions. In view of the experimental interest, our183

investigations will be focused on the one-hole state (Ah ≡ h, see Eq. (39)). Special attention will be184

paid to allocation of the gauge invariant subsets, which is the key feature of the developed formalism,185

as was demonstrated previously for the one-valence-electron case [32]. It provides us with efficient186

and consistent tool to verify the results.187

4.1. First-order contributions188

(a) (b)
Figure 1. Feynman diagrams of the first-order contributions to the energy shift of a single hole state.
Wavy lines correspond to the photon propagators. The cross inside a circle represents a counterpotential
term, −U. (a) The first-order one-electron Feynman diagrams in the redefined vacuum formalism,
that correspond (from left to right) to SE, VP, and CP corrections. Single solid lines display the
electron propagators in the redefined vacuum framework. (b) Two-electron one-photon-exchange and
counterpotential Feynman diagrams. Double lines indicate the standard electron propagators in the
external potential.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 May 2021                   doi:10.20944/preprints202105.0284.v1

https://doi.org/10.20944/preprints202105.0284.v1


Version May 3, 2021 submitted to Symmetry 10 of 25

For the present one-hole case, as well as for the one-valence-electron case, within the redefined
vacuum formalism, the first-order contributions are given only by the diagrams depicted in Fig. 1(a):
self-energy (SE), vacuum-polarization (VP), and counterpotential (CP). These three diagrams include both
the standard radiative one-electron one-loop contributions (L) and the first-order contributions due to
interaction between the hole and the core electrons (I),

∆E(1)
h = ∆E(1L)

h + ∆E(1I)
h . (43)

In the standard vacuum formulation, the latter contributions correspond to the one-photon-exchange189

and counterpotential diagrams, that are displayed in Fig. 1(b). The aim of the present subsection is to190

derive expressions for the interelectronic-interaction diagrams from the redefined vacuum formulation191

and demonstrate its equivalence to the standard one.192

The starting point is the first-order term of the perturbative expansion of ∆gα,hh(E). Then the193

identification of different contributions in Eq. (43) is performed to retrieve the one-photon-exchange194

correction. The Feynman rules provided in [31] lead to following Green’s function matrix element195

∆g(1)SE
α,hh (E) =

1
(E− εh)2

i
2π

∫
dω ∑

j

Ihjjh(ω)

E−ω− εj + iε(εj − EF
α )

, (44)

for the SE graph, and196

∆g(1)VP
α,hh (E) =

−1
(E− εh)2

i
2π

∫
dω ∑

j

Ihjhj(0)
ω− εj + iε(εj − EF

α )
, (45)

for the VP graph. The matrix element shorthand notation is defined as

Iijkl(ω) =
∫

d3xd3yφ†
i (x)φ†

j (y)I(x− y; ω)φk(x)φl(y) , (46)

it satisfies the transposition symmetry property

Iijkl(ω) = Ijilk(ω) . (47)

The interelectronic-interaction operator I(x− y; ω) and its first derivative are defined as197

I(x− y; ω) = e2αµανDµν(x− y; ω) ,

I′(x− y; ω) ≡ dI(x− y; ω)

dω
, (48)

where αµ = (1, α) and Dµν(x− y; ω) is the photon propagator. Associated ω-symmetry properties198

hold both in the Feynman and Coulomb gauges,199

I(x− y; ω) = I(x− y;−ω) ,

I′(x− y; ω) = −I′(x− y;−ω) ,

I′(x− y; 0) = 0 . (49)
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According to Eq. (34), which allows to calculate the first-order correction to the energy shift,
expressions (44) and (45) have second-order poles at E = εh. Hence the contour integrals enclose the
first-order poles at E = εh, and the Green functions are evaluated to

∆E(1)SE
h =− i

2π

∫
dω ∑

j

Ihjjh(ω)

εh −ω− εj + iε(εj − EF
α )

, (50)

∆E(1)VP
h =

i
2π

∫
dω ∑

j

Ihjhj(0)
ω− εj + iε(εj − EF

α )
. (51)

At the moment, the first-order SE and VP energy corrections are evaluated within the redefined vacuum
framework. Notice that these formulas describe both the one-photon exchange and the one-electron
one-loop corrections. In order to extract the sought contribution of the one-photon exchange, the SE
and VP corrections in the standard vacuum framework, ∆E(1L)SE

h and ∆E(1L)VP
h , respectively, are to be

subtracted. Application of Eq. (10) gives for the SE part,

∆E(1I)SE
h = ∆E(1)SE

h − ∆E(1L)SE
h = − i

2π

∫
dω ∑

j

[
Ihjjh(ω)

εh −ω− εj + iε(εj − EF
α )
−

Ihjjh(ω)

εh −ω− εju

]
= ∑

a
Ihaah(∆ha) , (52)

and for the VP part,

∆E(1I)VP
h = ∆E(1)VP

h − ∆E(1L)VP
h =

i
2π

∫
dω ∑

j

[
Ihjhj(0)

ω− εj + iε(εj − EF
α )
−

Ihjhj(0)
ω− εju

]
= −∑

a
Ihaha(0) , (53)

with ∆ij = εi − εj and u = 1− iε.200

The counterpotential graph remains to be evaluated. The corresponding Green function, with the
definition

∫
d3xφ†

i (x)U(x)φj(x) ≡ Uij, is found to be

∆g(1)CP
α,hh (E) =

Uhh
(E− εh)2 . (54)

Similar to the previous derivations, the contour integral evaluation yields

∆E(1I)CP
h = ∆E(1)CP

h = Uhh , (55)

since CP doesn’t contribute to the radiative corrections ∆E(1L)
h . Finally, the first-order

interelectronic-interaction correction ∆E(1I)
h is given by

∆E(1I)
h = −∑

a
[Ihaha(0)− Ihaah(∆ha)] + Uhh , (56)

where the first two terms correspond to the one-photon exchange and the third one is the201

counterpotential term, cf. Fig. 1(b). Here one should notice, that this contribution differs by the202

minus sign from the valence-electron case [32]. It comes from the overall minus sign for the hole203

states case, see Eq. (33). Moreover, since these three terms originate from individually gauge-invariant204

graphs, they are also separately gauge-invariant.205
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Figure 2. One-electron two-loop (left group) and counterpotential (right group) Feynman diagrams
representing the second-order contributions to the energy shift of a single-hole state in the redefined
vacuum formalism. Notations for the diagrams are as follows, left group: SESE (first row); SEVP
(second row); VPVP, V(VP)P, V(SE)P, and S(VP)E from left to right in the last row; right group: SECP
(first row); VPCP (second row); CPCP (third row). Other notations are same as in Fig. 1(a).

4.2. Second-order contributions206

The second-order contributions to the energy shift of the one-hole state in the redefined vacuum
formalism are given only by the one-electron diagrams, depicted in Fig. 2. Similar to the first order,
these diagrams in addition to one-electron two-loop radiative corrections include also the two-electron
(screened) one-loop radiative corrections and the contributions due to interaction between the hole and
the closed-shell electrons. Therefore, we can formally represent the second-order energy correction (35)
as follows,

∆E(2)
h = ∆E(2L)

h + ∆E(2S)
h + ∆E(2I)

h , (57)

where three different terms are present: the one-electron two-loop ∆E(2L)
h , the screened radiative207

∆E(2S)
h , and the two-photon-exchange ∆E(2I)

h terms. Similar to the first-order derivation, we extract208

the second and third contributions from the general formulas. First, applying the Feynman rules for209

each of the diagrams depicted in Fig. 2 we write down the expression for the second-order Green210

function ∆g(2)α,hh(E). The complete set is composed of ten two-loop diagrams [SESE, SEVP, VPVP,211

V(VP)P, V(SE)P, S(VP)E], which are presented on the left side of Fig. 2. In the extended Furry picture,212

seven additional counterpotential diagrams [SECP, VPCP, CPCP] depicted on the right side of Fig. 2213

have to be considered as well. The next step is the identification of the one-electron two-loop radiative214

corrections. Details concerning this procedure are rather similar to the one-valence-electron case,215

which we considered in Ref. [32]. For this reason, we do not provide here the full-length derivation216

and restrict ourselves to the presentation of final formulas.217

4.2.1. Screened radiative corrections218

Identifying the screened radiative corrections from the general expression for each diagram we219

arrive at,220

∆E(2S)
h = ∆E(2S)VPVP

h + ∆E(2S)V(VP)P
h + ∆E(2S)SEVP

h + ∆E(2S)V(SE)P
h + ∆E(2S)S(VP)E

h

+ ∆E(2S)SESE
h + ∆E(2S)VPCP

h + ∆E(2S)SECP
h , (58)

where corresponding terms are explicitly given in Appendix A by Eqs. (A1)–(A6) and by Eqs. (A7)221

and (A8) for the counterpotential contributions. Such a decomposition allows us to identify eight222

gauge-invariant subsets based on the gauge invariance of the one-electron two-loop diagrams. Here are223

the subsets with labelling presented in Fig. 2 and in Eq. (58): VPVP, V(VP)P, SEVP, V(SE)P, S(VP)E, SESE,224
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Figure 3. Feynman diagrams representing the screened self-energy and vacuum-polarization
corrections to the energy shift. Notations for the diagrams are as follows, SE,ver, SE,wf, VP,wf,
and VP,int (upper raw) and CP (lower raw). Other notations are the same as in Fig. 1(b).

VPCP, and SECP. The identified subsets should be gauge invariant in both redefined and standard225

vacuum frameworks. It means that the screened radiative contributions obtained as a difference226

between the redefined and the standard vacuum expressions also form the same gauge-invariant227

subsets. Explicit proof of this statement has been performed for the two-photon-exchange subsets in228

the case of one-valence-electron in Ref. [32].229

In what follows, we also rearrange the screened radiative corrections according to its usual230

representation by the many-electron diagrams in the ordinary vacuum formalism, displayed in Fig. 3:231

∆E(2S)
h = ∆E(2S)SE,ver

h + ∆E(2S)SE,wf
h + ∆E(2S)VP,wf

h + ∆E(2S)VP,int
h + ∆E(2S)CP

h , (59)

where ∆E(2S)SE,ver
h and ∆E(2S)SE,wf

h represent the screened self-energy correction (vertex and232

wave-function parts), ∆E(2S)VP,wf
h and ∆E(2S)VP,int

h correspond to the screened vacuum polarization233

contribution (wave-function and internal-loop parts), and, finally, ∆E(2S)CP
h is the counterpotential234

term. The self-energy vertex part is given by the expression,235

∆E(2S)SE,ver
h = − i

2π

∫
dω ∑

a,i,j

[
Ihjih(ω)Iiaja(0)

(εh −ω− εiu)(εh −ω− εju)
+

Iajia(ω)Ihihj(0)
(εa −ω− εiu)(εa −ω− εju)

−
2Iajih(ω)Ihiaj(∆ha)

(εa −ω− εiu)(εh −ω− εju)

]
, (60)

which arises from the fourth sum in Eq. (A3), the second one in Eq. (A4), and the third one in Eq. (A6).236

The self-energy wave-function part reads237

∆E(2S)SE,wf
h = − i

2π

∫
dω

j 6=h

∑
a,i,j

2Ihiij(ω)
[

Ijaha(0)− Ijaah(∆ha)
]

(εh −ω− εiu)(εh − εj)
− ∑

a,i,h1

Ihiih1(ω)I
′
h1aah(∆ha)

(εh −ω− εiu)

+
j 6=a

∑
a,i,j

2Iaiij(ω)
[

Ihjha(0)− Ihjah(∆ha)
]

(εa −ω− εiu)(εa − εj)
+ ∑

a,i,a1

Iaiia1(ω)I
′
ha1ah(∆ha)

(εa −ω− εiu)

− ∑
a,i,h1

Ihiih1(ω)
[
Ih1aha(0)− Ih1aah(∆ha)

]
(εh −ω− εiu)2

− ∑
a,i,a1

Iaiia1(ω)
[
Iha1ha(0)− Iha1ah(∆ha)

]
(εa −ω− εiu)2

}
, (61)
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where the third sum and second term of the fifth sum in Eq. (A3), the first and third sums in Eq. (A4),238

as well as the first, second, fourth and fifth sums in Eq. (A6) are added together. To keep track of239

the source of the generated reducible contributions, a subscript is used with previous notation; for240

example h1, a1, where εi1 = εi. The vacuum-polarization wave-function part reads,241

∆E(2S)VP,wf
h =

i
2π

∫
dω

{
i 6=h

∑
a,i,j

2 [Ihaia(0)− Ihaai(∆ha)] Iijhj(0)
(εh − εi)(ω− εju)

+
i 6=a

∑
a,i,j

2 [Ihahi(0)− Ihaih(∆ha)] Iijaj(0)
(εa − εi)(ω− εju)

− ∑
a,h1,j

I
′
haah1

(∆ha)Ih1 jhj(0)

(ω− εju)
+ ∑

a,a1,j

I
′
haa1h(∆ha)Ia1 jaj(0)

(ω− εju)

}
, (62)

which comes from Eq. (A1), the first sum in Eq. (A2), and the first and second sums as well as the first242

term in fifth sum and the sixth sum in Eq. (A3). For the vacuum-polarization internal-loop term we243

obtain,244

∆E(2S)VP,int
h =

i
2π

∫
dω ∑

a,i,j

[
Ihihj(0)Ijaia(0)

(ω− εiu)(ω− εju)
−

Ihjai(∆ha)Iaihj(∆ha)

(ω− εiu)(ω− ∆ha − εju)

]
(63)

by adding the second sum in Eq. (A2) and Eq. (A5). Finally, the counterpotential term reads,245

∆E(2S)CP
h =

i
2π

∫
dω

{
∑
a,i,j

[
Ihjih(ω)Uij

(εh −ω− εiu)(εh −ω− εju)
−

Ihjhi(0)Uij

(ω− εiu)(ω− εju)

]

+
i 6=h

∑
a,i,j

[
2Uhi Iijjh(ω)

(εh − εi)(εh −ω− εju)
−

2Uhi Iijhj(0)
(εh − εi)(ω− εju)

]
− ∑

a,h1,j

Uhh1 Ih1 jjh(ω)

(εh −ω− εju)2

}
,(64)

found as the sums of Eqs. (A7) and (A8). Expressions above provide all contributions to the screened246

self-energy and vacuum polarization. Here, we note that the screened self-energy formulas perfectly247

agree with the ones of Ref. [34], where they were obtained by considering the diagrams depicted in248

Fig. 3 directly.249

4.2.2. Two-photon-exchange correction250

Now let us proceed with the two-photon-exchange part. Here, we skip the details of the derivation,251

since it is rather similar to one presented in Ref. [32], and come straight to the final expression for the252

total two-photon-exchange correction ∆E(2I)
h ,253

∆E(2I)
h = ∆E(2I)SESE,2e

h + ∆E(2I)SESE,3e
h + ∆E(2I)SEVP,3e

h + ∆E(2I)S(VP)E,2e
h + ∆E(2I)S(VP)E,3e

h

+ ∆E(2I)V(SE)P,3e
h + ∆E(2I)VPVP,3e

h + ∆E(2I)V(VP)P,3e
h + ∆E(2I)SECP

h + ∆E(2I)VPCP
h + ∆E(2I)CPCP

h ,

(65)

which is given by a sum of Eqs. (A9)–(A26), presented in Appendix B. Each term in Eq. (65) is254

individually gauge-invariant. Generally, this statement is based on the gauge invariance of the255

corresponding subsets of one-electron diagrams depicted in Fig. 2. More rigorously it has been proved256

in our recent paper [32] for the one-valence-electron case.257

Similar to the previous consideration of the screened radiative corrections, one can present the
two-photon exchange contribution according to the many-electron diagrams, which are displayed in
Fig. 4. Consequently, the two-photon exchange term can be written as follows,

∆E(2I)
h = ∆E(2I)2e,lad

h + ∆E(2I)2e,cr
h + ∆E(2I)3e

h + ∆E(2I)CP
h . (66)
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Figure 4. Feynman diagrams representing the two-photon exchange corrections to the energy shift.
Notations for the diagrams are as follows, from left to right: two-electron ladder, two-electron cross,
three-electron, and two counterpotential graphs. Other notations are the same as in Fig. 1(b).

The two-electron ladder contribution is conveniently split into irreducible and reducible parts:

∆E(2I)2e,lad,irr
h = − i

2π

∫
dω

(i,j) 6=(a,h)

∑
a,i,j

Ihaij(ω)
[

Iijha(ω)− Iijah(∆ha −ω)
]

(εh −ω− εiu)(εa + ω− εju)
(67)

and258

∆E(2I)2e,lad,red
h = − i

2π

∫ dω

(ω + iε)2 ∑
a,a1,h1

[
Ihah1a1(ω)Ih1a1ah(∆ha + ω) + Ihaa1h1(∆ha −ω)Ia1h1ah(ω)

− Ihaa1h1(∆ha −ω)Ia1h1ha(∆ha −ω)/2− Ihaa1h1(∆ha + ω)Ia1h1ha(∆ha + ω)/2
]

, (68)

where the irreducible part comes from the second sum in Eqs. (A9) and (A15), while the reducible part
is originating from the first sum in Eq. (A10) and Eq. (A16). The irreducible and reducible parts of the
two-electron cross contribution read,

∆E(2I)2e,cr,irr
h = − i

2π

∫
dω

′
∑
a,i,j

{
Ihjia(ω)Iiahj(ω)

(εh −ω− εiu)(εa −ω− εju)
−

Ihjih(ω)Iiaaj(∆ha −ω)

(εh −ω− εiu)(εh −ω− εju)

}
(69)

and259

∆E(2I)2e,cr,red
h =

i
2π

∫ dω

(ω + iε)2

{
∑

a,a1,a2

Iha2a1h(∆ha −ω)Ia1aaa2(ω)

+ ∑
a,h1,h2

Ihh2h1h(ω)Ih1aah2(ω + ∆ha)

}
, (70)

which comes from the first sum in Eqs. (A9) and (A15) (irreducible), and from the second and third260

sums in (A10) (reducible). The prime on the sum in Eq. (69) indicates the omission of particular terms,261
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namely, i = h & j = a for the first term in the curly brackets and (i, j) = {(a, a), (h, h)} for the second262

one. For the three-electron irreducible contributions, one ends up with the expression,263

∆E(2I)3e,irr
h = −

i 6=a

∑
a,b,i

2 [Iibab(0)− Iibba(∆ab)] [Ihahi(0)− Ihaih(∆ha)]

εa − εi

−
i 6=h

∑
a,b,i

[Ihaai(∆ha)− Ihaia(0)] [Iibbh(∆hb)− Iibhb(0)]
εh − εi

− ∑
a,b,i

[Iabih(∆hb)− Iabhi(∆ha)] Ihiab(∆ha)

εa + εb − εh − εi

−
(i,b) 6=(h,a)

∑
a,b,i

[Ihabi(∆hb)− Ihaib(∆ba)] [Ibiah(∆ba)− Ibiha(∆hb)]

εh + εa − εb − εi
, (71)

by summing up Eqs. (A11), (A13), (A17), (A19), (A21), and (A22). The three-electron reducible264

contribution is found by adding Eqs. (A12), (A14), (A18), and (A20) into,265

∆E(2I)3e,red
h = − ∑

a,b,a1

{
I′ha1ah(∆ha)

[
Iaba1b(0)− Iabba1(∆ab)

]
+ I′abba1

(∆ab)
[
Iha1ah(∆ha)− Iha1ha(0)

]}
− ∑

a,b,h1

I′haah1
(∆ha)

[
Ih1bbh(∆hb)− Ih1bhb(0)

]
− ∑

a,a1,h1

I′haa1h1
(∆ha)

[
Ia1h1ah(0)− Ia1h1ha(∆ha)

]
. (72)

Finally, the expression for the counterpotential term yields266

∆E(2I)CP
h = −

i 6=h

∑
a,i

2Uhi [Iiaah(∆ha)− Iiaha(0)]
εh − εi

−
i 6=a

∑
a,i

2Uai [Ihiah(∆ha)− Ihiha(0)]
εa − εi

−
i 6=h

∑
i

UhiUih
εh − εi

+ ∑
a,a1

I′haa1h(∆ha)Ua1a − ∑
a,h1

I′haah1
(∆ha)Uh1h , (73)

as a sum of Eqs. (A23)–(A26).267

The expressions above are derived for the first time and require a critical view. Therefore, in268

Appendix C, we apply the Breit approximation to our results and compare the outcome with the269

RMBPT expressions of Ref. [29]. A complete agreement is found. Moreover, in Ref. [29] it was270

demonstrated within the RMBPT framework that the expressions for a single hole state turn into271

corresponding formulas for the valence electron with the replacement of h to v and multiplying on an272

overall minus sign. Here, we manifest that such a symmetry also holds within the QED framework.273

5. Discussion and conclusion274

In recent years, the accuracy of large-scale correlation calculations of transition energies in275

many-electron atoms and ions drastically improved [2,33,42–45]. Various highly efficient computer276

codes have been developed for this purpose [46–51]. In view of this rapid progress, it becomes277

increasingly important to include the QED effects in these calculations as well. At present, such an278

account is mainly based on the approximate treatment via QED model potentials [52,53]. The reason for279

this is the complexity of ab initio QED calculations for many-electron atoms. The first step towards these280

challenging calculations is to develop the framework which simplifies the derivation of the bound-state281

QED formulas. In the present paper, we have presented an efficient method, based on the vacuum282

redefinition and the two-time Green’s function approach, to derive calculation expressions within the283

rigorous QED framework. Redefined vacuum state allows one to drastically reduce the complexity of284

the many-electron QED formulation keeping only valence electrons or vacancies under consideration.285
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Contributions to the binding energy are expressed in terms of Green’s function matrix elements with286

active particles (electrons or holes) only. Nevertheless, the interaction of these active particles with the287

core electrons is not ignored, it is included in consideration via the radiative corrections, self-energy288

and vacuum polarization. It has been explicitly demonstrated for the case of one active particle. We289

have shown that the method based on vacuum redefinition in QED is a well-suited tool to tackle atoms290

with complicated electronic structure.291

As an example, the method is applied to atoms with a single-hole electronic configuration, which292

occurs in halogen atoms such as fluorine, chlorine, etc. The particular interest in this system is twofold.293

First, in Refs. [33–35] it was demonstrated that highly accurate theoretical predictions are possible in294

such atoms, and thus accurate tests of the QED effects become feasible. The reason for this is a drastic295

reduction of the correlations due to Layzer quenching effects [54]. Second, recent measurements of296

the fine-structure splitting in fluorine-like systems [36,37] emphasize the necessity of improvement297

in theoretical predictions for such systems. The accuracy of experimental results is at least of the298

same order as that of the theoretical predictions, while for some ions it is an order of magnitude299

better. Furthermore, an improvement in the experimental precision is foreseen in the near future [36].300

Here, we have derived the formulas for the QED contributions up to the second order in α for the301

single-hole configuration. The screened radiative and two-photon-exchange corrections have been302

carefully extracted from the rigorous formulas obtained within the redefined vacuum formalism. An303

important advantage of the employed formalism consists in the identification of gauge-invariant304

subsets, which is based on the corresponding subsets of one-electron diagrams. This feature can be305

very useful in future derivations of the higher-order contributions since it provides a robust verification.306

Finally, we have checked the results by the comparison of the Breit approximation applied to the307

derived expression with the previously obtained RMBPT expressions.308
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Appendix A Gauge-invariant subsets of the screened radiative diagrams317

The eight different gauge invariant subsets for the screened radiative corrections previously318

introduced in the main text, see Eq. (58), are presented here. Let us start with the two terms, which319

originate from the one-electron diagrams with VP loop only: VPVP and V(VP)P,320

∆E(2S)VPVP
h =

i
2π

∫
dω

i 6=h

∑
a,i,j

2Ihaia(0)Iijhj(0)
(εh − εi)(ω− εju)

(A1)

and321

∆E(2S)V(VP)P
h =

i
2π

∫
dω

[
i 6=a

∑
a,i,j

2Ihahi(0)Iijaj(0)
(εa − εi)(ω− εju)

+ ∑
a,i,j

Ihihj(0)Ijaia(0)
(ω− εiu)(ω− εju)

]
, (A2)
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respectively. The next three subsets displayed come from the diagrams with both SE and VP loops.322

We begin with the SEVP term, where the disconnected SEVP contribution [second term in Eq. (35)] is323

included,324

∆E(2S)SEVP
h = − i

2π

∫
dω

{
i 6=h

∑
a,i,j

2Ihaai(∆ha)Iijhj(0)
(εh − εi)(ω− εju)

+
i 6=a

∑
a,i,j

2Ihaih(∆ha)Iijaj(0)
(εa − εi)(ω− εju)

+
j 6=h

∑
a,i,j

2Ihiij(ω)Ijaha(0)
(εh −ω− εiu)(εh − εj)

+ ∑
a,i,j

Ihjih(ω)Iiaja(0)
(εh −ω− εiu)(εh −ω− εju)

+ ∑
a,i,h1

[
I
′
haah1

(∆ha)Ih1ihi(0)

(ω− εiu)
−

Ihiih1(ω)Ih1aha(0)
(εh −ω− εiu)2

]
− ∑

a,i,a1

I
′
haa1h(∆ha)Ia1iai(0)

(ω− εiu)

}
.(A3)

The second subset that falls into this category is the V(SE)P one,325

∆E(2S)V(SE)P
h = − i

2π

∫
dω

[
j 6=a

∑
a,i,j

2Iaiij(ω)Ihjha(0)
(εa −ω− εiu)(εa − εj)

+ ∑
a,i,j

Iajia(ω)Ihihj(0)
(εa −ω− εiu)(εa −ω− εju)

− ∑
a,i,a1

Iaiia1(ω)Iha1ha(0)
(εa −ω− εiu)2

]
, (A4)

and finally the S(VP)E term yields326

∆E(2S)S(VP)E
h = − i

2π

∫
dω ∑

a,i,j

Ihjai(∆ha)Iaihj(∆ha)

(ω− εiu)(ω− ∆ha − εju)
. (A5)

Finally, the SESE subset comes from the diagrams with only self-energy loops. It includes also the327

SESE disconnected contribution [second term in Eq. (35)], and leads to the following expression,328

∆E(2S)SESE
h =

i
2π

∫
dω

{
j 6=h

∑
a,i,j

2Ihiij(ω)Ijaah(∆ha)

(εh −ω− εiu)(εh − εj)
+

j 6=a

∑
a,i,j

2Iaiij(ω)Ihjah(∆ha)

(εa −ω− εiu)(εa − εj)

+ ∑
a,i,j

2Iajih(ω)Ihiaj(∆ha)

(εa −ω− εiu)(εh −ω− εju)
+ ∑

a,i,h1

[
Ihiih1(ω)I

′
h1aah(∆ha)

(εh −ω− εiu)

−
Ihiih1(ω)Ih1aah(∆ha)

(εh −ω− εiu)2

]
− ∑

i,a,a1

[
Iaiia1(ω)I

′
ha1ah(∆ha)

(εa −ω− εiu)
+

Iha1ah(∆ha)Iaiia1(ω)

(εa −ω− εiu)2

]}
.(A6)

Furthermore, in the extended Furry picture, two counterpotential subsets emerge. The first one, VPCP,329

is associated with a vacuum-polarization loop,330

∆E(2S)VPCP
h = − i

2π

∫
dω

[
∑
a,i,j

Ihjhi(0)Uij

(ω− εiu)(ω− εju)
+

i 6=h

∑
a,i,j

2Uhi Iijhj(0)
(εh − εi)(ω− εju)

]
, (A7)

while the second, SECP, arises from the diagram with a self-energy loop and the disconnected SECP331

part [second term in Eq. (35)],332

∆E(2S)SECP
h =

i
2π

∫
dω

[
∑
a,i,j

Ihjih(ω)Uij

(εh −ω− εiu)(εh −ω− εju)
+

i 6=h

∑
a,i,j

2Uhi Iijjh(ω)

(εh − εi)(εh −ω− εju)

− ∑
a,i,h1

Uhh1 Ih1iih(ω)

(εh −ω− εiu)2

]
. (A8)
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Appendix B Gauge-invariant subsets of the two-photon-exchange diagrams333

The eleven different gauge invariant subsets of the two-photon-exchange contributions previously334

introduced in the main text, see Eq. (65), are presented here. Let us start with the two subsets originating335

from the diagrams with self-energy loops only. We present separately the two- and three-electron336

contributions. The two-electron irreducible and reducible SESE terms are337

∆E(2I)SESE,2e,irr
h =

i
2π

∫
dω

[
′

∑
a,i,j

Ihjih(ω)Iiaaj(∆ha −ω)

(εh −ω− εiu)(εh −ω− εju)

+
(i,j) 6=(a,h)

∑
a,i,j

Ihaij(ω)Iijah(∆ha −ω)

(εh −ω− εiu)(εa + ω− εju)

]
(A9)

and338

∆E(2I)SESE,2e,red
h = − i

2π

∫ dω

(ω + iε)2

{
∑

a,a1,h1

[
Ihah1a1(ω)Ih1a1ah(∆ha + ω)

+ Ihaa1h1(∆ha −ω)Ia1h1ah(ω)
]
− ∑

a,h1,h2

Ihh2h1h(ω)Ih1aah2(∆ha + ω)

− ∑
a,a1,a2

Iha2a1h(∆ha −ω)Ia1aaa2(ω)

}
, (A10)

where the prime on the sum means that the terms (i, j) = {(a, a), (h, h)} are excluded from the339

summation. The three-electron SESE subset consists of the irreducible part,340

∆E(2I)SESE,3e,irr
h = −

i 6=b

∑
a,b,i

2Ihbih(∆hb)Iiaab(∆ab)

εb − εi
−

i 6=h

∑
a,b,i

Ihaai(∆ha)Iibbh(∆hb)

εh − εi

−
(i,b) 6=(h,a)

∑
a,b,i

2Ihabi(∆hb)Ibiah(∆ba)

εh + εa − εb − εi
− ∑

a,b,i

Ihiab(∆ha)Iabih(∆hb)

εa + εb − εh − εi
, (A11)

and the reducible part,341

∆E(2I)SESE,3e,red
h = − ∑

a,b,a1

[
Iha1ah(∆ha)I′abba1

(∆ab)− I′ha1ah(∆ha)Iabba1(∆ab)
]

− ∑
a,b,h1

I′haah1
(∆ha)Ih1bbh(∆hb)− ∑

a,a1,h1

I′haa1h1
(∆ha)Ia1h1ah(0) . (A12)

Now we focus on the four subsets with mixed SE and VP loops. The SEVP subset has only three-electron
contribution, the irreducible part of which is given by

∆E(2I)SEVP,3e,irr
h =

i 6=h

∑
a,b,i

2Ihaai(∆ha)Iibhb(0)
εh − εi

+
i 6=a

∑
a,b,i

2Ihaih(∆ha)Iibab(0)
εa − εi

. (A13)

The corresponding reducible part merged with the disconnected SEVP contribution yields,

∆E(2I)SEVP,3e,red
h = ∑

a,b,h1

I′haah1
(∆ha)Ih1bhb(0)− ∑

a,b,a1

I′ha1ah(∆ha)Iaba1b(0) . (A14)
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Next two subsets are S(VP)E and V(SE)P. The two-electron S(VP)E contributions are342

∆E(2I)S(VP)E,2e,irr
h = − i

2π

∫
dω

[
′

∑
a,i,j

Ihjia(ω)Iiahj(ω)

(εh −ω− εiu)(εa −ω− εju)

+
(i,j) 6=(a,h)

∑
a,i,j

Ihaij(ω)Iijha(ω)

(εh −ω− εiu)(εa + ω− εju)

]
(A15)

and343

∆E(2I)S(VP)E,2e,red
h =

i
4π

∫
dω ∑

a,a1,h1

Ihaa1h1(∆ha −ω)Ia1h1ha(∆ha −ω)

[
1

(ω + iε)2 +
1

(ω− iε)2

]
, (A16)

where the prime on the sum means that the term i = h & j = a is excluded from the summation. The344

irreducible contribution of the three-electron S(VP)E subset yields345

∆E(2I)S(VP)E,3e,irr
h =

(i,b) 6=(h,a)

∑
a,b,i

Ihabi(∆hb)Ibiha(∆hb) + Ihaib(∆ba)Iibha(∆ba)

εh + εa − εb − εi
+ ∑

a,b,i

Ihiba(∆hb)Ibahi(∆hb)

εa + εb − εh − εi
(A17)

and the reducible one reads346

∆E(2I)S(VP)E,3e,red
h = ∑

a,a1,h1

Ihaa1h1(∆ha)I′a1h1ha(∆ha) . (A18)

Last subset in this category is V(SE)P, which comprises only the three-electron contributions:347

irreducible,348

∆E(2I)V(SE)P,3e,irr
h =

i 6=b

∑
a,b,i

2Ihbhi(0)Iaiba(∆ba)

εb − εi
, (A19)

and reducible,
∆E(2I)V(SE)P,3e,red

h = ∑
a,b,a1

Ihaha1(0)I′ba1ab(∆ab) . (A20)

Finally, the two subsets originating from the diagrams with vacuum-polarization loops only are the
VPVP subset,

∆E(2I)VPVP,3e
h = −

i 6=h

∑
a,b,i

Ihaia(0)Iibhb(0)
εh − εi

, (A21)

and the V(VP)P subset,

∆E(2I)V(VP)P,3e
h = −

i 6=a

∑
a,b,i

2Ihahi(0)Iibab(0)
εa − εi

. (A22)

Both of them have only three-electron parts.349

Within the extended Furry picture, three extra counterpotential subsets emerge. The first one,350

SECP, is related to the self-energy loop, the irreducible contribution of which is351

∆E(2I)SECP,irr
h = −

i 6=h

∑
a,i

2Uhi Iiaah(∆ha)

εh − εi
−

i 6=a

∑
a,i

2Ihaih(∆ha)Uia
εa − εi

. (A23)

The corresponding reducible part encapsulating the disconnected SECP contribution can be written as352

∆E(2I)SECP,red
h = −∑

a,h1

I′haah1
(∆ha)Uh1h + ∑

a,a1

I′haa1h(∆ha)Ua1a . (A24)
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The second one, VPCP, is expressed by353

∆E(2I)VPCP
h =

i 6=h

∑
a,i

2Ihaia(0)Uih
εh − εi

+
i 6=a

∑
a,i

2Ihahi(0)Uia
εa − εi

. (A25)

Finally, the last subset, CPCP, reads354

∆E(2I)CPCP
h = −

i 6=h

∑
i

UhiUih
εh − εi

. (A26)

Appendix C Two-photon exchange: comparison between QED and RMBPT355

To achieve the sought matching between QED and RMBPT, we apply the Breit approximation356

to the expressions presented in section 4.2.2. To this end, let us first introduce the357

interelectronic-interaction operator in the Breit approximation:358

IB = IC(0) , (A27)

where “C” means the Coulomb gauge. Since IB is ω-independent, the reducible contributions, which359

contain derivatives of I, vanish within this approximation. The second implication of the Breit360

approximation is to consider only the positive-energy states in summations, i.e.,361

∑
i
= ∑

m
+∑

a
, (A28)

where now i (and later j) means only positive-energy state, m (and later n) is an excited state, εm >362

EF
α > 0, and a (and b) denotes one of the core states, 0 < εa < EF

α . We first apply the Breit approximation363

to the three-electron contributions given by Eqs. (71) and (72) and to the counterpotential term, Eq. (73),364

which are transformed as follows,365

∆E(2I)3e,B
h = − ∑

a,b,m

2
[
IB
mbab − IB

mbba
] [

IB
hahm − IB

hamh
]

εa − εm
−

i 6=h

∑
a,b,i

[
IB
haai − IB

haia
] [

IB
ibbh − IB

ibhb
]

εh − εi

− ∑
a,b,m

[
IB
abmh − IB

abhm
]

IB
hmab

εa + εb − εh − εm
− ∑

a,b,m

[
IB
habm − IB

hamb
] [

IB
bmah − IB

bmha
]

εh + εa − εb − εm
(A29)

and366

∆E(2I)CP,B
h = −

i 6=h

∑
a,i

2Uhi
[
IB
iaah − IB

iaha
]

εh − εi
−∑

a,m

2Uam
[
IB
hmah − IB

hmha
]

εa − εm
−

i 6=h

∑
i

UhiUih
εh − εi

. (A30)

The summations were rewritten using Eq. (A28). Notice that the core electrons contributions vanish367

altogether upon relabeling the indices and applying the symmetry properties (47). Furthermore, sums368

involving εh in the denominators are kept intact since the hole energy lies in the positive-energy369

spectrum, and the replacement also allows one to remove the restrictions in all the other sums.370

It is left to evaluate the two-electron contributions. Recall that the integration path closes in the
upper half of the complex plane to consider only positive intermediate energy states and that no
reducible contributions are present. Let us divide the expressions in Eqs. (67) and (69) into direct
and exchange parts, namely, the first term in each is the direct contribution and the second is the
exchange one. We start by showing that both cross contributions vanish due to their pole structure.
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The cross-exchange poles are ω = εh − εi,j + iε and the cross-direct poles are ω = εh − εi + iε and
ω = εa − εj + iε, for εi, εj > EF

α . It leads to the corresponding residue integration

∆E(2I)cr,B
h =

i
2π

∫
dω ∑

a,i,j

{
IB
hjih IB

iaaj

(εh −ω− εiu)(εh −ω− εju)
−

IB
hjia IB

iahj

(εh −ω− εiu)(εa −ω− εju)

}
= 0 .

(A31)
Next, we inspect the ladder poles, which are found to be in ω = εh − εi + iε and ω = εj − εa − iε, same371

for both direct and exchange parts. Performing the Cauchy integration, one finds372

∆E(2I)lad,B
h =

i
2π

∫
dω

(i,j) 6=(a,h)

∑
a,i,j

{
IB
haij I

B
ijah − IB

haij I
B
ijha

(εh −ω− εiu)(εa + ω− εju)

}

=
(i,j) 6=(a,h)

∑
a,i,j

IB
haij I

B
ijah − IB

haij I
B
ijha

εh + εa − εi − εj

= ∑
a,m,n

IB
hamn(IB

mnah − IB
mnha)

εh + εa − εm − εn
− ∑

a,b,m

(IB
hamb − IB

habm)(IB
mbha − IB

mbah)

εh + εa − εb − εm
, (A32)

where the first term in the last line is the one we are looking for, while the second one compensates373

the fourth sum in Eq. (A29). Thus, the final expression for the two-photon exchange within the Breit374

approximation yields375

∆E(2I)B
h = − ∑

a,b,m

2
[
IB
mbab − IB

mbba
] [

IB
hahm − IB

hamh
]

εa − εm
−

i 6=h

∑
a,b,i

[
IB
haai − IB

haia
] [

IB
ibbh − IB

ibhb
]

εh − εi

− ∑
a,b,m

[
IB
abmh − IB

abhm
]

IB
hmab

εa + εb − εh − εm
− ∑

a,m,n

IB
hamn(IB

mnha − IB
mnah)

εh + εa − εm − εn

−
i 6=h

∑
a,i

2Uhi
[
IB
iaah − IB

iaha
]

εh − εi
−∑

a,m

2Uam
[
IB
hmah − IB

hmha
]

εa − εm
−

i 6=h

∑
i

UhiUih
εh − εi

, (A33)

which is in full agreement with the RMBPT result of Ref. [29].376
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