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Abstract: The redefined vacuum approach, which is frequently employed in the many-body
perturbation theory, proved to be a powerful tool for formula derivation. Here, we elaborate this
approach within the bound-state QED perturbation theory. In addition to general formulation, we
consider the particular example of a single particle (electron or vacancy) excitation with respect
to the redefined vacuum. Starting with simple one-electron QED diagrams, we deduce first- and
second-order many-electron contributions: screened self-energy, screened vacuum polarization,
one-photon exchange, and two-photon exchange. The redefined vacuum approach provides
a straightforward and streamlined derivation and facilitates its application to any electronic
configuration. Moreover, based on the gauge invariance of the one-electron diagrams, we can
identify various gauge-invariant subsets within derived many-electron QED contributions.

Keywords: Bound-state QED, Lamb shift, relativistic atomic theory, vacuum redefinition, ground
state redefinition, gauge invariance

1. Introduction

Highly-charged ions are considered as one of the best available natural laboratories to access
strong field effects at the moment. It triggers the need to go beyond the perturbative regime since
for high Z, the aZ expansion parameter is comparable to one (where Z is the nuclear charge number
and « the fine-structure constant). Hence, calculations to all orders in aZ are sought, which requires
special methods of the bound-state quantum electrodynamics (QED) to be developed within the
corresponding framework, known as the Furry picture [1]. Moreover, by pushing QED, in the presence
of the binding nuclear field, to its limits is a great way to earn in-depth knowledge about the theory
and to probe potential new physics [2]. Evaluation of the dynamical properties and the structure of
highly relativistic, tightly bound electrons in highly-charged ions with utmost accuracy represents one
of the most important and demanding problems in modern theoretical atomic physics. Although many
approximate methods have access to higher-order corrections within the Breit approximation, such as
relativistic many-body perturbation theory (RMBPT), relativistic configuration-interaction (CI) method,
or multi-configuration Dirac-Fock (MCDF) method, the increasing precision in modern spectroscopy
enforces accurate ab initio description of few- to many-electron systems within the bound-state QED.

In general, QED can be applied to any many-electron atoms even though it is most deeply
developed for hydrogen [3] and hydrogen-like ions [4], where the accuracy of the calculations has
reached a remarkably high level. In the case of highly-charged ions, the comparison of the experimental
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value of the 1s Lamb shift, 460.2 + 4.6 eV [5], allows one to test the first-order QED effects on a level
of 1.7% [6]. However, the probe of the second-order QED effects, which contribute —1.26(33) eV
[7], are limited by the experimental accuracy, where improvements represent rather challenging task
[8]. A way to reach a better comparison is to investigate the transition energies in many-electron
ions, which spread from soft x-ray to ultraviolet and, therefore, are accessible by laser spectroscopy
techniques over a wide range of Z values [9]. The question arises: can we perform ab initio QED
calculations for many-electron systems? The second-order contributions in « are evaluated only
within the state-of-the-art QED calculations for helium-like [10-15], lithium-like [16-19], beryllium-like
[20-22], boron-like [23-25], and sodium-like [26] ions. The computations are so far limited to such
selected, relatively simple systems not only due to the complexity of numerical calculations but also
because of difficulties in deriving formal expressions.

The concept of a vacuum redefinition naturally arose in quantum field theory due to the notion
of the fully occupied negative-energy continuum of fermion states, the so-called Dirac sea. The
vacuum redefinition technique is widely accepted and demonstrated within the relativistic many-body
perturbation theory (RMBPT) formalism [27-30]. Since rigorous bound-state QED calculations for
many-electron systems are not numerous up-to-date, the corresponding application examples of this
concept are even more scarce. In Ref. [31] it is considered for the case of one electron over the closed
shells in the context of the two-time Green’s function method developed in that work. In Ref. [26] the
problem of the rigorous QED formulation for many-electron systems within the S-matrix approach was
considered and the usefulness of the vacuum redefinition by analogy with RMBPT was emphasized.
In this work, we further elaborate the redefined vacuum approach within the QED perturbation theory.
The essential notion in introducing a redefined vacuum is to separate the electron dynamics into the
“core” and “valence” parts. The first part is relegated to the reference vacuum energy and can be
neglected, e.g., when the transition energy is considered. This is formulated via a new Fermi level
EL, which lies above all core electron states. The many-electron contributions are extracted as the
difference of two integrals over altering integration contours, each in link with its respective vacuum
state. The great advantage of the method is that instead of the all-electron states one deals with the
few-valence-electron states, which represent a much smaller Hilbert space.

Furthermore, as we will demonstrate, the method allows us to identify various gauge-invariant
subsets of diagrams, which provides an efficient control on derived formulas and their numerical
implementation.

Following the motivation outlined above, in our recent paper [32], we have derived the
two-photon-exchange contribution within the redefined vacuum QED approach for the case of an atom
with a single electron above closed shells. The current work aims to formulate the redefined vacuum
approach within the rigorous bound-state QED framework for an arbitrary state. Final expressions
for one- and two-particle states are presented. In order to illustrate the developed method, the first-
(one-photon exchange) and second-order (screened QED and two-photon exchange) many-electron
QED diagrams are derived for the case of single-vacancy atoms. Such an example is chosen due to the
fact that two-photon exchange correction is still uncalculated for fluorine-like ions [33-35] as well as
due to recent experimental efforts for such systems [36,37].

The paper is organized as follows. Section II introduces the working framework, the concept of
vacuum redefinition, and the summary of necessary tools is presented. Based on the two-time Green's
function approach [31,38], the QED perturbation theory is formulated in Section III. In particular, the
general expressions are derived for one- and two-particle states on top of the redefined vacuum. In
Section 1V, applications of the formalism are delivered for first- and second-order QED diagrams.
Section V includes the discussion of the obtained results and the conclusion. Moreover, in Appendices
A and B, the complete sets of formulas are provided for the screened QED and two-photon exchange
diagrams, respectively. A comparison between QED and RMBPT results for the two-photon exchange
is included in Appendix C.
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Natural units (7 = ¢ = m, = 1) are used throughout this paper, the fine structure constant is
defined as & = ¢?/(47),e < 0. The metric tensor is taken to be 7#' = 1, = diag(1,—1,—1,—1).
Unless explicitly stated, all integrals are meant to be on the interval | —co, 0 [.

2. General formulation and method

The Dirac equation stands as a basis for the field theoretical relativistic description of the
electron-positron field,

hp(%)¢j(x) = [—ia- V + B+ V(x)]p;(x) = €;¢j(x), (1)

where ¢; is the static solution and j uniquely characterizes the solution, i.e., stands for all quantum
numbers. The corresponding time-dependent solution is ¢; multiplied by exp (—ie]-xo) phase. af and
B are Dirac matrices. The Furry picture [1] allows one to consider the eigenstates as the solutions of
the Dirac equation in presence of an external classical field. In the original Furry picture, the potential
considered is the Coulomb potential V¢ (x) of the nucleus V(x) = V¢ (x). The extended Furry picture
incorporates some screening potential U(x) in addition to the Coulomb one, i.e., V(x) = V¢ (x) + U(x).
The unperturbed normal-ordered Hamiltonian is given by [39]

Ho = [ @5 9O 0o @p® () ;, @)
where the fermion field operator is expanded in terms of creation and annihilation operators
l[J(O) (x) = E ajqb]( x) exp (—ze )+ Z b+4>] x) exp (—ze xo) 3)
€;>EF € <EF

where a; (b;) is the electron (positron) annihilation operator for an electron (positron) in the state j and
a;r (b]Jf) is the electron (positron) creation operator for an electron (positron) in the state j, fulfilling the

usual anti-commutations relations. The Fermi level EF is usually set to EF = 0 separating the Dirac
sea from the rest of the spectrum. Here and in what follows the RMBPT notations of Lindgren and
Morisson [27] and Johnson [30] are used: v and / designate respectively the valence electron and the
hole state, 4, b, ... stand for core orbitals, i, j, k, I correspond to any arbitrary states.

The concept of vacuum redefinition is exacerbated when the interest is focused on the transitions
with a significant many-electron background remaining unchanged. The key feature is that the
contributions, arising from the interaction between core electrons are canceled in the difference
between the excited and the ground state energies, are not considered from the very beginning. Thus,
a new vacuum state is chosen such that all core orbitals are occupied and the remaining ones are free
[27]. Let us denote it by |a),

) = ala}...|0) . 4)

The corresponding Fermi level Ef precise location is determined by the redefined vacuum state |a): EX
lies slightly above the highest occupied orbital of the new ground state |a). The meaning of creation
and annihilation operators is changed for the core shell electrons (a, — b}, a} — b,) and the fermion
field operator reads

wgcc)(x): ) ajp;(x) exp ( ze] + ) b+¢] x)exp ( ie]»xo). (5)

e]->E,§ e]<E

Moreover, annihilation operators obey their usual rules but accordingly to their respective energy e;
compared to Fermi level Ef, see Eq. (5),

bila) =0, ajla)=0. (6)
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Attributing a multitude of one-electron states to the redefined vacuum, we are interested in describing
the dynamics of N-particle (electrons and holes) state A on top of the redefined vacuum, which is
defined by the expression
|A) = aJr a’L bZNilb,’;N ) . 7)
(0)

The zeroth-order energy E ,” is thus given by the state average of the zeroth-order Hamiltonian,

ED — (Al HA) = Y e@— Y e ®)

V=01,02,... h=...hN-1,hN

Here, one sums up the one-electron energies of the electrons and subtracts the one-electron energies of
the holes.

Before we proceed with the formulation of the QED perturbation theory, let us shortly focus on
the electron propagator in the redefined vacuum formalism. The electron propagator is defined as the
vacuum expectation value of the time-ordered product of two electron-positron field operators. The
expression presented below is suitable for both the redefined vacuum and the standard vacuum, with
the replacement E,f — EF =0,

] i x + ex —
@IT B0 @) 1) = - dw;¢’() e - i ©)

with & > 0 implies the limit to zero. The core orbitals are now the discrete part of the negative energy
spectrum (Dirac sea) due to the change in the poles circumvention prescription. The difference between
the propagators for the redefined and standard vacua corresponds to a cut of the electron line on the
diagram. Application of Sokhotski-Plemelj theorem is introduced as a tool to simplify this difference
and to make the cut explicit. The following equality is meant to be understood while integrating in the
complex w plane. For p =1,2,... we have,

(%)} (y) ¢i(x)9] (y)
(w—e€j+ie(ej — EF))P a ;(w—ej—kis(ej—EF))P
27ti(— 1)” dP=1)

T (P D! dwD 2‘5 (x)a (y)- (10)

)3

j

Thus we have introduced all necessary notations and are ready to proceed with the QED perturbation
theory with the redefined vacuum.

3. Perturbation theory

The interaction with the quantized electromagnetic field A, and the counterpotential are
encapsulated in the interaction term

hing(x) = ea’ Ay (x) — U(x), (11)

with the corresponding normal-ordered interaction Hamiltonian

Hip = / B : 9O (O hine ()90 (2) : . (12)

The bound-state energy corrections due to this interaction Hamiltonian are usually accounted for
via the bound-state QED perturbation theory. Here, a special care is required in the treatment of the
contributions where an intermediate-state energy coincides with the reference-state energy, so-called
reducible contributions. To date there are several methods employed within the bound-state QED
perturbation theory: the adiabatic S-matrix approach [39], the two-time Green’s function (TTGF)
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method [31,38], the covariant-evolution-operator method [40], and the line profile approach [41]. Here,
we employ the TTGF method, where the key instrument is the Green function for N-particle system,
which is defined as follows:

G,X(E) = /daxl...d3de3y1...d3yN : IIJQ(CO)-'.(O, X1)...l[)§¢0)+(0, XN)g,X(E, X1, ooy XN, V17 o0s yN)
< 0,y (0,yn) 5, (13)
with ¢4 (E, X1, ..., XN, Y1, -, YN ) being the Fourier transformation of the two-time Green function,
ga(E, X1,y XN, Y1, - YN)O(E — E') ZL /dxodx exp (iEx® — iE'x 0)
(a

0 (0, 1)t (20, X)) 9 (0, 1) el (2, i) ] L)
(14)

NI
X Ty

The two-time Green function is expressed via the standard definition,

(] T [ (2%, %1)eetpa (22, x00)9F (20, 31) g (20, y) T )

(@ T [ (0 %) (0 xa) i (0, y1) T (0, ) exp (=i f dtHi) ] |a)
(a| T [exp (—i [ dtHiny) | |a) .

(15)

Replacing the exponents in Eq. (15) by the Taylor series one gets the perturbation expansion, which
is based on the fine structure constant « as an expansion parameter. As a result, we find also for the
Green function G, (E):

AGw(E) = Go(E) — G/(E) = AGM(E) + AGP (E) + (16)

In order to extract the energy shift, one has to consider the pole structure of the Green function (13).
For this purpose, let us rewrite Eq. (13) in term of the creation and annihilation operators:

Ga(E) = 2 Z LZ+ a;rNah a]NngZl ANT1- ]N(E)
Eilr---/€1N>sz €y o 1N>E
+ -V ) Yo bbby by iy (E) - (17)
e,-l,..‘,e,N<Ea €jy roees e]-N<Ea
with
ga,il...ile...jN(E) = /d3x1...d3de3y1...d3yN¢l7Ll (Xl)...gb;N(XN)
X glx(Elxll--vaIYL-'-rYN)(le (yl)(P]N(yN) (18)

Analyzing the pole structure of gy i, _iyj,...jx (E) similarly to Ref. [31], we find

Aiyinjy..j Biy..injr
.. . (E) = 1~~~N]1~~~]I\‘7 — (=1 N 1~--N]1~~-JA{ , 19
glx,ll...lN]l...]N( ) %E_E‘/\/"—ls ( ) %E"‘E‘/\[—Zs ( )
with
1
Aiinjijn = ﬁ/d3xl-~-d3de3yl-~-d3yN¢?l(xl)-"q);rN(xN)

(] a0, x1)-..9a (0, xn7) IN) (N 98 (0, y1)--. 2 (0, ¥ ) |) @5, (y1) -y, (¥n) (20)

X


https://doi.org/10.20944/preprints202105.0284.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2021

6 of 25

and

Bil...ile...jN = %/(13361...[13361\]d3y1...d‘g_ljl\](l);-r1 (Xl)...(l);-rN(XN)
X (N (0,x1) - 9pa (0, x0) ) ] (0, y1) -9 (0, y8) [A) 5, (1) (yn0) - (21)

As one can see from Egs. (20) and (21), the first summation over N in Eq. (19) runs exclusively over
the electron excitations from the redefined vacuum, while the second term corresponds to the states
with vacancies only. Thus, the pole positions for the electron and hole states are essentially different
and in what follows we will distinguish among these two cases.

3.1. Electron states

Applying the contour integral formalism, as it was done in Ref. [31], we express the energy shift
AEp, = Ep, — Effv) for the electron state A = A, as follows:

1
7§ AE(E—EY)) (40 AGA(E) | 40)
AE, = o , (22)
1+ Tmﬁ dE (Ay| AG4(E) | Ao)

(0)

where I, is the contour surrounding only the pole E = E, *. Here, we should note that in contrast to
the expression given in Ref. [31], the matrix elements in Eq. (22) are understood as the matrix elements
in the Fock space. Substituting now Eq. (16) into Eq. (22) and separating out the individual orders in
Hint, one gets the corresponding expansion series for the energy shift,

AEa, = AEY +AED) + .., (23)

where the first order is given by

1
BEY) = — frA dE(E — EL) (Ao AGYV(E) | Au) (24)
and the second order reads
2 1 0 2
AEQ = ﬁﬁ% dE(E—EY)) (Ao| AGP) (E) | Ao)
_ b _g® () 1 f : (1)

ai ., AEE—EL) (Al 8G(E) | 40) 5 dE (4] AGT (ED 1 A4w) . 29)

Thus, we have expressed the energy correction in terms of the matrix elements of the Green function
Gu(E) in the occupation number space. In the following we consider particular examples of state A,.

The first illustrative example is the well-known single valence-electron state. Consider an
electronic configuration, which has one valence electron above the closed shells. After assignment of
the closed shells to the redefined vacuum |«), the one-valence-electron state is described by

o) = af |a) . (26)

Expressing the Green function by Eq. (17), it is now easy to evaluate the Fock-space matrix elements
(Ao| AGy(E) |Ay) with A, = v, which enters the expression for the determination of the energy
shift (22). The expectation value of the one-particle Green function (N = 1) in Eq. (17) with respect to
the one-valence-electron state is evaluated and the matrix element is just

(0| AGy(E) |v) = Agav0(E), (27)

d0i:10.20944/preprints202105.0284.v1
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where Ag, ;;(E) is given by Eq. (18). Substituting this expression into Eq. (22) one easily gets,
L L 4E(E — e0) Agan(E)
ey —€v ®,00
AE, = 2T, , (28)

1
45— é dEAGs 00 (E)

where I', surrounds only the pole E = €;. This expression coincides with the one-valence-electron
result of Ref. [31].

The second example discussed is the two-valence-electron state formed by the one-electron
orbitals v1 and v;. In this case, the first issue to consider is the construction of a coupled two-electron
state. Employing the jj-coupling scheme we build the state with the total angular momentum | and its
projection M. Thus, the two-valence-electron state under consideration is given by

‘(’Ule)]M> - ]7 Z <j01mv1jvzmvz|]M> azla:(tz |“> = Fvlvza:(tla;r]z |0‘> 4 (29)

mvl mvz

where j,, and m,, are the one-electron total angular momentum and its projection, (jy, 1o, jo, Mo, |JM)
is the Clebsch-Gordan coefficient, and 7 is the normalization factor, which depends on the degeneracy
of the orbitals forming the jj-coupled state [30],

B 1 if €y, # €o,
= {1/ﬁ ifey, = €0, (30)

Then the expectation value of the two-particle Green function (Eq. (17), N = 2) with the state (29)
reads,

<(01772)]M| AGtx<E) |(01772)]M> = 2FvleFvlvz [Aga,vlvzvlvz(E) - Aga,vlvzvzvl (E)] . (31)

Substituting this expression into Eq. (22) one easily obtains,

1
) dE(E — €y, — €vz)PvleFvlvz [Agtwﬂfzvlvz(E) - Agl’élvlvzvzvl (E)]
AEy0, = Tt JTo0, ) , (32)
1+ i ]g dEFy, 0, Foyv, [Aga,0100010, (E) — A&w,01050,01 (E)]
Z)l'UZ

where I'y,4, surrounds only the pole E = €;,, + €,,. As one can see from the above formulas (28) and
(32), the energy shifts are expressed in terms of the one- and two-electron matrix elements Ag, ;;(E)
and Ag, ijki (E), for which one can use the Feynman rules formulated in Ref. [31]. The only difference
one has to keep in mind is that the electron propagator has to be replaced by the new one defined
by Eq. (9). Consequences of the employment of the redefined propagator will become clear in the
next section. A generalization to three and more valence-electron states is straightforward in terms of
N-particle Green function (17) and the energy shift (22).

3.2. Hole states

To extract the energy shift for the hole states, we have to consider the second sum in Eq. (19).
Performing now the contour integration over E around —E 5s and keeping all other singularities outside
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the contour, we arrive at the following expression for the energy shift AE4, = E4, — Ez(‘?;? of the hole

state A = Ay:
Ld dEE+EY) (4] (-1)VAGL(E) | A
o B AE(E+EL) (Anl (-1)TAGK(E) |Ap)
AEy, = ———15 - , (33)
14+ — dE (Ap| (=1)VAGL(E) |A
+ 3t ., 9 sl (-1VBGH(E) 1)
where I'y4, is the contour surrounding only the pole E = —Eg):. As previously, substituting Eq. (16) in

Eq. (33) and separating the individual orders AE,4, = AES}? + Ath) + ... we find the first-order and
second-order corrections,

SEL) = i, AEEHED) (401G ) 1) 60
8Ef) = i, 4E(E+ED) (anl (18G4

i r, B ELD) (] (-1M8G0 ) )

— i, 48l (1) 0GB ). 5)

Let us now consider some examples. First case is the mirror image of the one-valence-electron
configuration, termed as the one-hole state: the closed shells with a single vacancy. In this case,
symmetrical to the one-valence-electron state considered above, the Fock state is defined as follows [27]:

) = (=1)" "0 ), (36)

with the phase factor introduced in order to restore the rotational invariance of the matrix elements,

where j;, and my, are the hole’s total angular momentum and its projection. The zeroth-order energy

E 1(40)' given by Eq. (8), for one-hole state reads

E;SO) = (Ay|Ho |Ap) = e (37)

Obviously, E,SO) is negative since the hole dynamics occurs below the zero-point energy assigned to the
vacuum state |«). Evaluating now the matrix elements,

(bl (=1)AG4(E) [h) = Agaun(E) , (38)
one gets for the energy shift of the one-hole state:

1

. 570 frh dE(E — €,)Agnn(E)

1
14+ — EA E
55 ﬁhd S (E)

AE, = , (39)

where T, surrounds only the pole E = ¢y,.
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The second example considered is the two-hole state.  Similar to the case of the
two-valence-electron state, we couple the two hole’s angular momenta via the jj-coupling scheme,
which leads to the following two-hole state,

|(h]h2)]M> = ]7 mzrn (_1)]h1 +]h27mh17mh2 <]h1 — mhl]hz —_ mh2|]M> bZ] b;z |0(>
hy "hy
= Fhl Ty bZl b;z ‘0(> , (40)

where j;,. and m;, are the one-hole total angular momentum and its projection, and the normalization
factor 7 is defined by Eq. (30). Then the matrix element of the Green function (17) is evaluated with the
two-hole state (40) with the result,

((hih2) M| AG(E) [(hih2)ja) = 2Fn iy Fiyy [A8ahahiy (E) = DS uyiyiiyiy (E)] - (41)
Substituting this expression into Eq. (33) and using E;l(])glz = —€y, — €y, one easily gets
1
ik dE(E — €n, — €ny) Fnyiy Fnyiy [ASwityghyngy (E) — Aga ooy (E)]
hqh
AEjp, = — = , (42)
1+ Eﬁ AEFy iy Fyiy [ASwjiyhyhiny (E) — Agahihyhyiny (E)]
hihy

where I, 3, surrounds only the pole E = €, + €p,,. As one can see from above equations, we express
the energy shift of the hole state in terms of the matrix element of the Green function Ag, (E). These
matrix elements can be evaluated according to the same Feynman rules as in the electron-state case.

Concluding this section, we notice that despite the arbitrary number of the core electrons, the
energy shift of the electron A, (or hole Aj) state is reduced to the matrix elements of corresponding
valence electrons (or holes).

4. Many-electron QED

Having derived the formal expressions for the energy shifts, in this section we apply the formalism
for the derivation of the first- and second-order contributions. In view of the experimental interest, our
investigations will be focused on the one-hole state (Aj, = h, see Eq. (39)). Special attention will be
paid to allocation of the gauge invariant subsets, which is the key feature of the developed formalism,
as was demonstrated previously for the one-valence-electron case [32]. It provides us with efficient
and consistent tool to verify the results.

4.1. First-order contributions

g“\’\’\"’% .

(@ (b)

Figure 1. Feynman diagrams of the first-order contributions to the energy shift of a single hole state.
Wavy lines correspond to the photon propagators. The cross inside a circle represents a counterpotential
term, —U. (a) The first-order one-electron Feynman diagrams in the redefined vacuum formalism,
that correspond (from left to right) to SE, VP, and CP corrections. Single solid lines display the
electron propagators in the redefined vacuum framework. (b) Two-electron one-photon-exchange and
counterpotential Feynman diagrams. Double lines indicate the standard electron propagators in the
external potential.
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For the present one-hole case, as well as for the one-valence-electron case, within the redefined
vacuum formalism, the first-order contributions are given only by the diagrams depicted in Fig. 1(a):
self-energy (SE), vacuum-polarization (VP), and counterpotential (CP). These three diagrams include both
the standard radiative one-electron one-loop contributions (L) and the first-order contributions due to
interaction between the hole and the core electrons (I),

1 1L 1I
AEY = AEM™ 4+ A (43)

In the standard vacuum formulation, the latter contributions correspond to the one-photon-exchange
and counterpotential diagrams, that are displayed in Fig. 1(b). The aim of the present subsection is to
derive expressions for the interelectronic-interaction diagrams from the redefined vacuum formulation
and demonstrate its equivalence to the standard one.

The starting point is the first-order term of the perturbative expansion of Ag, u;(E). Then the
identification of different contributions in Eq. (43) is performed to retrieve the one-photon-exchange
correction. The Feynman rules provided in [31] lead to following Green’s function matrix element

SO = e | T o e e E
for the SE graph, and
0= e [T g e ey
for the VP graph. The matrix element shorthand notation is defined as
(@) = [ @xdyg! (x)9] (W)10x — y;0)pe ()1 (v), (46)
it satisfies the transposition symmetry property
Ljp (w) = Lk (w) . (47)
The interelectronic-interaction operator I(x — y; w) and its first derivative are defined as
I(x—yw) = ezsz‘ocVDW(x —yw),
Ix-yw) = W (48)

where a# = (1,&) and Dy, (x — y; w) is the photon propagator. Associated w-symmetry properties
hold both in the Feynman and Coulomb gauges,

I(x—yw) = Ix—y—w),
I'x—yw) = —-TI'(x—y—w),
I'(x—y;0) = 0. (49)
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According to Eq. (34), which allows to calculate the first-order correction to the energy shift,
expressions (44) and (45) have second-order poles at E = €. Hence the contour integrals enclose the
first-order poles at E = €y, and the Green functions are evaluated to

B Injjn(w)
AE 7_7/(1 Zeh— *€j+i€(€j*E,§)’ (50)
E(VP _ Injnj (0)
/ Z —¢j+ie(ej —Ef) " G

At the moment, the first-order SE and VP energy corrections are evaluated within the redefined vacuum
framework. Notice that these formulas describe both the one-photon exchange and the one-electron
one-loop corrections. In order to extract the sought contribution of the one-photon exchange, the SE
and VP corrections in the standard vacuum framework, AEIglL)SE
subtracted. Application of Eq. (10) gives for the SE part,

and AE;(llL)VP, respectively, are to be

Injjn(w) Ipjjn(w)
AE(H)SE _ AE( )SE _ AE _ _7/ h]]h ]]
h h wz en—w—¢+ie(ej—Ef) ey —w—eju
= Z Ihauh(Aha) ’ (52)
a
and for the VP part,

(IDVP _ \ p(OVP _ p(IL)VP _ 1§ / Ijnj (0) Iy (0)

AE, AE, AE, o dw; [w—e]—i—le( L) w—eu
= - 2 Ihuhu (0) ’ (53)

a

with Al] =€ — €]‘ and u =1 — ie.
The counterpotential graph remains to be evaluated. The corresponding Green function, with the
definition [ d3x4>;r(x)ll(x)¢j(x) = Ujj, is found to be

u
AVCP (Fy hh 54
g,xhh ( ) (E_eh)z ( )
Similar to the previous derivations, the contour integral evaluation yields
(ance _ , p(1)CP _
AE, = AE, = Uy, (55)

(1)

since CP doesn’t contribute to the radiative corrections AE,

(11)

interelectronic-interaction correction AEh

Finally, the first-order
is given by

AE;SH) ==Y [Tnana(0) = Iigan (Bpa)] + Up, (56)
a

where the first two terms correspond to the one-photon exchange and the third one is the
counterpotential term, cf. Fig. 1(b). Here one should notice, that this contribution differs by the
minus sign from the valence-electron case [32]. It comes from the overall minus sign for the hole
states case, see Eq. (33). Moreover, since these three terms originate from individually gauge-invariant
graphs, they are also separately gauge-invariant.
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Figure 2. One-electron two-loop (left group) and counterpotential (right group) Feynman diagrams

representing the second-order contributions to the energy shift of a single-hole state in the redefined
vacuum formalism. Notations for the diagrams are as follows, left group: SESE (first row); SEVP
(second row); VPVP, V(VP)P, V(SE)P, and S(VP)E from left to right in the last row; right group: SECP
(first row); VPCP (second row); CPCP (third row). Other notations are same as in Fig. 1(a).

4.2. Second-order contributions

The second-order contributions to the energy shift of the one-hole state in the redefined vacuum
formalism are given only by the one-electron diagrams, depicted in Fig. 2. Similar to the first order,
these diagrams in addition to one-electron two-loop radiative corrections include also the two-electron
(screened) one-loop radiative corrections and the contributions due to interaction between the hole and
the closed-shell electrons. Therefore, we can formally represent the second-order energy correction (35)
as follows,

AEY = AEY + AE®) + AEDY, (57)

where three different terms are present: the one-electron two-loop AE,SZL), the screened radiative

AE }(125), and the two-photon-exchange AE,SZI) terms. Similar to the first-order derivation, we extract
the second and third contributions from the general formulas. First, applying the Feynman rules for
each of the diagrams depicted in Fig. 2 we write down the expression for the second-order Green
function Ang})zh(E ). The complete set is composed of ten two-loop diagrams [SESE, SEVP, VPVP,
V(VP)P, V(SE)P, S(VP)E], which are presented on the left side of Fig. 2. In the extended Furry picture,
seven additional counterpotential diagrams [SECP, VPCP, CPCP] depicted on the right side of Fig. 2
have to be considered as well. The next step is the identification of the one-electron two-loop radiative
corrections. Details concerning this procedure are rather similar to the one-valence-electron case,
which we considered in Ref. [32]. For this reason, we do not provide here the full-length derivation
and restrict ourselves to the presentation of final formulas.

4.2.1. Screened radiative corrections

Identifying the screened radiative corrections from the general expression for each diagram we
arrive at,

AE,SZS) _ AE,SzS)VPVP " AE}(IZS)V(VP)P " AE’SZS)SEVP n AE}(IZS)V(SE)P n AE}SZS)S(VP)E

n AEISZS)SESE n AE}(IZS)VPCP " AE}(lZS)SECP, (58)

where corresponding terms are explicitly given in Appendix A by Egs. (A1)-(A6) and by Egs. (A7)
and (A8) for the counterpotential contributions. Such a decomposition allows us to identify eight

gauge-invariant subsets based on the gauge invariance of the one-electron two-loop diagrams. Here are
the subsets with labelling presented in Fig. 2 and in Eq. (58): VPVP, V(VP)P, SEVP, V(SE)P, S(VP)E, SESE,
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Figure 3. Feynman diagrams representing the screened self-energy and vacuum-polarization
corrections to the energy shift. Notations for the diagrams are as follows, SE,ver, SE,wf, VPwf,
and VPint (upper raw) and CP (lower raw). Other notations are the same as in Fig. 1(b).

VPCP, and SECP. The identified subsets should be gauge invariant in both redefined and standard
vacuum frameworks. It means that the screened radiative contributions obtained as a difference
between the redefined and the standard vacuum expressions also form the same gauge-invariant
subsets. Explicit proof of this statement has been performed for the two-photon-exchange subsets in
the case of one-valence-electron in Ref. [32].

In what follows, we also rearrange the screened radiative corrections according to its usual
representation by the many-electron diagrams in the ordinary vacuum formalism, displayed in Fig. 3:

(29) (2S)SE,ver

B (2S)SE,wf
AE,®™ = A, +AE,

(25)VBwf (25)VP,int

(2S)CP
+AE, +AE, +AEDT,

(59)

where AE,SZS)SE’Ver and AE,SZS)SE’Wf represent the screened self-energy correction (vertex and

wave-function parts), AE}(ZZS)VP'Wf and AE}(IZS)VP’int correspond to the screened vacuum polarization

contribution (wave-function and internal-loop parts), and, finally, AE;(Zzs)CP is the counterpotential

term. The self-energy vertex part is given by the expression,

(2S)SEver i
AE! = o [dw )

a,i,j

) 21, (0) Tniaj (Da) ] (60)

Injin(w) Ligja (0) Lajia (@) Ininj (0)
(en —w—eu)(ep —w—eu)  (€a —w —e€u)(€es — w — €ju)

(€ —w —eju)(ep — w — €ju)

which arises from the fourth sum in Eq. (A3), the second one in Eq. (A4), and the third one in Eq. (A6).
The self-energy wave-function part reads

AECSISEwT i / oo 17 2y (w) [Ifﬂha(o) - Ijauh(Aha)} Tiin, (w)I;zluah(Aha)
" 2n i (en —w —eju)(ep —€) i (en —w —€ju)

j#a Zlm‘l‘]‘(w) [Ihjha (0) - Ihjah(Aha)}
(€a —w — €u)(ea — €j)

Tiay (©0) Iy a1 (Bia)
(ea — w —€ju)

+ )

aij a,i,aq
-~y Tniing (@) [Inyana(0) = Inyaan(Bpa) ]
(e, —w —€u)?

a,i,hl

-y Lyiia, (@) [Tnayna(0) = Ingyan (D) } ,

(€a — w —€ju)?

(61)

a,i,a
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where the third sum and second term of the fifth sum in Eq. (A3), the first and third sums in Eq. (A4),
as well as the first, second, fourth and fifth sums in Eq. (A6) are added together. To keep track of
the source of the generated reducible contributions, a subscript is used with previous notation; for
example 111, a1, where €;, = €;. The vacuum-polarization wave-function part reads,

AFCSIVEWE  _ /d ’# 2 [Tia(0) — Inaai (Bpa)] Lijnj (0) ’§ 2 [Tani(0) = Tnain(Dpa)] Lijaj (0)
h 2 Py (en —€i)(w — €ju) bry (€a —€;)(w —€ju)
I;Luahl (Ahﬂ)lhl]'hj (0)

_ Z + Z I’;aalh(Aha)Iﬂﬂﬂj(O)} , ~

i (w— eju) aa (w— eju)

which comes from Eq. (A1), the first sum in Eq. (A2), and the first and second sums as well as the first
term in fifth sum and the sixth sum in Eq. (A3). For the vacuum-polarization internal-loop term we

obtain,
A E(zs )VBint / Z Ihzh](o Liaia(0)  Injai(Apa) Lainj(Dpa) 63)
Y bry —eiu)(w — €ju u) (w—eu)(w— A7y — e]u)
by adding the second sum in Eq. (A2) and Eq. (A5). Finally, the counterpotential term reads,
y g q q 3% P
AESICP _ /d Injin(w) Ui Injni (0) U
! 21 i (en —w—eu)(ep —w—eu) (w—eu)(w—eju)
N i#h 22Uyl ijjh (w) _ ZUh,’Ii]'hj(O) B M (64)
by (en —€i)(en —w—eju)  (ep—€)(w—eu)| i (en—w—eu)? [’

found as the sums of Egs. (A7) and (A8). Expressions above provide all contributions to the screened
self-energy and vacuum polarization. Here, we note that the screened self-energy formulas perfectly
agree with the ones of Ref. [34], where they were obtained by considering the diagrams depicted in
Fig. 3 directly.

4.2.2. Two-photon-exchange correction

Now let us proceed with the two-photon-exchange part. Here, we skip the details of the derivation,
since it is rather similar to one presented in Ref. [32], and come straight to the final expression for the

(21)

total two-photon-exchange correction AE,

AE}(IZI) _ AE(ZI)SESE,Ze n AE(ZI)SESE,ae n AE}(IZI)SEVP,Be n AE}SZI)S(VP)E,Ze " AE}(IZI)S(VP)E,Be
" AE(ZI) (SE)P3e AE(2I)VPVP3e " AE](12I)V(VP)P,3e " AE}(IZI)SECP " AE;(lzl)VPCP n AEP(lZI)CPCPI

(65)

which is given by a sum of Eqgs. (A9)-(A26), presented in Appendix B. Each term in Eq. (65) is
individually gauge-invariant. Generally, this statement is based on the gauge invariance of the
corresponding subsets of one-electron diagrams depicted in Fig. 2. More rigorously it has been proved
in our recent paper [32] for the one-valence-electron case.

Similar to the previous consideration of the screened radiative corrections, one can present the
two-photon exchange contribution according to the many-electron diagrams, which are displayed in
Fig. 4. Consequently, the two-photon exchange term can be written as follows,

2e,lad 21)2e,cr

21 21 21)3e 21)CP
AE\P) — Ap22etad | AE( + AEPe 4 AEDP (66)

d0i:10.20944/preprints202105.0284.v1
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Figure 4. Feynman diagrams representing the two-photon exchange corrections to the energy shift.
Notations for the diagrams are as follows, from left to right: two-electron ladder, two-electron cross,
three-electron, and two counterpotential graphs. Other notations are the same as in Fig. 1(b).

The two-electron ladder contribution is conveniently split into irreducible and reducible parts:

(2I)2e lad irr i @)z @) Ih”ij (w) [Iijhﬂ (w> - Iijﬂh(Aha - w)]
AE;™70 M = — — / dw Y
2r Pry (en —w —€ju)(eq +w — €ju)

(67)

and

21)2e lad,red i
AE;(l 2eladre = _E/ w+z£ 2 E Ihahlul Ihlulah(Aha+w>+Ihua1h1 (Ahu )Ialhlah(w)

aay, hl

Ihualhl (Ahu - w)Iulhlha<Aha - w)/z - Ihuu1h1 (Ahu + w)lulhlha (Aha + w)/z] ’ (68)

where the irreducible part comes from the second sum in Egs. (A9) and (A15), while the reducible part
is originating from the first sum in Eq. (A10) and Eq. (A16). The irreducible and reducible parts of the
two-electron cross contribution read,

A E}([ZI)Ze,cr,irr _ / " Z { Iyjia (@) Lignj(w) C jin(@0) Ligaj(Ape — w) }
Py (en —w —eiu)(ea —w —eju) (e, —w — €u) (e — w —€ju)
(69)
and
(2D)2ecrred i dw
AE, = o1 / m {tl,;lz Ihazalh(Aha — W) Iayaaa, (W)
+ Y Tungngn (@) Iy aany (w + Aha)} , (70)
a hl hz

which comes from the first sum in Egs. (A9) and (A15) (irreducible), and from the second and third
sums in (A10) (reducible). The prime on the sum in Eq. (69) indicates the omission of particular terms,
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namely, i = h & j = a for the first term in the curly brackets and (i,j) = {(a,a), (h, h)} for the second
one. For the three-electron irreducible contributions, one ends up with the expression,

Ap@3ein lzij 2 [1ipap (0) — Libba (Aap)] [11ani(0) — Inain(Ana)]
" ab,i €a — €
_ if’ [Inaai (Ana) = Inaia(0)] [Livon (Anp) — Libns (0)]
abi €n — €

. [Lain (Do) — Labni(Bna)] Tniab (Bna)
b €+ €, — €y — €
O i (D) — Tnaiv (Bpa)] Tpian (Bba) — Tpina(Bip)]

_ y , (71)
€+ € —€p— €

ab,i

by summing up Egs. (All), (A13), (A17), (A19), (A21), and (A22). The three-electron reducible
contribution is found by adding Eqgs. (A12), (A14), (A18), and (A20) into,

21)3e,red
AE}(z Jere = - 2 {I}/mluh (Ahu) [Iuhalb(o) - Iuhbal (Aab)] + I;bbal (Aab) [Ihalah(Aha) - Ihalha(o)] }
a,b,mq
=Y Thaan, (Bna) [Tnyoon (D) = Ty (0)]
Ll,b,hl
o Z Ii,laalhl (Aha) [Ialhlah (O) - Ialhlhg(Aha)] . (72)
ﬂ,ﬂl,hl

Finally, the expression for the counterpotential term yields

AP #Zh 2Up; [ligah (Bha) — Liana(0)] lfi 2Uyi [Inian (Bha) — Tnina(0)]
" ai € — € a,i €a — €
i uhlulh
Z — + Z Ihaul Aha uﬂlﬂ - Z Ihuahl Ahtl)uhlh ’ (73)
h €Z a,a1 a hl

as a sum of Egs. (A23)-(A26).

The expressions above are derived for the first time and require a critical view. Therefore, in
Appendix C, we apply the Breit approximation to our results and compare the outcome with the
RMBPT expressions of Ref. [29]. A complete agreement is found. Moreover, in Ref. [29] it was
demonstrated within the RMBPT framework that the expressions for a single hole state turn into
corresponding formulas for the valence electron with the replacement of /1 to v and multiplying on an
overall minus sign. Here, we manifest that such a symmetry also holds within the QED framework.

5. Discussion and conclusion

In recent years, the accuracy of large-scale correlation calculations of transition energies in
many-electron atoms and ions drastically improved [2,33,42-45]. Various highly efficient computer
codes have been developed for this purpose [46-51]. In view of this rapid progress, it becomes
increasingly important to include the QED effects in these calculations as well. At present, such an
account is mainly based on the approximate treatment via QED model potentials [52,53]. The reason for
this is the complexity of ab initio QED calculations for many-electron atoms. The first step towards these
challenging calculations is to develop the framework which simplifies the derivation of the bound-state
QED formulas. In the present paper, we have presented an efficient method, based on the vacuum
redefinition and the two-time Green’s function approach, to derive calculation expressions within the
rigorous QED framework. Redefined vacuum state allows one to drastically reduce the complexity of
the many-electron QED formulation keeping only valence electrons or vacancies under consideration.
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Contributions to the binding energy are expressed in terms of Green'’s function matrix elements with
active particles (electrons or holes) only. Nevertheless, the interaction of these active particles with the
core electrons is not ignored, it is included in consideration via the radiative corrections, self-energy
and vacuum polarization. It has been explicitly demonstrated for the case of one active particle. We
have shown that the method based on vacuum redefinition in QED is a well-suited tool to tackle atoms
with complicated electronic structure.

As an example, the method is applied to atoms with a single-hole electronic configuration, which
occurs in halogen atoms such as fluorine, chlorine, etc. The particular interest in this system is twofold.
First, in Refs. [33-35] it was demonstrated that highly accurate theoretical predictions are possible in
such atoms, and thus accurate tests of the QED effects become feasible. The reason for this is a drastic
reduction of the correlations due to Layzer quenching effects [54]. Second, recent measurements of
the fine-structure splitting in fluorine-like systems [36,37] emphasize the necessity of improvement
in theoretical predictions for such systems. The accuracy of experimental results is at least of the
same order as that of the theoretical predictions, while for some ions it is an order of magnitude
better. Furthermore, an improvement in the experimental precision is foreseen in the near future [36].
Here, we have derived the formulas for the QED contributions up to the second order in « for the
single-hole configuration. The screened radiative and two-photon-exchange corrections have been
carefully extracted from the rigorous formulas obtained within the redefined vacuum formalism. An
important advantage of the employed formalism consists in the identification of gauge-invariant
subsets, which is based on the corresponding subsets of one-electron diagrams. This feature can be
very useful in future derivations of the higher-order contributions since it provides a robust verification.
Finally, we have checked the results by the comparison of the Breit approximation applied to the
derived expression with the previously obtained RMBPT expressions.
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Appendix A Gauge-invariant subsets of the screened radiative diagrams

The eight different gauge invariant subsets for the screened radiative corrections previously
introduced in the main text, see Eq. (58), are presented here. Let us start with the two terms, which
originate from the one-electron diagrams with VP loop only: VPVP and V(VP)P,

AEBSVPVP _ / l#h ZIhaza(())Iijhj(O) (A1)
2 bry (en —€i)(w —€ju)
and
8 2Upani(0) 1ijaj (0) Iinj(0) Ljaia (0)
(2S)V(VP)P hahi ijaj hihj jaia
AE, dw + A2
27r/ LZ](ea—ei)(w—eju) g( w—eiu)(w— €ju u) (A2)
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respectively. The next three subsets displayed come from the diagrams with both SE and VP loops.
We begin with the SEVP term, where the disconnected SEVP contribution [second term in Eq. (35)] is
included,

AE(SISEVP  _ / o Z#h 2Ipaai (D) Tijij (0) - 'Z8 2Ipain (Apa) ijaj (0)
h 2 al] (en —€i)(w —€u) == (ea — &) (w — €ju)
N 2 20(w) Ligna (0) 3 Ihjih(w)lmja(o)
bry (e, —w —€ju) (e, — e]-) Pry (e —w —€ju) (e, —w — e]-u)
+ Z Ihaahl (Ahﬂ)lhlihi(0> . Ihiihl (w)lhluha (O> . Z Ihualh(Ahﬂ)Iﬂliai(O) (A3)
o (w—€u) (e, — w —€u)? aim (w —€u)

The second subset that falls into this category is the V(SE)P one,

apVERR L /d ”é” 214ij(w) Injna (0) Y Lyjia (@) Iinj (0)
o (€a—w —eu)(ea —€j) i (ea —w —€u)(€a — w — €ju)
. Z Iaiial (w)lhalha (0)] , (A4)

b (€ —w —€ju)?

and finally the S(VP)E term yields

25)S(VPE _ / Z Injai (Dna) Lain(Dna) (A5)

(
AE

k m] w —€ju) (w — Dpg — €ju)
Finally, the SESE subset comes from the diagrams with only self-energy loops. It includes also the
SESE disconnected contribution [second term in Eq. (35)], and leads to the following expression,

ApCSSESE 0 /dw %ﬁ’ 214iij (@) Liaan (Dha) Jfl 21aiij (w) Injan (Dha)
h 27 bry (en —w —eju) (e —€j) bry (€a —w —€ju)(€a — €j)
/
ZIa]zh( )Ihiuj(Aha) Ihiihl (w)Ihlaah (Ah“)
+ Z:(e w —eu)(e —w—€~u)+2 (ep — w — €ju)
aij \" 4 h ] a,ih h 1
!/
~ Lhiny (W)Ihlmh(Aha)} ¥y Laiiay (@) Ly o1y (Dha) N Inayan (Dna) Lujia, (@) (A6)
(e, — w — €ju)? o (€ —w —€ju) (€ — w —€ju)?

Furthermore, in the extended Furry picture, two counterpotential subsets emerge. The first one, VPCP,
is associated with a vacuum-polarization loop,

(25)VPCP _ —i/dw [Z Tjni (0) U U, L(0) ] , (A7)

AE
" 2r a,ij (w —eju)(w —eju) i (en —€i)(w —€ju)

while the second, SECP, arises from the diagram with a self-energy loop and the disconnected SECP
part [second term in Eq. (35)],

; Lo (00U i#h 22Uy L (w
AE}(IZS)SECP _ o /dw lz h]lh( ) ij n Z hi 1]]h( )
27 Py (en —w —eiu)(ep — w —€ju) Py (en —e€i)(en —w —€ju)
Uppy Iy iin (w
= L oy éu))z : (A8)
u,i,h1 h !
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Appendix B Gauge-invariant subsets of the two-photon-exchange diagrams

The eleven different gauge invariant subsets of the two-photon-exchange contributions previously
introduced in the main text, see Eq. (65), are presented here. Let us start with the two subsets originating
from the diagrams with self-energy loops only. We present separately the two- and three-electron
contributions. The two-electron irreducible and reducible SESE terms are

ApCUSESE2eirr i / oo X/: Dyjin (@) Tiaaj (Dpg — w)
h 27 o (en — w —eju) (e — w — €ju)
N UDZE) Tigij () Lijan (B — @) (A9)
by (en —w —€u) (€ +w — €ju)
and
j dw
AE(PUSESE2ered 1 / I I A
h 21t ) (w+ ie)? a;ﬁ [ hahyay (w) hlalah( ha + W)
+ Tnaayiny (Da — @) Loyiyan(@)] = Y Tty (0) Inyaainy (Ba + w)
a hl,h2
- Z Ihazalh(Ahu - w)laluuaz (w)} ’ (A10)
a,ay,ap
where the prime on the sum means that the terms (i,j) = {(a,a),(h,h)} are excluded from the
summation. The three-electron SESE subset consists of the irreducible part,
_ i£b i£h
AE(QUSESEejrr 3 2lpin (Dnp) Ligab (Dap) y Tnaai (Dna) Lipon (Dnp)
! abi € — € abi €n —€i
i,b)#(h,
_ v )i( ) 2 i (D) I (D) v Lniab (Bna) Labin (App) (A11)
by €, + €1 —€p — €; i €aten—en—¢ !
and the reducible part,
21)SESE, 3ered
AE( ) ere = - Z [Ihalah(Aha)I;hbul (Aﬂb) - I]Qalah(Aha)Iahbal (Aab)}
a,b,ay
=Y Thaan, Pna) ngoon (Brv) = Y Tngay i, (Bna) Layiyan (0) - (A12)
a,b,hn a,a1,hp

Now we focus on the four subsets with mixed SE and VP loops. The SEVP subset has only three-electron
contribution, the irreducible part of which is given by

£
AE(2SEVEBeirr _ T 2Ihai (Ba) T (0 ) 4 Z ~ 2lyain (Bha) Tivab (0) (A13)
a,b,i €n —€i ab,i € — €

The corresponding reducible part merged with the disconnected SEVP contribution yields,

21)SEVP3e,red
AE,S ) =Y Thaany (Bna) Inyons (0) = Y Ty o (Ba) Labay(0) - (A14)

a,b,hy a,b,aq
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Next two subsets are S(VP)E and V(SE)P. The two-electron S(VP)E contributions are
ApCUSOVPE2ei i / o i Iyjia (@) Lianj(w)
h 27 o7 (en — w — €u)(€a — w — €ju)
N i)z eh) Inaij (@) Lijna () (A15)
= (e —w —eiu)(ea +w —eju)
/]
and
(21)S(VP)E,2e,red / 1 1
AE, d I A I Ny — , (Al6
47T watg“hl haa1h1< ha — ) ulhlhu( ha w) {(w +i8>2 + (w — i£>2 ( )

where the prime on the sum means that the term i = I & j = a is excluded from the summation. The
irreducible contribution of the three-electron S(VP)E subset yields

i b) £ (h,
AEDS(VPIE e _ @ )é ") Tnabi (o) Iina (Do) + Thaib (Do) Lia (M) n Tniva (Dnp) Toani (Dnp) , (A17)
( —

ibi €, +€;— €, — € ibi €a + €, — €, — €
and the reducible one reads
2I)S(VP)E,3 d
AEZVSOIESered i (Bh) L (Bra) - (A18)
a,ay, hl

Last subset in this category is V(SE)P, which comprises only the three-electron contributions:

irreducible,
v oL (0) s (A
AE}(ZZI)V(SE)P,Se,lrr s 11 (0) Lniva (Apa) , (A19)
. €p — €
a,b,i
and reducible,
(SE)P3ered
AEIVERIRSered g ()T (D) (A20)
a,b,aq

Finally, the two subsets originating from the diagrams with vacuum-polarization loops only are the

VPVP subset, '
AE(DVPVESe _ Zf«j Tnaia (0) Libny (0) (A21)
! api  Ch €
and the V(VP)P subset,
AERDVOPIR3e _ lf 2la1i (0) Lipar (0) (A22)
" ab,i €a — €

Both of them have only three-electron parts.
Within the extended Furry picture, three extra counterpotential subsets emerge. The first one,
SECP, is related to the self-energy loop, the irreducible contribution of which is

AE}(lZI)SECP,irr _ %El 2UpiLigan (Bha) lf 2ljqin (Bna) Uia ' (A23)

€p — € € — €

a,i a,i

The corresponding reducible part encapsulating the disconnected SECP contribution can be written as

(21)SECPred

AE = - Z I},Lauhl (Ahu)uhlh + Z I}/malh(Ahu)uﬂlﬂ . (A24)

a,hy a,ay
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The second one, VPCP, is expressed by

L ifa . .
AE(ZI)VPCP _ 2 ZIham (0) Uzh + 2 ZIhahz(O) Um ) (A25)
€p — € 4 € — €
Finally, the last subset, CPCP, reads
Zhr

AEGICPCP _ Upitlin (A26)

€y — €

Appendix C Two-photon exchange: comparison between QED and RMBPT

To achieve the sought matching between QED and RMBPT, we apply the Breit approximation
to the expressions presented in section 4.2.2. To this end, let us first introduce the
interelectronic-interaction operator in the Breit approximation:

18 =1c(0), (A27)

where “C” means the Coulomb gauge. Since I? is w-independent, the reducible contributions, which
contain derivatives of I, vanish within this approximation. The second implication of the Breit
approximation is to consider only the positive-energy states in summations, i.e.,

Y=Y +). (A28)

where now i (and later j) means only positive-energy state, m (and later n) is an excited state, €;,, >
Ef > 0,and a (and b) denotes one of the core states, 0 < €, < E£. We first apply the Breit approximation
to the three-electron contributions given by Egs. (71) and (72) and to the counterpotential term, Eq. (73),
which are transformed as follows,

B B B B h [1B B B B
AE@3eB 2 2 [Imbab — Imbha} [Ihahm Ihumh] _ li [Ihauz Ihma} [Iibbh - Iibhb]
" a,bm €1 — €m ab,i €n — €i
B B B B B B B
Uﬂbmh — Iabhm] Ihmah _ Z [Ihabm — Ihamb] [Ibmuh — lbmha] (A29)
abm €+ €y — €y —€Ep b €, t+ €1 —€p— €y
and
B i#h
AE (anceB _ 2 Zuhl umh zaha Z Zu’m‘ hmah Ihmhu] _ li Ui Ui . (A30)
€, — € Zt —€m €p — €

The summations were rewritten using Eq. (A28). Notice that the core electrons contributions vanish
altogether upon relabeling the indices and applying the symmetry properties (47). Furthermore, sums
involving €, in the denominators are kept intact since the hole energy lies in the positive-energy
spectrum, and the replacement also allows one to remove the restrictions in all the other sums.

It is left to evaluate the two-electron contributions. Recall that the integration path closes in the
upper half of the complex plane to consider only positive intermediate energy states and that no
reducible contributions are present. Let us divide the expressions in Egs. (67) and (69) into direct
and exchange parts, namely, the first term in each is the direct contribution and the second is the
exchange one. We start by showing that both cross contributions vanish due to their pole structure.
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The cross-exchange poles are w = €, — €;; + i¢ and the cross-direct poles are w = €, — €; + ie and
w =€, —€+ig fore;, e > EL. Tt leads to the corresponding residue integration

B 15 5. 1B
(2I)ch hjih “iaaj hjia~iahj B
AE! / dw - - 0.
Y Py (en —w —eiu)(ep —w—eju) (e —w —eiu)(e, — w —€ju)

(A31)
Next, we inspect the ladder poles, which are found tobein w = €j, — €; +ieand w = € — €4 — ie, same
for both direct and exchange parts. Performing the Cauchy integration, one finds

B 1B B
Ap(@adB / o ’] Lii Iy = Thoij s
h m’] (e — w —eju)(€eq +w—e]-u)

B B
(@) Z(ah) Ihul]Il]ah o Ihmjlz]hu

€n+ € — € — €

aij

B B B B B
_ Ihumn(lmnah — Imnhu) _ (Ihumb Ihabm) (Imbha — Imbah) (A32)
a,m,n eh + €a - €m - En a,b,m eh + eu - eb - em

where the first term in the last line is the one we are looking for, while the second one compensates
the fourth sum in Eq. (A29). Thus, the final expression for the two-photon exchange within the Breit
approximation yields

AE}(IZI)B - Z 2 [Iiﬁbab — Irﬁbha] U}lfahm — I}lfamh] _ i Uiltgam IPll;um] Uilzbh — Iilzhb}

€1 — €nm €p — €

a,b,m ab,i

B B B
[Iabmh Iubhm} Ihmub _ Ihumn(I nha Imnah)
ea+€b_€h_€m a,m,n €h+€a_€m_€n

a,b,m

B lﬁi 2Uy,; [1B

a,i

i#h
iaah mha Z 2Uam Ihmuh Ihmhu} _ li Upilip (A33)
€, —€; an —€m en—¢€i’

which is in full agreement with the RMBPT result of Ref. [29].
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