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Abstract

A major task in Functional Time Series Analysis is measuring the dependence within and between pro-
cesses, for which lagged covariance and cross-covariance operators have proven to be a practical tool in
well-established spaces. This article deduces estimators for lagged covariance and cross-covariance opera-
tors of processes of abstract Hilbert spaces, and in particular of processes in Cartesian products of Hilbert
spaces, obtained by successively stacking Hilbert space-valued elements. Our main focus is on these estima-
tor’s asymptotic properties for fixed and increasing lag and Cartesian powers. The processes are allowed to
be non-centered, and to have values in different spaces when investigating the dependence between processes.
We also discuss features of estimators for the principal components of our covariance operators for fixed and
increasing Cartesian power.
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1 Introduction
Functional Data Analysis (FDA) and Functional Time Series Analysis (FTSA), the research areas dealing
with time series resp. processes of random functions, have gained more and more significance, since considering
random functions instead of vectors, provided the context allows it, assures more accurate results. Such an
extension on infinite-dimensional spaces is enabled by ongoing developments in processing techniques, and is
unproblematic for separable Banach spaces from a mathematical point of view, see Ledoux & Talagrand [29].
FDA/FTSA find applications in economics [8; 9; 21; 34; 39], medicine [5; 42] and other research areas [3; 12; 30].
For extensive introductions to FDA/FTSA, see Ferraty & Vieu [11], Ramsay & Silverman [35], Bosq [4], Horváth
& Kokoszka [17], and Hsing & Eubank [20]. In FTSA, the analysis of the dependence structure within and
between given processes is of great importance. If these are wide-sense/weak/second-order stationary, where
for convenience usually (strictly) stationarity and finite second moments are assumed, this can be done by
using lag-h-covariance operators and lag-h-cross-covariance operators, respectively, where the lag h denotes the
time difference of interest. Another important subject of study is Functional Principal Component Analysis
(FPCA), see [15; 22], since functional principal components, i.e., the eigenvalues and eigenfunctions of the
(lag-0-)covariance operator, yield an efficient representation.

Probabilistic features of and estimators for lag-h-covariance operators CX;h of stationary processes X =
(Xk)k∈Z with values in L2[0, 1], the Hilbert space of measurable, square-Lebesgue integrable real valued functions
with domain [0, 1], are widely studied for fixed lag h, see, e.g., [4; 17; 20; 25; 32]. Further, [36] developed
covariance estimators in the space of continuous functions C[0, 1], [44] in tensor product Sobolev-Hilbert spaces,
[31] for continuous surfaces, and [1; 16] for quite general Hilbert spaces. [1; 16; 32; 36] constrained their
assertions to autoregressive (AR) processes, where [1] deduced the results for a random AR(1) operator. Thereby,
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[1; 4; 17; 20] utilized classical moment estimators, [25] estimated the integral kernels, in [16; 32] truncated spectral
decompositions occured having estimated principal components, and [44] used operator regularized covariance
estimators. Also, the limit distribution of the estimation errors of the lag-0-covariance operators was discussed
in [24; 26]. FPCA in L2[0, 1] is extensively discussed in the existing literature, both from a probabilistic and
statistical point of view. In [4; 17; 20; 24; 26] one finds asymptotic upper bounds for the principal components,
estimated both seperately and uniformly in sense of convergence in second mean and almost surely (a.s.), and
[45] introduced L1-norm FPCA. A comprehensive study of lag-h-cross-covariance operators CX,Y;h of L2[0, 1]-
valued processes X = (Xk)k∈Z,Y = (Yk)k∈Z can be found in Rice & Shum [33]. They established operator
estimates, discussed methods measuring their significance and deduced their limit distribution. Aue & Klepsch
[2], who investigated estimators for operators of linear, invertible processes in L2[0, 1], had to estimate lag-h-
cross-covariance operators of specific processes in Cartesian products of L2[0, 1] to derive their main results.
Enabling processes to have values in Cartesian products is also handy when studying AR(p) processes with p > 1,
see [4]. Also, the quite recent work of Sarkar & Panaretos [38] extensively dealt with covariance estimation of
functional data defined over multidimensional domains.

This article studies, inspired by assertions in [2; 33] and also [27; 28], lagged covariance and cross-covariance
operators of stationary processes in separable Hilbert spaces, especially of processes in Cartesian products of
Hilbert spaces, where the processes are created by successive stacking Hilbert space-valued elements. The
focus is on deducing moment estimators for lagged covariance and cross-covariance operators, and to derive
asymptotic upper bounds of their estimation errors. FPCA of our covariance operators is also conducted, where
the principal components are estimated separately and uniformly. Particularly worth mentioning is that this
work’s results facilitate a high degree of flexibility. This is because all processes are allowed to attain values
in Cartesian products of quite general Hilbert spaces, the processes not necessarily have to be centered, the
lag h and the processes’ Cartesian powers can be fixed or increase w.r.t. the sample sizes, and the definition
of the lagged cross-covariance operators allows both processes to attain values in different spaces. Moreover,
as an example of the use of our models, one could think of investors of, e.g., solar or other power stocks of
European companies asking theirselves what impact monthly sunshine duration in central Europe, see Fig 1, has
on their share values one month ahead, see Fig 2. This can be analyzed using lag-1-cross-covariance operators,
and lag-h-covariance operators might be advantageous for understanding the dependence structure within the
processes in Fig 1-2.

The rest of this paper is organized as follows. Section 2 outlines our notation, restates important terminology,
definitions and interrelationships of several operator types, defines our (lagged) (cross-)covariance operators
and studies their probabilistic features, and briefly explains Lp-m-approximibility. Section 3 introduces our
estimators for the lagged (cross-)covariance operators and for the principal components of the lag-0-covariance
operator, and derives asymptotic upper bounds of the estimation errors. Section 4 conducts a simulation study.
Section 5 summarizes the main results and outlines future research. Moreover, Section 6 contains proofs.

2 Definitions and basics

2.1 Notation
b·c denotes the floor function, sgn(·) the sign function and 1A(·) the indicator function of a set A. For sequences
(an)n∈N, (bn)n∈N ⊆ (0,∞), an ∼ bn denotes an

bn
→ 1, an � bn denotes an

bn
→ c for some c 6= 0, (for n→∞) an =

ω(bn) if bn = o(an) and an = Ω(bn) if bn = O(an) with common asymptotic notation o(·),O(·), and Ξ[an, bn) :=
Ω(an) ∩ o(bn),Ξ[an, bn] := Ω(an) ∩ O(bn). 0V denotes the identity element of addition of a vector space V,

IV : V → V the identity operator, and operator throughout means linear map. On Hilbert spaces the norms
are assumed to be induced by their inner product. Herein, let (H, 〈·, ·〉H) be a real separable Hilbert space. For
x, y ∈ H, x ⊥ y means 〈x, y〉H= 0. Scalar multiplication and vector addition on Hn := {(x1, ..., xn)T |x1, ..., xn ∈
H}, with n ∈ N, is defined componentwise, so (Hn, 〈·, ·〉Hn) with 〈x,y〉Hn :=

∑n
i=1〈xi, yi〉H for x := (x1, ..., xn)T,

y := (y1, ..., yn)T ∈ Hn, is a real separable Hilbert space. Our random elements are defined on some common
probability space (Ω,A,P). X d= Y stands for equally distributed random variables X,Y. For processes (Xn)n
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Figure 1: Graphs of monthly sunshine duration in central europe in June and July 2020, interpretable as two consecutive realizations
of an L2[0, 1]2-valued process, from the homepage www.dwd.de of the German Meterological Service.

50
55

60
65

June 2020

01−Jun−20 15−Jun−20 29−Jun−20

50
55

60
65

July 2020

01−Jul−20 15−Jul−20 29−Jul−20

50
55

60
65

August 2020

01−Aug−20 15−Aug−20 29−Aug−20

Figure 2: Three consecutive realizations of a fictitious (L2[0, 1])4-process, describing the share values of four assets of an portfolio,
e.g., measured in EUR. The step width used is 1

1000 .

and (Yn)n, Xn = OP(Yn) (for n→∞) means (Xn/Yn)n is asymptotically P-stochastic bounded. For p ∈ [1,∞),
LpH = LpH(Ω,A,P) is the space of (classes of) H-valued random variables X with νp,H(X) := (E||X||pH)1/p<∞, a
process (Xk)k∈Z of H-valued random variables is an LpH-process if Xk ∈ LpH for all k, and centered if E(Xk) = 0H
for all k with expectation in Bochner-integral sense, see [20], p.40–45.

2.2 Some basic operator theory
Now, we state important spaces of operators between real separable Hilbert spaces (Hi, 〈·, ·〉Hi

) for i = 1, 2. For
thorough overviews of operators between Hilbert spaces, see the monographs Dunford & Schwartz [10], Gohberg
et al. [13], Weidmann [43]. The space of bounded operators mapping from H1 to H2 will be denoted by LH1,H2 ,

with LH1 := LH1,H1 , where an operator A : H1 → H2 is bounded if

||A||LH1,H2
:= sup
||x||H1≤1

||A(x)||H2 <∞.

Such operators are continuous, and (LH1,H2 , || · ||LH1,H2
) is a Banach space. We denote the subspace of finite-

rank operators of LH1,H2 by FH1,H2 , with FH1 := FH1,H1 . Further, A∗ denotes the adjoint of A ∈ LH1,H2 ,

where A∗ ∈ LH2,H1 . A crucial subspace of LH1,H2 is the space of compact operators mapping from H1 to H2,

where A ∈ LH1,H2 is compact if A maps the unit ball of H1 to a compact set in H2. Such operators possess the
singular value decomposition A =

∑∞
j=1 sj(ej⊗ fj), with x ⊗ y := 〈x, ·〉H1y for x ∈ H1, y ∈ H2, where (ej)j∈N

and (fj)j∈N are complete orthonormal systems (CONS) of H1 resp. H2, and where (sj)j∈N is the monotonically
decreasing zero sequence of non-negative numbers of A, the singular values. Their decay rate can be interpreted
as a regularity measure of A and be expressed by the p-Schatten-norm

||A||p :=
( ∞∑
j=1

spj
)1/p

, p ∈ [1,∞),
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where ||A||p ≤ ||A||q for p < q. (S p
H1,H2

, || · ||p) is a Banach space for p ∈ [1,∞), where S p
H1,H2

:= {A ∈
LH1,H2 | ||A||p < ∞} is the p-Schatten-class, with S p

H1,H2
( S q

H1,H2
for p < q. The essential classes are

NH1,H2 := S 1
H1,H2

with NH1 := NH1,H1 , || · ||NH1,H2
:= || · ||1, and SH1,H2 := S 2

H1,H2
with SH1 := SH1,H1 ,

|| · ||SH1,H2
:= || · ||2, the spaces of nuclear/trace class resp. Hilbert-Schmidt operators. The trace of A ∈ NH1 is

defined by tr(A) :=
∑∞
j=1〈A(ej), ej〉H1 , and (SH1,H2 , 〈·, ·〉SH1,H2

) is a separable Hilbert space, with

〈A,B〉SH1,H2
:=
∞∑
j=1
〈A(ej), B(ej)〉H2 , A,B ∈ SH1,H2 ,

where (ej)j∈N is an arbitrary CONS of H1 in both definitions. On H1 := L2[0, 1], an integral operator A mapping
from H1 to H1 is defined by the Lebesgue integral

(A(x))(t) :=
∫ 1

0
a(s, t)x(s) ds, x ∈ H1, t ∈ [0, 1]

if it exists, where a : [0, 1]2 → R is a measurable function, the (integral) kernel of A. Such an operator satisfies
A ∈ SH1 iff

∫ 1
0
∫ 1

0 a
2(s, t) dsdt <∞.

2.3 Features of our operators
Here, we define (cross-)covariance operators and their lagged versions on real separable Hilbert spaces, and
outline some of their features (see [4] for these operators on Banach spaces). Thereby, (Hi, 〈·, ·〉Hi

) denote real
separable Hilbert spaces for i = 1, 2.

Definition 2.1. Let X,Y be L2
H1

- resp. L2
H2

-valued random variables, and let mX := E(X),mY := E(Y ). Then,
the covariance operator of X is defined by

CX := E((X −mX)⊗ (X −mX)),

and the cross-covariance operator of X,Y is defined by

CX,Y := E((X −mX)⊗ (Y −mY )).

For centered L2
H1

- resp. L2
H2

-valued random variables X,Y, where centeredness is due to X ′ := X −E(X), Y ′ :=
Y −E(Y ) no restriction, (cross-)covariance operators possess the following features, see [4] and also [20], sections
7.2-7.3. Firstly, CX ∈ NH1 is a self-adjoint, positive semi-definite operator with

||CX ||NH1
= E||X||2H1

, (2.1)

and satisfies the representation

CX =
∞∑
j=1

cj(cj ⊗ cj), (2.2)

where (cj)j∈N is the w.l.o.g. monotonically decreasing, non-negative, absolutely-summable eigenvalue sequence,
and (cj)j∈N the related eigenfunction sequence of CX being a CONS ofH1. The cross-covariance operator satisfies
CX,Y ∈ NH1,H2 ,C

∗
X,Y = CY,X ∈ NH2,H1 and

||CX,Y ||NH1,H2
= ||CY,X ||NH2,H1

≤ E||X||H1 ||Y ||H2 . (2.3)

Furthermore,

independence of X,Y ⇒ CX,Y = 0LH1,H2
, (2.4)

and if H1 = H2,CX,Y = 0LH1
implies E〈X,Y 〉H1 = 0. If H1 =H2 =L2[0, 1],CX and CX,Y are integral operators

with kernels kX(s, t) := Cov(X(s), X(t)) resp. kX,Y (s, t) := Cov(X(s), Y (t)), s, t ∈ [0, 1]. As for covariances of
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real-valued random variables, holds for the covariance operator given centered L2
H1

-valued random variables
W,X, and A ∈ LH1 ,

CW+X = CW + CW,X + CX,W + CX , (2.5)
CA(X) = ACXA

∗, (2.6)

and for the cross-covariance operator given centered L2
H1

- resp. L2
H2

-valued random variables W,X resp. Y,Z,
with A ∈ LH1 and B ∈ LH2 holds

CW+X,Y+Z = CW,Y + CW,Z + CX,Y + CX,Z , (2.7)
CA(X),B(Y ) = BCX,YA

∗. (2.8)

For the definition of the functional counterparts of the auto-covariance and cross-covariance function of
real-valued processes, the lag-h-covariance resp. lag-h-cross-covariance operators, given processes not neces-
sarily have to be strictly, but wide-sense stationary. To reiterate, a process (Xk)k is (strictly) stationary if
(Xk1+h, ..., Xkn+h) d= (Xk1 , ..., Xkn

) for all k1, ..., kn, h and n ∈ N, and an L2
H1

-process X := (Xk)k is wide-sense
stationary if E(Xk) = c for some c ∈ H1 for all k, and if CXk,Xl

= CX0,Xl−k
for all k, l.

Definition 2.2. Let X := (Xk)k∈Z,Y := (Yk)k∈Z be wide-sense stationary L2
H1

- resp. L2
H2

-processes. Then, the
lag-h-covariance operator of X is defined by

CX;h := CX0,Xh
, ∀h ∈ Z,

with CX := CX;0, and the lag-h-cross-covariance operator of X,Y is defined by

CX,Y;h := CX0,Yh
, ∀h ∈ Z.

Remarks 2.1. The features for (cross-)covariance apply to lag-h-(cross-)covariance operators. Thus, C ∗X;h = CX;−h
and C ∗X,Y;h = CY,X;−h for any h, CX;h = 0LH1

for h 6= 0 if X := (Xk)k∈Z consists of independent variables,
if X := (Xk)k∈Z,Y := (Yk)k∈Z are independent, CX,Y;h = 0LH1,H2

. Further, if H1 =H2 = L2[0, 1], the lag-h-
(cross-)covariance are integral operators with the integral kernel being the auto-covariance resp. cross-covariance
function. Hence, the expression '(cross-)covariance' in lag-h-(cross-)covariance operator is reasonable too.
Now, we illustrate a specific lag-0-covariance operator. For further, but somewhat more complicated examples
and sketches, see Section 4.
Example 2.1. Let H := L2[0, 1], and let ε := (εk)k∈Z be a process with

εk(t) := Zk +Bk(t)√
1 + t

a.s., ∀k ∈ Z, ∀t ∈ [0, 1], (2.9)

where Zk ∼N (0, 1),Bk = (Bk(t))t∈[0,1] are Wiener processes, and where . . . , Z−1,B−1, Z0,B0, Z1,B1, . . . are
independent. Then, (εk)k∈Z is an i.i.d., centered L4

H-process with ε0(t) ∼ N (0, 1) for all t ∈ [0, 1], and for the
integral kernel kε;0 = kε of Cε;0 = Cε holds

kε(s, t) = Cov(ε0(s), ε0(t)) =
√

1 + min(s, t)
1 + max(s, t) , ∀s, t ∈ [0, 1]. (2.10)

2.4 Lp-m-approximibility
For deriving asymptotic upper bounds of estimation errors for operators or functionals related to a stationary
process, usually weak dependence of the given process is needed. We impose Lp-m-approximibility developed by
Hörmann & Kokoszka [19], since this type of weak dependence is, due to its definition based on m-dependence,
particularly feasible for transformations when verifying asymptotic upper bounds (see for instance (6.5)–(6.7)
in the proof of Theorem 3.1).
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Figure 3: The integral kernel kε(s, t) in (2.10) for s, t ∈ [0, 1].

Definition 2.3. Let (H, 〈·, ·〉H) be a separable Hilbert space and let p ≥ 1. Then, a process (Zk)k∈Z is LpH-m-
approximable if it is an LpH-process with

Zk = f(εk, εk−1, ...), ∀k ∈ Z, (2.11)

where (εk)k∈Z is an i.i.d. process with values in a measurable space S and where f : S∞ → H is a measurable
function, such that

∑∞
m=1 νp,H(Zm− Zm;m) <∞, with νp,H(·) := (E|| · ||pH)1/p and

Zk;m := f(εk, εk−1, ..., εk−m+1, εk−m;k, εk−m−1;k, ...), (2.12)

where (εk;n)k are independent copies of (εk)k for each n.

LpH-m-approximibility of a process thus means it is non-anticipative w.r.t. another process, that is (2.11), and
approximable by an m-dependent process so that the approximation errors measured by the LpH-norm νp,H(·)
are summable. Also, (2.11) yields stationarity of (Zk)k due to [41], Theorem 3.5.3, and (Zk;m)k are stationary,
m-dependent processes for each m with Zk;m

d= Zk for all k,m.

3 Main results
Herein, we discuss the main results of this paper, namely the estimation procedure for lag-h-covariance and lag-
h-cross-covariance operators of Um- resp. Vn-valued processes for m,n ∈ N, and for the principal components
of lag-0-covariance operators. Thereby, (Um, 〈·, ·〉Um) and (Vn, 〈·, ·〉Vn) are real separable Hilbert spaces coming
from real separable Hilbert spaces (U , 〈·, ·〉U ) and (V, 〈·, ·〉V). Throughout this article, we assume that our
processes have the following representations.
Assumption 3.1. (a) Let X := (Xk)k∈Z be an L4

U -m-approximable process and let XXX := (Xk)k∈Z be an
Um-valued process with

Xm+j := (Xm+jp, ..., X1+jp)T , ∀j ∈ Z, (3.1)

and some p ∈ N. Further, X1, ..., XM is a sample of X with M ≥ m, thus Xm, ...,XM̃ with M̃ = M̃M :=
bM−mp c+m is a sample of XXX , and the sample size is M = MM := M̃M −m+ 1.

(b) Let Y := (Yk)k∈Z be an L4
V -m-approximable process and non-anticipative w.r.t.the same i.i.d. process

(εk)k as X in (a), and let YYY := (Yk)k∈Z be an Vn-valued process with

Yn+j := (Yn+jq, ..., Y1+jq)T , ∀j ∈ Z, (3.2)

and some q ∈ N. Moreover, Y1, ..., YN with N ≥ n is a sample of Y , thus Yn, ...,YÑ with Ñ = ÑN :=
bN−nq c+ n is a sample of YYY , and the sample size is N = NN := ÑN − n+ 1.

Remarks 3.1. (a) (Xk)k and (Yk)k are stationary processes since (Xk)k resp. (Yk)k are due to L4-m-approximibility,
and (Xk)k resp. (Yk)k are i.i.d. for p ≥ m resp. q ≥ n if (Xk)k resp. (Yk)k are.
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(b) The common case is m = n = 1 which can be seen as a specific example of our results.

(c) Using two not necessarily equal sample sizes M and N is beneficial if more data of one process can be
collected, but one is not willing to relinquish information by choosing the minimum of M,N.

(d) Choosing p, q so that 1 ≤ p < m, 1 ≤ q < n, enables to reuse entries of Xk resp. Yk. If one needs to
successively stack (realizations of) X ′ks resp. Y ′ks, one has to put p = m, q = n. One could also choose
p > m, q > n, which is useful when data is missing, since by an appropriate choice of p and q, the time
indices where (realizations of) X ′ks and/or Y ′ks are missing can be bridged.

(e) Whenever large sample sizes of (Xk)k and (Yk)k are needed, and reusing values of (Xk)k resp. (Yk)k does
not cause issues, p and q should be set as small as possible, to wit p = q = 1. Thereby, processes (Xk)k as
in (3.1) with p = 1 were used for estimating the operators of L2[0, 1]-valued AR in [4], (G)ARCH in [28],
and invertible linear processes in [2; 28].

Our model also allows the vector lengths m,n and the numbers describing the 'degree of reuse' p, q of given
variables to depend on the sample sizes as follows.
Assumption 3.2. (a) (mM )M , (pM )M ⊆ N are sequences with m = mM , p = pM = Ξ[1,M) = Ω(1) ∩ o(M)

where an = Ω(bn) means bn = O(an).

(b) (nN )N , (qN )N ⊆ N are sequences with n = nN , q = qN = Ξ[1, N).
From the Assumptions 3.1-3.2 (a) and (b) follows

M = MM ∼ p−1M, (3.3)
resp. N = NN ∼ q−1N. (3.4)

Since the time difference where some variable has a certain effect on another one could also change over time
respectively the sample size, we also allow the lag h ∈ Z to vary w.r.t. given sample sizes as follows.
Assumption 3.3. (a) h = hM = Ξ[1, p−1M);

(b) h = hN = Ξ[1, q−1N).

Lemma 3.1. Let Assumptions 3.1-3.2 (a) hold. Then,

m̂XXX := 1
MM

M̃M∑
i=m

Xi

is an unbiased estimator for the first moment mXXX := E(X1), and

E||m̂XXX −mXXX ||2Um = O(mM−1
M ) = O(mpM−1) for M →∞.

Remarks 3.2. Lemma 3.1 can be generalized to higher moments if the related power of the random variable of
the process is well-defined on the given Hilbert space. Powers of random variables are for instance well-defined
on L2[0, 1]. There, X2 denotes the pointwise product of X and X,X3 e.g. the pointwise product of X2 and
X,X4 e.g. the pointwise product of X3 and X etc.

3.1 Estimation of lag-h-covariance operators
When estimating lag-h-covariance operators, we distinguish, as for real-valued processes, between centered
processes and those with an unknown first moment. If the process X = (Xk)k in Assumption 3.1 (a) is centered,
hence also XXX = (Xk)k, we estimate CXXX;h with |h| < MM by

ĈXXX;h :=

 1
MM,h

∑M̃M

k=m+|h|Xk ⊗Xk+h, h < 0,
1

MM,h

∑M̃M,h

k=m Xk ⊗Xk+h, h ≥ 0,
(3.5)

where MM,h := MM − |h|, M̃M,h := M̃M − |h|. These operator estimates satisfy ĈXXX;h ∈ FUm (meaning they are
finite-rank operators) with ĈXXX;h = ĈXXX;−h, and ĈXXX := ĈXXX;0 is self-adjoint and positive semi-definite.
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Theorem 3.1. Let Assumptions 3.1-3.3 (a) hold, and let X be centered. Then, ĈXXX;h is an unbiased estimator
for CXXX;h with |h| < MM , and

E||ĈXXX;h− CXXX;h||2SUm= O((1+|h|)m2pM−1) for M →∞. (3.6)

If the first moment mX of X = (Xk)k is unknown, thus also mXXX = (mX , ...,mX)T ∈ Um, we use

Ĉ ′XXX;h :=

 1
MM,h−1

∑M̃M

k=m+|h|(Xk−m̂XXX )⊗ (Xk+h−m̂′XXX ), h < 0,
1

MM,h−1
∑M̃M,h

k=m (Xk−m̂XXX )⊗ (Xk+h−m̂′XXX ), h ≥ 0,
(3.7)

to estimate CXXX;h, provided |h| < MM − 1, where the moment estimators are defined by

m̂XXX :=

 1
MM,h

∑M̃M

i=m+|h|Xi, h < 0,
1

MM,h

∑M̃M,h

i=m Xi, h ≥ 0,
m̂′XXX :=

 1
MM,h

∑M̃M

j=m+|h|Xj+h, h < 0,
1

MM,h

∑M̃M,h

j=m Xj+h, h ≥ 0.

Thereby, Ĉ ′XXX;h ∈ FUm with Ĉ ′∗XXX;h = Ĉ ′XXX;−h, and Ĉ ′XXX := Ĉ ′XXX;0 is self-adjoint and positive semi-definite.

Theorem 3.2. Under Assumptions 3.1-3.3 (a), Ĉ ′XXX;h is an unbiased estimator for CXXX;h with |h| < MM − 1 if∑MM,h

j,k=1,k 6=j CXXX;j+h−k = 0LUm , and

||Ĉ ′XXX;h− CXXX;h||2SUm= OP((1+|h|)m2pM−1) for M →∞. (3.8)

Remarks 3.3. (a) Theorems 3.1-3.2 extend the existing literature regarding the estimation of (lagged) covari-
ance operators in several ways, see e.g. [1; 4; 14; 16; 17; 19; 24; 27; 28]. This is because the upper bounds
in both Theorems are derived for lagged covariance operators of processes with arbitrary first moments
having values in general, separable Hilbert spaces, and since the Cartesian power m and simultaneously
the lag h is allowed to grow w.r.t. the sample size M.

(b) Using 1
MM,h−1 instead of 1

MM,h
in (3.7) enables to formulate the sufficient condition for unbiasedness in

Theorem 3.2. For h = 0, this condition holds if CX;h = 0LU for all h 6= 0 which is due to (2.4) particularly
the case if X is a process of i.i.d. random variables.

(c) In Theorem 3.2, convergence in probability instead of in mean was considered since in the proof reciprocals
of eigenvalues emerge.

3.2 Estimation of lag-h-cross-covariance operators
Herein, we transfer the estimation procedure for lag-h-covariance to lag-h-cross-covariance operators CXXX,YYY;h. If
the processes X = (Xk)k and Y = (Yk)k in Assumption 3.1 are centered and subsequently also XXX = (Xk)k
and YYY = (Yk)k, we estimate CXXX,YYY;h with n− M̃M ≤ h ≤ ÑN −m by

ĈXXX,YYY;h := 1
LM,N,h

L̃M,N,h∑
k=l̃m,n,h

Xk ⊗ Yk+h, (3.9)

with l̃m,n,h := max(m,n−h), L̃M,N,h := min(M̃M , ÑN −h) and LM,N,h := L̃M,N,h + 1− l̃m,n,h. Further, ĈXXX,YYY;h ∈
FUm,Vn and Ĉ ∗XXX,YYY;h= ĈYYY,XXX;−h, and when estimating CXXX,YYY;h by ĈXXX,YYY;h we impose the following.

Assumption 3.4. The sequences in Assumptions 3.1-3.3 satisfy l̃m,n,h = o(L̃M,N,h).

Theorem 3.3. Let Assumptions 3.1-3.4 hold, and let X,Y be centered. Then, ĈXXX,YYY;h is an unbiased estimator
for CXXX,YYY;h with n− M̃M ≤ h ≤ ÑN −m, and for h = hL with L = LM,N := min(M,N),m = mM , n = nN holds

E||ĈXXX,YYY;h− CXXX,YYY;h||2SUm,Vn= O
(
(1+|h|)mnL −1

M,N,h

)
for M,N →∞. (3.10)

8

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 September 2021                   doi:10.20944/preprints202105.0277.v2

https://doi.org/10.20944/preprints202105.0277.v2


If mX and/or mY in Assumption 3.1 are unknown, thus also mXXX = (mX , ...,mX)T ∈ Um and/or mYYY =
(mY , ...,mY )T ∈ Vn, CXXX,YYY;h with n− M̃M ≤ h ≤ ÑN −m is estimated by

Ĉ ′XXX,YYY;h := 1
LM,N,h − 1

L̃M,N,h∑
k=l̃m,n,h

(Xk−m̂XXX )⊗ (Yk+h−m̂′YYY ) (3.11)

if L̃M,N,h > l̃m,n,h, with moment estimators

m̂XXX := 1
LM,N,h

L̃M,N,h∑
i=l̃m,n,h

Xi, m̂′YYY := 1
LM,N,h

L̃M,N,h∑
j=l̃m,n,h

Yj+h. (3.12)

Thereby, Ĉ ′XXX,YYY;h ∈ FUm,Vn and Ĉ ′∗XXX,YYY;h= Ĉ ′YYY,XXX;−h for all h.

Theorem 3.4. Under Assumptions 3.1-3.4, ĈXXX,YYY;h is an unbiased estimator for CXXX,YYY;h with n − M̃M ≤ h ≤
ÑN −m if

∑
1≤i,k≤LM,N,h,i6=k CXXX,YYY;k+h−i = 0LUm,Vn , and for h = hL with L = LM,N := min(M,N),m = mM

and n = nN holds

||Ĉ ′XXX,YYY;h− CXXX,YYY;h||2SUm,Vn= OP

(
(1+|h|)mnL −1

M,N,h

)
for M,N →∞. (3.13)

Remarks 3.4. (a) Although estimating (lagged) cross-covariance operators is widely discussed, see e.g. [2; 4;
16; 33], Theorems 3.3-3.4 are new in many ways. First, both processes can attain values in arbitrary
separable Hilbert spaces which do not necessarily need to match, nor do the drawn sample sizes M,N.

Further, the upper bounds are, as in Theorems 3.1-3.2 for the lagged covariance operators, derived for
centered and for not necessarily centered processes, the lag h is allowed to be both fixed and varying w.r.t.
the sample sizes, as are the Cartesian powers m,n.

(b) The initial and final value of the sum in (3.9) and (3.11) are relatively complicated, since Xk and Yk+h
simultaneously have to be well-defined.

(c) Assumption 3.4 ensures that the upper bounds (3.10) and (3.13) are zero sequences if the sequences in
Assumptions 3.1-3.3 are chosen appropriately.

(d) By following the lines in the proof of Theorem 3.4, it becomes clear that omitting the estimation of Xk

resp. Yk+h in (3.12) if X is centered and mY is unknown resp. if mX is unknown and Y is centered, has
no positive effect on the convergence rate (3.13) in Theorem 3.4.

3.3 Estimation of principal components
Herein, we examine the estimation procedure of the principal components of lag-0-covariance operators CXXX =
CXXX;0 of the Um-valued processes XXX = (Xk)k∈Z in Assumption 3.1 (a). Thereby, (cj)j∈N, (ĉj)j∈N resp. (ĉ′j)j∈N are
the eigenfunction and (cj)j∈N, (ĉj)j∈N resp. (ĉ′j)j∈N the associated w.l.o.g. monotonically decreasing eigenvalue
sequences of CXXX , ĈXXX = ĈXXX;0 in (3.5) resp. Ĉ ′XXX = Ĉ ′XXX;0 in (3.7). Also, since the vector lengths m of the elements
of XXX = (Xk)k can vary w.r.t. M, we occasionally write cj = cj,m and cj = cj,m.

At first, due to [4], Lemma 4.2, for any j ∈ N holds

|ĉj − cj | ≤ ||ĈXXX − CXXX ||LUm, |ĉ′j − cj | ≤ ||Ĉ ′XXX − CXXX ||LUm . (3.14)

Corollary 3.1. Let Assumptions 3.1-3.2 (a) hold. Then,

sup
j∈N

(ĉ′j − cj)2 = OP(m2pM−1) for M →∞,

and if X = (Xk)k in Assumption 3.1 (a) is centered,

E
(

sup
j∈N

(ĉj − cj)2) = O(m2pM−1) for M →∞.
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We proceed with estimating the eigenfunctions cj of CXXX by ĉj if XXX is centered and by ĉ′j if the first moment
of XXX is unknown. Eigenfunctions are unambiguously determined except for their sign, why

c̆j := sgn〈ĉj , cj〉Um ĉj resp. c̆′j := sgn〈ĉ′j , cj〉Um ĉ′j (3.15)

are used as estimators for cj , where 'sgn' is the sign function.

x

y

cj

ĉj= c̆j

ĉj
c̆j

−cj

Figure 4: Estimation of cj by c̆j , exemplified in R2

However, using c̆j resp. c̆′j to estimate cj is problematic, since c̆j 6⊥ cj a.s. and c̆′j 6⊥ cj a.s., thus sgn〈ĉj , cj〉Um 6= 0
a.s. resp. sgn〈ĉ′j , cj〉Um 6= 0 a.s. is not guaranteed for fixed j,M. So, if c̆j⊥ cj resp. c̆′j⊥ cj , one cannot allocate a
unique estimator for cj . This feature, though, was inevitable in conversions leading to asymptotic upper bounds
of the estimation errors for operators of L2[0, 1]-valued (G)ARCH and linear, invertible processes in [27; 28].
We bypass this problem by modifying c̆j and c̆′j . Let (ui)i∈N be a CONS of Um and let (ζi)i∈N be a sequence of
i.i.d., N (0, 1)-distributed random variables, independent of the observations of X. Then, for all j,M,

c̆†j := ĉj +
∞∑
i=1

ζiui
i2M

and c̆′j
† := ĉ′j +

∞∑
i=1

ζiui
i2M

(3.16)

are well-defined with c̆†j 6⊥ cj a.s. resp. c̆′j† 6⊥ cj a.s., thus sgn〈c̆†j , cj〉Um 6= 0 a.s. and sgn〈c̆′j†, cj〉Um 6= 0 a.s. Hence,
we estimate cj by

c̆‡j :=
[
1R\{0}(sgn〈c̆†j , cj〉Um) sgn〈c̆†j , cj〉Um + 1{0}(sgn〈c̆†j , cj〉Um)

]
ĉj , (3.17)

c̆′j
‡ :=

[
1R\{0}(sgn〈c̆′j†, cj〉Um) sgn〈c̆′j†, cj〉Um + 1{0}(sgn〈c̆′j†, cj〉Um)

]
ĉ′j , (3.18)

where 1A(·) stands for the indicator function of a set A. These estimators satisfy

c̆‡j = sgn〈c̆†j , cj〉Um ĉj a.s. resp. c̆′j
‡ = sgn〈c̆′j†, cj〉Um ĉ′j a.s. (3.19)

To state upper bounds of estimation errors when using the estimators in (3.16), following technical prelimi-
naries are needed. According to [4], Lemma 4.3 holds

||̆cj − cj ||Um≤ γ̃j ||ĈXXX − CXXX ||LUm, ||̆c′j − cj ||Um≤ γ̃j ||Ĉ ′XXX − CXXX ||LUm , ∀j ∈ N, (3.20)

if the eigenspace of cj is one-dimensional, where γ̃1 := 2
√

2γ1, γ̃j := 2
√

2 max(γj−1, γj) for j > 1, and

γj := (cj − cj+1)−1, j ∈ N. (3.21)

Assumption 3.5. CXXX is injective, and the eigenvalues of CXXX satisfy cj 6= cj+1 and κ(j) = cj for all j ∈ N where
κ : R→ R is a convex function.
Under Assumption 3.5 holds both

c1 > c2 > · · · > 0, (3.22)

and for any sequence (kj)j⊆ N with k=kM =Ω(1),

sup
j≤k

γ̃j = γk. (3.23)
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Lemma 3.2. Let Assumptions 3.1-3.2 (a), 3.5 hold. Further, let (kj)j ⊆ N be a sequence with k = kM = Ω(1),
and let γj,m := 1/(cj,m − cj+1,m). Then,

||̆c′j − cj ||2Um = OP(γ2
j,mm

2pM−1) for M →∞, ∀j ∈ N, (3.24)
sup
j≤k
||̆c′j − cj ||2Um = OP(γ2

k,mm
2pM−1) for M →∞, (3.25)

and if X = (Xk)k in Assumption 3.1 (a) is centered,

E||̆cj − cj ||2Um = O(γ2
j,mm

2pM−1) for M →∞, ∀j ∈ N, (3.26)
E
(

sup
j≤k
||̆cj − cj ||2Um

)
= O(γ2

k,mm
2pM−1) for M →∞. (3.27)

These statements for the 'classical' estimators (3.15) also apply to our advanced estimators (3.17), (3.18).

Theorem 3.5. Let Assumptions 3.1-3.2 (a), 3.5 hold, and let (kj)j ⊆ N be a sequence with k = kM = Ω(1).
Then,

||̆c′j‡− cj ||2Um = OP(γ2
j,mm

2pM−1) for M →∞, ∀j ∈ N; (3.28)
sup
j≤k
||̆c′j‡− cj ||2Um = OP(γ2

k,mm
2pM−1) for M →∞. (3.29)

Moreover, if X = (Xk)k in Assumption 3.1 (a) is centered,

E||̆c‡j − cj ||2Um = O(γ2
j,mm

2pM−1) for M →∞, ∀j ∈ N; (3.30)

E
(

sup
j≤k
||̆c‡j − cj ||2Um

)
= O(γ2

k,mm
2pM−1) for M →∞. (3.31)

Remarks 3.5. (a) Theorem 3.5 and also Lemma 3.2 can be seen as generalizations of results in [4; 19; 24; 26]
dealing with estimating eigenfunctions of centered L2[0, 1]-valued processes.

(b) If m = mM is bounded, the sequences of reciprocal spectral gaps (γj,m)M are bounded for any j. Conse-
quently, (3.28) equals OP(M−1), and (3.30) is O(M−1). Moreover, (γk,m)M is guaranteed to be bounded
if k = kM and m = mM are bounded. Then, (3.29) is OP(M−1), and (3.31) is O(M−1).

4 A simulation study
Herein, we simulate realizations and estimators of lagged covariance and cross-covariance operators of specific
processes. To avoid unnecessary complexity, and to ensure vividness of the derived results, we discuss centered
processes whose underlying processes attain values in H := L2[0, 1]. In our calculations with the program
language R, any x ∈ H is evaluated at t = 0, 1

250 , ...,
249
250 , and 〈x, y〉H with x, y ∈ H is approximated by the

Riemann sum 1
250
∑250
t=1 x( t−1

250 )y( t−1
250 ).

4.1 Setup
For some m,n ∈ N, let XXX := (Xk)k∈Z and YYY := (Yk)k∈Z be processes with

Xk := (Xk, ..., Xk−m+1)T resp. Yk := (Yk, ..., Yk−n+1)T, ∀k ∈ Z, (4.1)

where X := (Xk)k∈Z and Y := (Yk)k∈Z are processes which satisfy a.s.

Xk = α(Xk−1) + εk, ∀k ∈ Z, (4.2)
Yk = β(Xk) + εk, ∀k ∈ Z. (4.3)

Thereby, εk are defined as in Example 2.1, and α, β : H → H are integral operators with kernels

a(s, t) := kε(s, t) resp. b(s, t) := 2kε(s, t), ∀s, t ∈ [0, 1], (4.4)
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where kε;0 = kε is the integral kernel of Cε;0 = Cε in (2.10). Since the kernel a(s, t) is bounded, we obtain

||α||2SH=
∫ 1

0

∫ 1

0
a2(s, t) dsdt = 3

2 − ln(2). (4.5)

Hence, ||α||LH≤ ||α||SH< 1, which implies that (4.2) has the unique stationary solution

Xk =
∞∑
j=0

αj(εk−j), ∀k ∈ Z, (4.6)

where α0 := IH is the identity operator, and the series converges in L4
H and a.s., see [4]. Thus (Xk)k is a

stationary, centered L4
H-valued AR(1) process, even L4

H-m-approximable (see [28], Lemma 2.1 for functional
(G)ARCH models), and due to (4.3), (Yk)k is stationary, centered and L4

H-m-approximable too. After [4], our
AR(1) process X fulfills CX;0 = CX =

∑∞
j=0 α

jCεα
∗j with Cε;0 = Cε, and CX;h = αhCX for h ∈ N0. Further,

C ∗X;h = CX;−h for h ∈ Z, since α = Cε is selfadjoint and commutes with Cε and due to the series representation
of CX also with CX, and ||α||SH< 1 lead to the Neumann series

CX;h= α|h|+1
∞∑
j=0

α2j = α|h|+1(IH − α2)−1
, ∀h ∈ Z. (4.7)

Moreover, (4.2), (4.3), elementary conversions and (4.7) yield

CXXX,YYY;h= βCX;h, ∀h ∈ Z. (4.8)

For the lag-h-covariance operators CXXX;h = E〈X0,x〉HmXh and the lag-h-cross-covariance operators CXXX,YYY;h =
E〈X0,x〉HmYh holds for any h ∈ Z and x := (x1, ..., xm)T ∈ Hm,

CXXX;h(x)=
( m∑
i=1

CX;h+i−1(xi), . . . ,
m∑
i=1

CX;h+i−m(xi)
)T
∈ Hm, (4.9)

CXXX,YYY;h(x)=
( m∑
i=1

CXXX,YYY;h+i−1(xi), . . . ,
m∑
i=1

CXXX,YYY;h+i−n(xi)
)T
∈ Hn. (4.10)

Remarks 4.1. For extensive works on functional AR(MA) processes, we refer to [4; 40] and also [1; 6; 7; 14; 16; 32]
from a technical point of view, and [9; 23; 37] for methods combined with applications.

4.2 Simulation of realizations of our processes
Here, we simulate realizations of (Xk)k, (Yk)k in (4.1), for which we first simulate innovations in (2.9).

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

ε0

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

ε1

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

ε2

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

ε3

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

ε4

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

ε5

Figure 5: Realizations of the innovations ε0, ..., ε5 in (2.9).

These simulated realizations then can be plugged into the equations (4.2) and (4.3) of the underlying AR(1)
process (Xk)k of (Xk)k and the derived underlying process (Yk)k of (Yk)k. But before we do so, an initial value
of X0 has to be simulated which can be approximated sufficiently well as follows.
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Lemma 4.1. Let A ∈ LH with ||A||LH < 1, let (εk)k∈Z be an i.i.d., centered LνH-process for ν > 0, and let
Zk = A(Zk−1) + εk, Z̃k = A(Z̃k−1) + εk for all k ∈ Z hold, where Z̃0 ∈ H is deterministic. Then, for ρ ∈ (0, 1),

E||ZN − Z̃N ||νH= O(ρN ) for N →∞. (4.11)

Remarks 4.2. Lemma 4.1 can be shown for functional AR(MA) processes with arbitrary order(s) in any separable
Hilbert space, see [28], Corollary 4.1 for functional (G)ARCH processes.
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0.0 0.2 0.4 0.6 0.8 1.0

−
4

0
4

(Y4,Y3)
T

0.0 0.2 0.4 0.6 0.8 1.0

−
4

0
4

(Y5,Y4)
T

Figure 6: Six consecutive realizations of (Xk)k (bordeaux) and (Yk)k (gold) in the first two rows. X0 was approximated by Z̃100
in Lemma 4.1 with A = α, εk for k = 1, ..., 100 as in (2.9) and Z̃0 := 0H, and X1, ..., X5 and Y0, ..., Y5 were obtained by applying
(4.2) resp. (4.3) with the innovations in Fig 5. Then, X0, ..., X5 and Y0, ..., Y5 were plugged into the equations in (4.1) with m = 3
and n = 2, leading to three consecutive realizations of (Xk)k = ((Xk, Xk−1, Xk−2)T )k (third row) and of (Yk)k = ((Yk, Yk−1)T )k

(fourth row). The first resp. the second components of both the realizations of (Xk)k and (Yk)k are highlighted in black resp.
green, and the third component of (Xk)k in blue.

4.3 Simulation of our operators
In this section, we illustrate certain lag-h-covariance operators CXXX;h and lag-h-cross-covariance operators CXXX,YYY;h
of the centered processes XXX = (Xk)k and YYY = (Yk)k in Section 4.2 with Cartesian powers m = 3 resp. n = 2,
and simulate estimators for these operators for fixed and increasing h,m, n. Due to the infinite series (4.7)
consisting of operators, precisely calculating CX;h resp. CXXX,YYY;h is impossible. However, CX;h and CXXX,YYY;h can for
sufficiently large K ∈ N and any h ∈ Z be well approximated by

C̃X;h;K := α|h|+1
K∑
j=0

α2j resp. C̃XXX,YYY;h;K := βα|h|+1
K∑
j=0

α2j . (4.12)

This is due to the fact that submultiplicity of || · ||SH , ||α||SH < 1 and the formulas of the geometric sum and
series lead with c := (1− ||α||2SH)−1 and β = 2α after (4.4) for any h,K to

||C̃X;h;K− CX;h||SH< c||α||2K+3
SH and ||C̃XXX,YYY;h;K− CXXX,YYY;h||SH< 2c||α||2K+4

SH .

Also, the components of CXXX;h and CXXX,YYY;h cannot be expressed independently of any argument x := (x1, ..., xm)T ∈
Hm, except when all of the argument’s components match. With (A1(x), ..., Am(x)) := (A1, ..., Am)(x) for op-
erators A1, ..., Am with domain Hm,CX;h = CX;−h and CXXX,YYY;h = CXXX,YYY;−h for any h, for, e.g., CXXX;0 and CXXX,YYY;−1
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with m = 3, n = 2 holds for any x = (x, x, x) ∈ H3 due to (4.9), (4.10),

CXXX;0(x)=
((

CX;0+CX;1+CX;2, CX;0 +2CX;1, CX;0+CX;1+CX;2
)
(x)
)T
, (4.13)

CXXX,YYY;−1(x)=
((

CXXX,YYY;0 +2CXXX,YYY;1, CXXX,YYY;0+CXXX,YYY;1+CXXX,YYY;2
)
(x)
)T
. (4.14)

In order to illustrate estimators for the operators in the components of CXXX;0(x) in (4.13) and CXXX,YYY;−1(x) in
(4.14), and to estimate CXXX;h and CXXX,YYY;h for fixed and varying h,m, n, with h ≥ 0 w.l.o.g., we generate X1, ..., XM
and Y1, ..., YN of the processes XXX resp. YYY in Section 4.1 with M = N. This leads to the values Xm, ...,XM̃ of
XXX and Yn, ...,YÑ of YYY with M̃ = M̃M = M and Ñ = ÑN = M, thus with M = MM = M −m + 1 resp.
N = NN = M −n+ 1. Due to centeredness of X and Y , the operators CX;h in (4.13) and CXXX,YYY;h in (4.14) with
h = 0, 1, 2 are estimated by the classical estimators ĈX;h resp. by ĈXXX,YYY;h with integral kernels

k̂X;h(s, t) := 1
M − h

M−h∑
k=1

Xk(s)Xk+h(t), ∀s, t ∈ [0, 1], (4.15)

resp. k̂XXX,YYY;h(s, t) := 1
M − h

M−h∑
k=1

Xk(s)Yk+h(t), ∀s, t ∈ [0, 1]. (4.16)

Figure 7: The integral kernels k(1)
XXX;0, k

(2)
XXX;0, k

(3)
XXX;0 (first row) and k

(1)
XXX,YYY;−1, k

(2)
XXX,YYY;−1 (second row) of the operators in the three resp.

two components of CXXX;0 in (4.13) resp. CXXX,YYY;−1 in (4.14). These kernels result by the associated sum of the integral kernels
kX;0, kX;1, kX;2 and kXXX,YYY;0, kXXX,YYY;1, kXXX,YYY;2 of the operators CX;0,CX;1,CX;2 resp. CXXX,YYY;0,CXXX,YYY;1,CXXX,YYY;2 which were approximated by
their respective operators in (4.12) with K = 100.

Figure 8: The estimators k̂(1)
XXX;0, k̂

(2)
XXX;0, k̂

(3)
XXX;0 (first row) and k̂

(1)
XXX,YYY;−1, k̂

(2)
XXX,YYY;−1 (second row) for the integral kernels k(1)

XXX;0, k
(2)
XXX;0, k

(3)
XXX;0

resp. k(1)
XXX,YYY;−1, k

(2)
XXX,YYY;−1 of the operators in the three resp. two components of CXXX;0 in (4.13) resp. CXXX,YYY;−1 in (4.14). These estimators

result by the associated sum of the estimators k̂X;0, k̂X;1, k̂X;2 in (4.15) and k̂XXX,YYY;0, k̂XXX,YYY;1, k̂XXX,YYY;2 in (4.16) with M = 1000 for the
operators CX;0,CX;1,CX;2 resp. CXXX,YYY;0,CXXX,YYY;1,CXXX,YYY;2.
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Finally, in Table 1, we list estimation errors for the operators CXXX;h and CXXX,YYY;h of the processes XXX := (Xk)k∈Z
and YYY := (Yk)k∈Z in (4.1) for several sample sizes M = N and various h,m, n which may depend on M, with
h ≥ 0 w.l.o.g. Due to centeredness of XXX and YYY , ĈXXX;h in (3.5) resp. ĈXXX,YYY;h in (3.9) are used to estimate CXXX;h
and CXXX,YYY;h, which satisfy due to our processes’ definition and h ≥ 0,

ĈXXX;h= 1
M − h−m+ 1

M−h∑
k=m

Xk ⊗Xk+h, (4.17)

resp. ĈXXX,YYY;h= 1
M − h−max(m,n− h) + 1

M−h∑
k=max(m,n−h)

Xk ⊗ Yk+h. (4.18)

In order to calculate the estimation errors, the equations

||ĈXXX;h − CXXX;h||2SHm =
m∑
i=1

m∑
j=1
||ĈX;h+i−j − CX;h+i−j ||2SH , (4.19)

||ĈXXX,YYY;h − CXXX,YYY;h||2SHm,Hn =
m∑
i=1

n∑
j=1
||ĈXXX,YYY;h+i−j − CXXX,YYY;h+i−j ||2SH (4.20)

are utilized, where ĈX;h+i−j and ĈXXX,YYY;h+i−j equal ĈXXX;h in (4.17) resp. ĈXXX,YYY;h in (4.18) with Xk,Xk+h and Yk+h
replaced by Xk+1−i, Xk+h+1−j resp. Yk+h+1−j for all i, j. Thereby, the equations (4.19) and (4.20) follow from
the definition of the given norms and operators (see also (4.9), (4.10)).

||ĈXXX;h − CXXX;h||2SHm ||ĈXXX,YYY;h − CXXX,YYY;h||2SHm,Hn

m=mM , n=nM m=3 m=bM1/4c m=3, n=2 m=n=bM1/4c

M

h=hM 0 1 bM1/4c 0 1 bM1/4c 0 1 bM1/4c 0 1 bM1/4c

100 .0223 .0216 .0187 .0223 .0216 .0187 .0084 .0083 .0079 .0126 .0125 .0118
200 .0058 .0055 .0043 .0058 .0055 .0043 .0010 .0009 .0008 .0014 .0014 .0012
500 .0141 .0132 .0083 .0498 .0475 .0313 .0044 .0039 .0026 .0303 .0289 .0198

1000 .0126 .0118 .0060 .1137 .1101 .0628 .0036 .0032 .0017 .0773 .0747 .0435
2000 .0125 .0118 .0050 .2331 .2271 .1163 .0036 .0032 .0015 .1714 .1670 .0873
5000 .0105 .0099 .0027 .5825 .5712 .2236 .0028 .0024 .0007 .4597 .4509 .1785

Table 1: Simulation of ||ĈXXX;h − CXXX;h||2SHm
in (4.19), ||ĈXXX,YYY;h − CXXX,YYY;h||2SHm,Hn

in (4.20) for various sample sizes M, lags h and
Cartesian powers m,n, with CX;h+i−j and CXXX,YYY;h+i−j approximated by C̃XXX;h+i−j;100 resp. C̃XXX,YYY;h+i−j;100 in (4.12).

Remarks 4.3. All parameters in the simulation study with estimation errors in Table 1 are chosen so that the
prerequisites of Theorems 3.1 and 3.3 are satisfied. These errors run for growing sample size M below or as
the asymptotic upper bounds in Theorems 3.1 and 3.3. Up to M = 200, probably due to fortunate random
errors, the calculated errors decrease for fixed resp. increase for increasing m = mM , n = nM and any h = hM
as expected. That the errors for increasing m = mM , n = nM not yet visibly approach zero could be because M
is either too small, or that small values of the estimators or the operators to be estimated are rounded to zero,
leading to larger estimation errors. Also, the estimation errors for the lag-h-cross-covariance are smaller as for
the lag-h-covariance operators due to their definiton.

5 Conclusions
This article proposes estimators for lagged covariance and cross-covariance operators and the principal compo-
nents of (lag-0-)covariance operators of processes in separable Hilbert spaces, especially of processes obtained by
successively stacking Hilbert space-valued elements, hence in Cartesian products of Hilbert spaces. The focus lies
on the asymptotic upper bounds of the estimation errors. All estimators are stated for centered processes and
for those with an unknown mean. The asymptotic upper bounds allow both the processes’ Cartesian powers and
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the lag to be fixed or to increase w.r.t. the sample size, and the principal components are estimated separately
and uniformly. Our findings are useful whenever one is concerned about the dependence within one or between
two processes having values in (Cartesian products of) Hilbert spaces, or one has to derive asymptotic upper
bounds of estimation errors where the given estimators rely on empirical (lagged) covariance or cross-covariance
operators, see [2; 28] for latter. These findings can also be applied to covariance and cross-covariance operators
of random variables in separable Hilbert spaces, and since Rn endowed with the canonical inner product is a
separable Hilbert space for any n ∈ N, also to conventional (lagged) covariance and cross-covariance matri-
ces. Furthermore, it would be interesting to deduce our results also on separable Banach spaces, see, e.g., [36]
who dealt with the estimation of AR operators in Banach spaces, to derive the asymptotic distribution of our
estimation errors (see [33]) as well as their asymptotic lower bounds.

6 Proofs
Proof of Lemma 3.1. m̂XXX is an unbiased estimator for mXXX due to its definition. X = (Xk)k and XXX = (Xk)k
are stationary, and X1+h, X1+h;h are independent for all h. Thus, similar to [18], due to mXXX = (mX , ...,mX)T ∈
Um, (2.4), Cauchy-Schwarz inequality, Zk := Xk − mXXX and Zk := Xk − mX for any k, holds with M̃ =
M̃M ,M = MM in Assumption 3.1:

E||m̂XXX −mXXX ||2Um = M−2
M̃∑

i,j=m
E〈Zi,Zj〉Um = mM−2

M∑
i,j=1

E〈Zi, Zj〉U

= mM−1
[
ν2,U (Z1) + 2

M−1∑
h=1

M− h
M

E〈Z1, X1+h−X1+h;h〉U
]

≤ mM−1ν2,U (Z1)
[

1 + 2
∞∑
h=1

ν2,U (X1+h −X1+h;h)
]

= O(mM−1) = O(mpM−1) for M →∞,

where the last two steps hold due to L4
U -approximibility of (Xk)k and (3.3).

In various conversions for deriving our upper bounds the following two Lemmas are utilized.

Lemma 6.1. Let (H, || · ||H) be a separable Hilbert space. Also, let (Sk)k∈Z be a stationary L4
H-process, and for

some l ∈ N,Sk := (Sf(k,1), ..., Sf(k,l))T for all k and some function f : Z× {1, ..., l} → Z. Then,

ν4,Hl(Sk) ≤
√
l ν4,H(Sj), ∀j, k. (6.1)

Proof. From the definition of Sk and ν4,Hl(·), from stationarity of the L4
H-process (Sk)k and Cauchy-Schwarz

inequality follows

ν4
4,Hl(Sk) = E

[( l∑
m=1
||Sf(k,m)||2H

)2 ]
≤

l∑
m,n=1

E||Sj ||4H = l2ν4
4,H(Sj). �

Lemma 6.2. Let Assumption 3.1 hold. Moreover, we define Xm+j;l := (Xm+jp;l, ..., X1+jp;l)T and Yn+j;l :=
(Yn+jq;l, ..., Y1+jq;l)T for any j, l,m, n, p, q.

(a) The processes (Xk)k∈Z and (Yk)k∈Z satisfy
∞∑
k=1

ν4,Um(Xk −Xk;k) <∞ resp.
∞∑
k=1

ν4,Vn(Yk − Yk;k) <∞. (6.2)

Thereby, (Xk)k is L4
Um -m-approximable for p = 1, and (Yk)k is L4

Vn -m-approximable for q = 1.
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(b) For the process (Wk,h)k∈Z, with h ∈ Z and Wk,h := Xk ⊗ Yk+h, holds with Wk,h;l := Xk;l ⊗ Yk+h;l :
∞∑
k=1

ν2,SUm,Vn(Wk,h −Wk,h;k)

≤
√
mn

[ ∞∑
k=1

ν4,V(Y1)ν4,U (Xk −Xk;k) + ν4,U (X1)ν4,V(Yk − Yk;k)
]
. (6.3)

Moreover, (Wk+h)k is L2
Um,Vn-m-approximable for h ≤ 0 if p = q = 1.

Proof. (a) From the definition of Xk,Xk;k,Yk,Yk;k for all k follows ν4,Um(Xk −Xk;k)≤
√
mν4,U (Xk −Xk;k)

and ν4,Vn(Yk − Yk;k)≤
√
n ν4,V(Yk − Yk;k), and thus (6.2). Hence, since (Xk)k and (Yk)k are non-anticipative

w.r.t. (εk)k for p = 1 resp. q = 1, (Xk)k and (Yk)k are L4
Um-m- resp. L4

Vn -m-approximable.

(b) Bilinearity of ⊗ : Um × Vn → Vn, Minkowski inequality, ||u⊗ v||SUm,Vn = ||u||Um ||v||Vn for u ∈ Um,v ∈ Vn,
Cauchy-Schwarz inequality, (6.1) and L4-m-approximability of (Xk)k and (Yk)k yield

∞∑
k=1

ν2,SUm,Vn(Wk,h −Wk,h;k) ≤
∞∑
k=1

ν2,SUm,Vn((Xk −Xk;k)⊗Yk+h)+ ν2,SUm,Vn(Xk⊗(Yk+h − Yk+h;k))

≤
∞∑
k=1

ν4,Um(Xk −Xk;k)ν4,Vn(Y1) + ν4,Um(X1)ν4,Vn(Yk − Yk;k)

≤
√
mn

[ ∞∑
k=1

ν4,V(Y1)ν4,U (Xk −Xk;k) + ν4,U (X1)ν4,V(Yk − Yk;k)
]
< ∞.

Moreover, since (Xk)k, (Yk+h)k and consequently also (Wk+h)k are non-anticipative w.r.t. (εk)k for h ≤ 0 if
p = q = 1, (Wk+h)k is indeed L2

SUm,Vn-m-approximable for h ≤ 0 if p = q = 1.

Proof of Theorem 3.1. We use ideas from the proof of [19], Theorem 3.1. ĈXXX;h is an unbiased estimator for
CXXX;h with |h| < M = MM due to its definition. Since ||ĈXXX;h − CXXX;h||SUm = ||ĈXXX;−h − CXXX;−h||SUm for all h, we
show (3.6) for h ≥ 0 w.l.o.g. Stationarity of XXX implies for any h with 0 ≤ h < MM where Zk,h := Wk,h − CXXX;h
with Wk,h := Xk ⊗Xk+h, and MM,h = MM − |h| :

E||ĈXXX;h− CXXX;h||2SUm = M−2
M,h

∑
|r|<MM,h

(MM,h − |r|)E〈Zm,h,Zm+r,h〉SUm

≤ 2M−1
M,h

∞∑
r=0

E〈Zm,h,Zm+r,h〉SUm . (6.4)

Let σ(Tk, k ∈ I) be the σ-algebra generated by the random variables Tk with k ∈ I where I ⊆ Z is some
index set. From Assumption 3.1 (a), the definition of Xk for any k for some p ∈ N, and of Wk,h for any h, k

follows for h ≥ 0:

Zm,h = Wm,h − CXXX;h ∈ σ(X1, ..., Xm, X1+hp, ..., Xm+hp) ⊆ σ(εm+hp, εm+hp−1, ...)

where (εk)k is an i.i.d. process, and for any r ∈ N,

Zm+r,h = Wm+r,h − CXXX;h ∈ σ(εm+(h+r)p, εm+(h+r)p−1, ...).

Consequently, Zm,h and Zm+r,h;r−h := Wm+r,h;r−h − CXXX;h with Wm+r,h;r−h = Xm+r;r−h ⊗Xm+h+r;r−h (see
Lemma 6.2 with Yk = Xk,Yk;l = Xk;l) are independent for r > h for any m, p. With that being said, and
since Zm,h and Zm+r,h;r−h are centered for all h, k, r, Cauchy-Schwarz inequality, (2.4) and Lemma 6.2 with
Yk = Xk,Yk;l = Xk;l for all k, l, yield for the sum in (6.4):

∞∑
r=0

E〈Zm,h,Zm+r,h〉SUm =
h∑
r=0

E〈Zm,h,Zm+r,h〉SUm +
∑
r>h

E〈Zm,h,Wm+r,h −Wm+r,h;r−h〉SUm (6.5)
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≤ ν2,SUm(Zm,h)
[
(1+h)ν2,SUm(Zm,h) +

∞∑
k=1

ν2,SUm(Wk,h−Wk,h;k)
]

(6.6)

≤ ν2,SUm(Zm,h)
[
(1+h)ν2,SUm(Zm,h) + 2mν4,U (Xm)

∞∑
k=1

ν4,U (Xk−Xk;k)
]
. (6.7)

Further, we have ν2
2,SUm(Zm,h) := E||Zm,h||2SUm = E||Wm,h||2SUm− ||CXXX;h||2SUm due to [20], Theorem 7.2.2, and

||Wm,h||2SUm= ||Xm||2Um ||Xm+h||2Um . Hence, (2.3), || · ||SUm ≤ || · ||NUm , Cauchy-Schwarz inequality, stationarity
of (Xk)k and (6.1) yield

ν2
2,SUm(Zm,h) ≤ 2E||Xm||4Um≤ 2m2ν4

4,U (X1). (6.8)

From (6.4), (6.7), (6.8) and L4
U -m-approximibility of (Xk)k follows

E||ĈXXX;h− CXXX;h||2SUm≤ a(1+h)m2M−1
M,h

for some constant a independent of h = hM ,m = mM , p = pM in Assumption 3.2 (a) and thus also of MM,h =
MM − |h| with MM,h ∼ p−1M after Assumption 3.3 (a) and (3.3). Hence, (3.6) is verified.

Proof of Theorem 3.2. From stationarity of XXX = (Xk)k and bilinearity of ⊗ : Um × Um → Um follows for
h with 0 ≤ h < MM − 1, and MM,h = MM − |h| :

E(Ĉ ′XXX;h) = 1
MM,h−1

MM,h∑
k=1

E
((

Xk−
1

MM,h

MM,h∑
i=1

Xi

)
⊗
(
Xk+h−

1
MM,h

MM,h∑
j=1

Xj+h
))

= 1
MM,h(MM,h−1)

(
M 2
M,hCXXX;h −

MM,h∑
i,k=1

CXXX;k+h−i

)
= CXXX;h −

1
MM,h(MM,h−1)

∑
1≤i,k≤MM,h

i 6=k

CXXX;k+h−i. (6.9)

Hence, Ĉ ′XXX;h is an unbiased estimator for CXXX;h for h with 0 ≤ h < MM − 1 if the sum in (6.9) equals 0LUm

which can also be shown for h with 1 −MM < h < 0. Now, we verify (3.8). Since ||Ĉ ′XXX;h − CXXX;h||SUm =
||Ĉ ′XXX;−h − CXXX;−h||SUm for all h, let h ≥ 0 w.l.o.g. For h < MM − 1 holds

Ĉ ′XXX;h = MM,h

MM,h−1(mXXX − m̂XXX )⊗ (mXXX − m̂′XXX ) + 1
MM,h−1

M̃M,h∑
j=m

Uk ⊗Uk+h

= MM,h

MM,h−1

[
(mXXX − m̂XXX )⊗ (mXXX − m̂′XXX ) + ĈUUU;h

]
(6.10)

with ĈUUU;h as in (3.5) based on a sample Um, ...,UM̃M,h
of UUU := (Uk)k∈Z where Uk := Xk − mXXX . (6.10),

CXXX;h = CUUU;h, ∆-inequality, (a+ b+ c)2 ≤ 3(a2 + b2 + c2) for a, b, c ∈ R and ||u⊗ u′||SUm = ||u||Um ||u′||Um for
u, u′ ∈ Um yield

||Ĉ ′XXX;h− CXXX;h||2SUm =
∣∣∣∣∣∣ 1

MM,h−1

[
MM,h(mXXX − m̂XXX )⊗ (mXXX − m̂′XXX ) + ĈUUU;h − CUUU;h

]
+ CXXX;h

∣∣∣∣∣∣2
SUm

≤ 3
(MM,h−1)2

[
M 2
M,h||m̂XXX −mXXX ||2Um ||m̂′XXX −mXXX ||2Um

+ M 2
M,h||ĈUUU;h − CUUU;h||2SUm + ||CXXX;h||2SUm

]
.

We have ||m̂XXX − mXXX ||2Um||m̂′XXX − mXXX ||2Um = OP(m2M−2
M,h) after Lemma 3.1, ||ĈUUU;h − CUUU;h||2SUm = OP((1 +

|h|)m2pM−1) after Theorem 3.1, and ||CXXX;h||2SUm ≤ m2E||X1||4U due to || · ||SUm ≤ || · ||NUm , (2.3), Cauchy-
Schwarz inequality and (6.1). Then, under Assumptions 3.1-3.3 (a), thus MM,h ∼ p−1M after (3.3), and

||Ĉ ′XXX;h− CXXX;h||2SUm = OP(m2M−2
M,h) + OP((1+|h|)m2pM−1) + O(m2M−2

M,h) for M →∞
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= OP((1+|h|)m2pM−1) for M →∞. �

Proof of Theorem 3.3. ĈXXX,YYY;h is an unbiased estimator for CXXX,YYY;h for h with n − M̃M ≤ h ≤ ÑN −m by
definition. From deliberations in the proof of Theorem 3.1, especially (6.4) and (6.6) with Zk,h := Wk,h−CXXX,YYY;h
and Wk,h := Xk ⊗ Yk+h,

ν2
2,SUm,Vn(Z1,h) ≤ 2

(
E||Xm||4UmE||Yn||4Vn

)1/2≤ 2mnν2
4,U (X1)ν2

4,V(Y1) (6.11)

similar as in (6.8), and Lemma 6.2 follows

E||ĈXXX,YYY;h− CXXX,YYY;h||2SUm,Vn

≤ 2L −1
M,N,hν2,SUm,Vn(Z1,h)

[
(1+h)ν2,SUm,Vn(Z1,h) +

∞∑
k=1

ν2,SUm,Vn(Wk,h −Wk,h;k)
]

≤ 2
√

2mnL −1
M,N,hν4,U (X1)ν4,V(Y1)

·
[√

2 (1+h)ν4,U (X1)ν4,V(Y1) +
∞∑
k=1

ν4,V(Y1)ν4,U (Xk −Xk;k) + ν4,U (X1)ν4,V(Yk − Yk;k)
]

≤ b(1+h)mnL −1
M,N,h (6.12)

for some constant b independent of M,N, and thus of all given sequences.

Proof of Theorem 3.4. For h with n− M̃M ≤ h ≤ ÑN −m holds

E(Ĉ ′XXX,YYY;h) = ĈXXX,YYY;h −
1

LM,N,h(LM,N,h−1)
∑

1≤i,k≤LM,N,h

i 6=k

CXXX,YYY;k+h−i

similar as in the proof of Theorem 3.2. Thus, Ĉ ′XXX,YYY;h is an unbiased estimator for CXXX,YYY;h for these h if the sum
above is 0LUm,Vn . Moreover, as in Theorem 3.2,

Ĉ ′XXX,YYY;h = LM,N,h
LM,N,h−1

[
(mXXX − m̂XXX )⊗ (mYYY − m̂′YYY ) + ĈUUU,VVV;h

]
,

with ĈUUU,VVV;h defined in (3.9) based on samples Um, ...,UM̃M
of UUU := (Uk)k∈Z and Vn, ...,VÑN

of VVV := (Vk)k∈Z with
Uk := Xk −mXXX resp. Vk := Yk −mYYY . Arguments in the proofs of Theorem 3.2-3.3 imply with the assertions
of Lemma 3.1, Theorem 3.3, (2.3), (6.11) and CUUU,VVV;h = CXXX,YYY;h for M,N →∞ as claimed:

||Ĉ ′XXX,YYY;h− CXXX,YYY;h||2SUm,Vn ≤
3

(LM,N,h−1)2

[
L 2
M,N,h||m̂XXX −mXXX ||2Um ||m̂′YYY −mYYY ||2Vn

+ L 2
M,N,h||ĈUUU,VVV;h− CUUU,VVV;h||2SUm,Vn + ||CUUU,VVV;h||2SUm,Vn

]
= OP(mnL −2

M,N,h) + OP((1+|h|)mnL −1
M,N,h) + O(mnL −2

M,N,h)
= OP((1+|h|)mnL −1

M,N,h). �

Corollary 3.1. Follows from (3.14), || · ||LUm≤ || · ||SUm and Theorems 3.1-3.2 with h = 0.

Proof of Lemma 3.2. The assertions are a consequence of (3.20) as well as Theorems 3.1-3.2 with h = 0,
where (3.25) and (3.27) also include (3.23).

Proof of Theorem 3.5. From the definition of c̆′j† in (3.16) follows

〈c̆′j†, cj〉Um〈ĉ′j , cj〉Um = 1− ||̆c′j− cj ||2Um + 1
4 ||̆c
′
j− cj ||4Um + 〈ĉ′j , cj〉Um

∞∑
i=1

ζi〈ui, cj〉Um

i2M
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where for the last term holds due to independence of given random variables, E|〈ĉ′j , cj〉Um| ≤ 1, ζi ∼ N (0, 1) for
all i and the monotone convergence theorem:

E
[
|〈ĉ′j , cj〉Um|

∞∑
i=1

|ζi〈ui, cj〉Um|
i2M

]
= E|〈ĉ′j , cj〉Um|

∞∑
i=1

|〈ui, cj〉Um|E|ζi|
i2M

= O(M−1) for M →∞.

Thus, with (3.28) and 1− sgn(1+Xn) = o(an) for real-valued processes (Xn)n with Xn = oP(1) and real-valued
zero sequences (an)n, for any j indeed holds for M →∞,

||̆c′j‡− cj ||2Um = ||̆c′j− cj ||2Um + 2
[
1− sgn(〈c̆′j†, cj〉Um〈ĉ′j , cj〉Um)

]
= OP(γ2

j,mm
2pM−1) + 2

[
1− sgn

(
1 + OP(γ2

j,mm
2pM−1) + OP(γ4

j,mm
4p2M−2) + OP(M−2)

)]
= OP(m2pM−1).

Similarly, with (3.25), we also obtain

sup
j≤k
||̆c′j‡− cj ||2Um≤ sup

j≤k
||̆c′j− cj ||2Um + sup

j≤k
2
[
1− sgn(〈c̆′j†, cj〉Um〈ĉ′j , cj〉Um)

]
= OP(m2pM−1) for M →∞.

Moreover, due to the definition of c̆†j in (3.16),

E
[

1− 〈c̆†j , cj〉Um〈ĉj , cj〉Um

]
≤ E||̆cj − cj ||2Um + E

[
|〈ĉj , cj〉Um |

∞∑
i=1

|ζi〈ui, cj〉Um |
i2M

]
= O(m2pM−1) for M →∞.

Thus, for any j holds due to the definition of c̆j and c̆‡j , and because of (3.26):

E||̆c‡j − cj ||2Um≤ 2E||̆cj − cj ||2Um + 2E
([

sgn〈c̆†j , cj〉Um − sgn〈ĉj , cj〉Um

]2)
≤ O(m2pM−1) + 4P

(
1− 〈c̆†j , cj〉Um〈ĉj , cj〉Um > 1/2

)
for M →∞

= O(m2pM−1) for M →∞.

Hence, (3.30) is verified, and a similar procedure leads with (3.27) to (3.31).

Proof of Lemma 4.1. The definition of ZN and Z̃N for any N ∈ N yields ZN − Z̃N = AN(Z0 − Z̃0), and
submultiplicity of the operator norm thus

E||ZN − Z̃N ||νH ≤ ||A||NLHE||Z0 − Z̃0||νH.

Since (Zk)k∈Z, (Z̃k)k∈Z are LνH-processes because (εk)k∈Z is one and due to the definition of Zk and Z̃k for all
k, the expected value on the right is finite. By choosing ρ := ||A||LH< 1, the assertion is proven.

Acknowledgements
I thank Alexander Meister (University of Rostock), Siegfried Hörmann (Graz University of Technology), Gregory
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