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Abstract: This paper provides a review of an emerging field in the food processing sector, referring1

to efficient and safe food supply chains, ’from farm to fork’, as enabled by Artificial Intelligence2

(AI). Recent advances in machine and deep learning are used for effective food production, energy3

management and food labeling. Appropriate deep neural architectures are adopted and used for4

this purpose, including Fully Convolutional Networks, Long Short-Term Memories and Recurrent5

Neural Networks, Auto-Encoders and Attention mechanisms, Latent Variable extraction and6

clustering, as well as Domain Adaptation. Three experimental studies are presented, illustrating7

the ability of these AI methodologies to produce state-of-the-art performance in the whole food8

supply chain. In particular, these concern: (i) predicting plant growth and tomato yield in9

greenhouses, thus matching food production to market needs and reducing food waste or food10

unavailability; (ii) optimizing energy consumption across large networks of food retail refrigeration11

systems, through optimal selection of systems that can get shut-down and through prediction of12

the respective food de-freezing times, during peaks of power demand load; (iii) optical recognition13

and verification of food consumption expiry date in automatic inspection of retail packaged food,14

thus ensuring safety of food and people’s health.15

Keywords: deep learning; deep neural networks; recurrent LSTM models; attention layers; latent16

variable extraction; domain adaptation; yield and growth prediction in greenhouses; energy17

optimization in retail refrigerator systems; verification and recognition of expiry date in retail food18

packaging.19

1. Introduction20

Food and drink processing is one of the largest manufacturing sectors worldwide,21

including all processing steps ’from farm to fork’ [1]. The economic values of the AI-22

enabled precision farming market is estimated to grow and reach EUR 11,8 billion23

by 2025 globally [2]. There are significant challenges within these processing steps,24

regarding waste, safety and energy use [3]. Artificial Intelligence (AI) and Machine25

Learning (ML) technologies offer a transformative solution and recent Deep Learning26

(DL) approaches have innovated AI-enabled efficient yield and food production, food27

conservation and supply, reducing food waste and improving food safety.28

This paper presents recent progress in the food production and supply pipeline29

achieved through the use of AI and DL technologies, focusing on three main tasks of30

the ’from farm to fork’ pipeline: a) accurate prediction of yield growth and production31

in greenhouses; b) optimization of power consumption in food retailing refrigeration32

systems; c) quality control in retail food packaging.33

At first, accurately predicting yield and food production is of great significance34

for reducing food waste and achieving smooth supply of food to supermarkets. Crop35

growers nowadays prefer using greenhouses than field growing. By using greenhouses,36

growers can extend the growing season and protect crops against changes of weather37

and temperature. In addition, in greenhouses, environmental parameters, such as38

temperature, humidity, radiation, carbon dioxide, soil quality and fertilization, can be39

controlled, providing a safe environment for crop growing [4,5].40
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Developing models which can effectively predict growth and yield can help grow-41

ers improve the environmental control for better production, match supply and market42

demand and lower costs [6,7]. Greenhouse farming operations, yield and production pre-43

diction still rely heavily on human expertise. Automated yield and production prediction44

systems can let growers effectively anticipate weekly fluctuations and avoid problems of45

both over-demand and overproduction arising if the yield cannot be accurately predicted46

[8,9].47

As with many bio-systems, plant growth is a highly complex and dynamic environ-48

mentally linked system. Therefore, growth and yield modeling is a significant scientific49

challenge [10,11]. Modeling approaches vary in a number of aspects, including, scale50

of interest, level of description and integration of environmental stress. There is a large51

number of tools that can help farmers in making decisions. These can provide yield52

rate prediction, suggest climate control strategies, or synchronise crop production with53

market demands.54

According to [12,13] two basic modeling approaches are possible, namely, "knowledge-55

driven" and "data-driven" modeling. The knowledge driven approach relies mainly on56

existing domain knowledge, including biophysical models for specific species and plants57

[14,15]. In contrast, a data-driven modeling approach is capable of formulating a model58

solely from gathered data without necessarily using domain knowledge [16]. In this59

paper we focus on recently developed deep learning models, which can be trained with60

environmental data (CO2, humidity, radiation, outside temperature, inside temperature),61

as well as data for the actual yield and for significant plant characteristics, so as to62

accurately predict the yield, or these characteristics.63

In the following phase of the pipeline, food enters the retailing phase, during which64

is stored in refrigeration systems of supermarkets. Food refrigeration accounts for a large65

percentage of electricity demands in developed countries, e.g., it is over 14% of UK’s66

electricity demands, and mass refrigeration is responsible for a large percentage of carbon67

emissions, e.g. around 12% in UK. When energy consumption exceeds certain limits, this68

can cause unmanageable spikes in energy usage, with unpredictable problems [17,18].69

To reduce load, countries impose response times on large retail energy consumers,70

requiring them to react urgently or face high financial penalties. For large companies71

with thousands of refrigerators, meeting this requirement relies on staff reactiveness, a72

highly manualized, resource intensive, non-synchronous procedure .73

A procedure to cope with such cases is to turn off some of the refrigerators in such74

cases for some period of time [19,20]. Using AI and machine learning, it is possible to75

predict which refrigerators to select and for how long to turn them off, whilst maintaining76

food quality and safety. In this paper we focus on a deep learning approach that has77

been recently developed for coping with such situations.78

In the third phase of the pipeline, after assuring a safe and efficient storage of food79

in retailing refrigeration systems, the food is packaged and delivered to the shelves of80

supermarkets, so that customers can buy and consume it. Serious problems are also81

met in this phase as well, due to large amounts of food that remain unsold beyond their82

expiration date. Up to 30% of food is wasted each year, and food poisoning (including83

over 64,000 annual incidents in the UK from Campylobacter alone) is costly for the84

national healthcare system and individuals affected [21].85

Food manufacturing faces the risk of product recalls and emergency product with-86

drawals caused by human error on packaging lines; if the expiry date is incorrectly listed87

as too early, consumers may believe that the product has reached the end of its shelf life88

and not consume, i.e., waste it. Conversely, if the expiry date exceeds the actual date,89

consumers may use the product beyond its safe timeframe, risking illness or potential90

fatality.91

Due to prevalence of inkjet printers in food industry, characterized by high degree92

of quality variability, traditional Optical-Character-Recognition based vision systems93

have not been widely implemented, as they struggle with varied or distorted text. In this94
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paper we focus on recently developed deep learning systems that can identify and verify95

the presence and legibility of expiry date on food packaging photos captured while the96

products pass along production lines [22,23].97

Section 2 presents the methods developed and used to implement the above de-98

scribed frameworks. Section 3 describes the application of the developed deep learning99

methodologies to real life environments and the achieved performance in all three phases100

of the pipeline. Discussion of the results that have been obtained and description of the101

future directions are provided in Section 4.102

2. Materials and Methods103

2.1. Fully Convolutional Networks104

Fully Convolutional Networks (FCN) [24] do not contain dense layers, like typical105

Convolutional Neural Networks (CNN), but contain 1x1 convolutions that perform106

the task of fully connected layers. They are used in the experimental Section for text107

detection in images. Their architecture includes three parts: a feature extractor stem part,108

a feature merging branch part and the output part.109

The feature extractor stem part is a PVANet [25], including convolutional and110

pooling layers. In our implementation, four feature map are extracted from an input111

image through the convolutional layers, enabling multi-scale detection of text regions112

of different sizes. Moreover, each pooling layer down-samples a corresponding feature113

maps by a factor of 2.114

The extracted four feature maps, fi, i = 1, . . . , 4, are then fed in the feature-merging115

branch part. In the i-th merging stage, the feature map fi−1 obtained in the former stage116

is fed to an unpooling layer for size doubling and then concatenated with the feature117

map fi into a new feature map. A convolutional 1×1 operator is then applied, followed118

by a convolutional 3×3 operator that produces the merging stage output. Finally, a119

convolutional 3×3 layer produces the merging output and feeds it to the output layer.120

Multiple convolutional 1×1 operations are then used to produce the network outputs.121

2.2. Long Short-Term Memories122

Long Short-Term Memories (LSTM) are a variation of the Recurrent Neural Network123

(RNN) architecture [26]. Networks composed of LSTM units have been able to solve the124

gradient vanishing problem met in long-term time series analysis.125

To achieve this, the LSTM structure contains three modules: the forget gate, the126

input gate and the output gate. The forget and input gates control which part of the127

information should be removed, or reserved to the network; the output gate uses the128

processed information to generate the provided output. LSTM units also include a Cell129

State, which allows the information to be saved for a long time.130

2.3. Convolutional-Recurrent Neural Networks131

Convolutional-Recurrent Neural Networks (CRNN) are lightweighted networks,132

which are used in the experimental section for text recognition. They include three parts,133

i.e., a feature extraction part, a bidirectional LSTM-RNN part and a transcription layer134

part.135

The feature extraction part consists of a VGG network [27]. An input image is136

divided into T different image patches; feature vectors x1, x2, ..., xT are extracted from137

the different patches through convolutional and pooling layers. These feature vectors138

are then fed to a deep bidirectional Recurrent Neural Network (RNN) composed of139

recurrent layers with LSTM units. The RNN part can captures contextual dependencies140

between text in consecutive image patches. It is also able to operate on arbitrary lengths141

of text sequences.142

The final layer in the CRNN is used for transcription, converting the text predictions143

made by the bidirectional LSTM-RNN into a label sequence. This is achieved through144
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maximization of a conditional probability given the bidirectional LSTM-RNN predictions145

[28].146

2.4. Encoder-Decoder Model147

In LSTM-based encoder-decoder models, the encoder part compresses the infor-148

mation from the entire input sequence into a vector composed of the sequence of the149

LSTM hidden states. Consequently, the encoder summarizes the whole input sequence150

(x1, . . . , xt) into the cell (C0, . . . , Ct−1) and memory (h1, . . . , ht−1) state vectors and passes151

them to the decoder [29]. The latter uses this representation as initial state to reconstruct152

the time series (St′ ). The architecture employs two LSTM networks called the encoder153

and decoder, as shown in Figure 1.154
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Figure 1. LSTM encoder decoder architecture

.155

2.5. Attention Mechanisms156

Attention mechanisms help to focus on feature segments of high significance [30].157

An attention mechanism [31] models long-term dependencies by computing context158

vectors as weighted sums of all provided information. Such dependencies can be159

computed across the different internal LSTM layers, as well as over the LSTM output160

layers.161

Output Predictions can be derived using the conditional probability distribution of162

the input signal and of the previous samples of the output. These are computed in terms163

of the current context, i.e., a vector holding information of which inputs are important164

at the current step. The context is derived from both the current state and the input165

sequence.166

2.6. Performance Visualization167

Two methodologies are examined in the paper for visualization of the performance168

of the developed prediction models, based either on class activation maps, or on latent169

variable extraction from trained deep models and adaptive clustering.170

2.6.1. Class Activation Mapping171

Deep neural networks are usually viewed as black boxes which do not provide172

means to visualize, or explain the decision making process. Class activation mapping173

(CAM) [32] and Gradient-weighted CAM [33] are efficient ways to visualize the signifi-174

cance of various parts of an input image for network training and decision making.175
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CAM-based methods provide such visualization by generating heat maps for each176

input image, focusing on the areas that influenced the network’s prediction. In practice,177

they highlight the image pixels which are mainly used for classifying each image to a178

specific category.179

2.6.2. Latent Variable Adaptive Clustering180

Extraction of latent variables from trained deep neural networks and generation181

of concise representations through clustering them has been recently used as another182

means for visualising and explaining the decision making process [34–36].183

Let us assume that for each input k, we extract M neuron outputs, as latent variables,184

from the trained deep neural network, forming a vector v(k). In total, we get:185

V =
{
(v(k), k = 1, . . . , N

}
(1)

where N is the number of available training data.186

We generate a concise representation of the v vectors, that can be used as a backward
model, to trace the most representative inputs for the performed prediction. This can
be achieved using a clustering algorithm, e.g., k-means++ [? ], which generates, say, L
clusters Q = {q1, . . . , qL} by minimizing the following criterion:

Q̂k-means = arg min
Q

L

∑
i=1

∑
v∈V

∣∣∣∣v− µi
∣∣∣∣2 (2)

where µi is the mean of v values included in cluster i.187

Then, we compute each cluster center c(i), generating the set C, which constitutes188

the targeted concise representation:189

C =
{
(c(i), i = 1, . . . , L

}
(3)

This representation can be used to provide analysis of variability between distribu-190

tions and adapt information across different food datasets [37].191

2.7. Domain Adaptation192

Most of the deep learning models are developed through supervised learning193

over large annotated datasets. However, labeling large datasets consumes a lot of194

time and is cost ineffective. In addition, when deploying a trained model to a real-life195

processing pipeline, the assumption that both the source (training set) and the target196

one (application-specific environment) are drawn from the same distributions, may not197

be valid. In such cases, the deep learning model, trained on the source domain will198

not generalize well on the target domain. This is known as domain shift and training a199

model in the presence of domain shift is known as Domain Adaptation [38].200

Many domain adaptation methods have been proposed in the last few years. Dis-201

crepancy, Adversarial and Reconstruction based approaches are the three primary do-202

main adaptation approaches currently being applied to address the distribution shift [39].203

Discrepancy-based approaches rely on aligning the distributions in order to minimize204

the divergence between them. The most commonly used discrepancy-based methods205

are Maximum Mean Discrepancy (MMD) [40], Correlation Alignment (CORAL) [41]206

and Kullback–Leibler divergence [42]. Adversarial-based approaches minimize the207

distance between the source and the target distributions using domain confusion, an208

adversarial method [43,44] inspired by Generative Adversarial Networks (GANs) [45].209

Reconstruction-based approaches create a shared representation between the source210

and the target domains whilst preserving the individual characteristics of each domain211

[46,47].212

In the experimental Section we focus on the use of domain adaptation for ensuring213

safety and waste reduction in the food supply chain. The domain adaptation model aims214
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at minimizing the feature discrepancy, for learning domain-invariant representations,215

the class boundary discrepancy, for minimizing the mismatch among different classifiers,216

and classification loss, for improving source data classification and leading to improved217

generalization on the target dataset [48].218

The model jointly adapts features combining MMD with CORAL metrics, in order to219

align the underlying first and second order statistics. MMD defines the distance between220

the source and target distributions, with their mean embeddings in the Reproducing221

Kernel Hilbert Space. The CORAL Loss is also used to minimize the distance between222

the second order statistics (covariances) of the source and target features.223

The total feature discrepancy loss is therefore given as:224

LossFD = LossMMD + LossCORAL (4)

In case we are considering domain adaptation from more than one source do-225

mains, the respective classifiers are likely to misclassify the target samples near the226

class boundary, since they are trained using different source domains. In such cases we227

also minimize the class discrepancy loss among classifiers, LossCD [48], making their228

probabilistic outputs similar. Finally, since the network is trained with labeled source229

data, the classification, cross-entropy, loss, LossCL is additionally minimized during230

training.231

LossTOTAL = LossFD + LossCD + LossCL (5)

3. Experimental Study232

Figure 2 shows the described AI-enabled Food Supply Chain, including three pillars,233

which span food production, food storage and maintenance and food distribution and234

consumption:235

- Food production in greenhouse environments, with a focus on predicting yield236

and optimizing crop growth and harvesting.237

- Food storage and maintenance in retailing refrigerator systems, with a focus on238

reducing energy consumption and CO2 production, whilst keeping food safe.239

- Food distribution and consumption with a focus on quality control of retail240

packaging, through visual inspection of the food expiry date, while aiming to reduce241

food waste and avoid public health problems.242

3.1. Food Production in Greenhouse Environments243

3.1.1. Plant Growth Prediction244

Machine learning techniques have been used to predict growth of Ficus plants245

using data collected from four cultivation tables in a greenhouse compartment of the246

Ornamental Plant Research Centre in Destelbergen, Belgium. Greenhouse microclimate247

was continuously monitored, while controlling the window openings, a thermal screen,248

an air heating system, assimilation light and a CO2 adding system. In particular, ficus249

stem diameter was continuously monitored on three plants and data were collected250

corresponding to its hourly variation rate, i.e., as the difference between the current stem251

diameter and the stem diameter recorded on one hour earlier. The environmental data252

were also continuously recorded in hourly basis.253

The prediction problem concerns one-step, two-step and three-step forecasting of254

the stem diameter [49,50]. In one-step forecasting, stem diameter measurements and255

environmental data collected, in a time window of the previous 15 hours, are used256

to predict the stem diameter value in the current hour. In two-step-ahead (6 hour)257

forecasting, the above data are used to predict the stem diameter six hours ahead. Three-258

step-ahead (12 hour) forecasting makes a stem diameter prediction 12 hours ahead.259

Figure 3 presents an effective stem diameter prediction method, based on combi-260

nation of the Encoder-Decoder (ED) model described in Section 2.4, the LSTM model261

described in Section 2.2. and the attention model (AM) described in Section 2.5 [51].262
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Figure 2. Food Supply Chain

Encoder Network

LSTM LSTM LSTM

C1

h1

x x x1 2 t

C2

h2

C0

C t - 1

h t - 1

Decoder Network

LSTM LSTM LSTM

C1

h1

S(init)

C2

h2

C t - 1

h t - 1

' '

' '

'

''

'

S t '

G	 2

2

2

2

1(z)

G0(z)

H 1(Z)

H0(Z)
Reconstructed

Signal

Si
gn
al

P
ro
ce
ss
in
g

INPUT

Attention Attention Attention

Context Context Context

Step 1

Step 2

Step 3

Step 4

LSTM LSTM LSTM

Learned 
Embedding

Pre-trained

Output Layer

Prediction

Step 5

1 2

tanh tanh

V V

Softmax

UWUW

h t d t-1 t+1h td

ee1 T

a a a<t, 1> <t, 2> <t,   T x>

eeee

<<Context =
T

t' = 1
a, t,t' at'

Attention Mechanism

e t+1e t

Context t

T

Figure 3. Deep architecture (WT-ED-LSTM-AM) for stem diameter prediction.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2021                   doi:10.20944/preprints202105.0254.v1

https://doi.org/10.20944/preprints202105.0254.v1


Version April 29, 2021 submitted to Electronics 8 of 21

Table 1: Performance comparison of the WT-ED-LSTM-AM method to machine learning
methods and ablation study

RMSE
Method One Step Prediction Two Step Prediction Three Step Prediction

SVR 0.65 0.70 0.82
RFR 0.74 0.66 0.72
MLP 0.0034 0.0045 0.0048

LSTM 0.0031 0.0033 0.0054
WT-ED-LSTM 0.0028 0.0033 0.0042
ED-LSTM-AM 0.0034 0.0030 0.0046

WT-ED-LSTM-AM 0.0026 0.0028 0.0029

At first (Step 1), a denoising filter is applied to the input data, composed of the263

former stem diameter values and the respective environmental parameters. The filter is264

based on Wavelet Transform (WT) of the input data, removing the WT high frequency265

component, and generating a smoothed version of the input data. The ED model is266

then applied (Step 2). The encoder is pre-trained to extract useful and representative267

embeddings from the reconstructed time series data. A two-layer LSTM (128 and 32268

neurons respectively) are used in the encoder shown in Figure 1. The decoder learns269

to generate the (reconstructed) input signal from the embeddings, thus optimizing this270

feature extraction procedure. Then, the LSTM network, with 128 neurons (Step 3), with271

attention mechanism (Step 4), is trained to model respective long-term dependencies,272

using the learned embedding as input features. A single layer neural network (Step 5)273

provides the final one-step, or multi-step ahead prediction provided by this WT-ED-274

LSTM-AM architecture.275

In the accomplished experiments, the first 70% of data samples constituted the276

training set, the next 10% of data samples were the validation set and the rest 20% of277

data samples formed the test set. Min-max normalization was applied to the input data,278

scaling their values in the range [0, 1].279

The experimental results illustrate the very good performance of the described280

method. Table 1 shows that the method outperforms all standard machine learning281

techniques, including a Support Vector Regressor (SVR), a Random Forest Regressor282

(RFR), a two-layer LSTM and a Multilayer Perceptron (MLP) with Stochastic Gradient283

Descent; a learning rate ls = 0.001 and a batch size of 32 were adopted. All models were284

trained for 100 epochs, using the same training, as well as validation and test data sets.285

The Root Mean Squared Error (RMSE) was used as performance evaluation criterion.286

To illustrate the contribution of the WT and AM steps, Table 1 also illustrates that the287

achieved performance gets worse, if either of these two steps is not included in the288

prediction approach.289

Figure 4 shows the accuracy of Ficus growth one-step prediction by all methods for290

about 600 data samples. It can be seen that the described model successfully performs291

one-step ahead prediction, outperforming the other methods and providing accurate292

estimates of almost all peak values in the original data.293

3.1.2. Yield Prediction294

Tomato crop growing in greenhouse environments is a dynamic and complex295

system, with few models having been studied for it up to now [52,53]. These models296

are physics-dependent and represent biomass partitioning, crop growth, and yield as a297

function of several parameters. They are rather complex, with difficulty in estimating298

initial parameter values and need calibration in every environment.299

The Tompousse model [14] was developed to predict tomato yield in terms of the300

weight of harvested fruits, based on linear relationship between flowering rate and fruit301

growth. Another tomato yield model [15] represented weekly yield fluctuations in terms302
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Figure 4. Performance comparison in one-step prediction (described and standard ML methods).

Figure 5. Performance comparison in tomato yield prediction (by ED-LSTM-AM and standard ML methods).
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of fruit size and harvest rate. Such models [54] can help farmers in making yield rate303

prediction, suggesting climate control strategies and synchronising crop production with304

market demands.305

Machine learning models have been recently developed for tomato yield prediction306

[55]. Such models have been trained with data collected from Greenhouse farms in307

United Kingdom, over a period of two years, including both environmental parameters,308

i.e., CO2, humidity, radiation, outside temperature, inside temperature, as well as, yield309

actual measurements.310

The environmental data were collected on an hourly basis, while the yield on a311

weekly basis. To deal with these data characteristics, data augmentation was performed,312

through interpolation, on the yield measurements, thus resulting in daily data measure-313

ments. Averaging of the hourly environmental data was also performed, so as to achieve314

similar daily representations.315

Experiments with these data also showed the ability of the above-described ED-316

LSTM-AM model (WT did not provide any significant improvement in this case) to317

provide accurate prediction of tomato yield. Figure 5 shows that this model outperforms318

standard ML methods, including SVR and RFR, in tomato yield prediction. The MSE319

in actual yield prediction has been 0.015 for SVR, 0.040 for RFR and only 0.02 for ED-320

LSTM-AM.321

3.2. Food Retailing Refrigeration Systems322

Currently the majority of deep learning frameworks lack, or are still in their infancy,323

with regard to distribution. Novel solutions such as TensorFlow-distribute, or IBMs324

distributed deep learning are emerging to face this issue. The ability to share data325

between distributed nodes implementing, for example, the LSTM networks described in326

Section 2.2, is a critical bottleneck, despite the prevalence of databases providing very327

mature and advanced functionalities, such as MongoDB’s aggregate pipeline. There328

are few parallelisable deep learning frameworks, which can broadly be categorised as329

follows [56]:330

- Model parallelism (TensorFlow, Microsoft CNTK), where a single deep model is331

trained using a group of hardware instances and a single data set.332

- Data parallelism, where each hardware instance is trained across different data.333

- Hybrid parallelism, where a group of hardware trains a single model, but multiple334

groups can be trained simultaneously with independent data sets.335

- Automatic selection, where different parts of the training/test process are tiled,336

with different forms of parallelism between tiles.337

In the food supply chain, machine learning methods can be effectively used in a338

hybrid parallel framework for controlling massive amounts of food retailing refrigeration339

systems. This was shown in a recent implementation [57], in which multiple LSTM340

models were coupled with a MongoDB database [58] and were trained, using 110,000341

real-life datasets - from about 1000 refrigerators.342

The generated Nemesyst system [59] has been capable of predicting which refriger-343

ators to select and how long to turn them off, whilst maintaining food quality and safety,344

in a Demand Side Response setting that modifies power demand load proportionally345

to available energy, in the National Grid of United Kingdom [60,61]. The target of the346

research is to show how to optimise refrigeration systems with machine learning at scale,347

whilst ascertaining that food temperature does not pass certain thresholds.348

The Nemesyst system simultaneously wrangles, learns, and infers multiple models,349

with multiple and distinct data sets, across a network of refrigerator systems. In such350

systems the thermal inertia/mass of food acts as a store of cold energy. However, the351

thermal inertia in a retail refrigeration case changes, if food is actively shopped by352

consumers and then refilled, if ambient temperature changes, if networks of stores353

possess multiple refrigeration systems, or if different types of food need specific control354

mechanisms [62,63].355
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Figure 6. The Nemesyst system for AI-enabled power supply control of retailing refrigerators

Deep learning models, such as LSTMs, can model thousands of assets simultane-356

ously, whilst being retrained to select which refrigerators to shed electrical load/turnoff357

across a massive pool. This requires an algorithm that can predict the thermal inertia358

in individual cases and therefore how long they can be shutdown (typically up to a359

maximum of up to 30 min), ensuring food safety and contributing to decarbonisation.360

As shown in Figure 6, a backend deep learning framework aggregates data from a361

distributed global database layer and trains with them multiple deep models, such as362

LSTMs. It then stores the trained models in the database layer. The latter interacts with363

each local store and its refrigerator systems, which share local database instances and364

retrieve the best deep network from the global database layer.365

In the experimental study the target was to predict the time (in seconds) until366

the refrigerator temperature rises from the point it is switched off until it breaches a367

food safety threshold. This duration varies between cases, for example the threshold368

is heuristically 8oC for high temperature refrigerators, and −183oC in low temperature369

refrigerators (freezers). Since the threshold for each fridge is not known, a two layer370

LSTM network is trained to predict the final point of defrost from the data as this is the371

most consistent point we can rely on.372

As a consequence, a subset of fridges can be selected from the whole population,373

which are capable of remaining cool through the event requiring energy reduction.374

Knowing how long the refrigerators can remain off, before reaching this threshold,375

identifies the best candidates which reduce the power consumption sufficiently enough,376

while minimising the total number of affected refrigerators and potentially affected377

stock. The 110,000 defrost examples were split such that 10,000 were used for final378

testing, 10,000 were randomly selected each time for validation and the rest were used379

for training the system.380

Figure 7 illustrates that an excellent prediction of the defrost time is achieved in381

four different cases. The difference between the last “observed” and final “defrost” value382

is the time (in seconds) that defrost can occur for before reaching the unsafe threshold of383
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8oC. Images (a) and (b) show cases where prediction takes place at the point of defrost;384

images (c) and (d) show cases where prediction occurs 2 minutes in advance of defrost.385

3.3. Quality Control in Retail Food Packaging386

The requirement for food high quality and safety of food and the public is a very387

important issue during the whole food supply chain [64]. The food product information388

printed on the food package is very important for food safety. Incorrectly labelled389

product information on food packages, such as the expiry date, can cause food safety390

incidents, like food poisoning. Moreover, such faults will incur high reputation and391

financial cost to food manufacturers, also causing large product recalls. As a consequence,392

verification of the correctness of the expiry date printed on food packages is of great393

significance .394

In the following, it is shown that, instead of relying on operators to check the395

date code, an automated solution, taking photos of each date code, can verify the396

programmed date code for that product run, allowing food processing businesses to397

introduce unmanned operations and achieve very high inspection with full traceability,398

without compromising product safety. The production line will stop, if date code is399

incorrect, ensuring that the respective products are not released into the supply chain,400

protecting consumers, business margins and their brand, while reducing labour costs401

and food waste.402

The Food Packaging Image dataset used next consists of more than 30,000 images403

classified in two categories (existing valid date and non-existing or non-valid date) from404

six different locations in Midlands in United Kingdom. The training process was carried405

out on a 70 % sample with another 10% used for the validation process. Finally, the406

remaining 20% of the images formed the test set. Representative images are shown407

in Figure 8, showing complete date (a), partial dates (b-c), unreadable date (d) and no408

existing date (e).409

3.3.1. The FCN-CRNN Approach for Expiry Date Recognition410

Optical character recognition (OCR) systems [65,66] can be applied to automatically411

recognize expiry date characters based on food package images captured by RGB cam-412

eras. However, existing OCR systems can not perform effectively in real-world expiry413

date recognition scenarios, with high variability, different fonts/angles, complicated414

designs with rich colours/textures, blurred characters poor lighting conditions in food415

manufacturing/ retailer sites. Deep neural networks have been recently used as a means416

to tackle such problems [67,68].417

In the following we present an approach composed of the FCN network, described418

in Section 2.1 and the CRNN network described in Section 2.3. Both networks are419

lightweighted and achieve good performance for text detection and recognition ‘in-the-420

wild’, are fine-tuned and combined together to detect and recognize the expiry date.421

Fine-tuning is performed through transfer learning [69], by adapting a model pre-trained422

for recognition of text, to recognition of expiry date.423

The FCN-RCNN architecture is shown in Figure 9. It includes the FCN part, which424

is responsible for the detection of the Region-Of-Interest (ROI) of the expiry date. This425

acts as a filter to identify the image patch including the ROI from a whole food package426

photograph, so that the recognition task is performed on that specific small image427

patch, instead of the whole image. The second part includes the CRNN network, which428

performs date character recognition on the image patch obtained from the first network.429

Multiple levels of features are extracted from equally divided regions in the expiry date430

ROI, so as to recognize the characters within each region, while contextual relationships431

between characters in consecutive regions are modelled by the recurrent layers of CRNN.432

The accuracy of expiry date detection by the fine-tuned FCN model reaches 98,2433

%. It is higher than the accuracy obtained with two other similarly fine-tuned popular434
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Figure 7. Prediction of the defrost time in four refrigerators: “Observed” (light blue) denotes training data; “defrost” (orange) is the
ground truth; “prediction” (×) is the prediction of the final ground truth (orange) value.

Figure 8. Representative examples of food packaging images: (a) Complete date (day and month visible); (b) Partial date (no day
visible); (c) Partial date (no month visible); (d) Unreadable; (e) No date.
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deep neural networks, i.e., CTPN [70] and Seglink [71], while providing much fewer435

false alarms and miss detections, as shown in Table 2.436

Table 2: Performance of the FCN detection sub-system

Method Missing Detection (%) False Alarm (%) Accuracy (%)
FCN 1.67 0.28 98.20

CTPN [70] 2.79 16.57 92.20
Seglink [71] 5.71 12.53 93.73

Then the CRNN part of the method was fine-tuned using annotated (rectangular)437

image patches extracted by the FCN part. As shown in Table 3, the achieved recognition438

accuracy is 95,44 %, much higher than that provided by the Tesseract OCR tool [72]439

and higher than the performance of the TPS-ResNet-BiLSTM-Att network [73], which is440

much more complex (containing 6 times more parameters than the CRNN model).441

Table 3: Performance of the CRNN recognition sub-system

Method Accuracy (%)
CRNN 95.44

TPS-ReSNet-BiLSTM-Att [73] 94.57
Tesseract OCR [72] 31.12

3.3.2. Latent Variable based Expiry Date Verification442

A high variability exists in the image characteristics captured in different environ-443

ments. As a consequence, an FCN model trained with images from a dataset collected in444

one location does not perform well when applied to images collected in another location.445

A method to cope with this problem is by extracting latent variables from each trained446

FCN; clustering them as described in Section 2.6.2 to produce respective cluster centroids;447

using these centroids as an equivalent model for evaluating images from other locations448

through nearest neighbor classification [37].449

It has been shown that best results are achieved in this way, if latent variables are450

extracted by a dense layer preceding the output network layer [35,36,74]. For this reason,451

some dense layers are included on top of the FCN network, as shown in Figure 10. In452

particular, an averaging pooling and two dense layers, each containing 2048 ReLU units453

are added and the 2048 neuron outputs of the last dense layer are clustered using the454

k-means algorithm.455

Let us consider the case of two datasets obtained from different locations. 7 clusters456

are generated per dataset citeref40, after applying the above procedure to each dataset.457

The respective 14 centroids are then merged, following an algorithm based on [35,75],458

which Iteratively removes the lowest performing cluster, resulting in adaptation of some459

of the remaining centroids, until the expiry date verification stops improving.460

Figure 11 shows the effect of the algorithm on the 14 original cluster centoids. Two461

of them (black stars) were excluded; four centroids (red squares) in class 1 and two462

(green circles) in class 2 were adapted and the rest CNN centroids remained unaffected.463

It should be mentioned that this produced an improvement in the verification accuracy464

of 13.8 % in total accuracy over the datasets of the two locations.465

3.3.3. Domain Adaptation for Multi-source Expiry Date Recognition466

The problem tackled in the former subsection, of high variability across datasets467

collected in different environments, as well as the general unavailability of labeled468

data across the whole food supply chain, is further examined next, using the domain469

adaptation approach described in Section 2.7.470

Figure 12 shows the developed domain adaptation procedure. It comprises a feature471

extractor and a classification part. The feature extractor part learns useful representations,472

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2021                   doi:10.20944/preprints202105.0254.v1

https://doi.org/10.20944/preprints202105.0254.v1


Version April 29, 2021 submitted to Electronics 15 of 21

Figure 9. Architecture of the FCN-CRNN system

Figure 10. FCN part followed by dense layers - clustering the last layer neurons outputs

Figure 11. 3-D Visualization of the adapted, constant and excluded cluster centroids; class 1(2) includes good(bad) quality images
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Table 4: Comparison of Performance of Domain Adaptation (DA) Methods

Method Accuracy (%)
Single Source DA 84.14

Two Source Combined DA 85.05
Three Source Combined DA 86.13

Multi(2)-Source DA 90.53
Multi(3)-Source DA 92.50

with its sub-networks learning features specific to each source-target domain pairs. The473

classification part of the model learns domain-specific attributes for each target image. A474

Class Activation Map is included, as described in Section 2.6.1 to provide visualization475

of which parts of the input images affected most the provided predictions.476

Experiments were made using a labeled single source dataset and an unlabeled477

single target dataset for all six locations. The goal of this experiment has been to establish478

a baseline for images that would be classified as readable and acceptable according to479

human standards. Further experiments were conducted using the multi-source domain480

adaptation approach, by using either two labeled source datasets and a single unlabeled481

target domain, or three labeled source datasets with a single unlabeled target domain.482

For comparison purposes, additional experiments were carried out by combining483

the two, or the three source datasets into a single source dataset and adapting them484

towards the single target domain dataset. In the experiments, either the FCN - or the485

ResNet-50 [76] pretrained on ImageNet [77] - was the backbone network, by adding, a486

dense layer, and fine-tuning all convolutional and pooling layers.487

Table 4 presents the average classification accuracy for all examined domain adap-488

tation methods. As shown in the Table, the results of source combined methods are489

comparatively better than single source methods. This can be justified by consider-490

ing this case as data enrichment, indicating that combining multiple source domains491

into single source domain is helpful. The multi-source domain adaptation approach492

significantly outperforms both other methods with an average classification accuracy493

improvement by more than 6 %.494

4. Discussion495

The presented experimental studies illustrated that the use of AI and ML method-496

ologies can provide the food supply chain with efficiency and safety, reducing food497

waste and environment pollution; this is the main target of the data platforms required498

for food systems [78,79]. Most of the presented work has taken advantage of the recent499

progress in deep learning and deep neural networks.500

In the first case study, DL systems were trained to predict growth and yield in501

time series data collected in greenhouses, taking into account environmental data and502

historical growth, or yield data. It has been shown that RNN/LSTM models combined503

with autoencoding, or attention mechanisms, were able to provide state-of-the-art perfor-504

mance compared with existing methods for multi-step prediction of stem diameter based505

growth of plants, as well as of tomato yield weekly prediction. Similar approaches can506

be used for prediction of yield of other categories, for example fruits, and in particular507

strawberry yield and their harvesting using robots [80,81].508

In the second case study, it has been shown that control of the energy consumed by509

big food suppliers, e.g., large supermarket companies, is feasible, using deep learning510

based prediction. A large scale study, for automatic control, i.e., temporary shutdown511

of retailing refrigerator systems in peak energy demand hours, has been implemented,512

based on prediction of the specific refrigerator defrost period in each considered location.513

RNN/LSTM models were mainly used to perform the prediction task; GAN models were514

also successfully used to perform data augmentation and prediction. Similar methods515
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Figure 12. The Multi-source Domain Adaptation architecture

have been used to predict anomalies, i.e., instances when the power demand load gets516

higher than the available power in a country [82].517

Current targets related to food supply chain, worldwide, include [3]: cut of green-518

house gas emissions by at least 55 % by 2030; development and use of energy-efficient519

approaches; optimization of connectivity to energy; analysis of production data; effi-520

cient management of resources, such as energy, water, soil, biodiversity. The presented521

approaches illustrate how AI and DL can be used to assist towards these goals.522

The third case study illustrated that automatic recognition of expiry date in retail523

food packaging can also be successfully implemented through deep learning method-524

ologies. The impact of this task is also crucial for ensuring food safety and consumers’525

health, whilst reducing food waste and related financial loss.526

It was shown that FCN and CRNN models can be used to effectively recognize the527

expiry date on real life food packaging. Verification of the expiry date, with visualization528

of the decision making procedure can be achieved through latent variable extraction529

of the trained deep neural architectures and a related clustering procedure. Moreover,530

domain adaptation of the deep neural architectures can be performed so as to achieve531

expiry date verification and recognition across different retail environments.532

The presented deep learning approaches can also be applied on wider aspects of533

food package control, such as the verification of the allergen labeling barcode, or other534

nutritional information. These can create a further impact towards people’s safety, by535

automatically informing customers which allergens are included in the food products536

they are thinking of buying in retail supermarkets.537

All above experiments have used the state-of-the-art in deep learning method-538

ologies. In future research, the developments will focus on extending the described539

frameworks, with a target to combine deep learning with AI knowledge representation540

and reasoning, as well as multi-objective optimization technologies [83,84].541

In this context, the methodologies that were presented in this paper for achieving542

an efficient and safe food supply chain will be extended, so as to create trustworthy543

AI-enabled food chain supply, that offer transparency and explainability to their users,544

i.e., food producers and farmers, retail supermarket owners, customers and the general545

public.546

In particular, the deep neural architectures, especially the approach deriving the547

backward model of extracted cluster characteristics, described in Section 3.3.2, can548
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be interweaved with ontological representation [85] of this backward model, so as to549

provide explainable cues of the decision making procedure by using query answering550

techniques [86,87].551

Moreover, the derived models will be adapted and contextualized across different552

environments, using general-purpose methodologies, as developed for other classifica-553

tion and prediction fields [88,89]. In addition, simultaneous maximization of yield and554

minimization of the consumed energy in greenhouses can be tackled through dynamic555

multi-objective optimization [90,91].556
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