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Abstract: This paper presents an approach to the Timoshenko beam theory (TBT) using the finite difference

method (FDM). The TBT covers cases associated with small deflections based on shear deformation considerations,
whereas the Euler—Bernoulli beam theory neglects shear deformations. The FDM is an approximate method for solving
problems described with differential or partial differential equations. It does not involve solving differential equations;
equations are formulated with values at selected points of the structure. The model developed in this paper consists of
formulating partial differential equations with finite differences and introducing new points (additional or imaginary
points) at boundaries and positions of discontinuity (concentrated loads or moments, supports, hinges, springs, brutal
change of stiffness). The introduction of additional points allows satisfying boundary and continuity conditions. First-
order, second-order, and vibration analyses of structures were conducted with this model. Efforts, displacements,
stiffness matrices, buckling loads, and vibration frequencies were determined. In addition, tapered beams were analyzed
(e.g., element stiffness matrix, second-order analysis, and vibration analysis). Finally, the direct time integration method
(DTIM) was presented. The FDM-based DTIM enabled the analysis of forced vibration of structures, considering the

damping. The efforts and displacements could be determined at any time.
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1. Introduction

This paper describes the application of Fogang’s model [1] based on the finite difference method, used for the
Euler—Bernoulli beam, to the Timoshenko beam. First-order analysis of the Timoshenko beam is routinely performed;
the principle of virtual work yields accurate results and is easy to apply. However, second-order and vibration analyses
of the Timoshenko beam cannot be modeled using the principle of virtual work. Various studies have focused on the
analysis of Timoshenko beams. Kindelan et al. [2] presented a method of obtaining optimal finite difference formulas

that maximize their frequency range of validity. Both conventional and staggered equispaced stencils for first and
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second derivatives were considered. Onyia et al. [3] presented a finite element formulation to determine the critical
buckling load of the unified beam element that is free from shear locking using the energy method; the technique
provides a unified approach to performing stability analysis of beams with any end conditions. Timoshenko and Gere
[4] proposed formulas to account for shear stiffness by calculating buckling loads of associated Euler—Bernoulli beams.
Hu et al. [5] used matrix structural analysis to derive a closed-form solution of the second-order element stiffness
matrix; the buckling loads of single-span beams were also determined. Fogang [6] presented a material law describing
the relationship between curvature, bending moment, and shear force; based on this material law, closed-form
expressions of efforts and deformations are derived, as well as first- and second-order element stiffness matrices.
Mwabora et al. [7] considered numerical solutions for static and dynamic stability parameters of an axially loaded
uniform beam resting on simply supported foundations using the finite difference method (FDM), where a central
difference scheme was developed. Soltani et al. [8] applied the FDM to evaluate natural frequencies of non-prismatic
beams with different boundary conditions and resting on variable one- or two-parameter elastic foundations. Boreyri et
al. [9] analyzed the free vibration of a new type of tapered beam, with exponentially varying thickness, resting on a
linear foundation; the solution was based on a semi-analytical technique, the differential transform method. Torabi et al.
[10] presented an exact closed-form solution for free vibration analysis of Euler—Bernoulli conical and tapered beams
carrying any desired number of attached masses; the concentrated masses were modeled by Dirac’s delta functions.
Fogang [11] presented a material law describing the relationship between curvature, bending moment, shear force, and
natural frequency; based on this material law closed-form expressions of dynamic first- and second-order element
stiffness matrices are derived and natural frequencies are determined. Yesilce et al. [12] studied the free vibration of a
multi-span Timoshenko beam carrying multiple spring—mass systems; natural frequencies were calculated using the
secant method, and mode shapes were presented in graphs. Katsikadelis [13] presented a direct time integration method
for solving the equations of motion describing the dynamic response of structural linear and nonlinear multi-degree-of-
freedom systems; the method was also applied to equations with variable coefficients. Ghannadiasl [14] used Green
functions to analytically solve the case of beams with various boundary conditions, resting on an elastic Winkler
foundation and subjected to an axial load; the Green function method was used to evaluate the free vibration of the
Timoshenko beam. Kruszewski [15] presented a theoretical analysis of the effect of transverse shear and rotary inertia
on the natural frequencies of a uniform cantilevered Timoshenko beam. Soltani [16] developed a semi-analytical
technique to investigate the free bending vibration behavior of an axially functionally graded non-prismatic Timoshenko

beam subjected to a point force at both ends, based on the power series expansion.

Classical analysis of the Timoshenko beam involves solving the governing equations (i.e., statics and material) that are
expressed via means of differential equations, considering boundary and continuity conditions. However, solving
differential equations may be difficult in the presence of an axial force (or external distributed axial forces), an elastic
Winkler foundation, a Pasternak foundation, or damping (by vibration analysis). In traditional analysis using the FDM,
points outside the beam are not considered. The boundary conditions are applied at the beam’s ends, not the governing
equations. The non-application of governing equations at the beam’s ends leads to inaccurate results, making the FDM

less useful compared with other numerical methods, such as the finite element method. This paper presented a model
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based on the FDM. This model consisted of formulating differential equations (statics and material relation) with finite
differences and introducing new points (additional or imaginary points) at boundaries and at positions of discontinuity
(concentrated loads or moments, supports, hinges, springs, and brutal change of stiffness). The introduction of additional
points allowed us to satisfy boundary and continuity conditions. First-order, second-order, and vibration analyses of

structures were also conducted using the model.

2. Materials and methods

2.1 First-order analysis
2.1.1 Statics

The sign convention adopted for the loads, bending moments, shear forces, and displacements is illustrated in Figure 1.

i l a(x)
AR AOAANL]

Figure 1. Sign convention for loads, bending moments, shear forces, and displacements.

Specifically, M(x) is the bending moment in the section, V(X) is the shear force, w(x) is the deflection, and q(x) is the

distributed load in the positive downward direction.

In first-order analysis the equations of static equilibrium on an infinitesimal element are as follows:

dV (x
%) _koow( =—a(x) @
aM (x) -V (x) =0, (1b)
dx
where K(X) is the stiffness of the elastic Winkler foundation. Substituting Equation (1b) into Equation (1a) yields
d*M (x
k(w0 =90 @

According to Timoshenko beam theory, the bending moment and shear force are related to the deflection and rotation

(positive in clockwise) of the cross section ¢(x), as follows:

dw(x)
dx

M (x) =—El d(gix) 3) V(X)=KGAX( —(p(X)j (@)
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where E is the elastic modulus, | is the second moment of area, « is the shear correction factor, G is the shear modulus, and A

is the cross-sectional area.

In the case of a uniform beam, substituting Equations (3) and (4) into Equations (1a) and (1b) yields

KGAX ( d d""xgx) - dzf(X) j — kw(X) = —q(x) (52)
d? d
El d(i(z)() + kGAx ( v(\j/(x) o( )j (5b)

In the case of a tapered beam, substituting Equations (3) and (4) into Equations (1a) and (1b) yields

dxGA(x) _(d d’ d
R RO REL I

AE109, 9009 | () 900 | can) x(dw(x) - (p(X)j =0 (60)
dx dx dx dx

Fogang [6] presented the following formulas for a uniform and a tapered beam, respectively:

dzw(x)+M(x)_ 1 d’M(x)
dx? El  xGA dx°

d*w(X) M x) 1 d’M(® s 1 LAKGAX)  dM (x)
dx*  EI(x) &GA(x) dx? (kGA(X))’ dx dx

(6¢)

=0, (6d)

Differentiating Equation (6¢) twice with respect to x and combining the result with Equation (2) yields the following widely

known formula for a uniform beam without Winkler foundation:

d W(x) El d®q(x)
VR Ay (¢
In the presence of an elastic Winkler foundation, Equation (6e) becomes
d*w(x) EI d*(k(x)w(x)) El d?q(x)
El — +k(X)w(x) =q(x) - (6f)
dx*  xGA dx? (W) =a(x) kGA dx?

For a uniform beam, the bending moment, the shear force, and the rotation of the cross section are derived using

Equations (6c¢) and (2), Equation (1b) and Equation (4), respectively as follows:

M () = —E1 90 =K OW0) -~ P(Y) 0
V(X):_E|d3ng)+ El (k(x)w(x))_ El dp(x) o)
dx xGA dx xGA dx

dw(x) , El d®w(x)  El d(k(x)w(x))+ El  dp(X)

(6i)
dx K‘GA dx® (KGA)Z dx (,(GA)2 dx

@(X) =
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Hence, a W—® FDM approximation (Equations (5a)-(6b)), an M—W FDM approximation (Equations (2) and (6c-

d)), and a W FDM approximation (Equations (6e-i)) can be considered.

2.1.2 FDM Formulation of equations, efforts, deformations, and loadings
2.1.2.1 Fundamentals of FDM

Figure 2 shows a segment of a beam having equidistant points with grid spacing h.

Figure 2. Beam with equidistant points.

Equations (5a)-(6d) have a second-order derivative; consequently, the deflection, rotation, and moment curves w(x),
o(x) and M(x), respectively, are approximated around the point of interest I as second-degree polynomials.

Thus, curves w(x) and ¢(x) can be described with the deflections values at equidistant grid points:

w(x)=w,_, x f_ (X)+w x f,(X)+w.,, x f_(x) (7a)

The shape functions fj(x) (j =i-1,1, i+1) can be expressed using Lagrange polynomials:

i+1
X—X
f,(x)= H 2 (7b)
k=i-1 Xj — Xy
k#

Thus, a three-point stencil is used to write finite difference approximations to derivatives at grid points. The derivatives

(S(x) representing w(x) or ¢(x)) at i are expressed with deflection values at points i-1, i, and i+1.

d’S(| _S.=25+8 4 dS(x)| _ ~Si,+Su,

dx? | h? dx 2h

i i
Equation (6e) has a fourth-order derivative, and the deflection curve is consequently approximated around the point of

(8b)

interest | as a fourth-degree polynomial. Thus, a five-point stencil is used to write finite difference approximations to

derivatives at grid points. The derivatives at i are expressed with deflection values at points i-2, i-1, i, i+1, and i+2.

d 4W W,_, — 4Wi_1 + 6Wi - 4Wi+1 + Wi

dx* | B h* %
8 —W. 2W._ . —2W. -

d \;V _ Wi, + Wi, - Wi + Wi (8d)

dx : 2h

d’w| -w_, +16w_, —30w, +16w.,, —W.,, (8e)

dx2 : 12h2

dw| — w, —8w, , +8w, , —W,, (81)

dxi 12h
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2.1.2.2 Uniform beam within segments
2.1.2.2.1 W-® FDM approximation of a uniform beam
Let us consider a segment k of the beam (length ) having equidistant grid points with spacing hk. The flexural and
shear stiffness values in this beam segment are Elx and kGA«. Ly is the bending shear factor. A reference flexural

stiffness El, and a reference shear stiffness K GA\ are introduced as follows:

= Pu X El, (93) h =4l (9d)
kGA = [, xkGA (9b) W (x) = EI, xw(X) (%)
a, =El I(kGAI*) (0 D(x) = El, x¢(x) (9f)

Substituting Equations (8a)-(9f) into Equations (5a-b) yields the following governing equations:

4
Aaes—| 2B+ i W+ s+ D P, =

r

0{
Lol (0n)

2
Ik

2 2 2
——’8‘2"‘ﬂ'k W._, +—’B‘2""B”‘ W, + B h®._ —| 28, +M h @+ B,h®,., =0 (100
a

r r

Substituting Equations (8b) and (9a-f) into Equations (3)-(4) yields the bending moment and shear force, as follows:

O, D,
M; = By th (11a)
2
Vi — ﬂ\/kﬂg’( ( WI 1 W h (I) j (11b)
a.h, 2 2

2.1.2.2.2 W FDM approximation of a uniform beam

Equation (6f) is the governing equation. The stiffness k(x) of the Winkler foundation is assumed constant in the beam

segment and is denoted by K. Substituting Equations (8c), (8e), and (9a-e) into Equation (6f) yields the following FDM

formulations of the governing equation

W, —16W, , +30W, —16W, , +W,

—4W. , +6W, —4W., +W. , )+ K B2\W.
ﬂMk( i+1 |+2) 12 i-2
Lk ) a, , ¢ d’q(x
—W, = gh'- Lt 2 h?’ q(z ) (12a)
EI B Bk dx® |
4
K* = Puce: K k, =K, El, (12b)

|4

Bub El
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The bending moment, the shear force, and the rotation of the cross section are calculated using Equations (6g), (8e), and
(12b), Equations (6h), (8d), and (12b), and Equations (6i), (8f), and (8d) as follows:

-16W, , +30W, —16W.,, , +W. , « W o
Mi:ﬂMK ﬂMk

ES TR - O g R ' LY 13
:I'th2 hk2 A/k I ( a)

W, —2W,, +2W,, —-W,,
Vi = B

‘ 2, K*Wi—z —3W,, +83\Ni+1 Wi, Bue E dp(x) (13b)
2h, 12h, Lo dx |;
2
El p(x)=|1- Pukwa,” Wi, —8W,, +8W,,, -W,,, (130)
' B 12h,
ﬂMka Wi, +2W,, —2W,,, +W,,, ﬂMka ? 4 dp(x)
A/kﬂlk th B dx |

2.1.2.2.3 M-W FDM approximation of a uniform beam
Equations (2) and (6c¢) are the governing equations. Applying Equations (8a-b) and (9a-e) in Equations (2) and (6c)

yields the corresponding FDM expressions, as follows:

2 2 2 kI 4
h“M,;-2h"M; +h°M,, ﬂlk _Wi = —0;h, (13d)
,BMk (Wi—l - 2Wi +Wi+1) ﬁMka (h M;_

ka

—20M, + WM, )+ M, =0

(13e)

The shear force (Equations (1b) and (8b)) and the rotation of the cross section (Equations (1b), (4), (8b), and (9b-¢)) are
calculated as follows:

Vi _ |vli+1 — |vli—l (13 2E|r X, :Wi+1 _Wi—l _
oh,

o
' h?M..—h?*M.
hk hkﬁlkﬂé ( k i+1 k |—1) (139)

2.1.2.3 Tapered beam within segments

2.1.2.3.1 W-® FDM approximation of a tapered beam
The following parameters describing stiffnesses EI(x) and kGA(x) and their rate of change are defined

El(x) =, (X)xEI, (14a) By (X)=h, M (14c)
kGA(X) = B, (X) x kGA (14b)
A,(9=h, dﬂv( )

(14d)


https://doi.org/10.20944/preprints202105.0252.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2021 doi:10.20944/preprints202105.0252.v1

TIMOSHENKO BEAM THEORY USING THE FINITE DIFFERENCE METHOD

Substituting Equations (9d) and (14a-d) into Equations (6a-b) yields the following governing equations for the tapered

beam at position i:

( ’BV' ﬁvj (2,6\, +a ,B,k )W +(’B"' +,BV] (15a)

B _ghao P _ 4

+ 5 h®;, - A;h P, 5 h®,., :Blk —5 aih

'BV ﬂlk W 1 ﬂv ﬂlk W|+1 t (ﬁMi _&j hchi—l _(ZﬁMi T ﬂViﬂli jhkq)i (15b)
o " 2 2 a

[ﬂMI_"ﬁMl)hq) :O

The bending moment and shear force are calculated using Equations (11a-b), Bmk and Bk being replaced by Bmi and

Bvi.

2.1.2.3.2 M-W FDM approximation of a tapered beam
Equations (2) and (6d) are the governing equations. Substituting Equations (8a-b), (9d), and (14a-d) into Equations (2)
and (6d) yields Equation (13d) and the following equation:

LuW. , —28,W, + BW,.,, — ﬁ’\tﬂlﬂuk (1+%jh M., +|1+ 22’“ 2 hM, (16)

yPw [ B gl oy -0

BB\ 2B, )T

Thus, Equations (13d) and (16) are the governing equations. The shear force and the rotation of the cross section are

calculated using Equations (13f) and (13g), respectively. However, By is replaced by Bvi in Equation (13g).

2124 FDM approximation of gq(x) and k(x)

Fogang [1] presented formulas to determine the FDM approximation of distributed loads and the stiffness of an elastic
Winkler foundation. The FDM value Q; for position i being the left beam’s end, an interior point on the beam, or the

right beam’s end is as follows:

1 i+1 i+2

=3 a000x- ] aex| -
1 i+1

%= | a0 (17b)
1

Q= [—I q(x )dx+3j lq(x)dx} (17¢)

2h
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The application of Equations (17a-c) shows that for a linearly distributed load, Qi = q(xi).

At any point i, the stiffness of the elastic Winkler foundation, Ki, is calculated similarly to Equations (17a-c).

2125

First derivatives of the stiffnesses EI(x) and kGA(x)

If analytical expressions of BM(x) (Equation (14a)) and Bv(x) (Equation (14b)) are known, the corresponding first

derivatives can be directly determined. If, instead, values are given at discrete points, the parameters B’Mi (Equation

(14c)) and B,Vi (Equation (14d)) at position i can be calculated using Equations (18a-c), position i being considered the

left beam’s end, an interior point on the beam, or the right beam’s end, respectively:

ﬂ' —h dﬂm (x) _ —3fui +4Puiss — Puisa

Mi K dX i 2 (18a)
ﬂ" —h dﬁM (X) _ _ﬂMifl+ﬁMi+l

M T x| 5 (18b)
B, =h dﬁ(;nx(x) _ Puia— 4ﬂ2|v| -1+ 3Pui (180)

The parameter B'V (Equation (14d)) is calculated similarly.

2.1.3 Analysis at positions of discontinuity

Positions of discontinuity are positions of application of concentrated external loads (force or moment), supports,

hinges, springs, abrupt change in cross section, positions where EI(X) and KGA(X) are not differentiable, and change

in grid spacing.
2131

Uniform beam within segments

In the case of concentrated loads (force P and moment M™) applied at point i (Figure 3), the beam has a uniform cross

section within segments. At point i, an abrupt change in cross section and a change in grid spacing are assumed.

Figure 3. Beam with concentrated loads.
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Fogang’s [1] model consists of realizing an opening of the beam at point i and introducing additional points (fictive
points) in the opening (Figure 4a,b and Figure 5a,b).

2.13.1.1 W-® FDM approximation of a uniform beam

Figure 4a,b below shows the additional points (fictive points ia, id) introduced in the opening. The unknowns at any
point are the deflection and the rotation of the cross section.

ic ir i+1 i+2 i+3 (4b)

Figure 4. Opening of the beam and introduction of additional points on the left side (a) and the right side (b).

The governing equations (Equations (10a-b)) are applied at any point of the beam: ...i-1, il, ir, i+1 ...

Thus, the governing equations at position il are as follows:

4
ﬂ\/kWi—l o 2:BVk Ta ,B|k kl Wi + By W, + ﬂ;k ﬁgk h o, ; q”hf (192)

r 1k

2
'B;k'g"‘ W, + ﬂv"ﬂ"‘ W, + B @, —| 28 +M h®; + Buch @i, =0 (19D)

I‘ r r

The governing equations at position ir are similarly formulated. The continuity equations express the continuity of the

deflection and the rotation of the cross section, and the bending moment and shear force equilibrium (Equations (11a-

h)):
w, =w, ->W, =W, e
@y =@, > D, =D, )
O . —D. D, D, *
M. -M._=M"— i1 i —id i M\ 20c
ﬁMk 2h ﬁMp 2hp ( )
VII V =P
2
ﬂ\/kﬂlk —1 W h CD ﬂVpﬂlsl? _Wid _|_Wi+1_hpq)ir =P (20d)
2 a.h 2 2
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An adjustment of the continuity equations is made in the case of a hinge (no continuity of the rotation of the cross
section; M; = M, = 0), a support (Wi = Wi, = 0, no Equation (20d)), or a spring.
At the beam’s ends, additional points are introduced (Figure 4a,b), so governing equations are applied at the beam’s

ends, as well as boundary conditions.

2.1.3.1.2 W FDM approximation of a uniform beam
Figure 5a,b below shows the additional points (fictive points ia, ib, ic, id) introduced in the opening. The unknown at
any point is the deflection.

e~ mm i mmmm e (5a)
i|-3 i|-2 il-‘l i|| ia ||b
e Y e U e T e T bk
____________ —— (5b)
ic id ir i+1 i+2 i+3
TS L e e

Figure 5. Opening of the beam and introduction of additional points on the left side (a) and the right side (b).

The governing equation (Equation (12a)) is applied at any point of the beam: ... i-2, i-1, il, ir, i+1, i+2... Thus, the
governing equation (Equation (12a)) at position il is formulated by adopting for i, i+1, and i+2 the values of il, ia, and
ib, respectively. Similarly, the governing equation at position ir is formulated by adopting for i, i-1, and i-2 the values of
ir, id, and ic, respectively.

The continuity equations can be expressed using Equations (13a-c), as follows:

wy =w, =W, =W, (213)
o, =@, > El xp, =EIl, xg@, (21b)
M, —M; =M’ (210)
V,-V, =P (21d)

In the equations above, (i, Mi, and Vj are formulated by adopting for i, i+1, and i+2 the values of il, ia, and ib,

respectively. Similarly, @ir, Mir, and Vir are formulated by adopting for i, i-1, and i-2 the values of ir, id, and ic,
respectively.
2.13.1.3 M-W FDM approximation of a uniform beam

The additional points of Figure 4a,b are introduced. The unknowns at any point are the deflection and the bending
moment. The governing equations (Equations (13d-e)) are applied at any point of the beam: ... i-1, il, ir, i+1 ... The
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continuity equations can be expressed using Equations (21a-d); the shear force and the rotation of the cross section are
calculated using Equations (13f) and (13g), respectively.

2.1.3.1.4 Mixed FDM approximation of a uniform beam

Different approximations (W—®, W, and M—W) can be considered on either side of the point of discontinuity. The

continuity equations are then formulated with the corresponding formulas.

2.1.3.2 Tapered beam within segments
As described in Section 2.1.3.1, an opening of the beam is realized at point i and additional points (fictive points ia, id)

are introduced in the opening (Figure 4a,b).

21321 W-® FDM approximation of a tapered beam

The governing equations (Equations (15a-b)) are applied at any point of the beam: ... i-1, il, ir, i+1 ... The continuity

equations can be expressed through an adjustment of Equations (20a-d), as follows:

Pk = Py ,BMp = Puir B = Pui IBVp = Bir (22)

2.1.3.2.2 M-W FDM approximation of a tapered beam
The governing equations (Equations (13d) and (16)) are applied at any point of the beam: ... i-1, il, ir, i+1 ... The
continuity equations can be expressed using Equations (21a-d), while the shear force and the rotation of the cross

section are calculated using Equations (13f) and (13g), respectively. However, By is replaced by Bvi in Equation

(139).

2.1.3.2.3 Mixed FDM approximation of a tapered beam
Similar to the uniform beam, different approximations (W-®, M—W) can be considered on either side of the point of

discontinuity. The continuity equations are then formulated with the corresponding formulas.

2.1.3.3 Non-uniform grid

The grid may be such that every node has a non-constant distance from another (Figure 6).

|
-3 2 1 i +1 i+2 3

T L " b hieo

Figure 6. Beam with a non-uniform grid.
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In this paper, the Lagrange interpolation polynomial (Equation (7b)) was used for FDM formulations. The resulting
equations were complicated, so, the non-uniform grid was not further analyzed. In fact, it should not be analyzed as a

discontinuity position.

2.1.4 First-order element stiffness matrix of a tapered beam

2.14.1  4x4 element stiffness matrix
The sign convention for bending moments, shear forces, displacements, and rotations of the cross section adopted to

determine the element stiffness matrix in local coordinates is illustrated in Figure 7.

M\ (Pi
Vi Vi

I —

M. (13

Figure 7. Sign convention for moments, shear forces, displacements, and rotations for the stiffness matrix.

Let us define the following vectors:

P T
Sre =[VisMisVis M, ] (232)
N/ . . . T (23Db)
Vied _[Wi’¢i’wk’¢k]
The 4x4 element stiffness matrix in local coordinates of the tapered beam is denoted by Kaa.
The vectors defined are related together with the element stiffness matrix Kaas, as follows:
— 24
Sred - K44 ><Vred (24)

Let us divide the beam in n parts of equal length h (I = nhy), as shown in Figure 8.

h

o 6 0 6 O oo e

Figure 8. Finite difference method (FDM) discretization for 4x4 element stiffness matrix.

21.4.11 W-® FDM approximation

Equations (15a-b) with i = 0 and ki = 0 are applied at any point on the grid (nodes 1, 2, ...n+1 of Figure 8).
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Considering the sign convention adopted for bending moments and shear forces in general (Figure 1) and in the element
stiffness matrix (Figure 7), the following static compatibility boundary conditions can be set in combination with Equations
(11a-b):

2 3
Vi — _Vl —_ ﬂwﬁlgk (_Wo +W2 _ hkq)lj N arhkz Vi _%_FV\L_ hk(j[)1 =0 (25a)
a.h, 2 2 BBy 2
B 2
Mi :MlzﬂMl TP, - th Mi_hkq)0+hkq)2=0 (25b)
2h, P
2 3
Vk :Vn+1 — A/n+1183|k (_Wn +Wn+2 _ hkq)m_lj AN &kzvk +\/\i_\h+ hchn+1n — O (25¢)
a,hy 2 2 Buna B 2
O - 2h, 2
I\/Ik = _Mn+1 = _IBMn+1 . 2 : I\/Ik + hkq)n - hk(Dm-Z =0 (25d)

2h,

Mn+1

Considering the sign convention adopted for displacements and rotations of cross sections in general (Figure 1) and in the
element stiffness matrix (Figure 7), the following geometric compatibility boundary conditions can be set:

w, =w, >W, = El_xw, (6 W, =W, >W_  =El xw, @6
=0, > D =El X (en) Py =@ > D = El X0 (26d)

The number of equations is 2(n+1) + 4 + 4 = 2n + 10. The number of unknowns is 2(n+3) + 4 = 2n + 10, especially
2(n+3) unknowns (W; ®) at points on the beam and additional points at the beam’s ends, and four efforts at the beam’s

ends (Vi; Mi; Vk; M. Let us define the following vector
Py T
S1=[Wy; @y;W,; ;... W, ,; D, ., | (27)

The combination of Equations (15a-b) applied at any point on the grid, Equations (25a—d), and Equations (26a—d) can
be expressed with matrix notation as follows, the geometric compatibility boundary conditions (Equations (26a—d))

being at the bottom:

— —

S 0 S 0
Tx| 7= BN TR S (28)

S red Elr XV red S red EIrXV red

The matrix T has 2n+10 rows and 2n+10 columns. The zero vector above has 2n+6 rows.

T, T,

-1 — aa (29)
Tba Tbb
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The matrix Taa has 2n+6 rows and 2n+6 columns, the matrix T ab has 2n+6 rows and 4 columns, the matrix T ba has 4

rows and 2n+6 columns, and the matrix T bb has 4 rows and 4 columns.

The combination of Equations (24), (28), and (29) yields the element stiffness matrix of the beam.

Ky =ElL xT,, (30a)
A general matrix formulation of K44 is as follows:
o’
Ky =El x[0 T]xT"x (30b)

In Equation (30b), O is a zero matrix with 4 rows and 2n+6 columns, and | is the 4 x 4 identity matrix.

2.14.1.2 M-W FDM approximation
Equations (13d) and (16) with (i = 0 and ki = O are applied at any point on the grid (nodes 1, 2, ...n+1 of Figure 8).

The static compatibility boundary conditions in combination with Equations (1b) and (8b) can be expressed as follows:

vi=—vl:—M =—M—>2hkvi+|v|2—|v|0=o (312)
dx |, 2h,

M,=M,->M,-M, =0 (31b)

vk=vn+1=M =M—>2hkvk—|v|n+2+|v|n=o (31c)
dX n+1 2hk

M,=—M,,—>M +M_,=0 (31d)

The geometric compatibility boundary conditions in combination with Equations (16d) are

w, =w, ->W, =El_xw, (31e)

Mo G (hM,~hM,)=El, xp @10
2hk thﬂ\/lﬁlk

Wn+l = Wk _)Wn+l = Elr ><Wk

W 2 W (04 2 2
L T — : h*M_.-h"M_|)=EIl x o,
2h, 2hkﬂVn+1ﬂli ( com n) A o

o=@ > El xp =

(319)

§0n+l =¢k — Elr ><§0n+1 =

The analysis continues similarly to Section 2.1.4.1.1 (Equations (27)-(30Db)).


https://doi.org/10.20944/preprints202105.0252.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2021 doi:10.20944/preprints202105.0252.v1

TIMOSHENKO BEAM THEORY USING THE FINITE DIFFERENCE METHOD

2.1.4.2 3x3 element stiffness matrix

Assuming the presence of a hinge at the right end, the sign convention for bending moments, shear forces, displacements,
and rotations of the cross section is illustrated in Figure 9.

Mi‘ i
¢ Viw

- ——

Ve i

Figure 9. Sign convention for moments, shear forces, displacements, and rotations for the stiffness matrix.

The 3x3 element stiffness matrix in local coordinates of the tapered beam is denoted by Kss.

The vectors of Equations (23a-b) and (24) become

See =[ViiMiV, ] (322)
\E = [Wi » @i Wy ]T (32b)
g =Ky X\E (32c)

The matrix K33 can be formulated with the values of the matrix K44 (see Equations (30a-b)).

Kaa Kab
K, = (33)
Kba Kbb

The matrix K4 has 4 rows and 4 columns, the matrix Kaa has 3 rows and 3 columns, the matrix Kab has 3 rows and 1

column, the matrix Kba has 1 row and 3 columns, and the matrix Kbb has 1 row and 1 column (a single value).
The combination of Equation (24) with the presence of a hinge at position k (M« = 0) and Equation (32c) yields the

matrix Kzs, as follows:

1
K33 = Kaa o Kab X——X Kba (34)

bb

2.2 Second-order analysis

The equation of static equilibrium can be expressed as follows:

Tk owix) =—a(x) 50
dMm (X) —T(X) N (X) dW(X) -0 (35b)
dx dx


https://doi.org/10.20944/preprints202105.0252.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2021 doi:10.20944/preprints202105.0252.v1

TIMOSHENKO BEAM THEORY USING THE FINITE DIFFERENCE METHOD

The axial force (positive in tension) is denoted by N(x) and the transverse force by T(x). Let us consider an external

distributed axial load n(x) positive along the + x axis

dN (x
n(x)=- (x) (36)
dx
The transverse force T(x) is related to the shear force V(x), as follows:
dw(x)

T(X)=V(x)+N(x) 37)

2.2.1 Second-order analysis of a uniform beam within segments

The grid spacing N, the reference flexural rigidity El, the reference shear stiffness KGA\, and the parameters Bk, Bk,

Bvk, and o are as defined in previous sections.

2.2.1.1 W-® FDM approximation of a uniform beam
Substituting Equations (4), (36), and (37) into Equation (35a) yields

G Ax(d2ng)_d¢(x)j “N(x )d W(x) 100 ) 0 = —g(x) )
dx dx dx

Substituting Equation (37) into Equation (35b) yields Equation (1b). Substituting Equations (3) and (4) into Equation (1b)

yields Equation (5b).

Substituting Equations (8a-b) and (9a-f) into Equations (5b) and (38) yields Equation (10b) and the following equation:

[ﬂwﬂ.i+Nihk2+”‘hk3)vvil—[2ﬂwﬂ.i 2\ UL ] [ﬂwﬂ.k Ni“kz—”‘hkslwm

a EI,  2El El a El,  2El

r r r r

4

a="4 hk (39)

2 2

+ A/kﬂlk hkq)i_l _ A/klglk hk(Di
2 r al’

Equations (10b) and (39) are applied at any point on the grid. At point I, the external distributed axial load Ni is

calculated similarly to Equations (17a—c). Applying Equations (8b) and (11b) into Equation (37) yields the FDM

formulation of the transverse force:

_ ﬂ/kﬂ.k A/kﬁlk 1 BB
T = W, + W, h @, (40)
! h 2ax, 2EIr a h 20, 2EIr " hk3 a, '

The bending moment is calculated using Equation (11a). The analysis at positions of discontinuity is conducted

similarly to the first-order analysis; however, the shear force is replaced by the transverse force.
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2.2.1.2 W FDM approximation of a uniform beam

It is assumed here that the axial force and stiffness of the Winkler foundation are constant along the beam. Substituting
Equations (2), (36), and (37) into Equation (35a) yields

d’M (x) d “W(X)
dx? ax?

Equation (6c¢) also holds in second-order analysis.

—kw(x) = ~q(x) @)

Differentiating Equations (41) and (6c) twice with respect to x and combining the results with Equation (41) yields

2
1+ N )d “w(x) (N )d ng) (X):q(x)_ 1 d q(zx) @2a)
xGA™ dx* El «GA” dx El El  xGA dx
Combining Equations (41) and (6c) yields
MO)_ g, N yd ng) k _u(0)- q(x) o
El xkGA™ dx kG KGA

The parameter ky of the Winkler foundation is defined in Equation (12b). Let us introduce the parameter ky, as follows:

Substituting Equations (8c), (8e), (9a-¢), and (42c) into the governing Equation (42a) yields

N =k,

(42c)

a
L —4W. , +6W, —4W. , +W. , ) - 2
( i+1 |+2) IBIk(IBMk ,BVK 12
4 -h4 d2
TR LI >Ny q(zx) (43a)
ﬁMk IBMk IB\/kﬁlk dx i

The bending moments, the transverse forces, and the rotations of the cross sections are determined using Equations
(42b) and (8e), Equations (37), (1b), (42b), (8d), and (8f), and Equations (4), (42b), (1b), (8d), and (8f), respectively.

=B, (L+ k;\/ar ) W, , +16W, , _1320:;4 +16W,,, -W, , (430)
k k
kw,BMka /BIk W, ,Blvlka q_
Boo D fBu
__8, (1+ ) W, +2W. , -2W., +W,_, 430

P on

Ky B +k Wi, -8W_, +8W,, -W,.,, Bua |2 dq(x)
P " 12h? A dx
k K

k
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i+1

B, (1+kNar) W, ,+2W,_, -2W, , +W,,

El o =
AT Bl A Ty 49
[ ko P! ]W W B, W, S ¢ d9(X)
” 12h, B dx |
2.2.1.3 M-W FDM approximation of a uniform beam
Substituting Equations (2), (36), and (37) into Equation (35a) yields
d*M (x d 2w(x dw(x
N9 -0 ) fan) =900 0
dx? dx

Substituting Equations (8a-b) and (9d-e) into Equation (43e) yields

Nh? nh? 2N h, 2 kl4
thMil_thzMi+hk2Mi+l+( Ellk +2IE|; ]Wil_( EII : :Bn( ] i (43f)

Nh? nh’ 4
H ik kW =—gh
L EIr 2EIr i+1 q| k

The governing equations (Equations (43f) and (13e)) are applied at any point on the grid. The rotation of the cross
section is calculated using Equations (13g). Applying Equations (37), (1b), and (8b) yields the transverse force, as

I’

follows:

N.h?
2T, =M, —hEM T (W) w0

r

2.2.2 Second-order analysis of a tapered beam
2.2.2.1 W-® FDM approximation of a tapered beam
Substituting Equations (4), (36), and (37) into Equation (35a) yields

dxGA(X) X(dw(x) d*w(x) dgo(x)j
dx?

(44a)

™ o (p(x)j + kGA(X) x [ i

NGO T 0 M) = a0

The grid spacing in segment k is Nk. The reference flexural rigidity El, the reference shear stiffness KGA\, and the
parameters ocr,BVi, and B’Vi (Equations (9c-f) and (14a-d)) are defined. Substituting Equations (8a-b), (9c-f), and (14a-d)
into Equation (44a) yields

' N2 2 2 3 2 2 4
_ Bab + Pl n N;h, + nh, W, - Zﬂwﬂlk 2N;h, ﬂm kil W (44b)
20, o ElI, 2El a El

r r r r

Y 2 2 3 2 ' 2 2
4 ﬂViﬂlk n ﬂ\/iﬂlk + Nihk _ nihk W, + ﬂ\/iﬁlk hkq)i_l_mhkq)i _thq)i+1 :—qih;1
20, a El. 2El, 20, a, 20,

r
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Equations (15b) and (44b) are applied at any point on the grid.

The bending moments and the transverse forces are calculated using Equations (11a) and (40), Bk and Bvk being

replaced by Bmi and Byi.

2.2.2.2 M-W FDM approximation of a tapered beam

The governing equations (Equations (16) and (43f)) are applied at any point on the grid. The rotations of the cross

sections and the transverse forces are calculated using Equations (13g) and (43g), respectively. However, By is

replaced by Bvi in Equation (13g).

2.2.3 Second-order element stiffness matrix of a uniform beam

The beam is divided in n parts of equal length h, as shown in Figure 10.

L = nhe

i | | | | |
Q0 0 0 0 B @ ) 2
Figure 10. FDM discretization for 4x4 element stiffness matrix.

The sign convention for bending moments, transverse forces, displacements, and rotations of the cross sections adopted to

determine the element stiffness matrix in local coordinates is illustrated in Figure 7, the shear forces Vj and V being

replaced by the transverse forces Tjand Tk.

The W FDM approximation is applied here. The W—® FDM and M-W FDM approximations can also be considered
with appropriate formulas developed in previous sections.

Equation (43a) with (i = 0 and kw = O is applied at any point on the grid (nodes 1, 2, ...n+1 of Figure 10).

The static compatibility boundary conditions are applied using Equations (43b-c). The geometric compatibility boundary

conditions are applied similarly to Equations (26a-d), the rotation of the cross section being formulated with Equation
(43d). The analysis continues similarly to Section 2.1.4.1.1 (Equations (27)-(30b)).

2.2.4 Second-order element stiffness matrix of a tapered beam

The M—W FDM approximation is applied here. The W—® FDM approximation can also be applied with appropriate

formulas developed previously. The sign convention for bending moments, transverse forces, displacements, and rotations
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of the cross sections adopted to determine the element stiffness matrix in local coordinates is illustrated in Figure 7, the

shear forces Vj and Vi being replaced by the transverse forces Tjand T.

Equations (16) and (43f) with (i = 0 and ki = 0 are applied at any point on the grid (nodes 1, 2, ...n+1 of Figure 8). The

static compatibility boundary conditions are expressed similarly to Equations (31a—d); however, the shear forces are

replaced by the transverse forces (Equation (43g)). The geometric compatibility boundary conditions are the same as in

Section 2.1.4.1.2 (Equations (31e-h)). The analysis continues similarly to Section 2.1.4.1.1 (Equations (27)-(30b)).

2.3 Vibration analysis of the Timoshenko beam

2.3.1 Free vibration analysis
The focus here is to determine the eigenfrequencies of the beam. A second-order analysis is conducted; and the first-
order analysis can easily be deduced. The equations of dynamic equilibrium on an infinitesimal beam element are as

follows:
ot (%t . oW (x,t
% —k(x)w (x,t) = pA(X) % (45)
oM™ (x,t oW’ (x,t ¢
% +N(x) ——= (X ) ~T7(x,t) =—pl(x) (oat(x ) (46)

where p is the beam’s mass per unit volume, A(X) is the cross-sectional area, N(x) is the axial force (positive in tension),

and Kk(x) is the stiffness of the elastic Winkler foundation.

A harmonic vibration being assumed, T"(x,t), M*(x,t), w"(x,t), and ¢“(x,t) can be expressed as follows (S*(x,t)

representing T~ (x,t), M*(x,t), w'(x,t), and @"(x,t)):

S7(x,1) = S(X) xsin(wt + 0) (47)
where @ is the circular frequency of the beam. Substituting Equation (47) into Equations (45) and (46) yields
ATO) e x)w(x) + pAX) @2 W(x) =0 (482)
P20 N 109 - p1 (990 =0 ()
X

Substituting Equations (36) and (37) into Equations (48a-b) yields

dv(x) d W(x)

+ N(X) ———=—-n(x) % —k(X)W(X) + pA(X)@*W(X) =0 (49a)

dM (x)
dx

~V(x) - pl (X)@°p(X) =0 (49b)
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2.3.1.1 Uniform beam within segments

23111 W-® FDM approximation of a uniform beam
We defined (Equations (9a-c)) a reference flexural stiffness El}, a reference shear stiffness KGA\, parameters BMk:
Bvk, and our. A reference cross-sectional area Ay and a reference length |, are also defined and are related to the cross-
sectional area Ak and the grid spacing N in the segment, as follows:
A =LA (50a)
N =il (50b)
The parameter o,y (Equation (9¢)) is defined with |, instead of |. Substituting Equations (3) and (4) into Equations (49a-

b) and combining the results with Equations (8a-b) yields the following FDM formulations:

Eﬂwﬂ.i+Nihk2+nihk3jwil_£2ﬂvm.i 2N,h? k.lr“ ﬂAkﬁ.ﬁpAwZI:‘]Wi

ﬂ.k

a,  El. 2El , El | El
2 2 3 2 2
PP 4 N;h.” nih W, + PP h,®. I_thq)_ =0 (51a)
a  ElI. 2El ) " 2 = 20, "

i+1

2 210 2
Loy, Lol +/3Mkhkd>i1—(2ﬁw+ﬂ“ﬂ'k—" o ]hk®i+ﬂwhkd>i+l=0 51
a

El

I’ r r

The reference coefficient of rotary inertia Kgir and the vibration frequency @ are defined as follows

I
_ r
kRIr _ I 2
Al,
Substituting Equations (52a-b) into Equations (51a-b) yields

(ﬂvkﬂli N Nihk2 n nihk3 jwil _(ZﬁVkﬂlk 2N h i lBIk I(|Ir4 :BAkﬁl ]

(52a) w=AX (52b)

a, El. 2El a, El,
2 2 3 2 2
n P B n N;h, _ nh, W, + P B hkq)i—l_mhkq)iﬂ =0 (53a)
a, El, 2El 2a, 2a,

2 2
—ﬂwﬂ'kwi1+ﬂ;f'kwi+1+ﬂwhk<bi1—(2/3Mk Bk kR.rﬂMkﬂ.iﬂ) .

2a

r r

+Bu @, =0 (53b)
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Equations (53a-b) are applied at any point on the grid. The bending moments and transverse forces are determined using
Equations (11a) and (40), respectively.

For the special case of a uniform beam without an axial force or a Winkler foundation, Equations (53a-b) become

Wi—l _(2 B arﬂéﬂz )Wi +Wi+1 T % hkq)i—l - % hkq)i+1 =0 (542)
2 2 2

- Ay Wi+ ar Wi 0@, - 2+&_ Keir |i/12 h® +h®;,, =0 (54b)
2a, 2a, a,

Effect of a concentrated mass, or a spring

The dynamic behavior of a beam carrying a concentrated mass or having a spring was analyzed, as shown in Figure 11.

p

—Ké_._

Figure 11. Vibration of beam having a concentrated mass and a spring.

The stiffness of the spring is Kp, and the concentrated mass is M.
_ 3 55a
K, =k, xEI /I, (552)
M, =m xpAl (55b)

The continuity equations for deflections, rotations of the cross sections, and bending moments are defined in Equations
(20a), (20b), and (20c), respectively. Equation (20c) is applied with M”* = 0. The reference length of the beam is |,
(Equation (50b)).

Applying Equations (9e), (50b), (52b), and (55a-b), the balance of vertical forces in the case of a concentrated mass or a

spring yields
M @? m
T -T —> W =0>5T. -T. ——2 2. =0 and (56a)
il ir EI il il ir I 3 il
K k
El |

respectively. The transverse forces Til and Tir are calculated using Equation (40).

Effect of a spring —mass system: The dynamic behavior of a beam carrying a spring—mass system was analyzed,

as represented in Figure 12. The deflection of the mass is denoted by Wim.
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Ko

Mp

Figure 12. Vibration of a beam carrying a spring—mass system.

Applying Equations (9¢), (50b), (52b), and (55a-b), the balance of vertical forces yields
2

m
W, =0T, -T, —I—g/iz\NiM =0 (57a)
M Ioa)2 K,
2 Wi =5 Wiy =W ) = M AW, =k, Wiy, — W) (570)

23.1.1.2 M-W FDM approximation of a uniform beam
Substituting Equation (49b) into Equation (49a) and combining the result with Equation (3) yields

dzgf(z(x)era) M (X) + N(x)d W(x) dw(x)

—n(X) —=Z —k(X)W(X) + pA*'W(X) =0  (58)

Fogang [11] presented the following material law, which combines bending, shear, the curvature, and the natural

frequency:

2 2 2
dng)+(1_pla))XM(x)_ 1 ><d Mz(x)
dx kGA El  «xGA  dx

In [11] the relationship between shear force/rotation of the cross section and bending moment/deflection is presented as

follows:

(1_p|a)2] V(X )_dM(x) o dw(x)
dx

59b
«GA dx (o)
(pl o’ — KGA)X o(X) = M) _ xkGA aw(x) (59c)
dx dx
Substituting Equations (8a-b), (50a-b), and (52a-b) into Equations (58) and (59a) yields
MM,y +(Key B2A2 = 2) M, +h2M, + N, mhc
k i-1 Rir 1k Kk i k i+1 Elr 2E|r i-1
2Nh? k,l;‘ N.h2 nh?
ﬂlk /BAkﬁlk W, + e =0 (60a)

= El. 2EI ) ™
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o 1 2c 1
W, —2W, + W, —— hkzM it + - lerO‘r12 thMi (60b)
:BVkIBm IBMk ﬂ\/kﬂlk ﬂVk
o
- : 2 hkzM =0
:BVkIBm
Equations (60a-b) are applied at any point on the grid. The rotation of the cross section and the shear force are
calculated substituting Equations (8a-b), (9c), and (52a-b) into Equations (59b-c), as follows:
B M., —M, W.,, W,
Mk 2 _ i+1 i-1 2 2 7741 i—1 (60c)
1 kRIrarﬂ’ Vi - ﬂMkﬁIk kRIrﬂ’

L 2h, 2h’

° \EI M., —M. 2W_ W
ﬂMkﬂékR"ﬂfz _ ﬂ\/kﬁlk r <0i — i+1 i-1 A/kﬂlk i+1 - i-1 (60d)
a 2h, a 2h;

2
r hk r

The transverse force is calculated using Equations (37) and (60c).
The dynamic behavior of a beam carrying a concentrated mass, a spring, or a spring—mass system was analyzed

similarly to the previous section (Equations (55a)-(57b)).

2.3.1.2 Tapered beam

The W—® FDM approximation was considered here for the vibration analysis of a tapered beam. The M-W FDM

approximation led to complicated expressions and was not further analyzed. The beam segment with length | is divided

in parts of equal length hy. The reference values of flexural stiffness, shear stiffness, cross-sectional area, and

coefficient of rotary inertia are defined like in previous sections.

Substituting Equations (3) and (4) into Equations (49a-b) and combining the results with Equations (8a-b), (14a-d),
(50a-b), and (52a-b) yields the following FDM formulations of the governing equations:

.- 2 _ 2 Nh2 n-h3 2 _ 2 2Nh2 k|4
(_ Azllaﬂlk +A/C|¥ﬂlk + E'Ik + 2|E|; Wil_[ ﬂ;lﬂlk 4 Ell k +ﬂli Ellr _ﬁ/.\iﬂli/lzjwi (61a)
n A'/iﬂli +ﬂ\/iﬂli + Nihk2 _ nihk3 W,

2a. @,  El 2EL

r r

2 ' B2 :
+ % i~ Bl h®, _% NP =0

a

r r r r
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ﬂv ﬁlk W + ﬂV ﬂlk W|+1 + [ﬂl\/ll ﬁMI J i-1 (ZﬂMi + ﬂvclzﬂli - lerﬂMiﬂliﬂ‘Z] I‘]kq)i (61b)

r

(ﬁm 3 jm .

Equations (61a-b) are applied at any point on the grid. The bending moments and transverse forces are determined using

Equations (11a) and (40), respectively, Bmk and Bk being replaced by Bmi and Bi.

Effect of a concentrated mass, a spring, or a spring—mass system
The dynamic behavior of a beam carrying a concentrated mass, a spring, or a spring—mass system is analyzed similarly

to the previous section (Equations (55a)-(57b). The transverse forces Til and Tir are calculated using Equation (40),

Bvk being replaced by PBui.

2.3.2 Direct time integration method

The direct time integration method developed here describes the dynamic response of a beam as a multi-degree-of-

freedom system. Viscosity 1 and external loading p(x,t) are considered.

23.2.1 Uniform beam within segments
The W—® FDM approximation was considered for the vibration analysis of the uniform beam. Substituting Equations

(3), (4), (36), and (37) into Equations (45) and (46) yields the following governing equation for a uniform beam:

KGAX(82W*(X,t)_8(p*(X,t)J_n( )awﬁ(x ) + N(x )6 v (X J

ox? OX
. o'W (x,1)  aw (x,t)
—k(x)w (x,t) — pA a1 T p(x,1) (62a)
0% (1) ow (x,t) . 0% (x,t)
El ————>+xGAx| ———~>—0¢ (X,t) |- pl —/——"==0 (62b)
o RO T e D Rl

The derivatives with respect to x are formulated using Equations (8a-b), while those with respect to t (time increment is

At) are formulated considering a three-point stencil with Equations (63a-c):

oW (x,t)
ot

2 *
|tAt+W|t+At o'W (x,1) :WItAt 2w, +W|t+At (63a)

2At ot | At2

it it

—W
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At initial time t = O, a three-point forward difference approximation is applied (Equation (18a)):

*

_ _3W*i,0 + 4W*i,At —W i,2At
- AL (63b)

i,0

2 * * * *
oW _Wi,0_2Wi,At+Wi,2At ow

ol At? ot

i,0

At final time t = T, a three-point backward difference approximation is applied (Equation (18c)):

2 * * * *
OW | Wity —2W 7\ +Wip ow
ot | At ot

i,T

_ W*i,T—ZAt _4W*i,T—At +3W*i,T (63¢)
2At

iT

The governing equations (Equations (62a-b)) can be formulated with the FDM for x = i at time t. The FDM formulations
of these equations are applied at any point of the beam at any time t using a five-point stencil. Additional points are
introduced to satisfy the boundary and continuity conditions. The boundary conditions are satisfied using a three-point
stencil. Thus, beam deflection w*(x,t) and rotation ¢"(x,t) can be determined with the Cartesian model represented in
Figure 13. The bending moment M*(x,t), shear force V*(x,t), and transverse force T"(x,t) are calculated using Equations
(11a-b) and (37), respectively.

With this model, the assumptions made previously can be verified, namely the separation of variables and the harmonic

vibration (Equation (47)).

At

At

At

Figure 13. Model for the calculation of time-dependent vibration of a uniform beam.
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2.3.2.2 Tapered beam

A similar analysis can be conducted. Thus, Equations (62a-b) become

dxGA(X) (aw*(x,t) o t)j+KG Alx )Lazw (x,t) 8¢"(x, t)j (64a)
dx OX X° OX
aw*(x,t) o'W (x,1) o'W (x,t) _ow (x,t)
—N(X)—— ™ +N(x )T KOOW' (x,1) = pA(X) pre R A =-p(x,1)
(64b)
dEI(X) 0¢ (X, 1) 0% (1) ow (x,t) . @ (xt)
™ ™ +E|(X)T+KGA(X)X[T—¢) (x,t)] pI(X) e =0

The derivatives with respect to x are formulated using Equations (8a-b), while those with respect to t (time increment is
At) are formulated considering a three-point stencil with Equations (63a-c).

The FDM formulations of Equations (64a-b) are applied at any point on the beam and at any time t using a five-point
stencil. Additional points are introduced to satisfy the boundary and continuity conditions. The boundary conditions are
satisfied using a three-point stencil. Thus, beam deflection w*(x,t) and rotation ¢“(x,t) can be determined with the

Cartesian model represented in Figure 13. The bending moment M*(x,t), shear force V*(x,t), and transverse force T"(x,t)

are calculated using Equations (11a-b) and (37), respectively, Bvk being replaced by Bvi in Equation (11b) and Bmk by
Bwmi in Equation (11a).

With this model, the assumptions made previously can be verified, namely the separation of variables and the harmonic

vibration (Equation (47)).

3 Results and discussion

3.1 First-order analysis
3.1.1 Beam subjected to a uniformly distributed load

In this study, we analyzed a uniform fixed—pinned beam subjected to a uniformly distributed load (Figure 14).

T

Figure 14. Uniform fixed—pinned beam subjected to a uniformly distributed load.
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The governing equations (Equations (10a-b)) are applied at grid points 1, 2, 3, 4, and 5. The boundary conditions are
satisfied using Equation (11a).

The bending shear factor o = EI/xGAI2 = 0.025 (Equation (9c))

In this study, analysis was conducted with the W—® FDM, M—W FDM, and W FDM approximations. Details of the

analysis and results are presented in Appendix A and in the Supplementary Material “Fixed—pinned beam subjected to a

uniformly distributed load”. Table 1 lists the results obtained with classical beam theory (CBT) and those obtained with
W-® FDM and M—W FDM approximations. Table 2 lists the results obtained with classical beam theory (CBT) and
those obtained with W FDM approximation.

Table 1. Bending moments (KNm) in the beam for a number of grid points: classical beam theory (CBT) and present

study (W—® FDM and M—W FDM approximations).

Position CBT Present study Present study Present study

X(m) (exact results) 5-point grid 9-point grid 13-point grid
W-0® M-W W-o M-W W-0 M-W

0.0 -74.42 -50.07 -67.80 -65.89 -72.73 -70.33 -73.66
2.0 4.19 -0.63 9.15 2.47 5.45 3.36 4.75
4.0 42.79 24.20 46.10 36.24 43.64 39.64 43.17
6.0 41.40 24.41 43.05 35.42 41.82 38.52 41.58
8.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Although the results of both approximations converge toward the exact results, the M—W approximation delivers better
results than the W—® approximation for a given grid. Accuracy increases with an increasing number of grid points. The
M-W FDM approximation yields better results of bending moments than the W—® FDM approximation, since results
are obtained here through a one-step approximation, whereas results by the W—® FDM approximation are obtained

through a two-step approximation (w and ¢ are determined in the first step, and the moment M is calculated in the

second step).
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Table 2. Bending moments (kNm) in the beam for a number of grid points: classical beam theory (CBT) and present

study (W FDM approximation).

Position CBT Presentstudy  Presentstudy Present study
X(m) (exact results) 5-point grid 3-point grid 2-point grid
W FDM W FDM W FDM
0.0 -74.42 -74.42 -74.42 -74.42
2.0 4.19 4.19
4.0 42.79 42.79 42.79
6.0 41.40 41.40
8.0 0.00 0.00 0.00 0.00

The results obtained with the W FDM approximation are exact for a uniformly distributed load regardless of the

discretization, since the exact solution for the deflection curve here is a fourth-order polynomial, which corresponds to

the FDM approximation.

3.1.2 Beam subjected to a concentrated load

We analyzed a uniform fixed—pinned beam subjected to a concentrated load, as shown in Figure 15.

P=10.0kN

a=4h1=5.0m . b=3h2=3.0m

D2 & & ® 60 O @

Figure 15. Uniform fixed—pinned beam subjected to a concentrated load

The models showing the grid points (Figure 4a,b and Figure 5a,b) are considered.

In this study, analysis was conducted with the W—® FDM, M—W FDM, and W FDM approximations. Details of the

analysis and results are presented in Appendix B and in the Supplementary Material “Fixed—pinned beam subjected to a
concentrated load.” Table 3 lists the results obtained with classical beam theory (CBT) and those obtained in this study

(W-® FDM, M-W FDM, and W FDM approximations).
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Table 3. Bending moments (kNm) in the beam: classical beam theory (CBT) and present study (W—-® FDM,
M-W FDM, and W FDM approximations).

Eight-point grid  Three-point grid

Position CBT Eight-point grid
(4x1.25m) + 50m+3.0m
X(m) (exact results) (4x1.25m)+(3x1.0m)
(3x1.0m)
W-® FDM M-W FDM W FDM W FDM
0.00 -12.16 -11.96 -11.80 -12.16 -12.16
1.25 -5.57 -5.41 -5.27 -5.57
2.50 1.01 1.15 1.26 1.01
3.75 7.60 7.71 7.79 7.60
5.00 14.19 14.26 14.33 14.19 14.19
6.00 9.46 9.51 9.55 9.46
7.00 4.73 4.75 4.78 4.73
8.00 0.00 0.00 0.00 0.00 0.00

The results obtained with W—® FDM and M-W FDM approximations have gut accuracy. Surprisingly, the W—-®

approximation here delivers better results than the M—W approximation. The results obtained with the W FDM

approximation are exact for a concentrated load regardless of the discretization, since the exact solution for the

deflection curve here is a third-order polynomial, which is exactly described with the fourth-order polynomial FDM

approximation.

3.1.3 Tapered pinned-fixed beam subjected to a uniformly distributed load

We analyzed a tapered pinned—fixed beam subjected to a uniformly distributed load, as shown in Figure 16.

p = 10.0 kN/m

it

Figure 16. Tapered pinned—fixed beam subjected to a uniformly distributed load.
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At position x; of the beam, the second moment of area 1(x1) and the cross-sectional area A(x1) are defined as follows:

4
1(x) =1 (x/L,) (652
2
AG) = A (% /1) ©s0)
where I; and A; are the second moment of area and the cross-sectional area at the fixed end x1 = L, respectively.

L=8.0m, Lo=2.0m, and otr = 0.020.

First, the beam is calculated using the force method of classical beam theory (exact results). Then, the calculation is
conducted with the FDM using n =9, 17, and 25 grid points. Details of the analysis and results are presented in Appendix C

and in the Supplementary Material “Tapered pinned—fixed beam subjected to a uniformly distributed load.” Table 4 lists
the results obtained with classical beam theory (the exact results) and those obtained in this study (W—® FDM and M—-W
FDM approximations).

Table 4. Bending moments (kNm) in the beam for a number of grid points: classical beam theory (CBT) and present
study (W—® FDM and M—W FDM approximations).

Position CBT Present study Present study Present study
X(m)  (exact results) 9-point grid 17-point grid 25-point grid
W-® M-W W-® M-W W-o M-W

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 13.77 6.88 14.00 12.34 13.80 13.52 13.78
2.00 17.53 21.76 18.00 20.90 17.61 19.54 17.56
3.00 11.30 23.55 12.01 16.90 11.41 13.84 11.34
4.00 -4.93 12.95 -3.99 -0.69 -4.79 -3.50 -4.88
5.00 -31.17 -16.51 -29.99 -30.94 -30.99 -31.93 -31.10
6.00 -67.40 -64.15 -65.99 -72.91 -67.18 -71.03 -67.32
7.00 -113.64 -127.95 -111.99 -125.90 -113.38 -120.51 -113.54
8.00 -169.87 -205.89 -167.98 -189.48 -169.58 -180.21 -169.76

Although the results of both approximations converge toward the exact results, the M—W approximation delivers better
results than the W—® approximation for a given grid. Accuracy increases with an increasing number of grid points. The
M-W FDM approximation yields better results of bending moments than the W—® FDM approximation, since results
are obtained here through a one-step approximation, whereas results by the W—® FDM approximation are obtained

through a two-step approximation (w and ¢ are determined in the first step, and the moment M is calculated in the

second step).
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3.2 Second-order analysis
3.2.1 Beam subjected to a uniformly distributed load and a compressive force
We analyzed a uniform pinned—pinned beam subjected to a uniformly distributed load and a compressive force, as

shown in Figure 17.

Figure 17. Pinned—pinned beam subjected to a uniformly distributed load and a compressive force.

NI?/El = -3.00, p =10.0 KN/m, [=8.0m o = EI/kGAI? = 0.02.

Fogang [6] presented a closed-form expression of the bending moment in a pinned—pinned beam. In this study, the analysis
is conducted with n =9, 17, and 25 grid points. Details of the analysis and results are presented in the Supplementary

Material “Pinned—pinned beam subjected to a uniformly distributed load and compressive force.” Table 5 lists the results

obtained by Fogang [6] and those obtained in this study (W-® FDM, M-W FDM, and W FDM approximations).

Table 5. Bending moments (kNm) in a pinned—pinned beam: Fogang [6], W—® FDM, M-W FDM, and W FDM.

Position FDM FDM
Fogang [6]
X(m) 9-point grid 17-point grid
W-0 M-W W FDM W-0 M-W W FDM

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 54.68 4411 57.60 55.36 51.59 55.41 54.85
2.00 95.84 77.05 100.96 97.05 90.33 97.11 96.14
3.00 121.39 97.41 127.89 122.95 114.35 123.01 121.78

4.00 130.06 104.29 137.02 131.73 122.49 131.79 130.47
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Position Fogang [6] FDM
X(m) 25-point grid
W-® M-W W FDM

0.00 0.00 0.00 0.00 0.00
1.00 54.68 53.26 55.00 54.76
2.00 95.84 93.31 96.40 95.97
3.00 121.39 118.16 122.11 121.56
4.00 130.06 126.58 130.83 130.24

The results of this study have high accuracy.

3.2.2 Buckling load of a fixed—pinned beam

We determined the buckling load of a fixed—free beam, as shown in Figure 18.

N N

* P

El, xGA, [

—_—
E

Figure 18. Buckling load of a fixed—free beam.

In this study, analysis was conducted with n =9 and 17 grid points. The buckling load N is defined as follows:

Ncr :_EZEI /(ﬂl)z (66)
Hu et al. [5] presented the following closed-form expression of the buckling load of a fixed—free beam:
N, = —7°El gpzﬂ (67a)
41° (1+ 2° 1 48) 12KGA
The combination of Equations (9c), (66), and (67a) yields the buckling factor 3 as follows:
B=Ja+7pl12 =4+’ (67b)

Details of the analysis and results are presented in the Supplementary Material “Buckling load of a fixed—free beam.”
Table 6 lists the results obtained by Hu et al. [5] and those obtained in this study (W—-®, M-W, and W FDM

approximations) for different values of the bending shear factor a (Equation (9c)).
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Table 6. Buckling factors B of the beam: Hu et al. [5], W—® FDM, M-W FDM, and W—FDM.

o= FDM FDM
Hu et al. [5]
El/xkGAI? 9-point grid 17-point grid
W-® M-W W FDM W-® M-W W FDM
0.0250 2.0608 2.1049 2.0639 2.0711 2.0719 2.0615 2.0634
0.0500 2.1198 2.1429 2.1228 2.1301 2.1260 2.1205 2.1224
0.0750 2.1772 2.1943 2.1802 2.1875 2.1817 2.1779 2.1798
0.1000 2.2332 2.2471 2.2360 2.2425 2.2368 2.2339 2.2357

The results of this study have high accuracy.

3.2.3 Second-order element stiffness matrix of a uniform beam

Let us calculate the element stiffness matrix of a beam with the following characteristics:
k = -1.5 (Equation (42c)), o = 0.05 (Equation (9c¢)), and length L = 4.0 m.

The matrix is calculated with W FDM and M-W FDM approximations. The stiffness matrix is as follows:

TTB QTB _TTB
S _
KTbI — El x B QTB
TTB
_sym.

QTB
C:TB

_QTB
STB

(68)

Let us now calculate the stiffness matrix of the beam with the following formula presented by Hu et al. [5]:

(A/L)?
0
—~(A/L)*cos A

Ky = El 7%

0 (AIL2 0]
0 0 0
0 —(AIL)? 0
~(AILpsinA 0 0]

1 o 0 1]
0 yAIL 10

" C0sA sini L1

—yAlLsinA yAlLcosi 1 0]

The aforementioned characteristics become P = 1.5 x EI/L?, x = 1- P/(ksGA) = 1- 1.5 x 0.05 = 0.925,

A=4/PL2/ yEl =+/1.5/0.925 =1.273

Details of the results are presented in Appendix D and in the Supplementary Material “Second-order element stiffness

matrix of a uniform beam.” Table 7 lists the results obtained by Hu et al. [5] and those obtained in this study (M—W FDM
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and W FDM approximations). The W—® approximation can be considered using appropriate formulas developed in

Section 2.2.1.1.

Table 7. Second-order element stiffness matrix: Hu et al. [5], M-W FDM, and W FDM.

Hu et al. 9-point 13-point 17-point
[5] grid grid grid
M-W wW FDM M-W wW FDM M-W W FDM
Tt 0.0917 0.0897 0.0913 0.0908 0.0915 0.0912 0.0916
Qs 0.2303 0.2263 0.2295 0.2285 0.2300 0.2293 0.2301
St 0.6759 0.6682 0.6767 0.6725 0.6763 0.6740 0.6761
Crs 0.2454 0.2369 0.2465 0.2416 0.2459 0.2432 0.2457

The results of this study have high accuracy.

3.3.1 Free vibration analysis of a fixed—free beam

We determined the vibration frequencies of a fixed—free beam. Analysis was conducted withn =9, 17, and 25 grid

points. Details of the analysis and results are listed in Appendix E and in the Supplementary Material “Vibration

analysis of a uniform fixed—free beam.” The vibration frequency coefficients A are defined in Equation (52b). The

results (depending on the bending shear factor and the coefficient of rotary inertia) obtained in this study are compared

to those obtained by Kruszewski [15], and are listed in Table 8.

Table 8. Coefficients A of natural frequencies (first mode) of a fixed—free beam.

wkei KruszewskKi Present study Present study Present study
[15] 9-point grid 17-point grid 25-point grid
W-0 M-W W-0 M-W W-0 M-W
0.025/0.010 3.2662 3.4917 3.2290 3.3245 3.2568 3.2922 3.2620
0.025/0.015 3.2368 3.4549 3.2005 3.2933 3.2276 3.2621 3.2327
0.050/0.010 3.1159 3.2226 3.0833 3.1431 3.1077 3.1280 3.1122
0.050/0.015 3.0927 3.1967 3.0607 3.1192 3.0847 3.1045 3.0891

The results of this study have high accuracy.
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3.3.2 Free vibration analysis of beams resting on Winkler foundation and subjected to a
compression force
We determined the dynamic response of beams subjected to an axial load. An elastic Winkler foundation was also
considered. A pinned—pinned and a fixed—pinned beam were analyzed.
Ghannadiasl [14] analytically solved the case of beams with various boundary conditions, resting on an elastic Winkler

foundation and subjected to an axial load. The beams have the following characteristics: Poisson’s ratio v = 0.25,

Timoshenko shear coefficient k = 2/3, and coefficient of rotary inertia kg = 0.01.

a= El 2—1XEXLZ=LXZX(1+0.25)XO.01:0.0375
kGAL x G AL 2/3

X

El
N :—O.6><7r2><F — kn=-5.922

The definition of the stiffness of the Winkler foundation in Ghannadiasl [14] has an error: in the denominator, the
expression should be L* instead of L2,

Analysis was conducted with n =9, 17, and 33 grid points. Detailed results are listed in the Supplementary Materials
“Vibration analysis of a pinned—pinned beam with an axial load” and “Vibration analysis of a fixed—pinned beam with
an axial load”. Table 9 and Table 10 list the results of Ghannadiasl [14] and those obtained in this study (W-® and
M—W approximations).

Table 9. Coefficients A of natural frequencies (first mode) of a pinned—pinned Timoshenko beam under axial load:
Ghannadiasl [14], W—®, and M-W.

Ky Ghannadiasl Present study Present study Present study
[14] 9-point grid 17-point grid 33-point grid
W-® M-W W-o M-W W-o M-W
0 3.46648 4.26106 3.35291 3.68461 3.43818 3.52250 3.45941
0.2xm* 5.52398 6.05742 5.45397 5.66425 5.50725 5.55952 5.51958
0.4xn* 7.00019 7.43094 6.94550 7.11207 6.98642 7.02844 6.99674
0.6xn* 8.21469 8.58696 8.16850 8.31083 8.20306 8.23893 8.21178

0.8xm* 9.27091 9.60434 9.23034 9.35672 9.26062 9.29253 9.26835
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Table 10. Coefficients A of natural frequencies (first mode) of a fixed—pinned Timoshenko beam under axial load:
Ghannadiasl [14], W—-®, and M-W.

K Ghannadiasl Present study Present study Present study
w
[14] 9-point grid 17-point grid 33-point grid
W-0 M-W W-0 M-W W-0 M-W
0 7.32425 7.86512 7.09499 7.46801 7.26653 7.36077 7.30979
0.2xr? 8.50792 8.98023 8.31146 8.63265 8.45830 8.53955 8.49549
0.4xm? 9.54555 9.97105 9.37093 9.65748 9.50137 9.57390 9.53447
0.6xn’ 10.4806 10.87162 10.32186  10.58318  10.44038  10.50656  10.47050
0.8xn* 11.3384 11.70279 11.19194  11.43386  11.30131  11.36259  11.32913

The results of this study have high accuracy.

3.3.3. Free vibration analysis of tapered Timoshenko beams
We determined the vibration frequencies (coefficients A) of tapered Timoshenko beams. Pinned—pinned, fixed—free, and
fixed—fixed beams were considered.
The beams have the following characteristics: Poisson’s ratio v = 0.30, Timoshenko shear coefficient « = 5/6, and

coefficient of rotary inertia Kr) = 0.01.

aziz— 1 xEx |2 :ix2(1+0.30)><0.01=0.0312
xkGAL° x G AL 5/6

Analysis was conducted with n =9, 17, 25, 33, and 41 grid points for different values of the taper ratio (1-h./h;) and
support conditions: h; and h, are heights at the left and the right beam’s end, respectively. The reference values Ar and Ir
are taken at the left beam’s end. Detailed results are listed in the Supplementary Material “Vibration analysis of tapered
Timoshenko beams.” Soltani [16] presented results obtained with the power series method (PSM) and those obtained by

Hibbitt et al. [17] with the finite element method using ABAQUS software. The results of this study are compared with
their results in Table 11.
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Table 11. Coefficients A of natural frequencies (first mode) of tapered Timoshenko beams: power series method (PSM),
ABAQUS, and FDM.

Taper FDM FDM FDM FDM FDM
PSM  ABAQUS

ratio 9-pt grid 17-ptgrid  25-ptgrid  33-ptgrid  41-ptgrid

Fixed—free beam

0.2 3.3307 3.3770 3.4978 3.3734 3.3498 3.3414 3.3375

0.5 3.5591 3.6890 3.6839 3.5895 3.5725 3.5666 3.5639

Pinned—pinned beam

0.2 7.7160 7.7370 8.2013 7.8419 7.7723 7.7478 7.7364

0.5 6.4442 6.4740 7.0314 6.5924 6.5100 6.4812 6.4678

Fixed—fixed beam

0.2 13.2223 13.2380 13.7840 13.3733 13.2903 13.2607 13.2469

0.5 11.9235 11.9500 12.8356 12.1781 12.0392 11.9891 11.9657

The results of this study have high accuracy.

3 Conclusions
The FDM-based model developed in this paper enables, with relative easiness, first-order, second-order, and vibration
analyses of Timoshenko beams. The results show that the calculations, as described in this paper, yield accurate results.
First- and second-order element stiffness matrices (tensile or compressive axial force) in local coordinates were determined.

In addition, tapered beams were analyzed.

The following aspects were not addressed in this study but could be analyzed with the model in the future:

v Analysis of linear structures, such as frames, through the transformation of element stiffness matrices from local
coordinates to global coordinates

Second-order analysis of frames free to sidesway, the P-A effect being examined

Timoshenko beams resting on Pasternak foundations

Elastically connected multiple-beam system

D N NI NN

Axially functionally graded beams.

Supplementary Materials: The following files were uploaded during submission:
° “Fixed—pinned beam subjected to a uniformly distributed load”

° “Fixed—pinned beam subjected to a concentrated load”
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“Tapered pinned—fixed beam subjected to a uniformly distributed load”

. “Pinned—pinned beam subjected to a uniformly distributed load and compressive force”
o “Buckling load of a fixed—free beam”

. “Second-order element stiffness matrix of a uniform beam”

° “Vibration analysis of a uniform fixed—free beam

. “Vibration analysis of a pinned—pinned beam with an axial load”

o “Vibration analysis of a fixed—pinned beam with an axial load”

. “Vibration analysis of tapered Timoshenko beams”
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Appendix A: Uniform fixed—pinned beam subjected to a uniformly distributed load

A uniform beam (Figure 14) subjected to a uniformly distributed load was analyzed using the force method of classical
beam theory. The bending moment at the fixed end was the redundant effort.

In the associated statically determinate system, Mo(x) and Vo(x) are the bending moment and the shear force,
respectively, due to the distributed load, whereas m(x) and v(x) are the bending moment and the shear force,
respectively, due to the virtual unit moment at the fixed end. Mo(x), Vo(X), m(x), and v(x) can be expressed as follows:

M, (x) = px(I =x) /2= plI*(1-&) /2 m(x)=1-x/1=1-¢
Vo(X)=p(1/2-x) = pl(1/2-¢) v(x) =—1/1 (AD)

The bending moment M at the fixed end is the solution of the following equations:

0, :j.MO(X)Xm(X)dx+J~V—°(X)XV(X)dx—>EI5 :p_l3+0 A2

10 ) ) KGA 10 ( )
| |
m(x) x m(x) V(X) x V(X) I El

Oy = dx+ | ——=dx > Els, =—+1——

= ! El ! KGA 737 kGAI? A9
S, pl®

M, =— 10 _ _ (A4)
511 8+24i

kGAI?
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Combining Equations (A1) and (A4) yields the bending moment at any position x, as follows:

M (X) = M, (x) + M, xm(x) (A5)

Appendix B: Uniform fixed—pinned beam subjected to a concentrated load
A uniform beam (Figure 15) subjected to a concentrated load was analyzed using the force method of classical beam
theory. The bending moment at the fixed end was the redundant effort.

Analysis was conducted similarly to the example in Appendix A.

1 | El
ElSs. ==Pab(1+b/1)+0 IS, =—+1
Y 6 ( ) 3 kGAI?

(B1)

v, do Pab(1+b/1)

Oy |(2+6 El j

kGAI?

Appendix C: Tapered pinned—fixed beam subjected to a uniformly distributed load

A tapered beam (Figure 16) subjected to a uniformly distributed load was analyzed using the force method of classical
beam theory. The bending moment at the fixed end was the redundant effort.

In the associated statically determinate system, Mo(x) and m(x) are the bending moments due to the distributed load and
the virtual unit moment at the fixed end, respectively. Vo(x) and v(x) are the shear forces due to the distributed load and

the virtual unit moment at the fixed end, respectively. Let us introduce the dimensionless ordinate & = X/l and

Eo = Lo/LL1. Mo(x), Vo(x), m(x), v(x), I(x), and A(x) can be expressed as follows:

Mo (x) = px(1-x)/2 = plI*s(1-&) /2 m(x)=x/1=¢
V,(x)=p/2-x)=pld/2-&) v(x)=1/1

4 4
1(X) = |1(X1/L1) = |1[50+§(1_§o)] (C1)
2 2
A(X)=A1(X1/L1) =A1[§o+§(1_§0)]
Applying Equations (A2) and (A3), the bending moment M at the fixed end is the solution of the following equations:

g, - B €00 o w2-¢)
2 o

4d§+arp|3x >
2 [&+EA-E&,)] '([[50 +&(1-4,)]

1 gz | 1
El Sy, =1x | dé+a,l dé& (3)

o[&+E@-&)] o[&+E@-&)]
M, =-0, /511 (C4)

dé (C2)
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Equations (C2) and (C3) are solved numerically. Combining Equations (A1), (A4), and (A5) yields the bending moment at

any position x.

For the analysis of the tapered beam with the FDM, the parameters B’M(x) (Equation (14c)) and B’V(x) (Equation (14d))

are calculated as follows:

P (X) = [50 +§(1_§0)]4 — fu(x)=h, M =45 a‘&o)[ﬁo +§(1_§o)]3 (C5)

dﬂv(X)

A/(X) [50"'5(1 50)] _):&/(X) h zﬂlk(l_éo)[§0+§(1_§o)]

Appendix D: Second-order element stiffness matrix of a uniform beam
W FDM approximation

The static compatibility boundary conditions are expressed as follows:

T =T =T — (k) -W , +2W, 32W +W, + Bk, W_1—8\N0+§3\N2—W3:O
2h; 12h,
(D1)
M, =M, — M, + (L+ k) v LW, — SO, +16W, W, _,
12h;
Tk :Tn ——)T +(1+k 0[) W +2W 32Wn+2+W ﬂlikNWn—l_SVVn+8\:Vn+2_Wn+3:0
2h; 12h,
M, =M —>M, —(+k,a) W, +16W, 3;)\2Nr:2+1+16w -W_ ., 0
k

The geometric compatibility boundary conditions are expressed as follows:

W, = El w. (D2)
El g —r(1+ka)W+2W —2W, +W, W —8W, +8W, —W, _Elg

ﬂ,k 2h, 12h,
Wn+1=E|er

E|r¢n+1:a_;(1+kNar) W +2\N 2Wﬂ+2 +W W 8VV +8VV W :Elr(Dk
Jifs 2h, 12h,
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M-W FDM approximation

The static compatibility boundary conditions are expressed as follows:

hk2M2 _hk2M0 Nihk2 Wz _Wo _

T.=—T, =T+ e + — =0
2h, El, 2h
M. =M, — h’M, —h?M, =0
2 R 2 . (D3)
Tk :Tn+1:_)Tk_han+2 3han_Nihk Wn+2 3Wn =0
2h El.  2h
Mk :_I\/In+1_)hkzl\/lk+hk2|\/|n+1:0

The geometric compatibility boundary conditions are expressed as follows:

w, =w, >W, =El xw

i 2 _h?2
0 =0 >l xg =22t o WM MMy g,

2h, P 2h, (D4)
Wn+1:Wk _)Wn+1:EIrXWk

2 2
Wn+2 Wn _C(; hk I\/In+2 hk I\/In :Eer(Dk
2h, " 2h,

¢n+1 :¢k - EIr ><(Dm—l =

Appendix E

Kruszewski [15] presented the following equation (Equation (14) in [15]) for the determination of natural
frequencies of a fixed—free beam:
( ) (E1)
¥n(ke? + kpyl -
B\"S RI _ 5
2 - - T ein kpp einh kpo + [kBQ(kSE - kRIE) + E] cos kpB cosh kpa = 0
\] = kgl ky

where Kg, ks, Kri, o, and B are defined in [15] in Equations (3a), (3b), (3c), and (5), respectively.

The following equivalences were noted between the parameters considered by Kruszewski [15] and those considered
in this study (PS):

ksz =q, kB = 7\,, kR|2(K) = km(PS)
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