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1. Introduction 

This paper describes the application of Fogang’s model [1] based on the finite difference method, used for the 

Euler−Bernoulli beam, to the Timoshenko beam. First-order analysis of the Timoshenko beam is routinely performed; 

the principle of virtual work yields accurate results and is easy to apply. However, second-order and vibration analyses 

of the Timoshenko beam cannot be modeled using the principle of virtual work. Various studies have focused on the 

analysis of Timoshenko beams. Kindelan et al. [2] presented a method of obtaining optimal finite difference formulas 

that maximize their frequency range of validity. Both conventional and staggered equispaced stencils for first and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2021                   doi:10.20944/preprints202105.0252.v1

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202105.0252.v1
http://creativecommons.org/licenses/by/4.0/


TIMOSHENKO BEAM THEORY USING THE FINITE DIFFERENCE METHOD 
 

second derivatives were considered. Onyia et al. [3] presented a finite element formulation to determine the critical 

buckling load of the unified beam element that is free from shear locking using the energy method; the technique 

provides a unified approach to performing stability analysis of beams with any end conditions. Timoshenko and Gere 

[4] proposed formulas to account for shear stiffness by calculating buckling loads of associated Euler–Bernoulli beams. 

Hu et al. [5] used matrix structural analysis to derive a closed-form solution of the second-order element stiffness 

matrix; the buckling loads of single-span beams were also determined. Fogang [6] presented a material law describing 

the relationship between curvature, bending moment, and shear force; based on this material law, closed-form 

expressions of efforts and deformations are derived, as well as first- and second-order element stiffness matrices. 

Mwabora et al. [7] considered numerical solutions for static and dynamic stability parameters of an axially loaded 

uniform beam resting on simply supported foundations using the finite difference method (FDM), where a central 

difference scheme was developed. Soltani et al. [8] applied the FDM to evaluate natural frequencies of non-prismatic 

beams with different boundary conditions and resting on variable one- or two-parameter elastic foundations. Boreyri et 

al. [9] analyzed the free vibration of a new type of tapered beam, with exponentially varying thickness, resting on a 

linear foundation; the solution was based on a semi-analytical technique, the differential transform method. Torabi et al. 

[10] presented an exact closed-form solution for free vibration analysis of Euler−Bernoulli conical and tapered beams 

carrying any desired number of attached masses; the concentrated masses were modeled by Dirac’s delta functions. 

Fogang [11] presented a material law describing the relationship between curvature, bending moment, shear force, and 

natural frequency; based on this material law closed-form expressions of dynamic first- and second-order element 

stiffness matrices are derived and natural frequencies are determined. Yesilce et al. [12] studied the free vibration of a 

multi-span Timoshenko beam carrying multiple spring−mass systems; natural frequencies were calculated using the 

secant method, and mode shapes were presented in graphs. Katsikadelis [13] presented a direct time integration method 

for solving the equations of motion describing the dynamic response of structural linear and nonlinear multi-degree-of-

freedom systems; the method was also applied to equations with variable coefficients. Ghannadiasl [14] used Green 

functions to analytically solve the case of beams with various boundary conditions, resting on an elastic Winkler 

foundation and subjected to an axial load; the Green function method was used to evaluate the free vibration of the 

Timoshenko beam. Kruszewski [15] presented a theoretical analysis of the effect of transverse shear and rotary inertia 

on the natural frequencies of a uniform cantilevered Timoshenko beam. Soltani [16] developed a semi-analytical 

technique to investigate the free bending vibration behavior of an axially functionally graded non-prismatic Timoshenko 

beam subjected to a point force at both ends, based on the power series expansion. 

Classical analysis of the Timoshenko beam involves solving the governing equations (i.e., statics and material) that are 

expressed via means of differential equations, considering boundary and continuity conditions. However, solving 

differential equations may be difficult in the presence of an axial force (or external distributed axial forces), an elastic 

Winkler foundation, a Pasternak foundation, or damping (by vibration analysis). In traditional analysis using the FDM, 

points outside the beam are not considered. The boundary conditions are applied at the beam’s ends, not the governing 

equations. The non-application of governing equations at the beam’s ends leads to inaccurate results, making the FDM 

less useful compared with other numerical methods, such as the finite element method. This paper presented a model 
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based on the FDM. This model consisted of formulating differential equations (statics and material relation) with finite 

differences and introducing new points (additional or imaginary points) at boundaries and at positions of discontinuity 

(concentrated loads or moments, supports, hinges, springs, and brutal change of stiffness). The introduction of additional 

points allowed us to satisfy boundary and continuity conditions. First-order, second-order, and vibration analyses of 

structures were also conducted using the model. 

 

2. Materials and methods 

2.1   First-order analysis  

2.1.1   Statics 

The sign convention adopted for the loads, bending moments, shear forces, and displacements is illustrated in Figure 1. 

 

Figure 1.  Sign convention for loads, bending moments, shear forces, and displacements. 

Specifically, M(x) is the bending moment in the section, V(x) is the shear force, w(x) is the deflection, and q(x) is the 

distributed load in the positive downward direction.  

In first-order analysis the equations of static equilibrium on an infinitesimal element are as follows: 

                                          ,                  (1a)                                                                                                                                

                                                                                    ,        (1b)                                                                                                                                

where k(x) is the stiffness of the elastic Winkler foundation. Substituting Equation (1b) into Equation (1a) yields 

(2)                                                                                                                               

According to Timoshenko beam theory, the bending moment and shear force are related to the deflection and rotation 

(positive in clockwise) of the cross section (x), as follows:                                                                                    
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where E is the elastic modulus, I is the second moment of area,  is the shear correction factor, G is the shear modulus, and A 

is the cross-sectional area.  

In the case of a uniform beam, substituting Equations (3) and (4) into Equations (1a) and (1b) yields 

 

                                                                                                                                                                                 (5a)     

                                                                                                                                                                                 (5b)       

In the case of a tapered beam, substituting Equations (3) and (4) into Equations (1a) and (1b) yields 

                                                                                                                                                                                   (6a)       

                                                                                                                                                                                     (6b)  

Fogang [6] presented the following formulas for a uniform and a tapered beam, respectively: 

           ,        (6c) 

       ,     (6d) 

Differentiating Equation (6c) twice with respect to x and combining the result with Equation (2) yields the following widely 

known formula for a uniform beam without Winkler foundation:  

(6e) 

In the presence of an elastic Winkler foundation, Equation (6e) becomes 

(6f) 

For a uniform beam, the bending moment, the shear force, and the rotation of the cross section are derived using   

Equations (6c) and (2), Equation (1b), and Equation (4), respectively, as follows:  

(6g) 

(6h) 

2

2

2

2

( ) ( )
( ) ( )

( ) ( )
( ) 0

d w x d x
GA kw x q x

dx dx

d x dw x
EI GA x

dx dx





 

 
 − − = − 

 

 
+  − = 

 

2

2

2

2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) 0

d GA x dw x d w x d x
x GA x kw x q x

dx dx dx dx

dEI x d x d x dw x
EI x GA x x

dx dx dx dx

 
 

 
 

  
 − +  − − = −  

   

 
 + +  − = 

 

2 2

2 2

2 2

2 2 2

( ) ( ) 1 ( )
0

( ) ( ) 1 ( ) 1 ( ) ( )
0

( ) ( ) ( ( ))

d w x M x d M x

dx EI GA dx

d w x M x d M x d GA x dM x

dx EI x GA x dx GA x dx dx





 

+ − =

+ − +   =

4 2

4 2

( ) ( )
( )

d w x EI d q x
EI q x

dx GA dx
= −

( )

( )

( )

( )

2

2

3

3

3

2 23

( )
( ) ( ) ( ) ( )

( ) ( )( ) ( )
( )

( ) ( )( ) ( ) ( )
( )

d w x EI EI
M x EI k x w x p x

dx GA GA

d k x w xd w x EI EI dp x
V x EI

dx GA dx GA dx

d k x w xdw x EI d w x EI EI dp x
x

dx GA dx dx dxGA GA

 

 


  

= − + −

= − + −

= + − +

( )24 2

4 2 2

( ) ( )( ) ( )
( ) ( ) ( )

d k x w xd w x EI EI d q x
EI k x w x q x

dx GA dx GA dx 
− + = −

(6i) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2021                   doi:10.20944/preprints202105.0252.v1

https://doi.org/10.20944/preprints202105.0252.v1


TIMOSHENKO BEAM THEORY USING THE FINITE DIFFERENCE METHOD 
 

Hence, a W− FDM approximation (Equations (5a)-(6b)), an M−W FDM approximation (Equations (2) and (6c-

d)), and a W FDM approximation (Equations (6e-i)) can be considered.  

2.1.2   FDM Formulation of equations, efforts, deformations, and loadings 

2.1.2.1   Fundamentals of FDM  

Figure 2 shows a segment of a beam having equidistant points with grid spacing h.  

 

Figure 2.  Beam with equidistant points. 

Equations (5a)-(6d) have a second-order derivative; consequently, the deflection, rotation, and moment curves w(x), 

(x) and M(x), respectively, are approximated around the point of interest i as second-degree polynomials. 

Thus, curves w(x) and (x) can be described with the deflections values at equidistant grid points: 

                                                                                                                                                                               (7a)          

The shape functions fj(x) (j = i-1, i, i+1) can be expressed using Lagrange polynomials: 

                                                                                                                                                                               (7b)          

Thus, a three-point stencil is used to write finite difference approximations to derivatives at grid points. The derivatives 

(S(x) representing w(x) or (x)) at i are expressed with deflection values at points i-1, i, and i+1.  

 

                                                                (8a)                                                                                (8b) 

Equation (6e) has a fourth-order derivative, and the deflection curve is consequently approximated around the point of 

interest i as a fourth-degree polynomial. Thus, a five-point stencil is used to write finite difference approximations to 

derivatives at grid points. The derivatives at i are expressed with deflection values at points i-2, i-1, i, i+1, and i+2.  
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2.1.2.2  Uniform beam within segments  

2.1.2.2.1    W− FDM approximation of a uniform beam 

Let us consider a segment k of the beam (length l) having equidistant grid points with spacing hk. The flexural and 

shear stiffness values in this beam segment are EIk and GAk. r is the bending shear factor. A reference flexural 

stiffness EIr and a reference shear stiffness GAr are introduced as follows:  

 

     (9a)                          (9d)                                                                                                                                           

     (9b)                               (9e)                                                                                                                                      

         (9c)                  (9f)                                                                                                                                                                 

Substituting Equations (8a)-(9f) into Equations (5a-b) yields the following governing equations:  

                                                                                                                                                                                      (10a) 

                                                                                                                                                                                     (10b)      

Substituting Equations (8b) and (9a-f) into Equations (3)-(4) yields the bending moment and shear force, as follows:        

                                                                                                                                                                                  (11a)      

                           (11b)   

 

 

2.1.2.2.2    W FDM approximation of a uniform beam 

Equation (6f) is the governing equation. The stiffness k(x) of the Winkler foundation is assumed constant in the beam 

segment and is denoted by kk. Substituting Equations (8c), (8e), and (9a-e) into Equation (6f) yields the following FDM 

formulations of the governing equation 
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The bending moment, the shear force, and the rotation of the cross section are calculated using Equations (6g), (8e), and 

(12b), Equations (6h), (8d), and (12b), and Equations (6i), (8f), and (8d) as follows: 

 

              (13a)                                                                                                                                                                   

              (13b)                                                                                                                                                                   

(13c)                                                                                                                                                             

2.1.2.2.3    M−W FDM approximation of a uniform beam                                                                                      

Equations (2) and (6c) are the governing equations. Applying Equations (8a-b) and (9a-e) in Equations (2) and (6c) 

yields the corresponding FDM expressions, as follows: 
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  (13e)  

The shear force (Equations (1b) and (8b)) and the rotation of the cross section (Equations (1b), (4), (8b), and (9b-e)) are 

calculated as follows: 
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2.1.2.3  Tapered beam within segments 

2.1.2.3.1    W− FDM approximation of a tapered beam 

The following parameters describing stiffnesses EI(x) and GA(x) and their rate of change are defined. 
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Substituting Equations (9d) and (14a-d) into Equations (6a-b) yields the following governing equations for the tapered 

beam at position i: 

 

             (15a)                                                                                                                                                                           

                

The bending moment and shear force are calculated using Equations (11a-b), Mk and Vk being replaced by Mi and 

Vi.        

2.1.2.3.2    M−W FDM approximation of a tapered beam                                                                                       

Equations (2) and (6d) are the governing equations. Substituting Equations (8a-b), (9d), and (14a-d) into Equations (2) 

and (6d) yields Equation (13d) and the following equation:    

 

 (16)  

 

Thus, Equations (13d) and (16) are the governing equations. The shear force and the rotation of the cross section are 

calculated using Equations (13f) and (13g), respectively. However, Vk is replaced by Vi in Equation (13g).        

 

2.1.2.4  FDM approximation of q(x) and k(x) 

Fogang [1] presented formulas to determine the FDM approximation of distributed loads and the stiffness of an elastic 

Winkler foundation. The FDM value qi for position i being the left beam’s end, an interior point on the beam, or the 

right beam’s end is as follows: 
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The application of Equations (17a-c) shows that for a linearly distributed load, qi = q(xi).  

At any point i, the stiffness of the elastic Winkler foundation, ki, is calculated similarly to Equations (17a-c).  

 

2.1.2.5  First derivatives of the stiffnesses EI(x) and GA(x) 

If analytical expressions of M(x) (Equation (14a)) and V(x) (Equation (14b)) are known, the corresponding first 

derivatives can be directly determined. If, instead, values are given at discrete points, the parameters 
Mi (Equation 

(14c)) and 
Vi (Equation (14d)) at position i can be calculated using Equations (18a-c), position i being considered the 

left beam’s end, an interior point on the beam, or the right beam’s end, respectively:  

 

                                                                                                                                                                              (18a)               

                                                                                                                                                                              (18b)               

                                                                                                                                                                              (18c)               

 

The parameter 
V (Equation (14d)) is calculated similarly.  

2.1.3   Analysis at positions of discontinuity 

Positions of discontinuity are positions of application of concentrated external loads (force or moment), supports, 

hinges, springs, abrupt change in cross section, positions where EI(x) and GA(x) are not differentiable, and change 

in grid spacing.  

2.1.3.1  Uniform beam within segments  

In the case of concentrated loads (force P and moment M*) applied at point i (Figure 3), the beam has a uniform cross 

section within segments. At point i, an abrupt change in cross section and a change in grid spacing are assumed. 

 

Figure 3.  Beam with concentrated loads. 
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Fogang’s [1] model consists of realizing an opening of the beam at point i and introducing additional points (fictive 

points) in the opening (Figure 4a,b and Figure 5a,b). 

2.1.3.1.1 W− FDM approximation of a uniform beam 

Figure 4a,b below shows the additional points (fictive points ia, id) introduced in the opening. The unknowns at any 

point are the deflection and the rotation of the cross section.    

 

 

 

Figure 4.   Opening of the beam and introduction of additional points on the left side (a) and the right side (b). 

The governing equations (Equations (10a-b)) are applied at any point of the beam: …i-1, il, ir, i+1 … 

Thus, the governing equations at position il are as follows: 

                      

                                                                                                                                                                             (19a)               

                                                                                                                                                                             (19b)          

The governing equations at position ir are similarly formulated. The continuity equations express the continuity of the 

deflection and the rotation of the cross section, and the bending moment and shear force equilibrium (Equations (11a-

b)): 

                                                                                                                                                                                    (20a)                                                                                                                            

                                                                                                                                                                                    (20b)  

                                                                                                                                                                                    (20c) 

                                                                                                                                                                                   (20d) 
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An adjustment of the continuity equations is made in the case of a hinge (no continuity of the rotation of the cross 

section; Mil = Mir = 0), a support (Wil = Wir = 0, no Equation (20d)), or a spring.  

At the beam’s ends, additional points are introduced (Figure 4a,b), so governing equations are applied at the beam’s 

ends, as well as boundary conditions. 

 

2.1.3.1.2  W FDM approximation of a uniform beam 

Figure 5a,b below shows the additional points (fictive points ia, ib, ic, id) introduced in the opening. The unknown at 

any point is the deflection.    

    

 

 

Figure 5.   Opening of the beam and introduction of additional points on the left side (a) and the right side (b). 

The governing equation (Equation (12a)) is applied at any point of the beam: … i-2, i-1, il, ir, i+1, i+2… Thus, the 

governing equation (Equation (12a)) at position il is formulated by adopting for i, i+1, and i+2 the values of il, ia, and 

ib, respectively. Similarly, the governing equation at position ir is formulated by adopting for i, i-1, and i-2 the values of 

ir, id, and ic, respectively.   

The continuity equations can be expressed using Equations (13a-c), as follows:  

(21a)                                                                                                                            

(21b)                                                                                                                            

(21c)                                                                                                                            

(21d)                                                                                                                            

In the equations above, il, Mil, and Vil are formulated by adopting for i, i+1, and i+2 the values of il, ia, and ib, 

respectively. Similarly, ir, Mir, and Vir are formulated by adopting for i, i-1, and i-2 the values of ir, id, and ic, 

respectively.   

2.1.3.1.3 M−W FDM approximation of a uniform beam 

The additional points of Figure 4a,b are introduced. The unknowns at any point are the deflection and the bending 

moment. The governing equations (Equations (13d-e)) are applied at any point of the beam: … i-1, il, ir, i+1 … The 

*

il ir il ir

il ir r il r ir

il ir

il ir

w w W W

EI EI

M M M

V V P

   

= → =

= →  = 

− =

− =

(5a) 

(5b) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2021                   doi:10.20944/preprints202105.0252.v1

https://doi.org/10.20944/preprints202105.0252.v1


TIMOSHENKO BEAM THEORY USING THE FINITE DIFFERENCE METHOD 
 

continuity equations can be expressed using Equations (21a-d); the shear force and the rotation of the cross section are 

calculated using Equations (13f) and (13g), respectively. 

2.1.3.1.4 Mixed FDM approximation of a uniform beam 

Different approximations (W−, W, and M−W) can be considered on either side of the point of discontinuity. The 

continuity equations are then formulated with the corresponding formulas. 

 

2.1.3.2  Tapered beam within segments 

As described in Section 2.1.3.1, an opening of the beam is realized at point i and additional points (fictive points ia, id) 

are introduced in the opening (Figure 4a,b). 

2.1.3.2.1 W− FDM approximation of a tapered beam 

The governing equations (Equations (15a-b)) are applied at any point of the beam: … i-1, il, ir, i+1 … The continuity 

equations can be expressed through an adjustment of Equations (20a-d), as follows: 

 
(22)                                                                                                                            

2.1.3.2.2 M−W FDM approximation of a tapered beam  

The governing equations (Equations (13d) and (16)) are applied at any point of the beam: … i-1, il, ir, i+1 … The 

continuity equations can be expressed using Equations (21a-d), while the shear force and the rotation of the cross 

section are calculated using Equations (13f) and (13g), respectively. However, Vk is replaced by Vi in Equation 

(13g).      

   

2.1.3.2.3 Mixed FDM approximation of a tapered beam 

Similar to the uniform beam, different approximations (W−, M−W) can be considered on either side of the point of 

discontinuity. The continuity equations are then formulated with the corresponding formulas. 

 

2.1.3.3   Non-uniform grid 

The grid may be such that every node has a non-constant distance from another (Figure 6). 

 

 
 

Figure 6.   Beam with a non-uniform grid. 
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In this paper, the Lagrange interpolation polynomial (Equation (7b)) was used for FDM formulations. The resulting 

equations were complicated, so, the non-uniform grid was not further analyzed. In fact, it should not be analyzed as a 

discontinuity position.    

 

2.1.4     First-order element stiffness matrix of a tapered beam  

2.1.4.1      44 element stiffness matrix  

The sign convention for bending moments, shear forces, displacements, and rotations of the cross section adopted to 

determine the element stiffness matrix in local coordinates is illustrated in Figure 7. 

 

Figure 7.  Sign convention for moments, shear forces, displacements, and rotations for the stiffness matrix. 

Let us define the following vectors: 

                                                                                                            (23a)                                                                                                                                                                                                                                                                                                                          

                         (23b)                                                            

The 44 element stiffness matrix in local coordinates of the tapered beam is denoted by K44. 

The vectors defined are related together with the element stiffness matrix K44, as follows:  

             (24)         

Let us divide the beam in n parts of equal length h (l = nhk), as shown in Figure 8.  

 

Figure 8.  Finite difference method (FDM) discretization for 4x4 element stiffness matrix. 

 

2.1.4.1.1 W− FDM approximation 

Equations (15a-b) with qi = 0 and ki = 0 are applied at any point on the grid (nodes 1, 2, …n+1 of Figure 8).  

 

 

; ; ;

; ; ;

T

red i i k k

T

red i i k k

S V M V M

V w w 

=

=

44red redS K V= 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2021                   doi:10.20944/preprints202105.0252.v1

https://doi.org/10.20944/preprints202105.0252.v1


TIMOSHENKO BEAM THEORY USING THE FINITE DIFFERENCE METHOD 
 

Considering the sign convention adopted for bending moments and shear forces in general (Figure 1) and in the element 

stiffness matrix (Figure 7), the following static compatibility boundary conditions can be set in combination with Equations 

(11a-b):    

                                                                                                                                                            

                                                                                                                                                                                  (25a)         

                                                                                                                                   

                                                                                                                                                                             (25b)         

                                                                                                                                                                             (25d)     

Considering the sign convention adopted for displacements and rotations of cross sections in general (Figure 1) and in the 

element stiffness matrix (Figure 7), the following geometric compatibility boundary conditions can be set:  

                                                                                                                                                                     

 

The number of equations is 2(n+1) + 4 + 4 = 2n + 10. The number of unknowns is 2(n+3) + 4 = 2n + 10, especially 

2(n+3) unknowns (W; ) at points on the beam and additional points at the beam’s ends, and four efforts at the beam’s 

ends (Vi; Mi; Vk; Mk). Let us define the following vector  

                                                                                                                                                                (27)         

The combination of Equations (15a-b) applied at any point on the grid, Equations (25a−d), and Equations (26a−d) can 

be expressed with matrix notation as follows, the geometric compatibility boundary conditions (Equations (26a−d)) 

being at the bottom: 

 

                                                                                                                                                                 (28)      

 

The matrix T has 2n+10 rows and 2n+10 columns. The zero vector above has 2n+6 rows.  

                                                                                                                                                                (29)         
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The matrix Taa has 2n+6 rows and 2n+6 columns, the matrix Tab has 2n+6 rows and 4 columns, the matrix Tba has 4 

rows and 2n+6 columns, and the matrix Tbb has 4 rows and 4 columns.  

The combination of Equations (24), (28), and (29) yields the element stiffness matrix of the beam. 

           

                                                                                                                                                              (30a)       

A general matrix formulation of K44 is as follows:   

                                                                                                                                                              (30b)     

   

In Equation (30b), 0 is a zero matrix with 4 rows and 2n+6 columns, and I is the 4  4 identity matrix.        

 

2.1.4.1.2 M−W FDM approximation 

Equations (13d) and (16) with qi = 0 and ki = 0 are applied at any point on the grid (nodes 1, 2, …n+1 of Figure 8).  

The static compatibility boundary conditions in combination with Equations (1b) and (8b) can be expressed as follows:    
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The geometric compatibility boundary conditions in combination with Equations (16d) are 
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The analysis continues similarly to Section 2.1.4.1.1 (Equations (27)-(30b)). 
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2.1.4.2      33 element stiffness matrix  

Assuming the presence of a hinge at the right end, the sign convention for bending moments, shear forces, displacements, 

and rotations of the cross section is illustrated in Figure 9. 

 

Figure 9.  Sign convention for moments, shear forces, displacements, and rotations for the stiffness matrix. 

The 33 element stiffness matrix in local coordinates of the tapered beam is denoted by K33. 

The vectors of Equations (23a-b) and (24) become 

                                                                                          (32a

                                                                 (32b

                                                                                                                                                            (32c

The matrix K33 can be formulated with the values of the matrix K44 (see Equations (30a-b)).    



The matrix K44 has 4 rows and 4 columns, the matrix Kaa has 3 rows and 3 columns, the matrix Kab has 3 rows and 1 

column, the matrix Kba has 1 row and 3 columns, and the matrix Kbb has 1 row and 1 column (a single value). 

The combination of Equation (24) with the presence of a hinge at position k (Mk = 0) and Equation (32c) yields the 

matrix K33, as follows: 

 



 

 
2.2     Second-order analysis  

The equation of static equilibrium can be expressed as follows:    

                                                                                                                                            (35a)  

                                                                                                                                                                (35b)   
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The axial force (positive in tension) is denoted by N(x) and the transverse force by T(x). Let us consider an external 

distributed axial load n(x) positive along the + x axis  

                                                                                                                                                                                 (36)   

The transverse force T(x) is related to the shear force V(x), as follows: 

                               (37)   

 

       2.2.1   Second-order analysis of a uniform beam within segments  

The grid spacing hk, the reference flexural rigidity EIr, the reference shear stiffness GAr, and the parameters lk, Mk, 

Vk, and r are as defined in previous sections.  

 

2.2.1.1   W− FDM approximation of a uniform beam 

Substituting Equations (4), (36), and (37) into Equation (35a) yields 

 

                                                                                                                                                                                 (38) 

Substituting Equation (37) into Equation (35b) yields Equation (1b). Substituting Equations (3) and (4) into Equation (1b) 

yields Equation (5b).  

Substituting Equations (8a-b) and (9a-f) into Equations (5b) and (38) yields Equation (10b) and the following equation: 

 

                                                                                                                                                                                          

Equations (10b) and (39) are applied at any point on the grid. At point i, the external distributed axial load ni is 

calculated similarly to Equations (17a−c). Applying Equations (8b) and (11b) into Equation (37) yields the FDM 

formulation of the transverse force: 

  

                                                                                                                                                                               (40) 

The bending moment is calculated using Equation (11a). The analysis at positions of discontinuity is conducted 

similarly to the first-order analysis; however, the shear force is replaced by the transverse force.  

( )
( )

dN x
n x

dx
= −

2 2 2 2 2

1 13 3 3

1 1 1

2 2 2 2

Vk lk i k Vk lk i k Vk lk
i i i k i

k r r k r r k r

N h N h
T W W h

h EI h EI h

     

  
− +

   
= − + + + −    

   

( )
( ) ( ) ( )

dw x
T x V x N x

dx
= +

2 2

2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

d w x d x d w x dw x
GA N x n x kw x q x

dx dx dx dx




 
 − + − − = − 

 

2 2 3 2 2 4 2 2 3
4

1 1

2 2
4

1 1

2
2

2 2

2 2

Vk lk i k i k Vk lk i k i Vk lk i k i k
i lk i i

r r r r r r r r r

Vk lk Vk lk
k i k i i k

r r

N h n h N h k l N h n h
W W W

EI EI EI EI EI EI

h h q h

     


  

   

 

− +

− +

     
+ + − + + + + −     

     

+  −  = −
(39) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2021                   doi:10.20944/preprints202105.0252.v1

https://doi.org/10.20944/preprints202105.0252.v1


TIMOSHENKO BEAM THEORY USING THE FINITE DIFFERENCE METHOD 
 

2.2.1.2   W FDM approximation of a uniform beam 

It is assumed here that the axial force and stiffness of the Winkler foundation are constant along the beam. Substituting 

Equations (2), (36), and (37) into Equation (35a) yields 

 

              (41) 

Equation (6c) also holds in second-order analysis.  

 

Differentiating Equations (41) and (6c) twice with respect to x and combining the results with Equation (41) yields  

 

               (42a) 

Combining Equations (41) and (6c) yields 

 

              (42b) 

The parameter kw of the Winkler foundation is defined in Equation (12b). Let us introduce the parameter kN, as follows: 

              (42c) 

 

Substituting Equations (8c), (8e), (9a-e), and (42c) into the governing Equation (42a) yields 

 

 

 

 

  

The bending moments, the transverse forces, and the rotations of the cross sections are determined using Equations 

(42b) and (8e), Equations (37), (1b), (42b), (8d), and (8f), and Equations (4), (42b), (1b), (8d), and (8f), respectively.  
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(43d) 

 

 

 

 

2.2.1.3   M−W FDM approximation of a uniform beam 

Substituting Equations (2), (36), and (37) into Equation (35a) yields 

 

                (43e) 

Substituting Equations (8a-b) and (9d-e) into Equation (43e) yields  

                  (43f) 

 

 

 

The governing equations (Equations (43f) and (13e)) are applied at any point on the grid. The rotation of the cross 

section is calculated using Equations (13g). Applying Equations (37), (1b), and (8b) yields the transverse force, as 

follows: 

 
              (43g) 

 

2.2.2   Second-order analysis of a tapered beam  

2.2.2.1  W− FDM approximation of a tapered beam  

Substituting Equations (4), (36), and (37) into Equation (35a) yields   

   

 

                                                                                                                                                                        (44a) 

 

The grid spacing in segment k is hk. The reference flexural rigidity EIr, the reference shear stiffness GAr, and the 

parameters r,Vi, and ’
Vi (Equations (9c-f) and (14a-d)) are defined. Substituting Equations (8a-b), (9c-f), and (14a-d) 

into Equation (44a) yields  
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Equations (15b) and (44b) are applied at any point on the grid. 

The bending moments and the transverse forces are calculated using Equations (11a) and (40), Mk and Vk being 

replaced by Mi and Vi.   

 

2.2.2.2  M−W FDM approximation of a tapered beam 

The governing equations (Equations (16) and (43f)) are applied at any point on the grid. The rotations of the cross 

sections and the transverse forces are calculated using Equations (13g) and (43g), respectively. However, Vk is 

replaced by Vi in Equation (13g).        

 

2.2.3   Second-order element stiffness matrix of a uniform beam  

The beam is divided in n parts of equal length hk, as shown in Figure 10.  

 
Figure 10. FDM discretization for 44 element stiffness matrix. 

 

The sign convention for bending moments, transverse forces, displacements, and rotations of the cross sections adopted to 

determine the element stiffness matrix in local coordinates is illustrated in Figure 7, the shear forces Vi and Vk being 

replaced by the transverse forces Ti and Tk. 

The W FDM approximation is applied here. The W− FDM and M−W FDM approximations can also be considered 

with appropriate formulas developed in previous sections. 

Equation (43a) with qi = 0 and kW = 0 is applied at any point on the grid (nodes 1, 2, …n+1 of Figure 10).  

The static compatibility boundary conditions are applied using Equations (43b-c). The geometric compatibility boundary 

conditions are applied similarly to Equations (26a-d), the rotation of the cross section being formulated with Equation 

(43d). The analysis continues similarly to Section 2.1.4.1.1 (Equations (27)-(30b)). 

 

2.2.4   Second-order element stiffness matrix of a tapered beam  

The M−W FDM approximation is applied here. The W− FDM approximation can also be applied with appropriate 

formulas developed previously. The sign convention for bending moments, transverse forces, displacements, and rotations 
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of the cross sections adopted to determine the element stiffness matrix in local coordinates is illustrated in Figure 7, the 

shear forces Vi and Vk being replaced by the transverse forces Ti and Tk.  

Equations (16) and (43f) with qi = 0 and ki = 0 are applied at any point on the grid (nodes 1, 2, …n+1 of Figure 8). The 

static compatibility boundary conditions are expressed similarly to Equations (31a−d); however, the shear forces are 

replaced by the transverse forces (Equation (43g)). The geometric compatibility boundary conditions are the same as in 

Section 2.1.4.1.2 (Equations (31e-h)). The analysis continues similarly to Section 2.1.4.1.1 (Equations (27)-(30b)). 

 

2.3     Vibration analysis of the Timoshenko beam  

2.3.1   Free vibration analysis   

The focus here is to determine the eigenfrequencies of the beam. A second-order analysis is conducted; and the first-

order analysis can easily be deduced. The equations of dynamic equilibrium on an infinitesimal beam element are as 

follows: 

  

                                                                                                 ,                                                                    (45) 

                                                                                                                              .                                       (46) 

where  is the beam’s mass per unit volume, A(x) is the cross-sectional area, N(x) is the axial force (positive in tension), 

and k(x) is the stiffness of the elastic Winkler foundation.  

A harmonic vibration being assumed, T*(x,t), M*(x,t), w*(x,t), and *(x,t) can be expressed as follows (S*(x,t) 

representing T*(x,t), M*(x,t), w*(x,t), and *(x,t)):  

                                                                                                                                                                                   (47)                                                                                                                                                              

where  is the circular frequency of the beam. Substituting Equation (47) into Equations (45) and (46) yields 

                  (48a)                                                                                                                                                              

                 (48b)                                                                                                                                                              

 

Substituting Equations (36) and (37) into Equations (48a-b) yields 

                 (49a) 

                 (49b) 
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2.3.1.1   Uniform beam within segments 

2.3.1.1.1 W− FDM approximation of a uniform beam 

We defined (Equations (9a-c)) a reference flexural stiffness EIr, a reference shear stiffness GAr, parameters Mk, 

Vk, and r. A reference cross-sectional area Ar and a reference length lr are also defined and are related to the cross-

sectional area Ak and the grid spacing hk in the segment, as follows: 

     
                                                                                                                                                                                  (50a) 

              (50b) 

The parameter r (Equation (9c)) is defined with lr instead of l. Substituting Equations (3) and (4) into Equations (49a-

b) and combining the results with Equations (8a-b) yields the following FDM formulations: 

 

                                                                                                                                                                                     (51a) 

 

                                                                                                                                                                                     (51b) 

 

The reference coefficient of rotary inertia kRIr and the vibration frequency  are defined as follows  

 

     (52a)         (52b) 

Substituting Equations (52a-b) into Equations (51a-b) yields   

              (53a) 

              (53b) 
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Equations (53a-b) are applied at any point on the grid. The bending moments and transverse forces are determined using 

Equations (11a) and (40), respectively. 

For the special case of a uniform beam without an axial force or a Winkler foundation, Equations (53a-b) become 

                                                                                                                                                                    (54a)        

              (54b)        

 

Effect of a concentrated mass, or a spring 

The dynamic behavior of a beam carrying a concentrated mass or having a spring was analyzed, as shown in Figure 11. 

 

Figure 11. Vibration of beam having a concentrated mass and a spring. 

The stiffness of the spring is Kp, and the concentrated mass is Mp.  

                                                                                                                                                                           (55a) 

                                                                                                                                                                   (55b) 

The continuity equations for deflections, rotations of the cross sections, and bending moments are defined in Equations 

(20a), (20b), and (20c), respectively. Equation (20c) is applied with M* = 0. The reference length of the beam is lr 

(Equation (50b)).  

Applying Equations (9e), (50b), (52b), and (55a-b), the balance of vertical forces in the case of a concentrated mass or a 

spring yields 

  

                                                                                                                                             and                           (56a)        

                                                                                                                 ,                                                                (56b) 

respectively. The transverse forces Til and Tir are calculated using Equation (40).  

Effect of a spring−mass system:  The dynamic behavior of a beam carrying a spring−mass system was analyzed, 

as represented in Figure 12. The deflection of the mass is denoted by wiM.  
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Figure 12. Vibration of a beam carrying a spring−mass system. 

Applying Equations (9e), (50b), (52b), and (55a-b), the balance of vertical forces yields 

                                                                                                                                                                            (57a)                                                                                

                                                                                                                                                                                   (57b)                                                                    

   2.3.1.1.2 M−W FDM approximation of a uniform beam 

Substituting Equation (49b) into Equation (49a) and combining the result with Equation (3) yields 

     (58)                                                                    

 

Fogang [11] presented the following material law, which combines bending, shear, the curvature, and the natural 

frequency: 

 

                                                                                                                                                                            (59a) 

In [11] the relationship between shear force/rotation of the cross section and bending moment/deflection is presented as 

follows: 

 

                     (59b) 

   (59c) 

Substituting Equations (8a-b), (50a-b), and (52a-b) into Equations (58) and (59a) yields 

 

     (60a) 

2

2

3

2

2

0 0

( ) ( )

p p

il ir iM il ir iM

r r

p p

iM iM ir p iM p iM ir

r r

M m
T T W T T W

EI l

M K
W W W m W k W W

EI EI







− − = → − − =

=  − → = −

2 2 2
2

2 2

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 0

d M x d w x dw x
M x N x n x k x w x A w x

dx E dx dx


 + + − − + =

2 2 2

2 2

( ) ( ) 1 ( )
(1 ) 0

d w x I M x d M x

dx GA EI GA dx

 

 
+ −  −  =

( )
2 3

2 2 2 2 2

1 1 1

2 4 2 3
4 4 2

1

2
2

2
0

2

i k i k
k i RIr lk k i k i i

r r

i k i r i k i k
lk Ak lk i i

r r r r

N h n h
h M k h M h M W

EI EI

N h k l N h n h
W W

EI EI EI EI

 

   

− + −

+

 
+ − + + + 

 

   
− + − + − =   

   

( )

2
2

2

( ) ( )
1 ( )

( ) ( )
( )

I dM x dw x
V x I

GA dx dx

dM x dw x
I GA x GA

dx dx

 
 



    

 
−  = − 

 

−  = −

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2021                   doi:10.20944/preprints202105.0252.v1

https://doi.org/10.20944/preprints202105.0252.v1


TIMOSHENKO BEAM THEORY USING THE FINITE DIFFERENCE METHOD 
 

     (60b) 

 

 

 

Equations (60a-b) are applied at any point on the grid. The rotation of the cross section and the shear force are 

calculated substituting Equations (8a-b), (9c), and (52a-b) into Equations (59b-c), as follows:  

 

              (60c) 

(60d) 

The transverse force is calculated using Equations (37) and (60c). 

The dynamic behavior of a beam carrying a concentrated mass, a spring, or a spring−mass system was analyzed 

similarly to the previous section (Equations (55a)-(57b)). 

  

2.3.1.2   Tapered beam 

The W− FDM approximation was considered here for the vibration analysis of a tapered beam. The M-W FDM 

approximation led to complicated expressions and was not further analyzed. The beam segment with length l is divided 

in parts of equal length hk. The reference values of flexural stiffness, shear stiffness, cross-sectional area, and 

coefficient of rotary inertia are defined like in previous sections. 

 

Substituting Equations (3) and (4) into Equations (49a-b) and combining the results with Equations (8a-b), (14a-d), 

(50a-b), and (52a-b) yields the following FDM formulations of the governing equations:   

 

 

                     (61a) 
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                                                                                                                                                                                       (61b) 

 

Equations (61a-b) are applied at any point on the grid. The bending moments and transverse forces are determined using 

Equations (11a) and (40), respectively, Mk and Vk being replaced by Mi and Vi.   

 

Effect of a concentrated mass, a spring, or a spring−mass system 

The dynamic behavior of a beam carrying a concentrated mass, a spring, or a spring−mass system is analyzed similarly 

to the previous section (Equations (55a)-(57b). The transverse forces Til and Tir are calculated using Equation (40), 

Vk being replaced by Vi. 

   

2.3.2   Direct time integration method  

The direct time integration method developed here describes the dynamic response of a beam as a multi-degree-of-

freedom system. Viscosity  and external loading p(x,t) are considered.  

 

2.3.2.1  Uniform beam within segments 

The W− FDM approximation was considered for the vibration analysis of the uniform beam. Substituting Equations 

(3), (4), (36), and (37) into Equations (45) and (46) yields the following governing equation for a uniform beam: 

 

  

              (62a) 

              (62b) 

                                                                                                                                                                                                      

The derivatives with respect to x are formulated using Equations (8a-b), while those with respect to t (time increment is 

t) are formulated considering a three-point stencil with Equations (63a-c):  

                                                                                                                                        

                                                                                                                                                                                      (63a)                                                                                                                                                                                                                                        
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At initial time t = 0, a three-point forward difference approximation is applied (Equation (18a)): 

                                                                                                                                                                                    (63b)                                                                                                                                                                                                                                        

 

At final time t = T, a three-point backward difference approximation is applied (Equation (18c)): 

                                                                                                                                                                                    (63c)                                                                                                                                                                                                                                       

 

The governing equations (Equations (62a-b)) can be formulated with the FDM for x = i at time t. The FDM formulations 

of these equations are applied at any point of the beam at any time t using a five-point stencil. Additional points are 

introduced to satisfy the boundary and continuity conditions. The boundary conditions are satisfied using a three-point 

stencil. Thus, beam deflection w*(x,t) and rotation *(x,t) can be determined with the Cartesian model represented in 

Figure 13. The bending moment M*(x,t), shear force V*(x,t), and transverse force T*(x,t) are calculated using Equations 

(11a-b) and (37), respectively.   

With this model, the assumptions made previously can be verified, namely the separation of variables and the harmonic 

vibration (Equation (47)). 

 

Figure 13. Model for the calculation of time-dependent vibration of a uniform beam. 
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2.3.2.2  Tapered beam 

A similar analysis can be conducted. Thus, Equations (62a-b) become 

 

 

 

 

 

 

The derivatives with respect to x are formulated using Equations (8a-b), while those with respect to t (time increment is 

t) are formulated considering a three-point stencil with Equations (63a-c). 

The FDM formulations of Equations (64a-b) are applied at any point on the beam and at any time t using a five-point 

stencil. Additional points are introduced to satisfy the boundary and continuity conditions. The boundary conditions are 

satisfied using a three-point stencil. Thus, beam deflection w*(x,t) and rotation *(x,t) can be determined with the 

Cartesian model represented in Figure 13. The bending moment M*(x,t), shear force V*(x,t), and transverse force T*(x,t)  

are calculated using Equations (11a-b) and (37), respectively, Vk being replaced by Vi in Equation (11b) and Mk by 

Mi in Equation (11a).          

With this model, the assumptions made previously can be verified, namely the separation of variables and the harmonic 

vibration (Equation (47)). 

 

3 Results and discussion 

3.1   First-order analysis  

3.1.1   Beam subjected to a uniformly distributed load 

In this study, we analyzed a uniform fixed−pinned beam subjected to a uniformly distributed load (Figure 14).  

 

Figure 14. Uniform fixed−pinned beam subjected to a uniformly distributed load. 
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The governing equations (Equations (10a-b)) are applied at grid points 1, 2, 3, 4, and 5. The boundary conditions are 

satisfied using Equation (11a). 

The bending shear factor  = EI/GAl² = 0.025  (Equation (9c)) 

In this study, analysis was conducted with the W− FDM, M−W FDM, and W FDM approximations. Details of the 

analysis and results are presented in Appendix A and in the Supplementary Material “Fixed−pinned beam subjected to a 

uniformly distributed load”. Table 1 lists the results obtained with classical beam theory (CBT) and those obtained with 

W− FDM and M−W FDM approximations. Table 2 lists the results obtained with classical beam theory (CBT) and 

those obtained with W FDM approximation.  

Table 1. Bending moments (kNm) in the beam for a number of grid points: classical beam theory (CBT) and present 

study (W− FDM and M−W FDM approximations).  

P  Position 

  X(m) 

CBT 

  (exact results) 

   Present study 

5-point grid 

 

   Present study 

9-point grid 

 

   Present study 

13-point grid 

 
  W− M−W W− M−W W− M−W 

0.0 -74.42 -50.07 -67.80 -65.89 -72.73 -70.33 -73.66 

2.0 4.19 -0.63 9.15 2.47 5.45 3.36 4.75 

4.0 42.79 24.20 46.10 36.24 43.64 39.64 43.17 

6.0 41.40 24.41 43.05 35.42 41.82 38.52 41.58 

8.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Although the results of both approximations converge toward the exact results, the M−W approximation delivers better 

results than the W− approximation for a given grid. Accuracy increases with an increasing number of grid points. The 

M−W FDM approximation yields better results of bending moments than the W− FDM approximation, since results 

are obtained here through a one-step approximation, whereas results by the W− FDM approximation are obtained 

through a two-step approximation (w and  are determined in the first step, and the moment M is calculated in the 

second step). 
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Table 2. Bending moments (kNm) in the beam for a number of grid points: classical beam theory (CBT) and present 

study (W FDM approximation).  

Position 

X(m) 

CBT 

(exact results) 

Present study 

5-point grid 

 

Present study 

3-point grid 

 

Present study 

2-point grid 

 
  W FDM 

 

W FDM W FDM 

0.0 -74.42 -74.42 -74.42 -74.42 

2.0 4.19 4.19   

4.0 42.79 42.79 42.79  

6.0 41.40 41.40   

8.0 0.00 0.00 0.00 0.00 

 
The results obtained with the W FDM approximation are exact for a uniformly distributed load regardless of the 

discretization, since the exact solution for the deflection curve here is a fourth-order polynomial, which corresponds to 

the FDM approximation.  

 

3.1.2   Beam subjected to a concentrated load 

We analyzed a uniform fixed−pinned beam subjected to a concentrated load, as shown in Figure 15.  

 

Figure 15. Uniform fixed−pinned beam subjected to a concentrated load 

 

The models showing the grid points (Figure 4a,b and Figure 5a,b) are considered. 

In this study, analysis was conducted with the W− FDM, M−W FDM, and W FDM approximations. Details of the 

analysis and results are presented in Appendix B and in the Supplementary Material “Fixed−pinned beam subjected to a 

concentrated load.” Table 3 lists the results obtained with classical beam theory (CBT) and those obtained in this study 

(W− FDM, M−W FDM, and W FDM approximations).  
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Table 3. Bending moments (kNm) in the beam: classical beam theory (CBT) and present study (W− FDM,    

M−W FDM, and W FDM approximations). 

Position 

X(m) 

CBT 

(exact results) 

Eight-point grid 

(4  1.25 m) + (3  1.0 m) 

Eight-point grid 

(4  1.25 m) +  

(3  1.0 m) 

   Three-point grid 

5.0 m + 3.0 m 

  W− FDM 

 

M−W FDM 

 

W FDM 

 

W FDM 

 0.00 -12.16 -11.96 -11.80 -12.16 -12.16 

1.25 -5.57 -5.41 -5.27 -5.57  

2.50 1.01 1.15 1.26 1.01  

3.75 7.60 7.71 7.79 7.60  

5.00 14.19 14.26 14.33 14.19 14.19 

6.00 9.46 9.51 9.55 9.46  

7.00 4.73 4.75 4.78 4.73  

8.00 0.00 0.00 0.00 0.00 0.00 

 

The results obtained with W− FDM and M−W FDM approximations have gut accuracy. Surprisingly, the W− 

approximation here delivers better results than the M−W approximation. The results obtained with the W FDM 

approximation are exact for a concentrated load regardless of the discretization, since the exact solution for the 

deflection curve here is a third-order polynomial, which is exactly described with the fourth-order polynomial FDM 

approximation.  

 

3.1.3   Tapered pinned−fixed beam subjected to a uniformly distributed load 

We analyzed a tapered pinned−fixed beam subjected to a uniformly distributed load, as shown in Figure 16.  

 

Figure 16. Tapered pinned−fixed beam subjected to a uniformly distributed load. 
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At position x1 of the beam, the second moment of area I(x1) and the cross-sectional area A(x1) are defined as follows: 

                                                                                                                                                                          (65a)      

                                         (65b) 

 

where I1 and A1 are the second moment of area and the cross-sectional area at the fixed end x1 = L1, respectively.  

 L = 8.0 m, L0 = 2.0 m, and r = 0.020.  

First, the beam is calculated using the force method of classical beam theory (exact results). Then, the calculation is 

conducted with the FDM using n = 9, 17, and 25 grid points. Details of the analysis and results are presented in Appendix C 

and in the Supplementary Material “Tapered pinned−fixed beam subjected to a uniformly distributed load.” Table 4 lists 

the results obtained with classical beam theory (the exact results) and those obtained in this study (W− FDM and M−W 

FDM approximations). 

Table 4. Bending moments (kNm) in the beam for a number of grid points: classical beam theory (CBT) and present 

study (W− FDM and M−W FDM approximations).  

P  Position 

  X(m) 

CBT 

  (exact results) 

  Present study 

9-point grid  

 Present study 

17-point grid  

 Present study 

25-point grid  

  W− M−W W− M−W W− M−W 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.00 13.77 6.88 14.00 12.34 13.80 13.52 13.78 

2.00 17.53 21.76 18.00 20.90 17.61 19.54 17.56 

3.00 11.30 23.55 12.01 16.90 11.41 13.84 11.34 

4.00 -4.93 12.95 -3.99 -0.69 -4.79 -3.50 -4.88 

5.00 -31.17 -16.51 -29.99 -30.94 -30.99 -31.93 -31.10 

6.00 -67.40 -64.15 -65.99 -72.91 -67.18 -71.03 -67.32 

7.00 -113.64 -127.95 -111.99 -125.90 -113.38 -120.51 -113.54 

8.00 -169.87 -205.89 -167.98 -189.48 -169.58 -180.21 -169.76 

 

Although the results of both approximations converge toward the exact results, the M−W approximation delivers better 

results than the W− approximation for a given grid. Accuracy increases with an increasing number of grid points. The 

M−W FDM approximation yields better results of bending moments than the W− FDM approximation, since results 

are obtained here through a one-step approximation, whereas results by the W− FDM approximation are obtained 

through a two-step approximation (w and  are determined in the first step, and the moment M is calculated in the 

second step). 
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3.2   Second-order analysis  

3.2.1   Beam subjected to a uniformly distributed load and a compressive force 

We analyzed a uniform pinned−pinned beam subjected to a uniformly distributed load and a compressive force, as 

shown in Figure 17.   

 

Figure 17. Pinned−pinned beam subjected to a uniformly distributed load and a compressive force. 

 

                                         -3.00,  p = 10.0 kN/m,  l = 8.0 m  = EI/GAl² =  0.02.  

Fogang [6] presented a closed-form expression of the bending moment in a pinned−pinned beam. In this study, the analysis 

is conducted with n = 9, 17, and 25 grid points. Details of the analysis and results are presented in the Supplementary 

Material “Pinned−pinned beam subjected to a uniformly distributed load and compressive force.” Table 5 lists the results 

obtained by Fogang [6] and those obtained in this study (W− FDM, M−W FDM, and W FDM approximations).  

Table 5. Bending moments (kNm) in a pinned−pinned beam: Fogang [6], W− FDM, M−W FDM, and W FDM.  

Position 

X(m) 
Fogang [6] 

FDM 

9-point grid 

FDM 

     17-point grid 

  W−   M−W   W FDM W−   M−W   W FDM 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.00 54.68 44.11 57.60 55.36 51.59 55.41 54.85 

2.00 95.84 77.05 100.96 97.05 90.33 97.11 96.14 

3.00 121.39 97.41 127.89 122.95 114.35 123.01 121.78 

4.00 130.06 104.29 137.02 131.73 122.49 131.79 130.47 

 

 

 

 

 

 

2 /Nl EI =
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Position 

X(m) 

Fogang [6] 
FDM 

25-point grid 

  W−   M−W    W FDM 

0.00 0.00 0.00 0.00 0.00 

1.00 54.68 53.26 55.00 54.76 

2.00 95.84 93.31 96.40 95.97 

3.00 121.39 118.16 122.11 121.56 

4.00 130.06 126.58 130.83 130.24 

 
 

The results of this study have high accuracy.  

 

3.2.2   Buckling load of a fixed−pinned beam  

We determined the buckling load of a fixed−free beam, as shown in Figure 18.   

 

Figure 18. Buckling load of a fixed−free beam.  

In this study, analysis was conducted with n = 9 and 17 grid points. The buckling load Ncr is defined as follows: 

                                                                                                                                                                     

Hu et al. [5] presented the following closed-form expression of the buckling load of a fixed−free beam:  

 

 

The combination of Equations (9c), (66), and (67a) yields the buckling factor  as follows:  

 

                 (67b) 

 

Details of the analysis and results are presented in the Supplementary Material “Buckling load of a fixed−free beam.” 

Table 6 lists the results obtained by Hu et al. [5] and those obtained in this study (W−, M−W, and W FDM 

approximations) for different values of the bending shear factor  (Equation (9c)).  
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Table 6.   Buckling factors  of the beam: Hu et al. [5], W− FDM, M−W FDM, and W−FDM. 

 =  

EI/GAl² 
  Hu et al. [5] 

FDM 

9-point grid 

FDM 

     17-point grid 

  W−   M−W   W FDM W−   M−W   W FDM 

0.0250 2.0608 2.1049 2.0639 2.0711 2.0719 2.0615 2.0634 

0.0500 2.1198 2.1429 2.1228 2.1301 2.1260 2.1205 2.1224 

0.0750 2.1772 2.1943 2.1802 2.1875 2.1817 2.1779 2.1798 

0.1000 2.2332 2.2471 2.2360 2.2425 2.2368 2.2339 2.2357 

 

The results of this study have high accuracy. 

 

3.2.3   Second-order element stiffness matrix of a uniform beam 

Let us calculate the element stiffness matrix of a beam with the following characteristics:  

k = -1.5 (Equation (42c)),  = 0.05 (Equation (9c)), and length L = 4.0 m.  

The matrix is calculated with W FDM and M−W FDM approximations. The stiffness matrix is as follows: 

 

 

                 (68)                                      

                                                                                               

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

Let us now calculate the stiffness matrix of the beam with the following formula presented by Hu et al. [5]: 

 

 

 

 

 

The aforementioned characteristics become P = 1.5  EI/L²,  = 1- P/(ksGA) = 1- 1.5  0.05 = 0.925, 

 

 

Details of the results are presented in Appendix D and in the Supplementary Material “Second-order element stiffness 

matrix of a uniform beam.” Table 7 lists the results obtained by Hu et al. [5] and those obtained in this study (M−W FDM 
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and W FDM approximations). The W− approximation can be considered using appropriate formulas developed in 

Section 2.2.1.1. 

Table 7. Second-order element stiffness matrix: Hu et al. [5], M−W FDM, and W FDM.  

 
  Hu et al.  

[5] 

9-point  

grid 

  13-point  

grid 

      17-point 

 grid 

     M−W     W FDM    M−W     W FDM    M−W     W FDM 

TTB 0.0917 0.0897 0.0913 0.0908 0.0915 0.0912 0.0916 

QTB 0.2303 0.2263 0.2295 0.2285 0.2300 0.2293 0.2301 

STB 0.6759 0.6682 0.6767 0.6725 0.6763 0.6740 0.6761 

CTB 0.2454 0.2369 0.2465 0.2416 0.2459 0.2432 0.2457 

 

The results of this study have high accuracy. 

 

 

3.3.1   Free vibration analysis of a fixed−free beam   

We determined the vibration frequencies of a fixed−free beam. Analysis was conducted with n = 9, 17, and 25 grid 

points. Details of the analysis and results are listed in Appendix E and in the Supplementary Material “Vibration 

analysis of a uniform fixed−free beam.” The vibration frequency coefficients  are defined in Equation (52b). The 

results (depending on the bending shear factor and the coefficient of rotary inertia) obtained in this study are compared 

to those obtained by Kruszewski [15], and are listed in Table 8.  

 
Table 8. Coefficients  of natural frequencies (first mode) of a fixed−free beam. 

        kRI 
       Kruszewski 

[15] 

   Present study 

9-point grid  

   Present study 

17-point grid  

   Present study 

25-point grid  

  W− M−W W− M−W W− M−W 

           3.2662 3.4917 3.2290 3.3245 3.2568 3.2922 3.2620 

           3.2368 3.4549 3.2005 3.2933 3.2276 3.2621 3.2327 

           3.1159 3.2226 3.0833 3.1431 3.1077 3.1280 3.1122 

           3.0927 3.1967 3.0607 3.1192 3.0847 3.1045 3.0891 

 

The results of this study have high accuracy. 
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3.3.2 Free vibration analysis of beams resting on Winkler foundation and subjected to a 

compression force  

We determined the dynamic response of beams subjected to an axial load. An elastic Winkler foundation was also 

considered. A pinned−pinned and a fixed−pinned beam were analyzed.  

Ghannadiasl [14] analytically solved the case of beams with various boundary conditions, resting on an elastic Winkler 

foundation and subjected to an axial load. The beams have the following characteristics: Poisson’s ratio   = 0.25, 

Timoshenko shear coefficient  = 2/3, and coefficient of rotary inertia kRI = 0.01. 

 

                                                                                                   

                                                                  
      → kN = -5.922 

 

The definition of the stiffness of the Winkler foundation in Ghannadiasl [14] has an error: in the denominator, the 

expression should be L4 instead of L2.  

Analysis was conducted with n = 9, 17, and 33 grid points. Detailed results are listed in the Supplementary Materials 

“Vibration analysis of a pinned−pinned beam with an axial load” and “Vibration analysis of a fixed−pinned beam with 

an axial load”. Table 9 and Table 10 list the results of Ghannadiasl [14] and those obtained in this study (W− and 

M−W approximations). 

Table 9. Coefficients  of natural frequencies (first mode) of a pinned−pinned Timoshenko beam under axial load: 

Ghannadiasl [14], W−, and M−W. 

 

kW 
         Ghannadiasl 

[14] 

   Present study 

9-point grid  

   Present study 

17-point grid  

   Present study 

33-point grid  

  W− M−W W− M−W W− M−W 

0 3.46648   4.26106 3.35291 3.68461 3.43818 3.52250 3.45941 

0.24 5.52398   6.05742 5.45397 5.66425 5.50725 5.55952 5.51958 

0.44 7.00019   7.43094 6.94550 7.11207 6.98642 7.02844 6.99674 

0.64 8.21469   8.58696 8.16850 8.31083 8.20306 8.23893 8.21178 

0.84 9.27091   9.60434 9.23034 9.35672 9.26062 9.29253 9.26835 
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Table 10. Coefficients  of natural frequencies (first mode) of a fixed−pinned Timoshenko beam under axial load: 

Ghannadiasl [14], W−, and M−W. 

kW 
        Ghannadiasl 

[14] 

   Present study 

9-point grid  

   Present study 

17-point grid  

   Present study 

33-point grid  

  W− M−W W− M−W W− M−W 

0 7.32425 7.86512 7.09499 7.46801 7.26653 7.36077 7.30979 

0.24 8.50792 8.98023 8.31146 8.63265 8.45830 8.53955 8.49549 

0.44 9.54555 9.97105 9.37093 9.65748 9.50137 9.57390 9.53447 

0.64 10.4806 10.87162 10.32186 10.58318 10.44038 10.50656 10.47050 

0.84 11.3384 11.70279 11.19194 11.43386 11.30131 11.36259 11.32913 

 

The results of this study have high accuracy. 

 

 

3.3.3. Free vibration analysis of tapered Timoshenko beams  

We determined the vibration frequencies (coefficients ) of tapered Timoshenko beams. Pinned−pinned, fixed−free, and 

fixed−fixed beams were considered.  

The beams have the following characteristics: Poisson’s ratio  = 0.30, Timoshenko shear coefficient  = 5/6, and 

coefficient of rotary inertia kRI = 0.01. 

                                          
 

Analysis was conducted with n = 9, 17, 25, 33, and 41 grid points for different values of the taper ratio (1-hr/hl) and 

support conditions: hl and hr are heights at the left and the right beam’s end, respectively. The reference values Ar and Ir 

are taken at the left beam’s end. Detailed results are listed in the Supplementary Material “Vibration analysis of tapered 

Timoshenko beams.” Soltani [16] presented results obtained with the power series method (PSM) and those obtained by 

Hibbitt et al. [17] with the finite element method using ABAQUS software. The results of this study are compared with 

their results in Table 11. 
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Table 11. Coefficients  of natural frequencies (first mode) of tapered Timoshenko beams: power series method (PSM), 

ABAQUS, and FDM. 

Taper 

ratio 

PSM ABAQUS 
FDM 

9-pt grid 

 

FDM 

17-pt grid 

 

FDM 

25-pt grid 

 

FDM 

33-pt grid 

 

FDM 

41-pt grid 

 
Fixed−free beam 

0.2 3.3307 3.3770 3.4978 3.3734 3.3498 3.3414 3.3375 

0.5 3.5591 3.6890 3.6839 3.5895 3.5725 3.5666 3.5639 

Pinned−pinned beam 

0.2 7.7160 7.7370 8.2013 7.8419 7.7723 7.7478 7.7364 

0.5 6.4442 6.4740 7.0314 6.5924 6.5100 6.4812 6.4678 

Fixed−fixed beam 

0.2 13.2223 13.2380 13.7840 13.3733 13.2903 13.2607 13.2469 

0.5 11.9235 11.9500 12.8356 12.1781 12.0392 11.9891 11.9657 

 

The results of this study have high accuracy. 

 

3 Conclusions 

The FDM-based model developed in this paper enables, with relative easiness, first-order, second-order, and vibration 

analyses of Timoshenko beams. The results show that the calculations, as described in this paper, yield accurate results. 

First- and second-order element stiffness matrices (tensile or compressive axial force) in local coordinates were determined. 

In addition, tapered beams were analyzed.  

The following aspects were not addressed in this study but could be analyzed with the model in the future: 

✓ Analysis of linear structures, such as frames, through the transformation of element stiffness matrices from local 

coordinates to global coordinates 

✓ Second-order analysis of frames free to sidesway, the P- effect being examined 

✓ Timoshenko beams resting on Pasternak foundations 

✓ Elastically connected multiple-beam system 

✓ Axially functionally graded beams. 

Supplementary Materials: The following files were uploaded during submission:  

• “Fixed−pinned beam subjected to a uniformly distributed load” 

• “Fixed−pinned beam subjected to a concentrated load” 
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•  “Tapered pinned−fixed beam subjected to a uniformly distributed load” 

• “Pinned−pinned beam subjected to a uniformly distributed load and compressive force” 

• “Buckling load of a fixed−free beam”  

• “Second-order element stiffness matrix of a uniform beam”  

•  “Vibration analysis of a uniform fixed−free beam 

• “Vibration analysis of a pinned−pinned beam with an axial load” 

• “Vibration analysis of a fixed−pinned beam with an axial load” 

• “Vibration analysis of tapered Timoshenko beams” 
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Appendix A: Uniform fixed−pinned beam subjected to a uniformly distributed load    

A uniform beam (Figure 14) subjected to a uniformly distributed load was analyzed using the force method of classical 

beam theory. The bending moment at the fixed end was the redundant effort.  

In the associated statically determinate system, M0(x) and V0(x) are the bending moment and the shear force, 

respectively, due to the distributed load, whereas m(x) and v(x) are the bending moment and the shear force, 

respectively, due to the virtual unit moment at the fixed end. M0(x), V0(x), m(x), and v(x) can be expressed as follows:  

 

                                                                                                                                                                          (A1)                                                                                                                       

 

The bending moment M1 at the fixed end is the solution of the following equations: 

                                                                                                                                                                             (A2)                                                                                                                                         

                                                                                                                                                                              (A3)                                                                                                                             

                                                                                                                                                                      (A4)                                                                                                                           
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Combining Equations (A1) and (A4) yields the bending moment at any position x, as follows: 

                                                                                                                                                                      (A5)                                                                                                                             

 

Appendix B: Uniform fixed−pinned beam subjected to a concentrated load    

A uniform beam (Figure 15) subjected to a concentrated load was analyzed using the force method of classical beam 

theory. The bending moment at the fixed end was the redundant effort.  

Analysis was conducted similarly to the example in Appendix A.  

                  

        (B1)                                                                                                                       

 

 

Appendix C: Tapered pinned−fixed beam subjected to a uniformly distributed load    

A tapered beam (Figure 16) subjected to a uniformly distributed load was analyzed using the force method of classical 

beam theory. The bending moment at the fixed end was the redundant effort.  

In the associated statically determinate system, M0(x) and m(x) are the bending moments due to the distributed load and 

the virtual unit moment at the fixed end, respectively. V0(x) and v(x) are the shear forces due to the distributed load and 

the virtual unit moment at the fixed end, respectively. Let us introduce the dimensionless ordinate  = x/l and             

0 = L0/L1. M0(x), V0(x), m(x), v(x), I(x), and A(x) can be expressed as follows:  

 

                                                                                                                                                                      

(C1)     

                                                                                                        

Applying Equations (A2) and (A3), the bending moment M1 at the fixed end is the solution of the following equations: 
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Equations (C2) and (C3) are solved numerically. Combining Equations (A1), (A4), and (A5) yields the bending moment at 

any position x.                                                                                                                           

For the analysis of the tapered beam with the FDM, the parameters ’
M(x) (Equation (14c)) and ’

V(x) (Equation (14d)) 

are calculated as follows: 

     

                    (C5)                                                                                                                             

 

 

Appendix D: Second-order element stiffness matrix of a uniform beam  

W FDM approximation    

The static compatibility boundary conditions are expressed as follows: 

 

 

 

 

 

 

The geometric compatibility boundary conditions are expressed as follows: 
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M−W FDM approximation    

The static compatibility boundary conditions are expressed as follows: 

 

 

 

 

 

 

The geometric compatibility boundary conditions are expressed as follows: 

 

 

 

 

 

 

 

Appendix E 

Kruszewski [15] presented the following equation (Equation (14) in [15]) for the determination of natural  

frequencies of a fixed−free beam: 

 

where kB, kS, kRI, , and  are defined in [15] in Equations (3a), (3b), (3c), and (5), respectively. 

The following equivalences were noted between the parameters considered by Kruszewski [15] and those considered 

in this study (PS): 
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