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Abstract: The Armillaria genus represents one of the most common causes of chronic root rot dis-

ease in woody plants. The disease damage prompt assessment is crucial for pest management. 

However, the disease detection current methods are limited at the field scale. Therefore, an alter-

native approach that can enhance or supplement traditional techniques is needed. In this study, we 

investigated the potential of hyperspectral methods to identify the changes between fungi-infected 

and uninfected plants of Vitis vinifera in early detecting the Armillaria disease. The hyperspectral 

imaging sensor Specim-IQ was used to acquire images of leaves of the Teroldego Rotaliano grape-

vine cultivar. We analysed three groups of plants: healthy, asymptomatic, and diseased. Highly 

significant differences were found in the Near infrared (NIR) spectral region with a decreasing 

pattern from healthy to diseased plants attributable to internal leaf structure changes. Asympto-

matic plants emerged from the other groups due to a smaller reflectance in the red-edge spectrum 

(around 705nm). Hypothetically associated with the presence of secondary metabolites involved in 

plant defence strategy. Furthermore, significant differences were observed in the wavelengths close 

to 550 nm in diseased plants versus asymptomatic. We used linear discriminant analysis from a 

machine learning context to classify the leaves based on the most significant variables (vegetation 

indices and single bands), with resulting overall accuracies of 85% and 84% respectively in healthy 

vs. diseased and healthy vs. asymptomatic. To our knowledge, this study represents the first report 

on the possibility of using hyperspectral data for root rot disease diagnosis on woody plants. Alt-

hough further validation studies are required, it appears that the spectral reflectance technique, 

possibly implemented on unmanned aerial vehicles (UAV), could be a promising tool for a 

cost-effective, non-destructive method of Armillaria disease early diagnosis and mapping in the 

field, contributing to a significant step forward in precision viticulture. 

Keywords: agriculture 4.0; chlorophyll; early diagnosis; fungal tree pathogens; mycology; plant 

disease; plant pathology; smart viticulture; vegetation indices; wine grapes. 

 

1. Introduction 

The Armillaria (Fr.: Fr.) Staude is a globally distributed and widely studied genus of 

pathogenic fungus belonging to the Basidiomycota class, Agaricales order, and Tri-

cholomataceae family [1, 2]. It spreads under the soil through root contact or complex 

structures named rhizomorphs which can grow relatively fast for hundred meters and 

penetrate the roots bark of the hosts [3, 4]. A single individual of Armillaria was found in 

Michigan that occupied ca. 15 ha and weighed more than 10,000 kg [5] while in Oregon 
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another single individual was estimated growing over nearly 1,000 ha and as many as 

8,650 years old, representing one of the largest and oldest living organisms on Earth [6]. 

Armillaria spp. are opportunistic parasites, however, some species, like A. mellea (Vahl) P. 

Kumm., are considered primary parasites of stressed trees [7] and are going to increase 

their damages under climate change conditions [8]. Besides, the modern context of agri-

cultural intensification may offer an opportunity for Armillaria to adapt to single mono-

cultures with a resulting disease grimness amplification [7]. Due to its saprophytic ability 

Armillaria spp. can feed on dead woody tissues after killing the host (e.g. stumps, roots, 

debris), and the mycelium can survive in woody residuals up to 15 or 20 years or more 

[9]. Armillaria spp. can parasitize a wide range of plant species in forest, both conifers and 

broadleaves [10], in garden trees and shrubs [11], and it can cause extensive losses in fruit 

orchards like apples and berries [12], pears [13], peaches [14, 15], kiwifruits [16], as well 

as grapevine [17–20]. 

1.1 Root symptoms 

The host infection normally has a chronic course results in a rot collar and roots that 

lead to its death also after several years [7]. Roots appear dark, easily removable from 

the ground with a fibrous consistency [21, 22]. Furthermore, it is possible to perceive a 

strong scent of fresh mushrooms by smelling the roots, especially in humid conditions 

[23]. By scratching the collar and main roots bark with a small knife, it is possible to 

perceive a white mycelium that ends in the typical fan shape (Error! Reference source 

not found.). Dark brown rhizomorphs can be found in roots and soil. The presence of 

fruiting bodies is sporadic in the vineyard and could occur exclusively in autumn and 

after several years of infection [23].  

 

Figure 1. Underground symptoms of Armillaria root rot in grapevine. Panel (a) shows the rotting 

wood and whitish mycelium in the subcortical area of the collar; panel (b) shows the fan mycelium 

in a detached fragment of collar cortex. Photo from the author, Mezzolombardo, TN, 24-08-2019.  

1.2 Foliar symptoms 

While the plant collars observation could be sufficient to obtain an accurate diagno-

sis [21], on the other hand, the disease is not easily ascribed from foliar symptoms 

themselves owing to their unspecificity. Additionally, foliar symptoms become visible 

when the diseased have reached an advanced stage and the host has been compromised 

[17]. According to Baumgartner et al. 2002, foliar symptoms do not appear until one-half 

to three-quarters of the main host root is colonized by Armillaria mellea. Aboveground 

Armillaria symptoms in grapevine include lower plant vigour and low fruit production 

with a generally suffering appearance, higher number of lateral shoots, dwarf and 

wilting leaves, stunted and not lignified shoots [17, 21, 23].  

1.3 Disease diagnosis  
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Since there are no effective plant protection products in the market to control the 

pathogen [10], disease assessment is crucial for pest management. In fact, an accurate 

diagnosis in the field will improve the efficiency of prophylactic methods [7, 24], such as 

the prompt elimination of infected plants, root residuals removal, crop rotations, and the 

use of less susceptible rootstocks [19]. Traditionally, the disease damage assessment was 

estimated using a visual approach, relying upon direct observation in the vineyard. 

However, this method is time-consuming, labour-intensive, and costly for disease mon-

itoring in large-scale farming. Consequently, there is a need to develop new approaches 

that can enhance or supplement traditional techniques. Additionally, early disease de-

tection would increase the effectiveness of preventive measures typically used to face 

the pathogen. This study aims to investigate the potential of an alternative and 

non-destructive method to early detect root rot disease in grapevines. 

1.4 The potential of hyperspectral sensors 

Hyperspectral technology may represent a valuable alternative to traditional dis-

ease assessment and have proven to be a promising tool for disease diagnosis [25]. The 

use of hyperspectral sensors for crop disease assessment started many decades ago. In 

the early 1980s, Toler et al. used aerial colour infrared photography to evaluate root rot 

disease of cotton and wheat stem rust [26]. Reflectance data turned out to be capable of 

detecting pathogen-induced biophysical specific changes in the plant leaf and canopy 

[27]. Since then, however, remote sensing technologies have significantly progressed. 

Modern hyperspectral imaging sensors with super spatial, spectral, and radiometric res-

olutions, offer enhanced capabilities to detect and map disease symptoms on a large 

scale. These sensors capture reflectance characteristics of the target materials and the re-

flected light recorded with a high spectral and spatial resolution [28]. The recent ad-

vances in hyperspectral imaging sensors are expected to improve disease detection be-

cause it allow a pixel-wise attribution of disease-specific symptoms and healthy tissue 

[29]. In this context, different spectral used to evaluate the vegetation status both quan-

titatively and qualitatively and spectral vegetation indices (SVIs) are among the most 

common [28]. 

A recent study from 2020 demonstrates the possibilities of automatic classification 

of cotton root rot disease based on Unmanned Aerial Vehicles (UAV) [30]. In R.Naidu 

(2009), the authors used leaf reflectance differences in the visible (VIS) and near-infrared 

(NIR) spectrum to predict in advance grapevine infection by leafroll-associated virus-3, 

even though foliar symptoms were not visible yet [31]. Albetis et al., 2017, reported an 

innovative method to detect Flavescence dorèe in grapevines using multispectral images 

acquired from UAV [32]. Several studies have confirmed the potential of spectral data in 

early plant pathology detection in different crops [27, 32–37]. Similarly, several studies 

demonstrated the possibility to distinguish diseased plants from healthy in a reliable 

way through hyperspectral data in multiple crops [34, 38–40], from which our research 

took inspiration. 

In this study, we have analysed the leaf level reflectance of grapevines cv. 

Teroldego Rotaliano from diseased, healthy, and asymptomatic plants to understand 

whether there are characteristic spectral changes, across the visible and NIR domains, 

associated with the infection. We assumed that leaf reflectance provide relevant 

information to identify Armillaria infections in grapevines even though foliar symptoms 

are not visible yet. 

1. Materials and Methods 

1.1 Study site 

The study was carried out in the Piana Rotaliana (Error! Reference source not 

found.), located in northeast Italy. The Piana Rotaliana is a winegrowing region where 

Armillaria mellea has been a grave problem for several years [18]. The surface is pre-

dominantly cultivated with the native red grape variety named Teroldego Rotaliano 

(about 2000 ha). The soil is characterized by a good water drainage capacity [23], and it 
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is classified as Post-glacial Alpine [41]; formed in the Pleistocene age by deposits coming 

from glaciers, landslides, rock glaciers, alluvial debris, with a sandy and gravelly tex-

ture.  

The selected vineyard is located on the northeast of Piana Rotaliana (46°13’36’’N, 

11°04’39’’E) at 250 m a.s.l. and it was planted in 2005 with the native grape variety 

Teroldego Rotaliano. The vines were grafted into Teleki 5C rootstock, while the training 

system was the double pergola. The vine spacing was 5 m x 0.8 m, the rows-oriented ca. 

east-west. We found the typical fan mycelium attributable to Armillaria spp. in several 

plants within the vineyard and more rarely rhizomorphs in their collars. The vineyard 

was uprooted at the end of the season 2019, and this allowed us to collect and thor-

oughly examine the vine roots. 

 

Figure 2. Photo of the winegrowing region Piana Rotaliana located in Trentino region in the 

northeast side of Italy. From the author, Tor di Visione, (TN), 26-07-2019. 

1.2 Foliar sampling 

We collected three fresh leaves for each plant on the first week of September 2019, 

(between 9 p.m. and 11 p.m.). Once detached, the leaves were immediately placed in a 

refrigerated thermic box at 6°C, then transported to the Spectra lab and stored in dark-

ness at 6°C, before spectral measurements were taken [42]. They were analysed within 

two hours after field collection. We collected the leaves from the first branch of lateral 

shoots, generally located between the third and the fourth vineyard trellis wires. We 

harvested exclusively mature leaves and with a well-exposed upper sheet to sunlight. 

Moreover, we made sure they were physically intact, apparently healthy on both faces, 

and they all had approximately homogeneous sizes. Furthermore, plants suspected to be 

infected by other pathogens were previously excluded. 

1.3 Root sampling and inspection 

The grapevines were uprooted on the first week of October 2019 using a mechanical 

excavator. Plant roots were visually assessed, and three portions about 7-8 cm long with 

a diameter from 1.5 to 3.0 cm taken as a sample for each plant. The portions were chosen 

from rot or suspected areas. Roots without any evidence of root rot were also collected. 

We thoroughly washed the samples using fresh and clean water to remove soil debris 

and disinfected them with the following procedure. They were soaked into a backer 

with a solution of 30% of a commercial preparation of sodium hypochlorite (NaOCl 

concentration 5%), 70% of sterile water and 0.01% of Tween-20 for 5 minutes, while the 

liquid was kept with agitation by a magnetic anchor at room temperature. After disin-

fection, the roots were washed twice for two minutes with sterile water into a sterile 

backer and then rinsed. At this point, they were incubated into humid chambers made 

of transparent sterile nylon bags inflated by air and wet paper inside. We kept humid 

chambers in closed boxes placed into a dark room for about a month until the final visu-

al disease assessment based on mycelium growth. For the species identification, we re-

lied on Pertot et al. 2008, [43]. 
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1.4 Plant classification 

For the plant grouping, we matched the foliar and root symptoms of each vine, as 

in Figure 3. Healthy plants without symptoms either in canopy and roots, diseased 

plants with symptoms in leaves and the presence of Armillaria mellea in roots, asympto-

matic plants without any foliar symptoms but infected by the pathogen and in closest 

proximity of the diseased ones. In total, we selected 35 grapevines as sample, from which 

7 were healthy, 12 diseased, and 16 asymptomatic. 

 

Figure 3. Plant classification illustration; “Healthy” with no symptoms in leaves and roots; “Dis-

eased” symptomatic in both roots and leaves; “Asymptomatic” with symptoms in roots but not in 

leaves. 

1.5 Hyperspectral data acquisition 

We used Hyperspectral camera Specimen IQ (Specim, Spectral Imaging Ltd., Oulu, 

Finland) to measure leaf reflectance. The imaging sensor has a wide variety of applica-

tions in remote sensing and precision agriculture. Specim IQ is used to study, in a 

non-invasively manner, the physiology, architecture, and biochemistry of crop plants or 

natural vegetation in different environmental conditions and on different scales. For in-

stance, it was implemented for stress detection in plant phenotyping processes and in 

plant pigment composition studies. Specim IQ acquires the reflected electromagnetic ra-

diation from an object in 204 narrow bands with a spectral range from 397 nm to 1003 

nm and a spectral resolution of 7 nm, spectral sampling of 3.5 nm. It performs the meas-

urements by lines scanning 512 pixels and record the image in square with a resolution 

of 512 x 512 px. The sensor is portable and easy to use, and it can be considered a novel 

valuable tool for hyperspectral imaging use in the context of plant research and 

phenotyping strategies [28]. In a recent publication, the sensor was used to detect a 

common root rot pathogen (Bipolaris sorokiniana) affecting the seedlings of wheat [44]. 

Analogously, Barreto et al., 2020, used this sensor for measuring the root rot disease in-

cidence in celery leaves caused by Rhizoctonia solani [45].    

In our experiment, Specim IQ was placed on its tripod ground base at 74 cm from 

the ground and nadir images were collected. The measurements were conducted in a 

dark room, where light was provided by the two Helder Systemlicht C12 halogen lamps 

(Helder Systemlicht GmbH, Runkel/Lahn, Germany) placed towards the leaves at an 

eight of 120 from the ground level. The camera shutter speed was set at 13 milliseconds 

per pixel, corresponding to 36 seconds per photo. We performed spectral data acquisi-

tion including three leaves in each image. The leaves were placed on the ground with 

the upper surface oriented upwards, as shown in Error! Reference source not found., 

and arranged with the Spectralon panel nearby used for white calibration. We cut peti-

oles to properly expand the leaves on the ground before spectral analyses.  

We analysed the images using the ENVI software (L3Harris Geospatial Solutions 

Inc., Broomfield CO, USA). First, we extracted the leaves as region of interest (ROI) and 

excluded background pixels. Then, we calculated the mean reflectance of the leaves, by 

averaging all pixel values included in the ROI. Noisy bands at the tails, from 397 nm to 

423 nm and bans from 954 nm and 1003 nm were eliminated minimizing the back-

ground noise [45]. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2021                   doi:10.20944/preprints202105.0246.v1

https://doi.org/10.20944/preprints202105.0246.v1


 

 

 

Figure 4. Panel (a) shows a sample of RGB photo of three leaves made with the Specim IQ camera. 

Panel (b) shows a sample of the hyperspectral image made with Specim IQ of the same leaves.  

We calculated a set of 18 vegetation indices (VIs). In this study, we selected VIs po-

tentially capable of discriminating against infected and uninfected vines. Table 1 in-

cludes the equations and the references for every selected VIs. Some VIs is used in the 

literature to detect leaf chlorophyll content (NDchl, REIP3, LCI, Chlred-edge, Vog2, 

SR750/710), while others are correlated with anthocyanins content (mARI, ARI), and ca-

rotenoids content (mCRIRE). Further computed VIs are normally used to retrieve other 

key vegetation parameters e.g., plant status or biomass (NDVI, GNDVI, AVI, MGVI, 

DVI, GDVI, OSAVI). Lastly, the index Ctr4 linked to plant-related stresses [46], and the 

index WBI linked to the water content [47] were computed. 

Table 1. Vegetation indices used for measuring reflectance changes between leaves from asymp-

tomatic, diseased, and healthy of armillaria-diseased grapevines. 

Number Vegetation Index Abbreviation Equation Related to Reference 

1 Anthocyanin reflectance in-

dex  

ARI (𝑅551)−1 − (𝑅705)−1 anthocyanins [48]  

2 Modified anthocyanin re-

flectance index 

mARI  ((𝑅551)−1 − (𝑅710)−1) × 𝑅951 anthocyanins [49]  

3 Carotenoid Reflectance In-

dex red-edge 

mCRIRE ((𝑅520)−1 − (𝑅700)−1) × 𝑅951 carotenoid [49] 

4 Normalized Difference Chlo-

rophyll 

NDchl (𝑅925 − 𝑅710)/(𝑅925 + 𝑅710) chlorophyll [50]  

5 Red-Edge Inflection Point 3 REIP3 (((𝑅665 + 𝑅783) 2⁄ ) − 𝑅705)/(𝑅740 + 𝑅705) chlorophyll [51]  

6 Leaf Chlorophyll Index LCI (𝑅850 − 𝑅710)/(𝑅850 + 𝑅680) chlorophyll [52]  
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7 Vogelmann indices 2 Vog2 (𝑅734 − 𝑅747)/(𝑅715 + 𝑅726) chlorophyll [27]  

8 Zarco-Tejada & Miller SR750/710 𝑅750/𝑅710 chlorophyll [53]  

9 Chlorophyll Red-Edge Chlred-edge (𝑅771 𝑅711⁄ )−1 chlorophyll [49]  

10 Difference Vegetation Index DVI 𝑅951/𝑅640 vegetation [54]  

11 Normalized Difference Veg-

etation Index 

NDVI (𝑅932 − 𝑅604)/(𝑅604 + 𝑅932) vegetation [54] 

12 Misra Green Vegetation In-

dex 

MGVI −0.386(𝑅500) − 0.530(𝑅600) + 0.535(𝑅800)

+ 0.532(𝑅951) 

vegetation [54] 

13 Green Normalized Difference 

Vegetation Index 

GNDVI (𝑅570 − 𝑅800)/(𝑅570 + 𝑅800) vegetation [55]  

14 Ashburn Vegetation Index AVI 2.0 ×  (𝑅951) − (𝑅600) vegetation [54] 

15 Green Difference Vegetation 

Index 

GDVI 𝑅566 − 𝑅902 vegetation [56] 

16 Optimized Soil Adjusted 

Vegetation Index 

OSAVI (1 + 0.16)/((𝑅902 − 𝑅672) (𝑅902 + 𝑅672 + 0.16)⁄ ) vegetation [53] 

17 Simple Ratio Carter4 Ctr4 𝑅710/𝑅760 stress [57]  

18 Water Band Index WBI 𝑅970/𝑅902 water content [47] 

1.6 Statistical analyses 

In a preliminary analysis, we calculated the standard deviation within each group 

of plants with the following formula: 

𝜎 = √∑(𝑋 − 𝑋)
2

𝑛
 

Where X represent the single plant reflectance, x̅ the group-averaged reflectance, 

and n the number of plants within the group. 

Afterwards, we performed an inferential statistical analysis in three different steps, 

Figure 5Error! Reference source not found.. In step 1, we determined the most relevant 

wavelengths to discriminate diseased, healthy, and asymptomatic groups. In step 2, we 

computed and selected the VIs most relevant to separate the groups of plants. In step 3, 

we employed a classification analysis using the most discriminant variable among both 

wavelengths and VIs. For the wavelengths we used the same statistical approach used in 

Manevski et al., 2017, to discriminate different types of vegetation [58]. In this approach, 

we performed both parametric and non-parametric ANOVA (Kruskal Wallis) tests for 

every single wavelength with their respective cross-validation tests Tukey HSD and 
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Wilcox. To select the most sensible vegetation indices we relied on Naidu et al., 2009, 

and Avola et al., 2019; however, since not all the data were normally distributed we 

performed a non-parametric ANOVA test in addition to the parametric ANOVA [31, 

59]. Data assumptions for the ANOVA test were checked using Shapiro and Bartlett 

tests. Finally, in order to classify the groups of plants, Linear Discriminant Analysis 

(LDA) was performed using the combination of the first 5 most discriminant variables 

among VIs and wavelengths [37, 59]. The p-values of VIs are reported in Table A1 and 

TableA2, while for the wavelengths the p-values are reported in Table S1. Data assump-

tions for LDA were checked using Shapiro and boxM tests, and statistical transformation 

were made where required, the results may be consulted in table S2. We used 65% of the 

dataset as training and 35% as a validation set. Finally, we calculated the Overall Accu-

racy using the following formula: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) = [
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
] × 100 

where TP and TN are true positive (diseased correctly detected) and true negative 

(healthy plants correctly detected), respectively. FP and FN mean false positive (healthy 

plants detected as diseased) and false negative (diseased plants detected as healthy), re-

spectively. All the statistical analyses were carried out using R studio. 

 

  

Figure 5. Analytical framework of implemented statistical analyses to select specific sensible nar-

row bands and VIs and validate the Armillaria infected plats classification in grapevines. 

2. Results 

In both diseased and asymptomatic vines, after the incubation period, we found the 

typical mycelium of Armillaria growing under root bark as well as the external fan myce-

lium in at least one out of three portions, Figure 6.  
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Figure 6.Panel (a) shows an example of the typical mycelial fan of Armillaria spp. found on incu-

bated roots; Panel (b) shows an example of the Armillaria subcortical mycelium; Panel (c) shows the 

longitudinal bark breaking caused by the mycelium expansion. From the author, Edmund Mach 

Foundation. 

Figure 7 shows the averaged leaf reflectance of healthy, diseased, and asymptomat-

ic plants. There are noticeable differences between the groups across the NIR spectral 

region ranging from 750 to 951 nm, Figure 7c. Slighter differences are also observed in 

Figure 7a in the green spectrum (from 530 to 630 nm) and in Figure 7b red edge (from 

700 to 725 nm). The ribbons behind each group represent their standard deviations.  

Figure 8a highlights the spectral differences between asymptomatic and healthy 

and diseased plants. The differences between healthy and diseased groups increases to-

gether with the wavebands along the NIR region reaching the maximum difference at 

951 nm. Slightly smaller peaks of reflectance appear in asymptomatic plants observed 

near 566nm and 705nm. In Figure 8b, shows the standard deviation within each group of 

plants and therefore the dispersion of data. 

 

Figure 7. Mean hyperspectral signatures of the three plant groups plus their standard deviations in 

the ribbons. Panel (a) highlights the signatures in the green spectrum, panel (b) in red-edge, and 

panel (c) in the NIR spectrum. 
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Figure 8. Panel (a) shows mean reflectance of healthy minus diseased plants, and asymptomatic 

minus Diseased plants; Panel (b) shows the standard deviations, within each group of plants. 

In Figure 9 we reported the matrix of bands, with their level of significance to dis-

criminate between the groups of plants. Wavelengths in green are characterised by a 

high discrimination power, whereas grey wavelengths by a low discrimination power 

according to ANOVA tests. 

The parametric ANOVA test resulted more sensitive than the non-parametric test, 

detecting a higher number of significant and highly significant wavelengths in all the 

three two-by-two comparisons, which is consistent with the results of [58]. Nevertheless, 

both tests confirmed the differences to be significant between several narrow bands. In 

particular, diseased versus healthy plants showed highly significant differences in the 

NIR spectrum (from 750nm to 951nm), with the lowest p-values in 889nm, 920nm, and 

902nm. Similarly, significant differences in the NIR region were found between asymp-

tomatic and diseased plants according to the parametric ANOVA test results. Asymp-

tomatic plants resulted significantly different in the red-edge spectrum from the other 

two groups with the lowest p-value at 705nm. Moreover, asymptomatic plants com-

pared to diseased showed significant differences in the green spectrum with the lowest 

p-value at 566nm. 
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Figure 9. Sensitivity matrix of vegetation spectral discrimination based on the type of statistical 

test. Parametric versus nonparametric analysis of variance (ANOVA) for the three spectral librar-

ies. P-value < 0.025 (**), P-value < 0.01 (***). 

Results of non-parametric and parametric statistical analyses concerning the VIs are 

reported respectively in TableA 1, and TableA 2. Although, all VIs, except for WBI, pro-

duced highly significant results in the ANOVA test (P-value < 0.01), any of the VIs was 

capable to separate the whole three groups singularly; suggesting that a plant classifica-

tion may be possible only with a combination of the indices. Diseased and healthy plants 

exhibited differences in the vegetation vigour related indices, such as GNDVI, GDVI, 

MGVI, OSAVI, NDVI, AVI, DVI but also in mCRIRE and mARI. Healthy and asympto-

matic plants showed the highest differences in the indices: Ctr4, REIP3, Chlred-edge, 

SR750.710, Vog2. While all the VIs, except for the mCRIRE and WBI, showed significant 

differences between diseased and asymptomatic plants. Figure 10 illustrates the VIs with 

cross-validation results between the plant groups. 
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Figure 10. Most significant vegetation indices with their quantiles, mean and maximum values for 

each group of plants. Within the single vegetation index, the plant groups are identified with letters 

showing significant differences at the Tukey (HSD) test (p-value < 0.05). 

The results of LDA classification are illustrated in Table 2. It appears that the use of 

the selected wavelengths and VIs produces good classifications, supporting the theory 

that hyperspectral data is capable to identify Armillaria mellea infection.  

Table 2. Classification accuracies based on LDA using combinations of variables. 

Groups Variables used Overall accuracy 

Healthy - Diseased GDVI, MGVI, AVI, OSAVI, R920 85% 
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Healthy - Asymptomatic R705, R711, R708, R714, R717 84% 

Healthy - Asymptomatic - Diseased GDVI, NDchl, MGVI, OSAVI, GNDVI 70% 

4. Discussion 

The NIR reflectance has an increasing pattern in all three groups starting from dis-

eased, asymptomatic, up to healthy plants. In particular, the high reflectance values 

along the NIR spectrum from 750 nm up to 951nm characterized healthy from diseased 

leaves, with the most relevant peaks in 902nm, 920nm and 889nm. This conclusion is 

coherent with the literature as it is well known that the NIR light is not absorbed by leaf 

pigments but rather reflected in healthy leaves [42, 60–63]. It appears that the values in 

the NIR are much more valuable than the VIS spectral range to discriminate diseased 

from healthy plants. Similar conclusions were also drawn in Zhang, et al., 2005, for the 

detection of tomatoes stress induced by the fungal pathogen Phytophthora infestans [64]. 

The NIR shoulder is related to internal leaf structures and its reflective scattering is 

principally due to the air in leaf cell walls and to the differences in leaf cellular constitu-

ents [65–67]. Reflectance in the NIR-shoulder domain also can be used for assessing leaf 

structure, leaf deterioration and senescence [66]. Consequently, the reduced NIR reflec-

tance observed in the canopy of root rot affected plants may be attributed to leaf struc-

tural changes induced by wilting processes [68]. Moreover, the NIR response is also re-

lated to the leaf water content [69], despite, in our results, we did not observe relevant 

differences in WBI index between the plant groups. 

Overall, according to the considered VIs, we can assume that diseased plants are 

characterized by lower vegetation vigour and leaf pigment content. Consistently, 

Nogales et al., 2009, using a chlorophyll meter SPAD 502, assessed that grapevines arti-

ficially inoculated with Armillaria mellea, that showed evident foliar symptoms, have a 

significantly lower foliar chlorophyll content than healthy plants [70], which presuppose 

divergences in the leaf reflectance features. As suggested by the mCRIRE index, diseased 

plants may also have a lower content of carotenoids than healthy plants. These pigments 

contributes to the light-harvesting in the green spectrum as well as the photosynthetic 

systems protection [49].  

Diseased plants exhibited lower values than healthy plants in GDVI, MGVI, NDVI, AVI, 

DVI and OSAVI indices. Since these VIs are strongly correlated to the vegetation biomass 

[53–56] and considering the reduced biomass production of diseased plants [18], we can 

hypnotize a variation in the leaf biomass, leaf dry weight, and specific leaf area (SLA) in 

healthy vs. diseased plants. Among these indices, the OSAVI was used in Reynolds et al., 

2012, and Barreto et al., 2020, to discriminate healthy vs. infected plants of another rot 

root disease caused by Rhizoctonia solani fungi in sugar beet [45, 68]. In this pathosystem, 

OSAVI resulted negatively correlated with the severity of Rhizoctonia crown root rot, 

suggesting the possibility of remotely detect diseased plants when at least 26 to 50% of 

the root surface are rotted. Similarly, in our results, OSAVI was one of the most signifi-

cant VIs to separate healthy and Armillaria-diseased vines (p-value = 0.00017), remarking 

the relevant role of the OSAVI index in root rot disease detection. 

For NDVI, Pérez-Bueno et al., 2019, reported lower values in avocado trees affected by 

the white root rot caused by the Rosellinia necatrix fungi using a multispectral sensor on 

UAV [71], consistently, we found lower NDVI in grapevine affected by Armillaria root 

rot. Granum et al., 2015, suggested that, in this pathosystem, the leaf metabolism of avo-

cado trees is significantly affected in response to the loss of radical system functionality 

of diseased plants [72]; supporting that a radical pathogen can induce, throughout sys-

temic effects inside the host, changes in leaf metabolism and leaf light response even 

though the pathogen is not a direct pathogen of leaves [73]. As a matter of fact, Candiago 

et al., 2015, while studying the possible applications of multispectral images from UAV 

for precision farming, found out that the area of the vineyard they had analyzed 

reporting the lowest values of GNDVI, NDVI, and SAVI was mostly infected 

by Armillaria mellea root rot and trunk disease [82]. Perhaps not unexpectedly, the VIs 
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reported in Candiago et al., 2015, were just the same ones that we observed to be 

sensible in our experiments. 

On the other hand, despite the Armillaria roots colonization, we can assume that the 

photosynthetic capacity of asymptomatic plants was not as affected as for the diseased 

ones, probably because of the earlier disease stage in asymptomatic plants. In fact, the 

asymptomatic group stood out from diseased due to its lower reflectance in the green 

(near 566nm), red edge (near 705nm), as well as a slightly higher reflectance in the infra-

red (near 902nm) according to parametric ANOVA. Again, asymptomatic vs. diseased 

groups exhibited a higher plant vigour (GDVI, MGVI, OSAVI, NDVI, AVI, GNDVI, 

DVI), chlorophyll content (REIP3, Chlred-edge, NDchl, DPI, LCI, SR750/710, as well as 

anthocyanins content (mARI, ARI). 

However, the encouraging result towards an early diseased detection was that 

asymptomatic plants, apparently indistinguishable from healthy ones using a visual as-

sessment, showed significant differences in the red-edge spectrum from 705 nm to 

720nm. Consequently, those VIs computed from narrow bands within the red-edge in-

terval (REIP3, Chlred-edge, SR750.710) resulted significant in asymptomatic vs. healthy 

plant discrimination as well. This observation represents an essential signal for the early 

disease detection, allowing us to classify leaves of asymptomatic from healthy plants. 

The red-edge domain is correlated with chlorophyll and nitrogen leaf content [74–76]. 

Nevertheless, we do not exclude that the spectral variations are triggered by a concen-

tration of metabolites in leaves that are directly involved in plant defence strategies [70, 

77]. 

Recent studies reported that leaf biochemical changes occur after the Armillaria in-

fection, which in turn may be involved in the leaf optical properties modifications. 

Camprubi et al., 2020, investigated the metabolomic profile of loquat plants in response 

to Armillaria mellea inoculation following mycorrhizal fungi colonization [77]. They 

found metabolites directly involved in plant defence, such as DIMBOA and conjugated 

isoflavone phytoalexins in infected plants as well as a complex modulation of metabo-

lites such as: fucose, ADP-glucose, UDP-glucose, and down-accumulation of lipids and 

fatty acids in Armillaria-infected plants. In Nogales et. Al., 2009, was observed a decrease 

in polyamines (PA) concentration in leaves of A. mellea-infected grapevines, with a sub-

sequent increase in mycorrhized plants [70]. Low PA levels are a characteristic of senes-

cent tissues with low cellular division activity [78]. Perhaps not unexpectedly Heritage et 

al., 2010, advocates that PA induce leaf reflectance changes either in the VIS and NIR re-

gions [79]. While Minocha et al., 1997, already demonstrated that changes in polyamine 

levels in response to stress could be used as an early warning tool for assessing and pre-

dicting tree health before the visual symptoms appear [80].  

It is well known from the literature that biochemical changes in leaves induce vari-

ations in leaf spectral properties, including the red edge domain [73, 81]. However, a 

metabolite characterization is essential to understand how specific metabolites affect the 

leaf hyperspectral signature. A broad job was done by Vergara-Diaz et al., 2020 to asses 

which wavebands of the spectrum are related to the specific metabolites or groups of 

metabolites content in wheat leaves [81]. The authors found out that red-edge (around 

680–780 nm) is one of the most relevant domain to retrieve the metabolites content in 

leaves together with the NIR and SWIR regions, in particular for nitrogen and protein 

content [81]. This observation indicate that a leaf metabolites alteration involved in the 

red-edge reflectance variation of asymptomatic plants affected by Armillaria mellea may 

be not excluded. 

Finally, the linear discriminant analysis produced a reliable level of accuracy of 85% 

in classifying healthy and Armillaria-diseased plants. As we expected, the accuracy de-

creased to 70% when we introduced a third classification group made by asymptomatic 

vines. However, it is a great encouragement that 84% of reliable accuracy was also ob-

tained in the healthy vs. asymptomatic plants, as this comparison is more linked to an 

applicative approach of this technique.  
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5. Conclusion 

In this study, we have shown that spectral reflectance techniques in support of 

visual assessment can be a promising tool for Armillaria root rot disease detection from 

which modern viticulture may benefit. Therefore, spectral sensors may be used to 

increase the accuracy of non-specific Armillaria symptoms interpretation in the field. In 

addition, since asymptomatic plants represent the early stage of the disease, the 

detection of them through hyperspectral data in areas neighbouring to diseased plants 

would allow the implementation of a Decision Support System in a modern Precision 

Agriculture System for the earliest action to contain the disease. For instance, the 

possibility to remove earlier affected plants and their roots, with a consequent reduction 

of Armillaria inoculum in the soil, and the limitation of chemical interventions in the 

vineyard before replanting. 

Spectral sesnors would allow cost-effective and non-destructive measurements in 

the field. On the one hand, this technique could be implemented on simple and cheap 

sensors similar to SPAD for quicker in situ spectral observations using wavelengths in 

the green (566 nm), red edge (705 nm), and NIR regions (902 nm). On the other hand, 

multispectral sensors installed on UAV could be used to map the Armillaria infection, 

providing precious information on the disease distribution and its spreading. 

To our knowledge, this study represents the first report on the possibility of using 

hyperspectral data for root rot disease diagnosis on woody plants. Despite the 

encouraging results obtained in plant classification, it is necessary to carry out further 

studies on different grape varieties both red and white in order to validate the spectral 

differences of Armillaria-infected vines and develop a general prediction model. Thus, a 

further research is expected to assess the effect of Armillaria artificial infections on 

grapevine seedlings grown in greenhouse under controlled environmental conditions 

and in different grape varieties. 

Supplementary Materials: Table S1: Parametric ANOVA, non-parametric ANOVA, and their rel-

ative cross validation tests results for single wavelength. Table S2: Data assumptions results for 

Linear discriminant analysis. Video S1: High distribution of early red canopy in grapevines due to 

Armillaria root rot in Piana Rotaliana (11 October 2019). Early red canopy symptoms often appear in 

post-harvesting in red grape variety that already has been highly compromised by the pathogen. 

Author Contributions: For research articles with several authors, a short paragraph specifying 

their individual contributions must be provided. Conceptualization, FC, NLP; methodology, FC., 

NLP; software, FC, HAI, LV; validation, FC, NLP; formal analysis, FC; investigation, FC, NLP; re-

sources, HAI, MLM; data curation, FC; writing—original draft preparation, FC; review, NLP, HAI, 

LV, MLM; visualization, FC, NLP; supervision, NLP; project administration, FC, NLP. All authors 

have read and agreed to the published version of the manuscript.  

Funding: This research received no external funding. 

Acknowledgments: We gratefully acknowledge the Edmund Mach Foundation for having made 

their laboratories available. We would also like to thank Roberto Zorer, Farid Melgani, and Daniele 

Prodorutti, which thanks to their experience, have given us crucial advice and tips. Thanks to the 

whole laboratory staff, particularly Franca Valentini and Lorena Ress for their essential help. We 

would also like to acknowledge the director of the “Cantina Rotaliana di Mezzolombardo” Leo-

nardo Pilati, who enthusiastically grasped the idea of this study. Thanks to Saverio D.V. that sup-

ported us with his great passion, and finally, thanks to Metacortex s.r.l. and Rino Goller for their 

helpful collaboration. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

TableA 1. Non-parametric ANOVA and its relative cross validation results for the VIs. P-value < 

0.05 (*), P-value < 0.025 (**), P-value < 0.01 (***). 

N° Index P-value Diseased VS Healthy VS Healthy VS 
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Asymptomatic Asymptomatic Diseased 

   Cross validation P-adj 

1 GDVI 0.000004 (***) 0.00005 (***) 0.52294 0.00002 (***) 

2 MGVI 0.00004 (***) 0.00130 (***) 0.27417 0.00009 (***) 

3 OSAVI 0.00009 (***) 0.00016 (***) 1 0.00259 (***) 

4 NDchl 0.00011 (***) 0.00009 (***) 0.05128 0.35577 

5 mARI 0.00012 (***) 0.00004 (***) 0.87102 0.05249 

6 Ctr4 0.00016 (***) 0.00019 (***) 0.02559 (*) 0.60489 

7 Chlred-edge 0.00016 (***) 0.00018 (***) 0.03003 (*) 0.58745 

8 REIP3 0.00019 (***) 0.00045 (***) 0.00916 (***) 0.95927 

9 SR750/710 0.00020 (***) 0.00026 (***) 0.02886 (*) 0.58745 

10 GNDVI 0.00021 (***) 0.00014 (***) 0.19992 0.15410 

11 NDVI 0.0002116 (***) 0.00008 (***) 0.49839 0.1367105 

12 LCI 0.00023 (***) 0.00023 (***) 0.05320 0.43261 

13 AVI 0.00025 (***) 0.03044 (*) 0.09668 0.00014 (***) 

14 DVI 0.00039 (***) 0.00014 (***) 0.88900 0.11608 

15 Vog2 0.00122 (***) 0.00155 (***) 0.04942 (*) 1.00000 

16 mCRIRE 0.00219 (***) 0.05001 0.25925 0.00276 (***) 

17 ARI 0.00908 (***) 0.00451 (***) 0.98258 0.62269 

18 WBI 0.155332 0.2268854 0.7044217 1 

TableA 2. Parametric ANOVA and its relative cross validation results for the VIs. P-value < 0.05 (*), 

P-value < 0.025 (**), P-value < 0.01 (***). 

N° Index P-value 

 

F-value Diseased VS 

Asymptomatic 

Healthy VS 

Asymptomatic 

Healthy VS 

Diseased 

    Cross validation P-adj 

1  GDVI 6.6E-07 (***) 16.42 1.4E-05 (***) 5.0E-01 8.7E-06 (***) 

2  NDchl 1.2E-05 (***) 12.69 6.7E-06 (***) 6.3E-02 1.6E-01 

3  MGVI 1.3E-05 (***) 12.63 4.3E-04 (***) 3.0E-01 3.9E-05 (***) 

4 OSAVI 1.4E-05 (***) 1.3E+01 9.6E-05 (***) 7.4E-01 1.7E-04 (***) 

5  GNDVI 1.5E-05 (***) 12.42 7.6E-06 (***) 1.7E-01 6.6E-02 

6 NDVI 1.7E-05 (***) 12.24 9.00E-06 (***) 2.50E-01 4.26E-02 (*) 

7  LCI 1.8E-05 (***) 12.17 1.0E-05 (***) 7.2E-02 1.7E-01 

8  Ctr4 2.0E-05 (***) 12.07 1.3E-05 (***) 3.8E-02 (*) 2.8E-01 

9  REIP3 2.2E-05 (***) 11.94 1.5E-05 (***) 3.5E-02 (*) 3.1E-01 

10 Chlred.edge 2.6E-05 (***) 11.71 2.0E-05 (***) 3.1E-02 (*) 3.6E-01 

11  mARI 2.8E-05 (***) 11.62 1.7E-05 (***) 4.3E-01 2.4E-02 (**) 

12  SR750.710 3.7E-05 (***) 11.30 2.8E-05 (***) 3.2E-02 (*) 4.0E-01 

13  AVI 7.3E-05 (***) 10.47 7.6E-03 (***) 1.0E-01 7.2E-05 (***) 

14  DVI 9.1E-05 (***) 10.21 5.4E-05 (***) 4.4E-01 4.3E-02 (*) 

15  Vog2 2.7E-04 (***) 8.90 2.6E-04 (***) 3.9E-02 (*) 6.3E-01 

16  mCRIRE 2.5E-03 (***) 6.35 6.5E-02 1.9E-01 2.1E-03 (***) 

17  ARI 5.5E-03 (***) 5.47 3.7E-03 (***) 4.7E-01 2.8E-01 
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18 WBI 0.2805945 1.286811 0.3054819 0.5073119 0.9914079 
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