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Abstract: Phenotypes are driven by regulated gene expression, which in turn are mediated by com-

plex interactions between diverse biological molecules. Protein-DNA interactions such as histone 

and transcription factor binding are well studied, along with RNA-RNA interactions in short RNA 

silencing of genes. In contrast, lncRNA-protein interaction (LPI) mechanisms are comparatively un-

known, likely driven by the difficulties in studying LPI. However, LPI are emerging as key interac-

tions in epigenetic mechanism, playing a role in development and disease. Their importance is fur-

ther highlighted by their conservation across kingdoms. Hence, interest in LPI research is increas-

ing. We therefore review the current state of the art in lncRNA-protein interactions. We specifically 

surveyed recent computational methods and databases which researchers can exploit for LPI inves-

tigation. We discovered that algorithm development is heavily reliant on a few generic databases 

containing curated LPI information. We show that early methods predict LPI using molecular dock-

ing, have limited scope and are slow, creating a data processing bottleneck. Recently, machine learn-

ing has become the strategy of choice in LPI prediction, likely due to the rapid growth in machine 

learning infrastructure and expertise. While many of these methods have notable limitations, ma-

chine learning is expected to be the basis of modern LPI prediction algorithms.  

Keywords: LPI, lncRNA, ncRNA, protein, transcriptomics, molecular docking, machine learning, 

deep learning, databases 

 

1. Introduction 

The introduction should briefly place the study in a broad context and highlight why 

it is important. Transcriptomics is the study of a complete set of RNA transcripts in a cell, 

measuring variable expression levels of the genome under different conditions. Modern 

transcriptomics is performed with high throughput sequencing to investigate the function 

of genes and biological pathways, commonly with bioinformatics methods applying dif-

ferential gene expression analyses, splice site identification, transcript variant identifica-

tion or determining alternative promoter usage for protein-coding transcripts [1]. How-

ever, these protein-coding transcripts only represent a small proportion of the transcrip-

tome. A large proportion of the genome generates RNA transcripts which do not directly 

code for protein products [2]. These non-coding RNA (ncRNA) transcripts have been 

known to exist, but their properties make them difficult to characterize compared to cod-

ing transcripts. ncRNA can be divided into multiple categories based on function and 

length [3]. In this review, we specifically consider the long non-coding RNA (lncRNA) 

category of ncRNA and their interaction with proteins, an important functional mecha-

nism of lncRNA. 

 

LncRNA are very broadly defined as RNA transcripts exceeding 200 nucleotides (nt) 

in length without coding potential. Their length varies widely, ranging from hundreds to 

thousands of nucleotides [4]. LncRNA can act as a gene regulator, and like other epige-

netic mechanisms are involved in numerous biological processes. They achieve their 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2021                   doi:10.20944/preprints202105.0240.v1

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202105.0240.v1
http://creativecommons.org/licenses/by/4.0/


 

regulatory function with their ability to interact with a wide range of biological molecules, 

such as other nucleic acids and proteins [5], as well as with small molecules [6]. Among 

their more direct modes of action are sequestering and releasing transcript to modulate 

gene expression, stabilizing transcript and binding to DNA to sterically hinder transcrip-

tion initiation [7]. More indirectly, they can recruit proteins and other molecules to form 

a functional complex, or act as a scaffold for targeted chromatin formation [8]. 

 

An important layer of lncRNA-mediated gene regulation is LPI (lncRNA-protein in-

teractions). We illustrate the importance of LPI in developmental and abiotic stress path-

ways with several examples encompassing multiple distinct species. In Drosophila melano-

gaster, regulatory networks mediated by LPI regulate key eye development [9] and dosage 

compensation pathways [10] mediated by RNA binding proteins. In the plant Arabidopsis 

thaliana, LPI controls alternative splicing within the nucleus by selectively displacing ex-

isting transcripts and subsequently altering root development [11 and12]. Response to 

abiotic stress is also governed by LPI, as shown by a lncRNA recruiting histone methyl-

ases to suppress Arabidopsis thaliana flowering during cold conditions [13]. Dario renio LPI 

are also observed to interface with transcription factors and other RNA-binding proteins 

during embryonic development, although their exact mechanism of action is not well 

known [14].  LPI also act as mediators of other epigenetic mechanisms, for instance as 

chromatin scaffolds to organize the three-dimensional structure of the genome in Mus 

musculus [15] 

 

Due to the widespread involvement of LPI in epigenetics, dysregulation of certain 

LPI contributes to disease states, particularly cancers. Severity of a human pancreatic can-

cer phenotype is driven by a lncRNA-protein complex, which triggers a positive feedback 

loop of protein overexpression leading to poor patient outcomes [16]. Similarly, formation 

of a lncRNA-protein complex is associated with poorer prognosis in breast cancer [17], 

colon cancer [17] and lymphoma [18] by blocking phosphorylation sites, stabilizing other 

epigenetic factors, and through an unknown mechanism, respectively. Infectious diseases 

are also associated with LPI dysregulation, including COVID-19 [19, 20]. A more exhaus-

tive list of known LPI-disease associations is available at the LncTarD database [21]. De-

spite the wealth of information on LPI-disease associations, their precise mechanism of 

action remains unknown. Therefore, insight into LPI will be valuable in complex disease 

research, potentially resulting in improved diagnosis and treatment procedures. 

 

Multiple high-throughput laboratory assays were developed to investigate LPI, some 

of which will be briefly discussed in this review article. However, exhaustively perform-

ing an experimental validation for each individual LPI is not practical given their volume 

and variety. Hence, computational methods are necessary to screen these high throughput 

assays for potential LPI which can then be subsequently experimentally validated, similar 

to transcriptomics workflows for conventional protein-coding RNA [22]. A variety of 

these computational LPI predictors exist, each applying different strategies to achieve 

their goals, and are dependent on a few biological databases containing subsets of exper-

imentally validated LPI. In this review, we will discuss recent bioinformatics resources for 

studying LPI, with an emphasis on software and databases. 

2. LPI laboratory assays 

Because of the biological importance of LPI, many laboratory assays were developed 

to identify these interactions. Two general categories of such assays exist, protein-centric 

assays and RNA-centric assays, which can capture either the cellular environment of a 

living cell or extracted biological material [23]. Protein-centric assays target the protein 

component of a LPI, while RNA-centric assays target the lncRNA component. Each 

method varies in sensitivity and specificity, has different prerequisites and has unique 

advantages as well as disadvantages. Comprehensively comparing and contrasting these 

laboratory assays is out of scope of this review, but we provide a high-level overview only 
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to give the computational methods discussed in this article some biological context. A 

more detailed overview of these assays can be found in a separate review article [23]. 

 

To discover proteins bound to RNA of interest (RNA-centric methods), IVT (in vitro 

transcribed) RNA can be tagged with biotin, and selectively bound to streptavidin for pu-

rification [24]. RaPID (RNA–protein interaction detection) [25] operates in a conceptually 

similar way to the previous method. IVT RNA can also be tagged with dyes and bound to 

protein microarrays, with fluorescence providing a quantitative output [26].  In vivo, 

cross-linking RNA with protein, either through formaldehyde or UV light, is used to iden-

tify LPI by purifying and extracting the RNA-bound proteins. CHART (capture hybridi-

zation analysis of RNA targets) [27], ChIRP (Chromatin isolation by RNA purification and 

capture hybridization analysis of RNA targets) [28], MS2-BioTRAP (MS2 in vivo biotin-

tagged RAP) [29], PAIR (peptide-nucleic-acid-assisted identification of RBPs) [30], RAP 

(RNA affinity purification) [31] and TRIP (tandem RNA isolation procedure) [32] all use 

either of these cross-linking strategies. 

 

To discover RNA bound to proteins of interest (protein-centric methods), exploiting 

cross-linking is also common. The largest group of protein-centric methods are CLIP 

(cross-linking immunoprecipitation) based methods [33]. Many variants of CLIP methods 

exist [34], and when paired with high throughput sequencing are capable of generating 

libraries of data for further analysis. RIP-seq (RNA Immunoprecipitation) [35] and TRIBE 

(targets of RNA-binding proteins identified by editing) [36] also belong to this category of 

protein-centric methods. 

3. LncRNA - protein Resource Databases 

Starbase [37], POSTAR [38], RAIN [39], RNAInter [40], NPInter [41], ATtRACT [42] 

and oRNAment [43] are examples of databases that contain information associated with 

lncRNA-protein interactions obtained by the previously discussed laboratory assays. Two 

broad classes exist, databases containing curated lncRNA-protein interactions and data-

bases containing RNA-binding motifs. 

 

Starbase, RNAInter, POSTAR, NPInter and RAIN all contain details of curated 

lncRNA-protein interactions, and many additional attributes (including functional anno-

tation) associated with the interactions, derived from a combination of the laboratory as-

says discussed in the previous section [Table S1]. These are not limited exclusively to 

lncRNA, and contain various other interaction information, including interactions with 

other ncRNA, other nucleic acids and proteins [44,45,46]. Some contrasts between these 

databases are also observable from a species, usability and scope perspective, which will 

be discussed here. Starbase, POSTAR and RAIN contain LPI information from a small 

number (two to four) of species, while RNAInter and NPInter host a wide range of species. 

To improve usability, Starbase, RNAInter and RAIN feature third party tool integration 

to streamline bioinformatics workflows. In terms of scope, POSTAR and NPInter appear 

to be focused on disease phenotypes, providing disease association information, while 

Starbase, RNAInter and RAIN have a more generic focus.  

 

ATtRACT and oRNAment databases contain details of RBP (RNA-binding protein) 

motifs. While not directly containing LPI, these can be applied to predict putative LPI and 

are a useful starting point or supplementary tool in screening for LPI. 

 

All databases feature at least mouse and human datasets, likely due to their status as 

model organisms relevant to human disease, although some incorporate other model or-

ganisms as well. It is interesting to note that all databases feature advanced querying and 

search functions, likely reflecting the volume and complexity of LPI data. We have re-

viewed and compared them in Table S1 [Table S1]. In summary, we discovered that there 
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is a surprising lack of specialized LPI databases, with most databases featuring combina-

tions of other nucleic acid and protein combinations. 

4. LPI prediction algorithms 

Most LPI prediction algorithms exploit these curated databases of prior LPI 

knowledge to tune their predictions. Computational strategies for LPI prediction can be 

divided into two high-level categories, molecular docking and machine learning. Lower-

level subdivisions among the methods we surveyed are visualized in Figure 1, and in-

clude deep learning, tree-based methods, graph-based methods, similarity networks, im-

age segmentation, matrix factorization and variants of the Fourier transform. Conven-

tional molecular docking methods operate by finding the optimal configuration of a 

lncRNA-protein complex, and ranking the highest scoring configurations for further eval-

uation. Within the past decade, a large number of prediction algorithms based on machine 

learning have emerged. Most machine learning methods do not involve molecular dock-

ing simulations. Instead, they exploit known interactions between lncRNA and protein 

and/or biomolecular sequence information directly, although many also leverage known 

secondary structures to improve their performance Table [1,2]. As with the LPI databases, 

it is worth noting that none of these methods are tuned specifically for LPI prediction, and 

represent broader scopes of identifying combinations of nucleic acid-protein interaction. 

 

 

Figure 1. Visualization of the broad categories of strategies used for predicting lncRNA-protein 

interactions. (a) Machine learning, (b) deep learning, (c) ensemble learning, (d) matrix factoriza-

tion, (e) similarity network analysis, (f) graph theory, (g) segmentation, (h) Fourier transform (in 

lncRNA-protein molecular docking simulations) and (i) hierarchical clustering. Training data is 

commonly higher-level features (e.g., structure, orientation) of lncRNA and proteins as well as the 

sequences recoded into tensors of varying dimensions. 

5. Molecular docking approaches 

Before the current ecosystem of machine learning algorithms was established, molec-

ular docking was the dominant strategy used to predict and investigate LPI or RNA -

protein interactions in general. By developing custom equations, which account for con-

formation and other steric properties, the likelihood of lncRNA-protein complex for-

mation is scored. Low-level methodology does not vary significantly, with most methods 

applying a variant of the FFT (Fast Fourier transform) to extract features from three-di-

mensional molecule representations, template or optimizing for a minimal energy state. 

Key factors considered include docking pose, distance and area of interracial sites, energy-

based criteria, and selection of the most structurally conserved docked complex [47]. Sev-

eral methods also account for sequence homology or electrical charge between biological 
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molecules [48]. Hierarchical clustering to group complexes of interest is not uncommon. 

However, at a high-level these strategies are applied in different ways, and on different 

steric features. In many cases, a set of parameters must be specified by the user. 

 

Most of the molecular docking methods we reviewed use methods which incorporate 

at least two of the previously discussed low-level methodologies [Table 1]. To provide 

some context for the building blocks of these more complex methods, we first present 

examples of methods that use an individual strategy, which include 3dRPC [49], Hex-

Server [50], FireDOCK [51], HADDOCK [52] and PatchDOCK [53]. 3dRPC and HexServer 

are FFT-based methods. 3dRPC exploits the fact that LPI complexes have looser packing, 

and implements FFT on geometric complementarity and electrostatics with a custom scor-

ing function. HexServer uses an FFT-based algorithm to exploit shape complementarity 

as a feature for optimization. Its key advantage is its reformulation of the conventional 3D 

search space to greatly boost the speed of the FFT, achieving results in seconds. Mean-

while, FireDOCK and HADDOCK optimize the minimum free energy of the lncRNA-

protein complex. While FireDOCK and focuses on exploiting side chain information, 

HADDOCK leverages ambiguous interaction restraints, and is one of the few methods 

which can generalize to multi-body problems as well as other biomolecular interactions. 

Among molecular docking tools, PatchDOCK takes a more unconventional strategy by 

summarizing low-level geometric features into higher level features, and has some con-

ceptual similarities to image segmentation. It is interesting to note that FireDOCK and 

PatchDOCK both complement each other, where PatchDOCK can feed output directly 

into FireDOCK. 

 

Methods implementing a mixture of these strategies include HDOCK [54], 

MPRDOCK [55], P3DOCK [56] and NPDOCK [57]. HDOCK integrates template-based 

modeling as well as ab initio free docking, with a scope that extends to both proteins and 

nucleic acids. In addition, the user may specify binding sites of interest directly. 

MPRDOCK exploits protein flexibility by applying FFT and considering sequence homol-

ogy of the target of interest to generate a repertoire of structures for “ensemble docking”. 

We note that in this specific context of MPRDOCK, “ensemble docking” refers to the li-

brary of proteins generated by MPRDOCK, and is distinct from “ensemble learning” in 

the machine learning section [65,66,67] where the output of multiple algorithms are ag-

gregated to obtain a result. P3DOCK (http://www.rna-

binding.com/P3DOCK/P3DOCK.html) integrates the previously discussed 3dRPC, as 

PRIME that leverages sequence as well as structural homology in addition to the features 

used by 3dRPC. P3DOCK’s authors claim that by complementing free docking and tem-

plate-based docking strategies in a hybrid approach, a more accurate classification is pos-

sible. Finally, NPDOCK does not use a hybrid or ensemble strategy, but chains multiple 

methods into a pipeline of tools, which implement mostly FFT-based methods.  

 

Table 1. A comparison of molecular docking tools used to predict lncRNA-protein interactions. Important attributes of these mo-

lecular docking tools, including their effectiveness and a link to their corresponding server are listed 

.Sl:No Resource  Resource type Comment Weblink 
Reference 

paper 

1 P3DOCK 

LncRNA - protein 

docking server 

(Adapted from con-

ventional docking 

servers) 

Free docking 

and template-

based docking 

strategies in a 

hybrid ap-

proach, results 

in an accurate 

classification 

http://www.rna-

binding.com/P3D

OCK/P3DOCK.ht

ml 

[56] 
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2 HDOCK 

LncRNA - protein 

docking server 

(Adapted from con-

ventional docking 

servers) 

Integrates tem-

plate-based 

modeling as 

well as ab ini-

tio free dock-

ing, with a 

scope that ex-

tends to both 

proteins and 

nucleic acids 

http://hdock.phys.

hust.edu.cn/ 
[54] 

3 PATCHDOCK 

LncRNA - protein 

docking server 

(Adapted from con-

ventional docking 

servers) 

Low-level geo-

metric features 

into higher 

level features, 

FireDOCK and 

PatchDOCK 

both comple-

ment each 

other, where 

PatchDOCK 

can feed out-

put directly 

into Fire-

DOCK. 

https://bio-

info3d.cs.tau.ac.il/

PatchDock/ 

[53] 

4 FIREDOCK 

LncRNA - protein 

docking server 

(Adapted from con-

ventional docking 

servers) 

Focuses on ex-

ploiting side 

chain infor-

mation, opti-

mise the mini-

mum free en-

ergy of the 

lncRNA-pro-

tein complex 

http://bio-

info3d.cs.tau.ac.il/

FireDock/ 

[51] 

5 NPDOCK 

Exclusively 

LncRNA - protein 

docking server, de-

veloped for nucleic 

acid docking only 

Chains multi-

ple methods 

into a pipeline 

of tools, which 

implement 

mostly FFT-

based meth-

ods. 

http://genesil-

ico.pl/NPDock 
[57] 

6 HADDOCK 

LncRNA - protein 

docking server 

(Adapted from con-

ventional docking 

servers) 

It everages am-

biguous inter-

action re-

straints, and it 

can generalise 

to multi-body 

problems as 

well as other 

biomolecular 

interac-

tions,optimise 

https://wenmr.sci-

ence.uu.nl/had-

dock2.4/ 

[52] 
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the minimum 

free energy of 

the lncRNA-

protein com-

plex 

7 MPRDOCK 

LncRNA - protein 

docking server 

(Adapted from con-

ventional docking 

servers) 

Implies protein 

flexibility by 

applying FFT 

and consider-

ing sequence 

homology of 

the target of in-

terest to gener-

ate a repertoire 

of structures 

for “ensemble 

docking" 

http://huanglab.ph

ys.hust.edu.cn/mp

rdock/ 

[55] 

8 Hexserver 

LncRNA - protein 

docking server 

(Adapted from con-

ventional docking 

servers) 

FFT-based al-

gorithm to ex-

ploit shape 

complementa-

rity as a fea-

ture for opti-

misation 

http://hex-

server.loria.fr/ 
[50] 

 

 

With the exception of one or two methods such as HexServer, many of these algo-

rithms are computationally expensive and time-consuming (hours to days of real time) to 

run. Some methods like HexServer require advanced hardware such as GPUs and special-

ized software engineering tools. Biological molecules are complex and dynamic, with 

their wide range of possible conformations as well as orientations greatly increasing the 

search space for algorithms. The molecular docking community is mindful of this, and 

provides their software on publicly accessible and user-friendly web servers for users to 

run these programs remotely, although time remains a bottleneck for these workflows.  

6. Machine learning approaches 

Most modern lncRNA-protein interaction (LPI) prediction algorithms use machine 

learning, where large datasets with attributes of interest are passed to an algorithm [Table 

2]. The algorithm then “learns” from the data, discovering patterns in the data with min-

imal human intervention such as user-defined equations. In the case of LPI, known LPI 

and their corresponding sequences as well as structures are used for training the predic-

tion models. Their strategies can be divided into several broad categories, including graph 

methods, ensemble learning, matrix factorization and deep learning. Of these strategies, 

matrix factorization appears to be the most popular and is integrated into many other 

higher-level strategies. LPI are commonly formulated as similarity matrices, which can 

then be easily formulated as a matrix factorization problem. Broader strategies incorpo-

rating matrix factorization, such as ensemble learning and methods which leverage mul-

timodal data appear to have consistently robust performance. Few deep learning models 

exist, but they both perform and generalize well in comparison to other methods, and are 

likely to become more popular as they have become in other areas of biology. 

 

Matrix factorization is the most common way to formulate LPI for prediction algo-

rithms, including LPI-FKLKRR (LncRNA-Protein Interaction Kernel Ridge Regression, 

based on Fast Kernel Learning) [58], LPI-KTASLP (Prediction of LncRNA-Protein 
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Interaction by Semi-Supervised Link Learning With Multivariate Information) [59], LPI-

NRLMF (lncRNA-protein interaction prediction by neighborhood regularized logistic ma-

trix factorization) [60], LPI-INBRA (Long non-coding RNA-Protein Interaction Prediction 

based on Improved Bipartite Network Recommender Algorithm) [61] and LPI-BNPRA 

(Long non-coding RNA-Protein Interaction bipartite network projection recommended 

algorithm) [62]. These methods share a common theme of formulating lncRNA-protein 

interactions as a matrix factorization problem and using them in broader strategies such 

as multiple kernel learning or recommender algorithms. Known structural features are 

often used together with sequence features. In the special case of LPI-FKLKRR, matrices 

are reformulated into kernels for direct optimization with kernel ridge regression, increas-

ing performance in the common scenario of class imbalance. 

 

Some graph-based methods for LPI prediction are PBLPI (path-based lncRNA-pro-

tein interaction) [63] and PLPIHS (Predicting lncRNA-Protein Interactions using HeteSim 

Scores) [64]. PBLPI takes into account both functional and semantic similarity between 

proteins, while PLPIHS uses a custom distance metric to unify co-expression, lncRNA-

protein interactions and protein-protein interaction scores to construct a network which 

is then provided to a SVM classifier. Performance is improved by preserving information 

regarding the biological network, taking into account lncRNA-protein interactions similar 

to the target.  

 

Examples of hybrid and ensemble learning approaches are IRWNRLPI (Integrating 

Random Walk and Neighborhood Regularized Logistic Matrix Factorization for lncRNA-

Protein Interaction Prediction) [65], SFPEL-LPI (sequence-based feature projection ensem-

ble learning method) [66], HLPI-Ensemble (human lncRNA-protein interactions ensem-

ble) [67], GPLPI (graph predict lncRNA-protein interaction) [68] and LPI-BLS (predicting 

lncRNA–protein interactions with a broad learning system-based stacked ensemble clas-

sifier) [69]. IRWNRPLI uses lncRNA-protein interactions and lncRNA/protein sequence 

similarity as input into a hybrid approach of random walk and neighborhood regularized 

logistic matrix factorization. Being an integrative model, it appears to be robust, although 

its accuracy varies on different biological systems. Ensemble approaches PMKDN, SFPEL-

LPI, HLPI-Ensemble and LPI-BLS are all robust against noise due to their ensemble strat-

egy incorporating multiple approaches, and are capable of discovering new LPI. LPI-BLS 

in particular stands out for its unconventional flat network architecture and aggregation 

strategy. However, we note that HLPI-Ensemble is specifically intended for human LPI 

only. GPLPI uses both sequence features and known secondary structures to train a graph-

based neural network. In addition, by using an ensemble of features including evolution-

ary information, GPLPI’s effectiveness was increased. An important distinction between 

these two methods is that GPLPI is trained on known plant lncRNA, and plant non-coding 

RNA have different properties (some ncRNA lose function even with 1-2 nucleotide 

changes) to that of animal non-coding RNA [70]. For this model to be effective on non-

plant organisms, retraining is likely necessary but viable due to the relatively higher vol-

ume of data associated with animals, in particular humans [67]. 

 

Only a few deep learning approaches exist, DeepBind [70], LPI-CNNCP (lncRNA–

protein interactions convolutional neural network copy-padding trick) [71] and DeepLPI 

(deep lncRNA-protein interactions) [72]. DeepBind was one of the first applications of 

deep learning to predict nucleic acid-protein binding, and is applicable to LPI. By refor-

mulating the classical position weight matrix [73] as a convolutional kernel, it operates on 

raw sequence data to provide a simple prediction score for a nucleic acid-protein interac-

tion [74]. LPI-CNNCP uses only lncRNA and protein sequence data recorded as k-mers 

as input into a CNN but achieves good results. It is also interesting to note that it appears 

to be one of the few models that are effective across different species. Meanwhile, DeepLPI 

feeds co-expression, sequence and structural data to a neural network optimized by a con-

ditional random field. Using protein isoform data makes DeepLPI the only method to date 
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with the ability to predict lncRNA interaction with different protein isoforms. Further-

more, its flexibility allows it to be extended to other biomolecular interactions such as 

miRNA. 

 

Other methods used to predict LPI that do not fall into a specific category include 

LPI-SKF (lncRNA-protein interaction similarity kernel fusion) [75], PMKDN (projection-

based neighborhood non-negative matrix decomposition model) [76] and LPI-MiRNA 

[77]. LPI-SKF uses an integrative approach where verified lncRNA-protein interactions 

are used to build a network, and similarity kernel fusion is used to integrate protein and 

lncRNA similarity scores before applying manifold learning. PMKDN uses multiple fea-

tures from lncRNA (nucleotide composition, expression levels) and protein (amino acid 

subcategories) to build a similarity matrix for similarity network fusion with a nearest 

neighbor’s approach. Both these methods are robust against noise and capable of interac-

tion discovery, but like most methods that express LPI as similarity matrices, they make 

a strong assumption that sequence homology correlates with interactivity, which may not 

hold in all cases. LPI-MiRNA takes a unique approach, exploiting miRNA as an interme-

diate unit of lncRNA-protein binding, and uses this in a network-based approach. While 

this gives LPI-MiRNA the ability to operate on datasets without prior knowledge of 

lncRNA interactions, a different limitation is introduced of relying on known miRNA-

lncRNA and miRNA-protein interactions. An assumption is also made that miRNAs 

which interact with both lncRNA and a protein would also form LPI, which may not al-

ways hold. Nevertheless, this method was shown to be effective.  

 

lncPro [78] and catRAPID [79] are older methods but are featured in this manuscript 

because of their historical significance. lncPro was one of the first published machine 

learning LPI prediction algorithms, and many LPI algorithms resemble it. Higher-level 

features are extracted from lncRNA and protein sequence, which are then recorded as 

vectors as input into their model. Although the authors noted limitations associated with 

data availability and computational complexity at the time, this method became a tem-

plate for many other machine learning methods, including those discussed in this manu-

script. catRAPID does not apply machine learning, but instead constructs an interaction 

matrix from known secondary structure and other molecular features. A major limitation 

of this approach is its reliance on obsolete genomic data, which is expected to reduce pre-

diction accuracy. 

 

However, it is important to note that the scope of most LPI prediction algorithms are 

limited. Not all methods can predict interactions for novel lncRNA or proteins, and few 

methods generalist across species [62,69,71]. This is partly due to the limited availability 

of curated training data, with a small number of samples mostly from human or mouse 

present in a few databases [66,67,69]. LPI prediction for different protein isoforms is also 

not an active area of prediction algorithm development, with only one method having this 

functionality. Another limitation observed is that some methods exploit sequence similar-

ity as an intermediate metric for LPI prediction, particularly methods which formulate 

LPI as similarity matrices. While this appears to be effective within the specific training 

datasets used by each study, this implicit assumption of similar sequence homology cor-

relating to interactivity may not always hold, especially across different species [80, 81]. 

At the same time, we consider that small nucleotide changes in biological molecules can 

cause major functional changes, which can potentially cause improperly trained predic-

tion algorithms to produce misleading results [82].  

 

We also note the limited accessibility of many of these machine learning methods. 

Among the methods reviewed that were published within the last five years, many do not 

make their source code publicly available and/or are written in proprietary programming 

languages such as MATLAB [83]. This restricts reproducibility and prevents usage of 

more than half of the methods we reviewed [Table 2]. At least, partly because of the 
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computational complexity required, machine learning methods which are well suited to 

resolving non-linear variables in high dimensional data have recently become a focus of 

the LPI field. Although, computational methods that integrates the identification and 

functional annotation of LPI are not yet developed or established, which leaves a void that 

has to be filled.  

In contrast to published molecular docking algorithms, only a few methods provide 

active web servers for convenient use by the community, further raising the barrier for 

usability by biologists. 

 

 

 

Table 2. A comparison of machine learning algorithms used to predict lncRNA-protein interactions. Important attributes of these 

machine learning algorithms, including their scope, strategies, training data, effectiveness and reproducibility are listed. More than 

half of these methods are not reproducible as their source code is proprietary or not available. A few methods provide web inter-

faces for users to enter their own data 

 

Sl:no Resource    Scope 
Com-

ment 
Strategy 

Problem for-

mulation 
Model training data 

Web-

link/source 

code 

Refer-

ence 

paper 

1 

LPI-FKLKRR 

(LncRNA-Protein In-

teraction Kernel 

Ridge Regression, 

based on Fast Kernel 

Learning) 

prediction 

Effective 

in da-

tasets 

with im-

balanced 

classes. 

Kernel Ridge 

Regression 

Similarity 

matrices for-

mulated as 

kernels 

lncRNA-pro-

tein interac-

tions, lncRNA 

expression, 

protein ontol-

ogy, lncRNA 

sequence, pro-

tein sequence 

https://github.co

m/6gblue-

wind/LPI_FKLK

RR 

[58] 

2 

LPI-KTASLP (Predic-

tion of LncRNA-Pro-

tein Interaction by 

Semi-Supervised Link 

Learning With Multi-

variate Information) 

prediction, 

discovery 

Effective 

in da-

tasets 

with im-

balanced 

classes. 

Multiple Ker-

nel Learning 

Similarity 

matrices for-

mulated as 

kernels 

lncRNA-pro-

tein interac-

tions, lncRNA 

expression, 

lncRNA se-

quence 

https://github.co

m/6gblue-

wind/LPI_KTAS

LP 

[59] 

3 

LPI-NRLMF 

(lncRNA-protein in-

teraction prediction 

by neighborhood reg-

ularized logistic ma-

trix factorization) 

prediction, 

discovery 

Predic-

tion bias 

is ex-

pected 

due to the 

sparsity 

of the 

training 

dataset. 

Matrix factori-

sation 

Similarity 

matrices 

lncRNA-pro-

tein interac-

tions, lncRNA 

sequence, pro-

tein sequence 

NA [60] 

4 

LPI-INBRA (Long 

non-coding RNA-Pro-

tein Interaction Pre-

diction based on Im-

proved Bipartite Net-

work Recommender 

Algorithm) 

prediction 

Robust 

against 

false pos-

itives. 

Matrix factori-

sation 

Similarity 

matrices 

lncRNA-pro-

tein interac-

tions, lncRNA 

sequence, pro-

tein sequence 

NA [61] 

5 

LPI-BNPRA (Long 

non-coding RNA-Pro-

tein Interaction 

prediction 

Effective 

in hu-

mans and 

Bipartite net-

work recom-

mendation 

Similarity 

matrices 

lncRNA-pro-

tein interac-

tions, lncRNA 

NA [62] 
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bipartite network pro-

jection recommended 

algorithm) 

closely 

related 

species. 

sequence, pro-

tein sequence 

6 

PBLPI (path-based 

lncRNA-protein inter-

action) 

prediction, 

discovery 

Predic-

tion accu-

racy lim-

ited due 

to tech-

nical limi-

tations. 

Graph 
Similarity 

matrices 

lncRNA-pro-

tein interac-

tions, Protein 

semantic simi-

larity, 

lncRNA func-

tional similar-

ity, Gaussian 

interaction 

profile kernel 

similarity, In-

tegrated simi-

larity for 

lncRNAs and 

proteins 

NA [63] 

7 

PLPIHS (Predicting 

lncRNA-Protein Inter-

actions using HeteSim 

Scores) 

prediction, 

discovery 

Perfor-

mance is 

improved 

by pre-

serving 

infor-

mation 

regarding 

the bio-

logical 

network, 

taking 

into ac-

count 

lncRNA-

protein 

interac-

tions sim-

ilar to the 

target. 

Graph 
Similarity 

matrices 

Co-expression 

data of 

lncRNA-pro-

tein pairs, 

lncRNA-pro-

tein interac-

tion data 

NA [64] 

8 

IRWNRLPI (Integrat-

ing Random Walk 

and Neighborhood 

Regularized Logistic 

Matrix Factorization 

for lncRNA-Protein 

Interaction Predic-

tion) 

prediction 

Robust 

due to 

hybrid 

approach, 

but 

known to 

be unsta-

ble. 

Hybrid: ran-

dom walk, 

neighborhood 

regularised lo-

gistic matrix 

factorisation al-

gorithm 

Similarity 

matrices 

lncRNA-pro-

tein interac-

tions, lncRNA 

sequence, pro-

tein sequence 

NA [65]  

9 

SFPEL-LPI (sequence-

based feature projec-

tion ensemble learn-

ing method) 

prediction, 

discovery 

Multi-

modal 

approach 

boosts 

Ensemble: 

graph Lapla-

cian regularisa-

tion 

Similarity 

matrices 

lncRNA-pro-

tein interac-

tions, lncRNA 

sequence, pro-

tein sequence 

http://www.bio-

in-

fotech.cn/SSFL

M-LPI/ 

[66] 
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predic-

tion accu-

racy. 

10 

HLPI-Ensemble (hu-

man lncRNA-protein 

interactions ensem-

ble) 

prediction 

Scope re-

stricted to 

human. 

Ensemble: Sup-

port Vector 

Machines 

(SVM), Ran-

dom Forests 

(RF) and Ex-

treme Gradient 

Boosting (XGB) 

Recoded fea-

ture vectors 

lncRNA-pro-

tein interac-

tions, lncRNA 

sequence, 

lncRNA fea-

tures, protein 

sequence, pro-

tein features 

http://ccsipb.lnu

.edu.cn/hlpiense

mble/ 

[67] 

11 

GPLPI (graph predict 

lncRNA-protein inter-

action) 

prediction 

Scope re-

stricted to 

plants. 

Deep learning, 

Ensemble 

learning, 

Graph atten-

tion LSTM-au-

toencoder 

Recoded se-

quence and 

structure 

vectors 

lncRNA se-

quences, pro-

tein se-

quences, 

structural fea-

tures from 

predicted sec-

ondary struc-

tures from 

lncRNA and 

protein se-

quences. 

https://github.co

m/Mjwl/GPLPI 
[68] 

12 

LPI-BLS (predicting 

lncRNA–protein in-

teractions with a 

broad learning sys-

tem-based stacked en-

semble classifier) 

prediction 

Flat net-

work ar-

chitecture 

boosts 

speed 

and accu-

racy. Ef-

fective in 

several 

model or-

ganisms. 

Ensemble: 

Broad learning 

system (flat 

neural net-

work) 

Recoded fea-

ture vectors 

lncRNA-pro-

tein interac-

tions, lncRNA 

sequence, 

lncRNA fea-

tures, protein 

sequence, pro-

tein features 

https://github.co

m/NWPU-

903PR/LPI_BLS 

[69] 

13 

LPI-CNNCP 

(lncRNA–protein in-

teractions convolu-

tional neural network 

copy-padding trick) 

prediction 

Can be 

extended 

to predict 

other bio-

molecular 

interac-

tions, ef-

fective 

across 

different 

species. 

Deep learning 

(Convolutional 

Neural Net-

work) 

Recoded fea-

ture vectors 

lncRNA-pro-

tein interac-

tions, lncRNA 

sequence, pro-

tein sequence 

https://github.co

m/NWPU-

903PR/LPI-

CNNCP 

[70] 

14 

DeepLPI (deep 

lncRNA-protein inter-

actions) 

prediction, 

discovery 

Can be 

extended 

to other 

biomolec-

ular inter-

actions, 

unique 

Deep learning 

(embedding, 

convolution, 

LSTM) 

Recoded fea-

ture tensors 

lncRNA-pro-

tein interac-

tions, lncRNA 

sequence, 

lncRNA struc-

ture, protein 

https://github.co

m/dls03/DeepL

PI 

[72] 
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capability 

to predict 

lncRNA 

interac-

tion with 

different 

protein 

isoforms. 

sequence, pro-

tein structure 

15 

LPI-SKF (lncRNA-

protein interaction 

similarity kernel fu-

sion) 

prediction, 

discovery 

Aggre-

gating 

multiple 

similari-

ties in-

creases 

robust-

ness 

against 

noise. 

Similarity Ker-

nel Fusion, 

Manifold 

learning 

Similarity 

matrices 

lncRNA-pro-

tein interac-

tions, pair-

wise similari-

ties for 

lncRNAs, 

pairwise simi-

larities for 

proteins 

https://github.co

m/zyk211821606

9/LPI-SKF 

[75] 

16 

PMKDN (projection-

based neighborhood 

non-negative matrix 

decomposition 

model) 

prediction 

Strategy 

avoids 

overfit-

ting and 

sparsity 

issues, al-

lowing 

more 

generali-

sability to 

different 

datasets. 

Neighborhood 

regularised 

matrix factori-

sation algo-

rithm 

Similarity 

matrices 

lncRNA-pro-

tein interac-

tions, lncRNA 

sequence, 

lncRNA ex-

pression, pro-

tein sequence, 

protein anno-

tation 

NA [76] 

17 LPI-MiRNA 
prediction, 

discovery 

Can oper-

ate on da-

tasets 

without 

prior 

knowledg

e of 

lncRNA 

interac-

tions but 

relies on 

known 

miRNA-

lncRNA 

and 

miRNA-

protein 

interac-

tions. 

Heterogeneous 

network model 

Similarity 

matrices 

lncRNA–

miRNA inter-

actions, pro-

tein–miRNAs 

interactions 

https://github.co

m/zyk211821606

9/LncRNA-pro-

tein-interac-

tions-prediction 

[77] 

18 lncPro prediction 

Training 

dataset 

limited, 

Fourier trans-

form, matrix 

factorisation 

Recoded fea-

ture tensors 

lncRNA-pro-

tein interac-

tions, lncRNA 

http://cmbi.bjm

u.edu.cn/lncpro 
[78] 
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effective 

on short 

se-

quences. 

sequence, 

lncRNA fea-

tures, protein 

sequence, pro-

tein features 

19 catRAPID prediction 

Visualiza-

tion is 

available, 

predic-

tion accu-

racy may 

be limited 

by reli-

ance on 

very old 

lncRNA 

annota-

tions. 

Discrete Fou-

rier transform 

lncRNA and 

protein sec-

ondary struc-

ture, hydro-

gen bonding, 

van der 

Waals forces 

NA 

http://s.tartagli-

alab.com/page/c

atrapid_group 

[79] 

20 3dRPC prediction 

Effective 

on well-

character-

ised mol-

ecules, 

may have 

lower ac-

curacy if 

this is not 

the case. 

Fast Fourier 

transform, 

Root Mean 

Square Devia-

tion 

confor-

mations of 

nucleotide-

amino-acid 

pairs 

NA 

http://bio-

phy.hust.edu.cn

/3dRPC 

[49] 

21 DeepBind prediction 

Effective, 

general-

isable 

across 

species, 

but more 

effective 

at pre-

dicting 

protein-

DNA 

binding 

than pro-

tein-RNA 

binding. 

Deep learning 

(Convolutional 

Neural Net-

work) 

Recoded fea-

ture tensors 

lncRNA-pro-

tein interac-

tions, lncRNA 

sequence, pro-

tein sequence 

http://tools.gene

s.to-

ronto.edu/deep-

bind/ 

[70] 

7. Conclusions 

LPI forms a unique layer of gene regulation across many species, and a growing in-

terest in the field has resulted in the creation and expansion of curated databases as well 

as LPI prediction algorithms. Here, we are reviewing some of the established (older than 

five years) and recent (within the last five years) LPI prediction approaches as well as 

databases. We note four important points. First, there has been a clear and recent shift 

from conventional molecular docking algorithms to machine learning methods, which at-

tempts the direct prediction of LPI from biomolecular sequence identity and higher-level 

features. This shift to machine learning is observable across different fields of biology and 
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is likely to continue with the rising availability of computational infrastructure and ma-

chine learning expertise. Secondly, these methods are heavily dependent on a set of cu-

rated data across several databases. Across these databases, a lack of universal standard-

ization complicates data merging [84], preventing the community from unlocking the full 

potential of LPI data, in contrast to conventional transcriptomics databases such as SRA 

[85], EBI [86] and DDBJ [87]. This is in part due to the diversity of assays used to capture 

the LPI information, as well as the scope of the databases, which may subsequently bias 

the machine learning algorithms developed on these data. Third, there is a distinct lack of 

methods and databases which are specifically designed for LPI’s unique properties, with 

most having a generic scope despite LPI’s biological significance. Finally, it is concerning 

that more than half of the recent machine learning methods we surveyed are not repro-

ducible or usable due to the absence of their source code. However, LPI acts as an im-

portant but less-studied regulatory layer and understanding them will provide key con-

text to deepen our understanding of biological systems. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/ Table S1: 

LncRNA-protein data repositories (Table-1 S1). Seven databases, four with LPI information and 

three with RNA motif information are surveyed. Each database holds information on at least one 

combination of nucleic acid and protein interaction. The number of species each database contains 

varies widely, from 4-154. Every database contains at least human and mouse data, and has been 

updated within the past five years. 
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Appendix A 

The appendix is an optional section that can contain details and data supplemental 

to the main text—for example, explanations of experimental details that would disrupt 

the flow of the main text but nonetheless remain crucial to understanding and reproduc-

ing the research shown; figures of replicates for experiments of which representative data 

is shown in the main text can be added here if brief, or as Supplementary data. Mathemat-

ical proofs of results not central to the paper can be added as an appendix. 
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