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Abstract:  

Background: In the last years, many new treatment options have widened the therapeutic scenario 

of genitourinary malignancies. Immunotherapy has shown efficacy, especially in the urothelial and 

renal cell carcinomas, with no particular relevance in prostate cancer. However, despite the use of 

immune checkpoint inhibitors, there is still high morbidity and mortality among these neoplasms. 

Cancer vaccines represent another way to activate the immune system. We sought to summarize 

the most recent advances in vaccine therapy for genitourinary malignancies with this review. 

Methods: We searched Pubmed, Embase and Cochrane Database for clinical trials conducted in the 

last ten years, focusing on cancer vaccines in the prostate, urothelial and renal cancer. 

Results: Various therapeutic vaccines, including DNA-based, RNA-based, peptide-based, dendritic 

cells, viral vectors, and modified tumor cells, have been demonstrated to induce specific immune 

responses in a variable percentage of patients. However, these responses rarely corresponded to 

significant survival improvements. 

Conclusions: Further pre-clinical and clinical studies will improve the knowledge about cancer vac-

cines in genitourinary malignancies to optimize dosage, select targets with a driver role for tumor 

development and growth, and finally overcome resistance mechanisms. Combination strategies 

represent possibly more effective and long-lasting treatments. 
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1. Introduction 

Immunotherapy has represented a breakthrough therapy for many cancer subtypes in the 

last years. Among genitourinary (GU) neoplasms, the urothelial carcinoma (UC) and the 

renal cell carcinoma (RCC) have benefitted mainly from immune checkpoint inhibitors 

(ICIs) both as single agents and in combination with other ICIs or tyrosine kinase inhibi-

tors (TKIs) [1-13]. However, in prostate cancer (PCa), ICIs have shown limited efficacy 

primarily due to an immunologically ‘cold’ and immunosuppressive tumor microenvi-

ronment (TME) [15-18].  
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 Improving immunotherapy efficacy requires combination therapies or different 

pharmacological approaches [19]. In fact, the two principal ways to enhance the immune 

system’s anti-tumor activity are: blocking the immune-suppressive signals responsible for 

the decreased anti-tumor response (that is, how ICIs work) or stimulating the immune 

activation against specific tumor-associated antigens (TAAs). The latter is the mechanism 

used by anti-cancer vaccines, capable of triggering the immune response actively by ad-

ministering antigens conjugated with co-stimulatory molecules or loaded on patients’ im-

mune cells [20-23]. Of note, the first two cancer vaccines with therapeutic use were ap-

proved for GU malignancies: Bacillus Calmette-Guerin (BCG) - for non-muscle invasive 

bladder cancer (NMIBC) and Sipuleucel-T (Provenge®) - for metastatic castration-resistant 

prostate cancer (mCRPC) [24, 25]. Since then, many studies have been conducted, mainly 

in the metastatic setting of GU cancers, but no new approvals have followed due to un-

satisfactory results.  

 We conducted a review to summarize the recent advances regarding the use of vac-

cines for GU malignancies treatment, to find out their strengths and weaknesses for future 

applications. 

2. Materials and Methods 

We performed a literature search for papers reporting the clinical use of vaccines in 

neoplasms of the GU tract published in the last 10 years (up to March 2021). We searched 

PubMed, Embase, and Web of Science, using keywords including (‘vaccines’ OR ‘vaccine 

therapy’) AND (‘bladder cancer/carcinoma’ OR ‘urothelial cancer/carcinoma’ OR ‘kid-

ney/renal cancer/carcinoma’ OR ‘prostate cancer/carcinoma’ OR ‘testicular/testis can-

cer/carcinoma’). We included original researches published in peer-reviewed journals and 

conference abstracts in the English language. We excluded letters, commentary, personal 

opinions.  

After checking the inclusion criteria, a total of 61 studies were included in our review. 

No clinical use of vaccines in testicular cancer was published in the last 10 years. 

3. Results 

Therapeutic cancer vaccines target TAAs alongside adjuvant molecules that can elicit 

specific antibodies or cytotoxic immune responses against cancer cells. There are different 

ways to present TAAs to the immune system. DNA and RNA encoding TAAs or whole 

peptides can be recognized and processed by the antigen-presenting cells (APCs); tumor 

cell lines express TAAs and can chemotactically attract APCs; viral vectors transfect APCs 

after being loaded with prespecified antigens; finally, dendritic cells (DCs) act as APCs 

and can be loaded with TAAs [20-23]. These different mechanisms have all been tested in 

PCa, RCC, and UC [23]. Once recognized, TAAs trigger APCs maturation. Subsequently, 

the interaction between class I major histocompatibility complex (MHC), and complemen-

tary co-stimulatory ligands, activates CD8+ T-cells, that have tumor-killing properties spe-

cifically targeting TAAs. Through class II MHC, APCs activate CD4+ T-lymphocytes. CD4+ 

can potentiate CD8+ T-lymphocytes proliferation and stimulate B-lymphocytes activation, 

resulting in specific antibody production (Figure 1) [20-23]. 
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Figure 1. Mechanism of action of therapeutic vaccine in genitourinary malignancies. Tumor-as-

sociated antigens (TAA) are expressed on tumor cells. TAA can be delivered by different mecha-

nisms (peptides, DNA or RNA encoding TAA, viral vectors carrying TAA or modified tumor cells), 

leading to antigen-presenting cells (APC) activation. Dendritic cells (DC) are themselves APC and 

can be loaded with TAA. After antigen processing, APC interact with CD8+ T-cells through MHC 

class I, inducing specific against TAA-expressing tumor cells. Through class II MHC, APC activate 

CD4+ T-cells. CD4+ potentiate CD8+ activation; moreover, they induce B-lymphocytes activation for 

specific antibodies (Abs) production against TAA-expressing tumor cells. 

 

 

3.1. Vaccine therapy in Prostate Cancer (PCa) 

 PCa represents the most frequent tumor and the second leading cause of death 

among the Western male population [26]. PCa is an ideal candidate for vaccine therapies, 

given its high targetable number of TAAs, prostatic acid phosphatase (PAP), prostate-

specific antigen (PSA), and prostate-specific membrane antigen (PSMA) among the most 

important [27, 28]. The majority of studies focused on mCRPC. Even if specific immune 

activation was detectable, vaccines usually did not determine significant survival im-

provement (Table 1).  

 

 

TAA Vaccine name Type of 

vaccine 

Combination Population Phase Key findings  Ref. 

PAP Sipuleucel-T 

(Provenge®) 

DC / mCRPC III mOS: 25.8 vs 21.7 

mos; no PFS im-

provement; lower 

baseline PSA levels 

predictive of OS 

[24,29] 

ADT nmCRPC II Humoral response 

with Sipuleucel-

T→ADT than vice 

versa, related to 

longer TTP for PSA  

[30] 
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Abiraterone mCRPC II No survival im-

provement 

[31] 

Ipilimumab mCRPC I >4-yrs OS in 6/9 pts [32,33] 

/ Neoadjuvant 

PCa 

II T-cells activation in 

tumor biopsies, no 

survival data 

[34] 

pTVG-HP 

 

DNA / mCRPC  PSA decline in 

~60% patients 

[35] 

Pembrolizumab Recurrent 

PCa 

II No MFS improve-

ment 

[36] 

PSA PROSTVAC 

(PSA-TRI-

COM) 

Viral 

vector 

/ mCRPC III No survival im-

provement 

[38] 

/ (intrapros-

tatic) 

Recurrent 

PCa 

I Increased 

CD4+/CD8+ in tu-

mor biopsies, PSA 

SD in 10/19 pts 

[39,40] 

Ipilimumab mCRPC I PSA decline in 

~50% pts, low PD1+ 

/high CTLA4- Tregs 

associated with 

longer OS 

[41,42] 

PSMA  DNA / nmCRPC I/II PSA-DT 16.8 mos 

(p=0.0417) 

[43] 

VRP / mCRPC I No survival im-

provement 

[46] 

PSA+PSMA INP-5150 DNA / nmCRPC I/II 18mos PFS rate: 

85% 

[44] 

PSMA + Sur-

vivin 

 DC (vs Docetaxel + 

prednisone) 

mCRPC I ORR: 72.7% vs 

45.4% 

[45] 

PSMA+PSA+ 

PSCA+ 

STEAP1 

CV-9103 RNA / mCRPC I/II Immune responses 

but no survival 

data 

[47] 

AR pTGV-AR DNA / mHSPC I Longer PSA-PFS in 

case of T-cells acti-

vation (p=0.003) 

[49] 

MUC1  DC / nmCRPC I/II Improved PSA-DT 

(p=0.037) 

[50] 

MUC1+PSA 

+Brachyury 

 Viral / mCRPC I PSA decline in 2/12 

pts 

[51] 

MUC1 + IL2 TG-4010 Viral 

vector 

/ ccRCC II mOS: 19.3 mos [102] 

NY-ESO-1  Peptide / Stage IV PCa I T-cell responses in 

9/12 pts, no sur-

vival data 

[53] 

NY-ESO-1+ 

MAGE-C2 + 

MUC1 

 DC / mCRPC IIa T-cell responses in 

~30% pts, related to 

radiological re-

sponses 

[54] 

HER-2 AE37 Peptide / HER-2+ PCa I Long memory (4 

yrs) with multiple 

boosters; pre-exist-

[55-58] 
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ing immunity re-

lated to PFS, TGF-β 

inversely related to 

OS, HLA-

A*24/DRB1*11 re-

lated to OS 

CDCA1  Peptide / mCRPC I mOS: 11 mos [59] 

UV1  Peptide / mHSPC I PSA declining in 

64% pts 

[60] 

TARP  Peptide 

+ DC 

/ D0 PCa I Reduced PSA ve-

locity 

[61] 

RhoC  Peptide / PCa after RP I/II CD4+ responses in 

18/21 pts 

[62] 

5T4  Double 

viral 

vector 

/ Neoadjuvant, 

active sur-

veillance - 

PCa 

I Immune responses 

but no survival 

data 

[63] 

TroVax Viral Docetaxel mCRPC II mPFS: 9.67 mos (vs 

5.1 docetaxel alone; 

p=0.097), related to 

baseline PSA 

[66, 67] 

Modified 

PCa cells 

GVAX Cell 

line 

 

Docetaxel Neoadjuvant 

PCa 

II Gleason score 

downstaging in 4/6 

pts 

[68,69] 

Degarelix + cy-

clo-phospha-

mide 

Neoadjuvant 

PCa 

 Immune responses 

but no survival 

data 

[70] 

PPV 

 

 Peptide / mCRPC III No survival ad-

vantage; OS benefit 

with very low/high 

baseline lympho-

cytes 

[72 -75] 

DCvac DC Docetaxel mCRPC II No survival ad-

vantage 

[78] 

 Peptide / BCa I mOS: 7.9 mos (vs 

4.1 BSC; p=0.049), 

no PFS advantage 

[89] 

 Alone or plus 

chemotherapy 

mUTUC II Longer OS in case 

of immune re-

sponse (p=0.019); 

mOS: 7.7 mos (13.0 

mos plus CT);  

[90] 

Peptide / mUC I 1/12 CR, 1/12 PR, 

2/12 SD, mPFS 3 

mos, mOS 8.9 mos 

[91] 

20-peptides KRM-20 Peptide / mCRPC I 2/17 PR, 1/17 PSA 

stability 

[79] 

Docetaxel + 

dexamethasone 

mCRPC II No PSA/OS differ-

ences vs PBO 

[80] 

MAGE-A3  Peptide Before BCG NMIBC I No survival data [83] 

Survivin  Peptide / mUC I, II Improved OS 

(p=0.0009) 

[84] 
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Mannose re-

ceptor 

CDX-1307 Peptide / mUC I Immune responses, 

early stopping of 

phase II due to 

slow enrollment 

[85] 

WT1  DC /  mUC, mRCC  No survival data [86] 

DEPDC1 + 

MPHOSPH1 

S-288310 Double 

peptide 

/ mUC I/II mOS: 14.4 mos, bet-

ter results with im-

mune response 

against two pep-

tides 

[87] 

NEO-PV-01  Peptide / BCa Ib PR/SD in 10/14 pts [88] 

CD40L + 

RCC RNA 

Rocapuldencel-

T 

DC + 

RNA 

Sunitinib mRCC III No OS improve-

ment 

[92] 

Autologous 

antigens 

 DC CIK Resected 

RCC 

III Compared to α-

IFN, PFS improve-

ment; 3-yr OS rate 

96% vs 83%; 5-yr 

OS rate 96% vs 

74%; p<0.01 

[93] 

Folate EC-90 Peptide α-IFN, IL-2 mRCC I/II 7/24 SD, 1/24 PR [94] 

HIG-2  Peptide / mRCC I DCR 77.8%, mPFS 

10.3 mos 

[95] 

Telomerase GX301 Peptide / mRCC, 

mCRPC 

I/II Immune responses 

with trend for bet-

ter OS 

[96] 

10-peptides IMA901 Peptide Sunitinib ccRCC III No OS advantage [99,100] 

VEGFR1  Peptide / ccRCC I 2/18 PR, 5/18 SD, 

mDOR 16.5 mos 

[101] 

Table 1. Vaccine therapies in genitourinary malignancies. Principal TAAs and key findings of the studies with therapeutic cancer 
vaccines are reported. 

AR: androgen receptor; BCa: bladder cancer; ccRCC: clear-cell renal cell carcinoma; CDCA1: cell division associated 1; CIK: cytokine-induced killer 

cells; CR: complete response; CT: chemotherapy; DC: dendritic cells; DCR: disease-control rate; DEPDC1: DEP domain-containing 1; GM-CSF: 

granulocyte–macrophage colony-stimulating factor; HER-2: human epidermal growth factor receptor 2; HIG-2: hypoxia-inducible protein 2; IFN: 

interferon; IL: interleukin; MAGE: melanoma-associated antigen; mCRPC: metastatic castration resistant prostate cancer; mDOR: median duration 

of response; MFS: metastasis-free survival; mHSPC: metastatic hormone sensitive prostate cancer; mOS: median overall survival; m PFS: median 

progression-free survival; MPHOSPH1: M-phase phosphoprotein 1; mRCC: metastatic renal cell cancer; mUC: metastatic urothelial cancer; MUC1: 

mucin-1; mUTUC: metastatic upper tract urothelial cancer; nmCRPC: non-metastatic castration resistant prostate cancer; NMIBC: non-muscle in-

vasive bladder cancer; ORR: overall response rate; PAP: prostatic acid phosphatase; PBO: placebo; PCa: prostate cancer; PPV: personalized peptide 

vaccination; PR: partial response; PSA-DT: PSA doubling time; PSCA: prostate stem cell antigen; RhoC: Ras homolog gene family member C; SD: 

stable disease; STEAP1: six-transmembrane epithelial antigen of the prostate-1;TAA: tumor-associated antigens; TARP: T-cell receptor gamma chain 

alternate reading frame protein; TGF: transforming growth factor; TTP: time to progression; VEGFR: vascular endothelial growth factor receptor; 

VRP: viral replicon vector; WT: Wilms tumor. 

 

 

 

Hence, combination therapies and newer targetable antigens are under evaluation for im-

proving vaccines efficacy (Table 2). 

 

Clinicaltrials.gov regis-

tration number 

Phase Setting Vaccine Combination 

NCT01804465 II mCRPC Sipuleucel-T  Ipilimumab (immediate vs delayed) 

NCT02463799 II mCRPC Sipuleucel-T Radium-223 

NCT01881867 II mCRPC Sipuleucel-T Glycosylated recombinant human IL-

7 
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NCT03600350 II nmCRPC pTGV-HP  Nivolumab 

NCT04090528 II mCRPC pTGV-HP + 

pTGV-AR 

Pembrolizumab 

NCT02933255 I/II NAD PCa PROSTVAC Nivolumab 

NCT03532217 I mHSPC PROSTVAC Neoantigen DNA vaccine, 

Nivolumab, Ipilimumab 

NCT02649855 II mHSPC PROSTVAC Docetaxel 

NCT03315871 II nmCPRC PROSTVAC M7824 (anti-PD-L1/TGF-βR2), CV301 

NCT02325557 (KEY-

NOTE-146) 

I/II mCRPC ADX31-142 Pembrolizumab 

NCT02362451 II nmCRPC TARP DC / 

NCT02111577 III mCRPC DCvac Docetaxel vs PBO 

NCT03412786 I mHSPC Bcl-xl_42-

CAF09b pep-

tide vaccine 

/ 

NCT04701021 I Relapsing 

PCa after RP 

TENDU pep-

tide conjugate 

/ 

NCT04114825 II Biochemical 

recurrent 

PCa after 

RT/RP 

RV001V pep-

tide vaccine 

/ 

NCT03493945 I/II mCRPC BN-Brachyury M7824, ALT-803, Epacadostat 

NCT03689192 I mUC ARG1 / 

NCT03715985 I/II mUC NeoPepVac Anti-PD1/PD-L1 

NCT02950766 I mRCC NeoVax Ipilimumab 

NCT03289962 I mRCC RO7198457 Atezolizumab 

NCT03294083 Ib mRCC Pexa-Vec Cemiplimab 

NCT02643303 I/II Advanced 

RCC, UC, 

PCa, testicu-

lar cancer 

In-situ vac-

cination with 

tremelimumab 

Durvalumab, polyICLC 

Table 2. Ongoing trials with therapeutic vaccines and their combinations in genitourinary malignancies.  

IL: interleukin; mCRPC: metastatic castration resistant prostate cancer; mHSPC: metastatic hormone sensitive prostate cancer; mRCC: metastatic 

renal cell carcinoma; mUC: metastatic urothelial carcinoma; NAD: neo-adjuvant; nmCRPC: non-metastatic castration resistant prostate cancer; 

PCa: prostate cancer; PD1: programmed death 1; PD-L1: programmed death-ligand 1; RP: radical prostatectomy; RT: radiotherapy; TGF: trans-

forming growth factor. 

 

 

3.1.1. Sipuleucel-T and PAP-targeted vaccines 

 PAP is an ideal candidate for vaccines, being expressed on the prostate epithelium 

[27, 28]. Sipuleucel-T, a DCs vaccine loaded with PA2024 (PAP plus granulocyte-macro-

phage colony-stimulating factor [GM-CSF]), so far remains the only approved vaccine for 

asymptomatic or minimally symptomatic mCRPC patients. In the IMPACT phase III trial, 

Sipuleucel-T had yet improved overall survival (OS), but not progression-free survival 

(PFS), compared to placebo (PBO), with lower PSA levels at baseline predictive of higher 

OS (13.0 mos for PSA <22.1 ng/ml, versus 2.8 mos for PSA >134 ng/ml), as well as high 

antibody production [24, 29]. More recently, an attempt to combine Sipuleucel-T plus an-

drogen deprivation therapy (ADT) was made in the STAND phase II clinical trial, that 

showed a higher humoral response, related to longer time to PSA progression (p=0.007) 

in the non-metastatic castration-resistant prostate cancer (nmCRPC), when ADT followed 

Sipuleucel-T than vice versa [30]. Similarly, the immune system activation was obtained 

when Sipuleucel-T was combined with the androgen receptor-targeted agent abiraterone 
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in mCRPC patients. Of note, the immune response activation was not reduced by concom-

itant prednisone [31]. The rationale of these combinations stands on the capability of an-

drogen-targeted agents of interfering with the immune system in various ways, for exam-

ple favoring T-cell infiltration [27]. As previously attempted in the phase I study 

NCT01832870, another possible combination is Sipuleucel-T plus low-dose ipilimumab (1 

mg/kg): 6/9 treated patients achieved >4 years OS [32, 33]. In the mCRPC setting, Sip-

uleucel-T is currently under evaluation in association with ipilimumab (NCT01804465), 

Radium-223 (NCT02463799), and a glycosylated recombinant human interleukin (IL)-7 

(NCT01881867). In the neoadjuvant setting, significant activation of T-cells in tumor biop-

sies was demonstrated with Sipuleucel-T before radical prostatectomy (RP). However, 

PFS and OS are not disposable [34]. 

DNA vaccines targeting PAP, such as pTVG-HP, induced a PSA decline in about 60% of 

mCRPC patients [35]. However, no metastasis-free survival (MFS) improvement was 

achieved if pTVG-HP was combined with pembrolizumab in recurrent PCa [36]. The com-

bination of pTVG-HP with nivolumab in nmCRPC patients is currently under investiga-

tion (NCT03600350).  

The use of multiple PAP-fused cytokines (human/mouse GM-CSF, IL-2, IL-4, IL-7) repre-

sents a new strategy for vaccines efficacy to be enhanced [37]. 

 

3.1.2 PROSTVAC and PSA-based vaccines 

 PSA is a classical biomarker for PCa diagnosis and disease monitoring, but it also 

represents a good candidate for vaccines [27, 28]. PROSTVAC (PSA-TRICOM) consists of 

two different poxviral vectors for human PSA (PROSTVAC-V and -F), plus three co-stim-

ulatory molecules for T-cells (TRICOM). The phase III PROSPECT trial (NCT01322490), 

enrolling asymptomatic or minimally symptomatic chemotherapy-naïve mCRPC pa-

tients, did not show an OS improvement and was stopped early after meeting the futility 

criteria [38]. PSA-TRICOM has also been evaluated as intraprostatic administration, re-

sulting in an increased CD4+ and CD8+ cells infiltrate in tumor biopsies, determining PSA 

stability in 10/19 patients [39, 40]. The combination of PROSTVAC and ipilimumab was 

tested in a phase I trial in mCRPC patients, reporting a PSA decline in about half cases 

[41]. Baseline immune settings, such as lower PD1+, high CTLA4- Tregs, were associated 

with longer OS [42].  

Multiple combination trials of PROSTVAC are ongoing: plus nivolumab before RP 

(NCT02933255, phase I/II), plus a neoantigen DNA vaccine, nivolumab and ipilimumab 

(NCT03532217, phase I) or plus docetaxel (NCT02649855, phase II) in metastatic hormone-

sensitive prostate cancer (mHSPC), plus M7824 (a combined anti-programmed cell death 

protein-ligand 1 [PD-L1]/ transforming-growth factor [TGF]-βR2 monoclonal antibody) 

and the recombinant Avipoxvirus vaccine CV301 in nmCRPC (NCT03315871, phase II).  

Among the other PSA-targeted vaccines, the Listeria monocytogenes-based ADX31-142 is 

under evaluation combined with Pembrolizumab in the phase I/II study KEYNOTE-146 

(NCT02325557).  

 

3.1.3 PSMA-based vaccines 

 PSMA is expressed on the PCa epithelium, representing an ideal candidate for vac-

cination [27, 28]. In a phase I/II dose-escalation study, a DNA-based human leukocyte an-

tigen (HLA)-A2 binding epitope from PSMA, fused to tetanus toxin, induced specific 

CD4+ and CD8+ T-cells in 32 nmCRPC patients, also increasing PSA-doubling time (DT) 

from 12 to 16.8 mos (p = 0.0417) [43]. The phase I/II trial NCT02514213 showed an 18-mos 

PFS rate of 85% with specific immune responses in over a quarter of nmCRPC patients 

after the INP-5150 DNA vaccine (double target of PSA and PSMA) [44]. In the CRPC set-

ting, 21 patients were randomized to receive DC vaccines with recombinant PSMA and 
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Survivin peptides versus docetaxel plus prednisone, reaching an ORR of 72.7% vs. 45.4% 

[45]. Instead, a viral replicon vector system (VRP) carrying PSMA did not induce clinical 

benefit, even if neutralizing antibodies were produced [46]. Among RNA vaccines, CV-

9103 contains PSMA, PSA, prostate stem cell antigen (PSCA), and six-transmembrane ep-

ithelial antigen of the prostate-1 (STEAP1). In a phase I/II trial, CV-9103 induced a specific 

immune response. No survival data are disposable [47].  

 

3.1.4 Other TAAs and personalized peptide vaccination (PPV) 

Among the other peptides used as vaccine targets, minimal survival advantages besides 

immune responses have been detected (Table 1).  

The androgen receptor (AR) is a crucial element for the proliferation and therapy of PCa 

[48]. In the phase I trial NCT02411786, the DNA vaccine pTGV-AR, targeting the androgen 

receptor (AR), induced longer PSA-PFS in 47% of treated mHSPC patients [49]. The com-

bination of pembrolizumab plus the double pTVG-HP/ pTVG-AR DNA vaccine is under 

evaluation (NCT04090528, phase II).  

Mucin-1 (MUC1) is a glycoprotein expressed on epithelial cells’ apical surface [27]. In a 

phase I/II trial enrolling 17 patients with nmCRPC, MUC1 loaded-DCs improved PSA-DT 

(p=0.037) [50]. More recently, a vaccine using the adenoviral vector Ad5 targeting PSA, 

MUC-1, and Brachyury, induced a PSA decline in 2/12 mCRPC patients in a phase I trial 

[51].  

NY-ESO-1 is a surface antigen expressed in 15-25% of PCa cells [52]. In a phase I clinical 

trial, T-cell responses were detected in 9/12 stage IV patients [53]. Moreover, in a random-

ized phase IIa trial, 21 chemotherapy-naïve CRPC patients were vaccinated with DCs 

loaded with NY-ESO-1, melanoma-associated antigen (MAGE)-C2, and MUC1. Specific 

T-cells, detected in about 1/3 patients, correlated with radiological responses [54].  

AE37, a human epidermal growth factor receptor (HER)-2 hybrid class I MHC peptide 

vaccine, was tested in a phase I trial and induced immunological responses and long 

memory (around 4 years) in case of subsequent vaccines boosters [55, 56]. Predictive fac-

tors were also investigated: the presence of pre-existing immunity to the native peptide 

correlated with PFS, TGF-β inversely related to immunological responses and OS, de-

layed-type hypersensitivity was directly associated with OS, HLA-A*24 and -DRB1*11 al-

leles induced more robust immunological responses and longer OS [55-58].  

Cell division associated 1 (CDCA1) peptide vaccine, administered in the phase I trial 

NCT01225471 in 12 CRPC patients progressive to docetaxel, induced specific T-cells in a 

quarter of patients, reaching 11 mos of mOS [59]. UV1 peptide vaccine (targeting telomer-

ase reverse transcriptase [TERT]) induced immune responses in 85.7% of mHSPC patients, 

with PSA declining in 64% of cases, in a phase I study [60]. The vaccination with T-cell 

receptor gamma chain alternate reading frame protein (TARP) and pulsed DCs induced 

specific immune responses and reduced PSA velocity in D0 PCa patients (NCT00908258) 

and is currently under evaluation as DCs vaccination in the phase II NCT02362451 study 

[61]. In a phase I/II trial (NCT03199872), a peptide vaccine against the Ras homolog gene 

family member C (RhoC) GTPase determined strong CD4+ responses in 18/21 patients 

after RP [62]. 

The NCT02390063 study demonstrated the elicitation of T-cell responses in patients with 

PCa, both before RP and during active surveillance, after the administration of two repli-

cation-deficient viruses, the ChAd (chimpanzee adenovirus) and the MVA (Modified Vac-

cinia Ankara) targeting 5T4, an oncofetal self-antigen [63]. The second one, called TroVax, 

had been already tested with good capability of inducing immune responses in mCRPC 

and mRCC, being 5T4 a highly expressed epithelial antigen [64, 65]. TroVax was also 

tested in a phase II trial combined with docetaxel, achieving a higher mPFS than docetaxel 

alone (9.67 vs. 5.1 mos, p=0.097), which was strictly connected with baseline PSA [66, 67]. 

Other possible combinations of docetaxel and vaccines have been tested: a Gleason score 
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downstaging was evidenced in 4/6 patients undergoing RP after receiving docetaxel plus 

GVAX (genetically modified irradiated PCa cells), a vaccine initially administered in a 

negative phase III trial [68, 69]. Similar evidence of immune response was obtained using 

degarelix + cyclophosphamide + GVAX [70].  

 Personalized peptide vaccination (PPV) is a novel vaccine strategy consisting of the 

administration of selected HLA-matched peptides based on pre-vaccine immunity [71]. 

Despite PPV representing an attractive strategy for PCa, and even after positive phase II 

trials, no survival advantage emerged in the phase III trial enrolling 310 mCRPC patients 

progressing to docetaxel [72-75]. Possible biomarkers with predictive roles have also been 

investigated. Haptoglobin levels were directly related to OS, whereas IL-6 levels were in-

versely associated with OS [74, 76, 77]. Moreover, in a post-hoc analysis of the phase III 

trial, a very low (<26%) or very high (>64%) proportion of lymphocytes at baseline deter-

mined an OS benefit [72]. However, the personalized vaccination strategy did not deter-

mine significant survival differences besides immune responses, even in combination 

with chemotherapy, as emerged in the treatment of CRPC with personalized autologous 

dendritic cell-based cancer vaccine (DCvac) plus docetaxel [78]. Currently, a phase III trial 

is ongoing comparing docetaxel + DCvac versus docetaxel + PBO in the first line setting 

of mCRPC (NCT02111577). 

 Multi-peptides vaccines have also been tested in the CRPC setting, as they were 

thought to be more effective due to the immune induction against multiple targets. How-

ever, the 20-peptides vaccine KRM-20 determined only 2 partial responses (PR) and 1 PSA 

stability among 17 patients in a phase I trial [79]. Similarly, in a phase II trial, KRM-20 

combined with docetaxel plus dexamethasone, even if increased specific antibodies and 

T-cells, did not determine differences in PSA decline and OS compared to PBO [80].  

 New peptides are under evaluation as vaccine targets: Bcl-xl_42-CAF09b for mHSPC 

in the NCT03412786 phase I trial; the TENDU vaccine in the phase I NCT04701021 for 

relapsing PCa after RP; the RV001V vaccine in the phase II NCT04114825 for patients with 

biochemical recurrence after curative radiotherapy (RT) or RP; the combination of BN-

Brachyury Vaccine, M7824, ALT-803 and Epacadostat (QuEST1 - NCT03493945, phase 

I/II) in the mCRPC setting [81]. 

 

3.2. Vaccine therapy in Urothelial Cancer (UC) 

 UC has a long and successful history of vaccines use, starting from the Bacillus-

Calmette-Guerin (BCG), which represents a cornerstone for the treatment of non-muscle 

invasive bladder cancer (NMIBC) since the 1990s [25]. However, BCG failure occurs in 20-

50% of patients [82]. Intending to potentiate BCG efficacy, in a randomized phase I study 

(NCT01498172), 24 NMIBC patients received a vaccine containing the recombinant 

MAGE-A3 protein + the adjuvant AS15 before BCG instillations. In half of the patients, 

specific T-cells were subsequently detectable in blood. No survival data are disposable 

[83]. 

 Some UC TAAs have been tested mainly loaded on DCs or as peptide vaccines, in-

ducing immune responses with controversial survival effects (Table 1). Survivin-2B80-88 

improved OS in phase I (p=0.0009) [84]. CDX-1307, targeting the mannose receptor, in-

duced immune responses in bladder cancer (BCa), but it did not get over phase I because 

the N-ABLE NCT01094496 phase II study was stopped early due to slow enrollment [85]. 

DCs loaded with Wilms tumor (WT)-1 in 7 patients with mUC or mRCC determined spe-

cific immune responses and decreased T-regs [86]. S-288310, derived from DEP domain-

containing 1 (DEPDC1) and M-phase phosphoprotein 1 (MPHOSPH1), was administered 

to pre-treated mUC patients in a phase I/II trial: 89% of patients developed specific T-cells, 

reaching mOS of 14.4 mos, with better results if a double induction against both peptides 
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was obtained [87]. NEO-PV-01 peptide derives by the genomic profiling of patients’ BCa: 

in a phase Ib trial, 10/14 patients achieved PR or stable disease (SD) [88]. 

 The PPV strategy has been evaluated in the platinum-progressing mUC. A phase I 

trial did not meet its primary endpoint of prolonging PFS among 80 BCa patients; how-

ever, a significantly longer OS was reached than best supportive care (7.9 vs. 4.1 mos; 

p=0.049) [89]. In a phase II trial enrolling 48 patients with metastatic upper tract urothelial 

cancer (mUTUC), the development of specific T-cells was associated with longer OS 

(p=0019). A median OS of 7.7 mos was achieved, reaching 13.0 mos if salvage chemother-

apy was associated [90]. Finally, among 12 mUC patients, a phase I trial reported 1 com-

plete response (CR), 1 PR, 2 SD, mPFS of 3 mos, and mOS of 8.9 mos [91].  

 Current trials are ongoing: the peptide vaccine ARG1 (targeting arginase-1) is under 

evaluation as a single agent in a phase I trial (NCT03689192); the NCT03715985 study is 

evaluating the multi-peptides neo-antigen vaccine NeoPepVac in combination with anti-

PD1/PD-L1 in many solid tumors, including mUC (Table 2). 

 

3.3. Vaccine therapy in Renal Cell Cancer (RCC) 

 In the mRCC, different DCs and peptide vaccines have been tested (Table 1). With a 

similar Sipuleucel-T mechanism, Rocapuldencel-T is composed of DCs plus amplified tu-

mor RNA plus CD40L RNA. In the ADAPT phase III trial, 462 patients were randomized 

2:1 to receive Rocapuldencel-T plus sunitinib versus standard of care. Even if immune 

responses were recorded, the trial failed its primary endpoint of improving OS compared 

to the control group. Still, a trend toward better OS was evidenced in the case of more 

robust immune responses [92]. In the adjuvant setting, autologous-antigens loaded DCs 

plus cytokine-induced killer cells (CIK) were compared to α-interferon (IFN) in 410 pa-

tients, improving PFS and OS (3-yr OS rate 96% vs. 83%; 5-yr OS rate 96% vs. 74%; p<0.01) 

[93].  

 Among the peptide vaccines, EC90, a folate-targeted vaccine, plus α-IFN and IL-2, 

induced 7 SD and 1 PR in 24 patients in a phase I/II study [94]. 9 patients with progressive 

mRCC, treated with hypoxia-inducible protein 2 (HIG-2) peptide vaccine, obtained a DCR 

of 77.8% and an mPFS of 10.3 mos [95]. GX301 vaccine is composed by four telomerase 

peptides plus Imiquimod and Montanide ISA-51 as adjuvant [96]. Telomerase contributes 

to tumor immortalization, but it is not expressed by somatic cells [97]. GX301 induced 

specific immunological responses in over 2/3 of vaccinated mRCC or mCRPC patients, 

with a trend for better OS (around 11 mos) [96].  

 Among the different subtypes of renal cancer, the clear-cell renal cell carcinoma 

(ccRCC) is particularly responsive to immunotherapy and has been historically consid-

ered the ideal subtype to be treated with vaccines [98]. However, in the IMPRINT phase 

III trial, IMA901 (composed of 10 tumors-associated peptides) plus GM-CSF, cyclophos-

phamide, and sunitinib did not improve OS for the 339 randomized patients in the first-

line setting, even if immune activation had previously been evidenced in phase II [99, 100]. 

PPV with vascular endothelial growth factor receptor (VEGFR)-1 was administered in 18 

ccRCC patients. Among them, 2 PR and 5 SD with a median duration of response of 16.5 

mos were observed [101]. TG-4010 is an MVA vector-based vaccine of IL-2 and MUC-1 

that induced an mOS of 19.3 mos among the 27 ccRCC patients in a phase II trial [102]. 

 Aiming to identify predictive biomarkers for therapeutic vaccines, blood parameters 

at baseline (platelets, neutrophils, monocytes, hemoglobin, LDH), the presence of bone 

metastases, the MSKCC score, the Fuhrman grade, and the ECOG-performance status, 

have been investigated in RCC [64, 66, 93]. 

 Novel vaccine targets have been proposed for future clinical studies: Hypoxia-induc-

ible factor (HIF)-1α, being the RCC often associated with the mutation of Von Hippel-

Lindau (VHL) gene and dependent on the up-regulation of HIF; PD-L1 derived peptides, 
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as RCC is sensitive to immunotherapy control [103, 104]. Among the ongoing trials, 

NCT02950766 evaluates the neoantigen NeoVax plus Ipilimumab (phase I); the 

NCT03289962 phase I study is testing the vaccine RO7198457 plus atezolizumab; the 

NCT03294083 phase Ib trial is assessing the Pexa-Vec vaccine (Thymidine Kinase-Deac-

tivated Vaccinia Virus) plus the anti-PD1 Cemiplimab. Finally, the NCT02643303 phase 

I/II study is evaluating the combination of tremelimumab as in-situ vaccination, durval-

umab, and the TME modulator polyICLC, in subjects with advanced solid tumors, includ-

ing RCC, UC, PCa, and testicular cancer (Table 2). 

 

4. Discussion 

In the last years, immunotherapy has widened the therapeutic scenario of many can-

cer subtypes. The principal results have been obtained in the urological field among RCC 

and UC. In the mRCC, ICIs prolonged survival as single agents in pre-treated patients and 

combinations with other ICIs or TKIs in first line [1-7]. In the mUC, ICIs were superior to 

chemotherapy in the second-line setting; in the first line, pembrolizumab and atezoli-

zumab showed superiority to chemotherapy for PD-L1 positive cisplatin-unfit patients, 

whereas the combination of ICIs and chemotherapy did not confer a significant survival 

advantage [8-12]. The anti-PD-L1 avelumab prolonged OS as maintenance therapy in 

mUC [13]. Regarding PCa, only minimal efficacy has been detected, mainly due to its im-

munosuppressive TME: therefore, to potentiate the immune system stimulation, novel 

combinations with chemotherapy, TKIs, Poly ADP-ribose polymerase-inhibitors (PARPi) 

are currently under evaluation [14-19].  

However, besides blocking the immune-suppressive signals that decrease the anti-

tumor response, the other way to enhance the immune system’s anti-tumor activity is the 

active stimulation against specific TAAs. In fact, TAAs on tumor cells, after binding with 

the MHC molecules on the APCs, induce T-cell activation and specific immune response. 

However, this theoretically effective mechanism has led to a small number of responders 

in most studies, with no significant survival improvements, even among those developing 

specific immune responses (Table 1). Different points of view could explain this failure. 

For example, various TAAs are expressed in different tumor areas because of tumor het-

erogeneity, many of which could be not targeted by the administered vaccine. Further-

more, not all the peptides are able to induce specific immune responses, and the selection 

of immunodominant peptides represents another limitation of vaccines. In fact, the fre-

quency of a TAA does not always relate to its immunogenicity: therefore, in some cases, 

a weak immune response is activated. An example of this concept emerged from a retro-

spective study of mCRPC and mUC patients treated with PPV, in which different antigens 

selection determined different survival values [105]. Finally, immune escape mechanisms 

can develop after vaccination, leading to its failure [106].  

In vaccine therapy, immune escape relies on the exhaustion of effector T-cells due to 

the up-regulation of inhibitory molecules such as PD-1/PD-L1 on the T-cells surfaces, po-

tentiated by γ-IFN secretion and determining their loss of function [107, 108]. This weak-

ness could rationally be overcome by combining vaccines and ICIs, resulting in stronger 

activation of T-cells [109]. Effectively, vaccines induce specific T-cell infiltration that 

makes the TME more susceptible to ICIs, and conversely, ICIs interrupt the inhibitory 

effect of the PD-1/PD-L1 pathway [110]. Indeed, the concomitant or sequential administra-

tion of vaccines and ICIs remains an open question, together with the time and adminis-

tering schedule [108]. Of note, the immunosuppressive elements within the TME - such as 

Tregs, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages 

(TAMs), natural killer (NK) cells, TGF-β, IL-10, Indoleamine-pyrrole 2,3-dioxygenase 

(IDO), VEGF - representing another cause of vaccines failure, are also a future possibility 

for combining vaccine therapy with other agents directed specifically against these path-

ways [28].  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2021                   doi:10.20944/preprints202105.0205.v1

https://doi.org/10.20944/preprints202105.0205.v1


  
 

 

Besides the ICIs combinations, we should better investigate other possible options 

for potentiating the vaccines’ efficacy. For example, it is well-known that RT has immuno-

modulant effects, i.e., the increase of MHC expression, APCs activity, and inflammatory 

cytokine production; nevertheless, the combination of vaccines plus RT regimens has been 

poorly investigated after the first experiences reporting no significant results [111, 112]. 

Also, the combination of vaccines and chemotherapy has been inadequately tested, as for 

many years the incompatibility of these two pharmacological classes has been postulated, 

and some trials were prematurely stopped without reaching the accrual or even due to an 

increased death rate [67, 69, 113, 114]. Regarding TKIs, it is known that they exhibit im-

munomodulatory properties, such as increased tumor infiltration of T-cells and reduction 

of the production of anti-inflammatory mediators, explaining the success of combinations 

with ICIs also among GU tumors [1-5, 115]. However, TKIs also exert immunosuppressive 

properties, such as reducing the production and function of T/NK cells and inducing the 

production of IL-10 [115]. Immunosuppressive effects have also been reported when TKIs 

were concomitantly administered with vaccines, whereas a potentiation of immune re-

sponses was evidenced after sequential therapy [116]. Therefore, future new combinations 

with vaccines, dosage, and above all timing, should be carefully investigated.  

Despite many years of experience with vaccines, most studies did not get over the 

I/II phases and limited numbers of treated patients. Therefore, randomized trials enrolling 

larger populations could clarify the possible advantages and future applications in daily 

practice. In addition to them, pre-clinical studies, including cancer cell cultures and ani-

mal models, could further elucidate the vaccines’ role in the GU field, allowing a more 

profound knowledge of tumor immunologic features and their interactions for dosage, 

timing, and combinations to be optimized. Furthermore, it is of the utmost importance to 

search for tissue and blood biomarkers with a predictive role to better perform a more 

accurate patient selection [118-120]. 

5. Conclusions 

Immunotherapy is quickly changing the treatment landscape of many solid tumors, 

including those of the GU tract. However, low response rates and resistance mechanisms 

force new alternative pathways to be explored. Vaccines might represent effective means 

to stimulate the immune system. Their concomitant or sequential combination with other 

regimens has to be more deeply evaluated in prospective trials to maximize the benefits 

for the highest number of patients. More extensive knowledge of the biologic and immu-

nologic features of the different malignancies and the interactions with the host immune 

system is needed. Biomarkers with predictive roles will improve patient selection and en-

hance survival outcomes in the GU field. 
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