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Abstract: We present a method using contour integration to derive definite integrals and their
associated infinite sums which can be expressed as a special function. We give a proof of the basic
equation and some examples of the method. The advantage of using special functions is their analytic
continuation which widens the range of the parameters of the definite integral over which the formula
is valid. We give as examples definite integrals of logarithmic functions times a trigonometric function.
In various cases these generalizations evaluate to known mathematical constants such as Catalan’s
constant and 7

Keywords: entries in Gradshteyn and Rhyzik, Lerch function, Logarithm function, Contour Integral,
Cauchy, Infinite Integral

1. Introduction

We will derive integrals as indicated in the abstract in terms of special functions. Some
special cases of these integrals have been reported in Gradshteyn and Ryzhik [1]. In 1867
David Bierens de Haan [9] derived hyperbolic integrals of the form

o sinh(ax) (e’mx(log(uc) — x)k —e™(log(a) + x)k)
/0 (cosh(ax) + cos(t))?

dx

In our case the constants in the formulas are general complex numbers subject to
the restrictions given below. The derivations follow the method used by us in [8]. The
generalized Cauchy’s integral formula is given by

k wx
x 1 e
=t (1)

This method involves using a form of equation (1) then multiplys both sides by a
function, then takes a definite integral of both sides. This yields a definite integral in terms
of a contour integral. Then we multiply both sides of equation (1) by another function and
take the infinite sum of both sides such that the contour integral of both equations are the
same.

2. Derivation of the definite integral of the contour integral

We use the method in [8]. Here the contour is similar to Figure 2 in [8]. Using a
generalization of Cauchy’s integral formula we first replace x by ix 4 log(a) then multiply
both sides by e”* for the first equation and the replace x with —x and multiplying both
sides by e~ to get the second equation. Then we subtract these two equations, followed

by multiplying both sides by — % to get
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sinh(ax) (e””"(log(zx) —x)k — " (log(a) + x)k>
a 2k!(cosh(ax) + cos(t))?
w*14% sinh(ax) sinh(x(m + w))
T 2w / (cosh(ax) + cos(t))?2 dw (2)

where the logarithmic function is defined in equation (4.1.2) in [15]. We then take the
definite integral over x € [0, c0) of both sides to get

dx

o sinh(ax) (e‘””(log(oc) —x)k — e (log(a) + x)k)
B /o 2k'(cosh(ax) + cos(t))?

w*=14® sinh(ax) sinh(x(m + w))
T 2w / / (cosh(ax) + cos(t))?2 dwdx
(
(

// w~ k= 14% sinh(ax) sinh x(m—l—w))dxdw
T 2w (cosh(ax) + cos(t))?
1 remw 1 ese(t)a® csc ( ”(m;w)) sin ( t(m:w))
=i ;. 2 aw
mw* esc(t)a® csc ”(mjw) sin M
y (i)

27i Jc a?

from equation (2.5.48.18) in [14] and the integrals are valid for a, m, k, t and & complex
and —1 < Re(w + m) < 0 and Re(a) # 0. We are able to switch the order of integration
over w and x using Fubini’s theorem since the integrand is of bounded measure over the
space C x [0,00).

3. The Lerch function
The Lerch function has a series representation given by

[e)

D(z,5,0) =) (v+n) " (4)
n=0

where |z| < 1,0 # 0, —1, .. and is continued analytically by its integral representation
given by

1 oo ys—1,—0t 1 0o ps—1p—(v—1)t
D(z,5,0) = F(s)/o = r(s)/o St 5)

where Re(v) > 0, 0r |z] <1,z #1,Re(s) > 0,0orz=1,Re(s) > 1.

4. Derivation of the infinite sum of the contour integral
4.1. Derivation of the first contour integral
In this section we will again use the generalized Cauchy’s integral formula to derive

equivalent contour integrals. First we multiply equation (1) by ¢/™/%/2i then replace by x
by p +it/a for the first equation and then p — it /& for the second equation to get

it ik jam it)"
te ((p “) ¢ <p+ ”) ) :i/wfkflewpsin tim +w) dw (6)
27 Jc a
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Then we replace p with 71i(2p + 1) /a + log(«) and multiply both sides by —=<F to get

im 1 1 k i i ] ¢

2k'
in(2p+1)
/w s1n<m_|—w))ew(log(w+ : >dw (7)
= 2mi a

217_[ irtm(2y+1)
a

Then we multiply both sides by — and take the sum over p € [0, c0) and
simplify the left-hand side in terms of the Lerch function to get

k zm(n t) 2immn —t—1 2imt 2imm
ko k+1(i imre=t) t—ialog(a)+7 2imt 2imm t—ialog(a)+
2”+(E)e (CD(en,—k,T —eadDEu,—kT

a2k!
/w*’“l sin t(m + w) (0 (log(@)+
C a
) («)

) (
= ZL/ i w k-1 Sin<t(m+w>ew<logp¢
1Jc
1

in(2p+1)

)dw

in(2p+1)

)dw
a

k=14 ese ( m(mtw) ) sin ( tomtw)

a

1 7T 7 )
fﬂé - dw (8)

from equation (1.232.3) in [1] where csch(ix) = —icsc(x) from equation (4.5.10) in
[15] and Im(w) > O for the sum to converge. The log terms cannot be combined in general.

4.2. Derivation of the second contour integral

Next we will derive the second equation by using equation (8), multiplying by m csc(t)
and taking the infinite sum over p € [0, o) to get

2knk+1m(£)kcsc(t)eim(ft) (q)(ezn;m,_k —t— lulzo;?( )+ ) _ e%q)(eﬂ%,—k, tfiulog(tX)Jrrf))

21
a%k!
1 rmw k=1 ese(t)a® CSC(W) sin(t(m;w))
- / dw (9)
27i Jc a?
Then we replace k with k — 1 to get
Nk oim(r— imm _
g1 (1) (2, i)
aZk!
kim(n im imrt —1
ok k1 (é) 6M+%q><627, K, t zalozfi(oc)Jrn)
B a2k!
1 rw K esc(t)a® csc(@) sin(t(m%wv
:f/ dw  (10)
27i Jc a?
from equation (1.232.3) in [1] where csch(ix) = —icsc(x) from equation (4.5.10) in

[15] and Im(w) > O for the sum to converge.

5. Definite integral in terms of the Lerch function

Since the right-hand sides of equation (3), (8) and (10) are equivalent we can equate
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the left-hand sides simplify the factorial to get
oo sinh(ax) (e’mx(log(zx) — x)F —e"(log(a) + x)k)
/ dx
0 (cosh(ax) + cos(t))?
o\ k—1 im(m— imm —t—1
k(27‘c)k(é) CSC(t)e%@( e 1 —k, —itelogla)+7 1a12c)7§(a)+n)
— —
A\ k—1 im(m— im im7t
k(2n)k<§> csc(t)e%tu%d)(ezT,l —k, %)
T 2
a
N\ k im(mr— imm _
(2n)k+1m(§) csc(t)e G t)qD(ez —k, %)
— —
N\ K im(m—t) | 2imt 2im7n t—ialog(a)+
Q) lm (L) csc(t)e™ o +7a d(e"a , —k, —LOELTT
ety (7 o)

a2

The integral in equation (11) can be used as an alternative method to evaluating the
Lerch function.

6. Evaluation of special cases of definite Integrals
6.1. Special case 1

For this special case we will form a second equation using (11) by replacing m by —m
taking the difference from the original equation and simplifying to get

o 2 sinh(ax) sinh (mx) ((log(oc) — )%+ (log(a) + x)k) ,

B /o (cosh(ax) + cos(t))? *
N\ k—1 im(mr— 1m7r _
k) (1) cse(t)e " ”cp(e M1 -, Sl
N k=1 im(m 2imt 1m7r —1i
Kt (1) esc(tye 5 (e T, 1 — k, gl
_ -
-\ k-1 im(t—t) 21m7T —
k im(r—t) t—ialog(a)
k(27m) (é) csc(t)e @ CD( ,1—k, 2775)
_ —
i\ k1 im(z—t) | 2imt 2imm t—ial
k ialog(a)+7
k(1) ese(t)e™ i+t (57,1 — k, g
+ 2
k im(rr—t) 21m7r —t 1
k+1,, -7 inlog(a)+m
(27r)kt (é) csc(t)e @ CID(e —k, T)
_ —
Nk im(m— im zm7r —i
() (1) ese(t)e "5 @ (o, —k, kgl
+ 2
A\ k im(mr— imm —
(271)"“111(&) Csc(t)e¥d>(627,—k —toialogla) ¥ Zalzof(“)Jrﬂ)
_ >
k im(m— im imm
(2m)+1m (é) csc(t)e%*‘%cb(e%,—k fialogle)+7 lal(;gn(“Hn)
+ (12)

a2

6.2. Special case 2

For this special case we use equation (12) setting « = 1 and taking the first partial
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derivative with respect to m simplifying to get

Nk 2imt _ im(t+m) 2imrn
k k41 = 4 T

/°° x* sinh(ax) cosh(mx)dx 2 m(é) csc(t)e s ’ q><e
0

(cosh(ax) 4+ cos(t))2 "~ a2 (=1 + el)

im(t47)

Nk imm
2k7'[k+1m<ﬁ> CSC(t)e*?CD(esz,—k,t;—;)

Nk 2i im(t+m) 2i
2knk+1m(é> csc(t)e%_ 7 @(e%,—kﬂg—gv

a%(—1 + eimk)

im(t47)

S\ K imm
2knk+1m<é) csc(t)e @ @(eZT,—k,tiL—n")

+ a% (=1 + efk)

; 2imt __ im(t+7)

k .
~yk—1 k cmt T _2imm —t
2"k (é) csc(t)e™a a CD(e a ,1—k,7§—n)
a(—1+ eimk)

N\ k im(t+m imrm
i2k_1k7tk<g> csc(t)e™ " )CID(e_ZT,l—k,tZ*—n")
a(—1+ eik)

Nk imm _ im(t+7 imrm
iZk_lkﬂk(” csc(t)e ™ - w )<I><627,1—k,’§—7_rt>
a(—1+ eik)

+

+

Nk im T im
25Vt (1) ese(t)e™ s @ (57,1 k, 47
— - 1
a(—1+ ef7k) (13)

7. Derivation of entry 3.514.4 in [1]
Using equation (12) we proceed by setting « = 1 and simplifying to get
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/°° xF sinh (ax) sinh(mx)
0 (cosh(ax)+ cos(t))?

Ak im s imsm
ankaG) csc(t)ezat <tu+ )CID(e_ZT,—k,%)
2knk+1m(a) csc(t)e™ e ( Ziyn,—k,?—n”)
a?((=1)k+1)

Nk itm  im T imrt
ank“m(ﬁ) csc(t)eZT_#CD(ezT,—k,%)
a?((-1)k+1)

N\ k im(t+m imm
2knk+1m(é) csc(t)e o )CI>(ezu ,—k, t;ﬂn)
a?((=1)k+1)

k imt __ im(t+7 1m7r
2k Verrk (é) csc(t)e%_#d)( e 1—k,2—ﬂt>
( DF+1)

N\ k ) fmrr
i2k_1k7'ck(§) csc( g ( A —k, tztr”)
( —Dk+1)

k 2irrm __ im(t+7) 21m7r
k-1 e t
i2kVerrk (é) csc(t)e™a a CID( 1—k,ﬁ>

a((=1)k+1)
N\ k im(t47 zmrt
iZk_lknk(é) csc(t)e = )<I>< 2 11—k Y2
a((—1)k+1)

Note: When we replace k by k — 1 we get the Mellin transform.

+

+

+ ) (14)

Next we set k = 0 and m = b simplify to get

(cosh(ax) + cos()2"" 22 (15)

from entry (2) in Table (64:12:7) in [11], where —7t < Re(t) < mand 0 < |b| < a.

/°° sinh(ax) sinh(bx) p nbcsc(t)csc(%b) sin(%)
0

8. Derivation of entry (2.3.1.19) in [13]
Using equation (13) and setting m = 0 simplifying we get

/°° xK sinh (ax)
0 (cosh(ax) + cos(t))?2 *

k+1
o (2) )1 55) e 52))

Next we set t = 71/2 simplify to get
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/ x*~!tanh(ax)sech(ax)dx
0

27257 1(s — 1) (i)s (g <2 —s, i) — g(z —s, i)) sec(%) (17)
from entries (2) and (3) in Table (64:12:7) in [11].

9. Derivation of a new entry for Table 3.514 in [1]

Using equation (12) and setting k = —1,&4 = -1, = 1,t = n/2,m = 1/2 and
simplifying we get

 sinh (%) tanh(x)sech(x)
/ dx
0 x2 + 12

V2 3 5 7 9 s
— v (0 (3) vV (5) 9 (5) -~ (3) ) +16n(v2+tog(an(5)))
(18)
from entry (3) Table (64:12:7:2) and entry (4) Table (64:12:7:3).

10. Definite integral in terms of the Hurwitz zeta function
Using equation (14) and setting m = 1 and a = 2 to get

/°° xF sinh(x) sinh(2x)
0o (cos(t )+cosh(2x))2

2" 30 % etk cse(%)

C(1—k Z;t) k=355 ferk esc(£)2(1—k HE)

(—1)k+1 (-1)k+1
Zk 303 etk csc(£)g(1 —k,% - &) N 2k-3¢'F kit CSC(%)g(lfk/i(%Jr?’))

(—1)k+1 (—1)k+1

k=255 k+1 sec($)C(—k Z=4) k=255 k41 sec(%)C(—k HZ)
(=1)k+1 (—1)k+1

- k=2, _k+1 sec( )2 (—k, 2 — ﬁ) B k=255 k1 sec(%)é(—k,%(%—l—@) 19)

(—1)k+1 (—1)k+1

Next we apply L'Hopital’s rule to the right-hand side as k — 0 to get

dx

/°° x sinh(x) sinh(2x)
0 (cos(t)+ cosh(2x))?

1 t T—t 1 t t4 7T

= 27TS€C<2)€(_1, 47‘[> + 27TS€C<2)€<—1, 47_[)
1 t 3 t 1 t

_ = e 12 _ ) _zZ - -1
znsec(2>§< l,4 47T> 27Isec<2>§ ,

from entry (1) in Table (64:4:2) in [11], where —7r < Re(t) < 7.
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11. Definite Integral in terms of the log-gamma log(T'(x)) and Harmonic number Hy
functions

Using equation (19) taking the first partial derivative with respect to k and applying
L’'Hopitals’ rule as k — 0 and simplifying to get

/°° log(x) sinh(x) sinh(2x) i
0  (cos(t)+ cosh(2x))?

1 t 1 t 1 £\ (o)
= EH_# CSC(2> — RH_% CSC(2> + 16CSC<2) <
3 L(
- icsc o (1L +3) )+ 17‘[S€C ! lo 2 F(Z
16°\2)¥ \1\= 8 & )T (5=

from equations (64:4:1), (64:9:2), and (64:10:2) in [11].

11.1. Example 1
Using equation (21) and setting t = 71/2 simplifying to get

/Ooo log(x) sinh(x) tanh(2x)sech(2x)dx = % (4 sinh~1(1) + v27log (27{1"()1"557;)) )
8

11.2. Example 2
Using equation (21) and setting t = 71/3 simplifying to get

/°° log(x) sinh(x) sinh(2x) iy
0 (2 cosh(2x) +1)2

r(2
- b 10v/37log(2) + 6log(64) + 9v3mlog(r) 4+ 6v/37log ()

288 23)

11.3. Example 3
Using equation (21) and setting t = 71/4 simplifying to get

/°° log(x) sinh(x) sinh(2x) P
0 (2cosh(2x) +1)2

(3

= 21@ 10V/37log(2) + 6log(64) + 9v3mlog(r) + 6V37 log ((6))2
r(l
6

11.4. Example 4
Using equation (21) and setting t = 271/3 simplifying to get

(24)

® Jo sinh(x) sinh - 27IF(1)T i
[t o o)) )
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11.5. Example 5

Using equation (21) and setting t = 0 and applying L’'Hopital’s rule as t — 0 simplify-

ing to get

/Ooo log(x) tanh?(x)sech(x)dx

(26)

12. Derivation of hyperbolic and algebraic forms

12.1. Example 1
Using equation (12) setting k =

x tanh (ax)sech(ax) cosh(mx)

—1,t = 7r/2 and replacing « by ¢’ simplifying we get

d
/0 B2 22 X
ime*i%mCD(e e 2““”) - (e*m%,l, ;’ﬁ + )
N 4q 4q
_imm 21m7T 2,1'34,_7-[ __Bimm Zlmn ap 3
e CID(e ) 2 q)( zzlﬁ‘f‘;)
+ 81 81
1me”2T1:n CI)(EZI%, 1, Zafjgﬂ) lmeSIZZm q)(eb:/nl 1, 27% 43 )
B 4a + 4a
+ (M2 M) (2,5 4+ ) @7)
81 81

from equation (9.550) in [1]. Next we set m = 0 simplifying in terms of the Trigamma

function ¥V (z) to get

x tanh (ax)sech(ax)

ap
21

1’[](1) (2a;3+7r) . lp(l)<

+3

)

dx =

/0 B* 4 x2
from equation (64:4:1) in [11].

12.2. Example 2

47 (28)

Using equation (12) and setting k = —2,¢ = 77/2 and replacing a by ¢? simplifying

we get
/oo< 1 + ! ) tanh(ax)sech(ax) sinh(mx)dx
o \(x+ iﬁ)2 ( —ip)?
o (I)( ZIW,Z, zaf;ﬂ) N me_Slﬂmd)(e’m%,Z, zﬁ + 7 )
47 47
+ige 7 CI)( 21WT,3, ZHE;[LT[) iae*%%@(f%,&%—l—%)
4772 472
me%q><€2m7m,2, Zaf;n’) meSzZJmcD(eZzznn,z, % n %) iae%@(em?n,& Zaf;ﬂt)
47 + 4 - 47
1a631275m<1><6217ﬂnn,3/ lzzg + )
29
+ P (29)

Next we take the first partial derivative with respect to m and setting m = 0 simplifying

to get
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[ 2= Bp ) e sechion),
0 (B +22)”
oy (20) — g (3 +3) +ap((3. 55 +3) — (3. 247))
= a2 0

from equations (64:12:1) (64:13:3) and (64:4:1) in [11].

13. Discussion

In this article we derived the integrals of hyperbolic and logarithmic functions in
terms of the Lerch function. Then we used these integral formula to derive known and new
results. We were able to produce a formal derivation for equation (27) Table 27 in Bierens
de Haan [9] and equation (3.514.4) in [1] not previously published. The results presented
were numerically verified for both real and imaginary values of the parameters in the
integrals using Mathematica by Wolfram. In this work we used Mathematica software to
numerically evaluate both the definite integral and associated Special function for complex
values of the parameters k, a, a, m and t. We considered various ranges of these parameters
for real, integer, negative and positive values. We compared the evaluation of the definite
integral to the evaluated Special function and ensured agreement.

14. Conclusion

In this paper, we have derived a method for expressing definite integrals in terms of
Special functions using contour integration. The contour we used was specific to solving
integral representations in terms of the Lerch function. We expect that other contours and
integrals can be derived using this method.
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