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Abstract: We present a method using contour integration to derive definite integrals and their
associated infinite sums which can be expressed as a special function. We give a proof of the basic
equation and some examples of the method. The advantage of using special functions is their analytic
continuation which widens the range of the parameters of the definite integral over which the formula
is valid. We give as examples definite integrals of logarithmic functions times a trigonometric function.
In various cases these generalizations evaluate to known mathematical constants such as Catalan’s
constant and π

Keywords: entries in Gradshteyn and Rhyzik, Lerch function, Logarithm function, Contour Integral,
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1. Introduction

We will derive integrals as indicated in the abstract in terms of special functions. Some
special cases of these integrals have been reported in Gradshteyn and Ryzhik [1]. In 1867
David Bierens de Haan [9] derived hyperbolic integrals of the form

∫ ∞

0

sinh(ax)
(

e−mx(log(α)− x)k − emx(log(α) + x)k
)

(cosh(ax) + cos(t))2 dx

In our case the constants in the formulas are general complex numbers subject to
the restrictions given below. The derivations follow the method used by us in [8]. The
generalized Cauchy’s integral formula is given by

xk

k!
=

1
2πi

∫
C

ewx

wk+1 dw. (1)

This method involves using a form of equation (1) then multiplys both sides by a
function, then takes a definite integral of both sides. This yields a definite integral in terms
of a contour integral. Then we multiply both sides of equation (1) by another function and
take the infinite sum of both sides such that the contour integral of both equations are the
same.

2. Derivation of the definite integral of the contour integral

We use the method in [8]. Here the contour is similar to Figure 2 in [8]. Using a
generalization of Cauchy’s integral formula we first replace x by ix + log(a) then multiply
both sides by emx for the first equation and the replace x with −x and multiplying both
sides by e−mx to get the second equation. Then we subtract these two equations, followed
by multiplying both sides by − sinh(ax)

2(cosh(ax)+cos(t))2 to get

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2021                   doi:10.20944/preprints202105.0192.v1

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-4230-9925
https://www.mdpi.com/article/10.3390/1010000?type=check_update&version=1
https://doi.org/10.3390/1010000
https://doi.org/10.20944/preprints202105.0192.v1
http://creativecommons.org/licenses/by/4.0/


2 of 11

−
sinh(ax)

(
e−mx(log(α)− x)k − emx(log(α) + x)k

)
2k!(cosh(ax) + cos(t))2

=
1

2πi

∫
C

w−k−1αw sinh(ax) sinh(x(m + w))

(cosh(ax) + cos(t))2 dw (2)

where the logarithmic function is defined in equation (4.1.2) in [15]. We then take the
definite integral over x ∈ [0, ∞) of both sides to get

−
∫ ∞

0

sinh(ax)
(

e−mx(log(α)− x)k − emx(log(α) + x)k
)

2k!(cosh(ax) + cos(t))2 dx

=
1

2πi

∫ ∞

0

∫
C

w−k−1αw sinh(ax) sinh(x(m + w))

(cosh(ax) + cos(t))2 dwdx

=
1

2πi

∫
C

∫ ∞

0

w−k−1αw sinh(ax) sinh(x(m + w))

(cosh(ax) + cos(t))2 dxdw

=
1

2πi

∫
C

πmw−k−1 csc(t)αw csc
(

π(m+w)
a

)
sin
(

t(m+w)
a

)
a2 dw

+
1

2πi

∫
C

πw−k csc(t)αw csc
(

π(m+w)
a

)
sin
(

t(m+w)
a

)
a2 dw (3)

from equation (2.5.48.18) in [14] and the integrals are valid for a, m, k, t and α complex
and −1 < Re(w + m) < 0 and Re(α) 6= 0. We are able to switch the order of integration
over w and x using Fubini’s theorem since the integrand is of bounded measure over the
space C× [0, ∞).

3. The Lerch function

The Lerch function has a series representation given by

Φ(z, s, v) =
∞

∑
n=0

(v + n)−szn (4)

where |z| < 1, v 6= 0,−1, .. and is continued analytically by its integral representation
given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t dt =
1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (5)

where Re(v) > 0, or |z| ≤ 1, z 6= 1, Re(s) > 0, or z = 1, Re(s) > 1.

4. Derivation of the infinite sum of the contour integral
4.1. Derivation of the first contour integral

In this section we will again use the generalized Cauchy’s integral formula to derive
equivalent contour integrals. First we multiply equation (1) by eimt/α/2i then replace by x
by p + it/α for the first equation and then p− it/α for the second equation to get

ie−
imt

a

((
p− it

a

)k
− e

2imt
a

(
p + it

a

)k
)

2k!
=

1
2π

∫
C

w−k−1ewp sin
(

t(m + w)

a

)
dw (6)
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Then we replace p with πi(2p + 1)/a + log(α) and multiply both sides by − 2π
a1 to get

ie−
imt

a

((
iπ(2p+1)

a − it
a + log(α)

)k
− e

2imt
a

(
iπ(2p+1)

a + it
a + log(α)

)k
)

2k!

=
1

2πi

∫
C

w−k−1 sin
(

t(m + w)

a

)
ew
(

log(α)+ iπ(2p+1)
a

)
dw (7)

Then we multiply both sides by − 2iπ
a2 e

iπm(2y+1)
a and take the sum over p ∈ [0, ∞) and

simplify the left-hand side in terms of the Lerch function to get

2kπk+1
(

i
a

)k
e

im(π−t)
a

(
Φ
(

e
2imπ

a ,−k, −t−ia log(α)+π
2π

)
− e

2imt
a Φ

(
e

2imπ
a ,−k, t−ia log(α)+π

2π

))
a2k!

=
1

2πi

∞

∑
p=0

∫
C

w−k−1 sin
(

t(m + w)

a

)
ew
(

log(α)+ iπ(2p+1)
a

)
dw

=
1

2πi

∫
C

∞

∑
p=0

w−k−1 sin
(

t(m + w)

a

)
ew
(

log(α)+ iπ(2p+1)
a

)
dw

=
1

2π

∫
C

πw−k−1αw csc
(

π(m+w)
a

)
sin
(

t(m+w)
a

)
a2 dw (8)

from equation (1.232.3) in [1] where csch(ix) = −i csc(x) from equation (4.5.10) in
[15] and Im(w) > 0 for the sum to converge. The log terms cannot be combined in general.

4.2. Derivation of the second contour integral

Next we will derive the second equation by using equation (8), multiplying by m csc(t)
and taking the infinite sum over p ∈ [0, ∞) to get

2kπk+1m
(

i
a

)k
csc(t)e

im(π−t)
a

(
Φ
(

e
2imπ

a ,−k, −t−ia log(α)+π
2π

)
− e

2imt
a Φ

(
e

2imπ
a ,−k, t−ia log(α)+π

2π

))
a2k!

=
1

2πi

∫
C

πmw−k−1 csc(t)αw csc
(

π(m+w)
a

)
sin
(

t(m+w)
a

)
a2 dw (9)

Then we replace k with k− 1 to get

2kπk+1
(

i
a

)k
e

im(π−t)
a Φ

(
e

2imπ
a ,−k, −t−ia log(α)+π

2π

)
a2k!

−
2kπk+1

(
i
a

)k
e

im(π−t)
a + 2imt

a Φ
(

e
2imπ

a ,−k, t−ia log(α)+π
2π

)
a2k!

=
1

2πi

∫
C

πw−k csc(t)αw csc
(

π(m+w)
a

)
sin
(

t(m+w)
a

)
a2 dw (10)

from equation (1.232.3) in [1] where csch(ix) = −i csc(x) from equation (4.5.10) in
[15] and Im(w) > 0 for the sum to converge.

5. Definite integral in terms of the Lerch function

Since the right-hand sides of equation (3), (8) and (10) are equivalent we can equate
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the left-hand sides simplify the factorial to get

∫ ∞

0

sinh(ax)
(

e−mx(log(α)− x)k − emx(log(α) + x)k
)

(cosh(ax) + cos(t))2 dx

= −
k(2π)k

(
i
a

)k−1
csc(t)e

im(π−t)
a Φ

(
e

2imπ
a , 1− k, −t−ia log(α)+π

2π

)
a2

+
k(2π)k

(
i
a

)k−1
csc(t)e

im(π−t)
a + 2imt

a Φ
(

e
2imπ

a , 1− k, t−ia log(α)+π
2π

)
a2

−
(2π)k+1m

(
i
a

)k
csc(t)e

im(π−t)
a Φ

(
e

2imπ
a ,−k, −t−ia log(α)+π

2π

)
a2

+
(2π)k+1m

(
i
a

)k
csc(t)e

im(π−t)
a + 2imt

a Φ
(

e
2imπ

a ,−k, t−ia log(α)+π
2π

)
a2 (11)

The integral in equation (11) can be used as an alternative method to evaluating the
Lerch function.

6. Evaluation of special cases of definite Integrals
6.1. Special case 1

For this special case we will form a second equation using (11) by replacing m by −m
taking the difference from the original equation and simplifying to get

−
∫ ∞

0

2 sinh(ax) sinh(mx)
(
(log(α)− x)k + (log(α) + x)k

)
(cosh(ax) + cos(t))2 dx

=
k(2π)k

(
i
a

)k−1
csc(t)e−

im(π−t)
a Φ

(
e−

2imπ
a , 1− k, −t−ia log(α)+π

2π

)
a2

−
k(2π)k

(
i
a

)k−1
csc(t)e−

im(π−t)
a − 2imt

a Φ
(

e−
2imπ

a , 1− k, t−ia log(α)+π
2π

)
a2

−
k(2π)k

(
i
a

)k−1
csc(t)e

im(π−t)
a Φ

(
e

2imπ
a , 1− k, −t−ia log(α)+π

2π

)
a2

+
k(2π)k

(
i
a

)k−1
csc(t)e

im(π−t)
a + 2imt

a Φ
(

e
2imπ

a , 1− k, t−ia log(α)+π
2π

)
a2

−
(2π)k+1m

(
i
a

)k
csc(t)e−

im(π−t)
a Φ

(
e−

2imπ
a ,−k, −t−ia log(α)+π

2π

)
a2

+
(2π)k+1m

(
i
a

)k
csc(t)e−

im(π−t)
a − 2imt

a Φ
(

e−
2imπ

a ,−k, t−ia log(α)+π
2π

)
a2

−
(2π)k+1m

(
i
a

)k
csc(t)e

im(π−t)
a Φ

(
e

2imπ
a ,−k, −t−ia log(α)+π

2π

)
a2

+
(2π)k+1m

(
i
a

)k
csc(t)e

im(π−t)
a + 2imt

a Φ
(

e
2imπ

a ,−k, t−ia log(α)+π
2π

)
a2 (12)

6.2. Special case 2

For this special case we use equation (12) setting α = 1 and taking the first partial
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derivative with respect to m simplifying to get

∫ ∞

0

xk sinh(ax) cosh(mx)
(cosh(ax) + cos(t))2 dx =

2kπk+1m
(

i
a

)k
csc(t)e

2imt
a −

im(t+π)
a Φ

(
e−

2imπ
a ,−k, π−t

2π

)
a2
(
−1 + eiπk

)
−

2kπk+1m
(

i
a

)k
csc(t)e−

im(t+π)
a Φ

(
e−

2imπ
a ,−k, t+π

2π

)
a2
(
−1 + eiπk

)
−

2kπk+1m
(

i
a

)k
csc(t)e

2iπm
a −

im(t+π)
a Φ

(
e

2imπ
a ,−k, π−t

2π

)
a2
(
−1 + eiπk

)
+

2kπk+1m
(

i
a

)k
csc(t)e

im(t+π)
a Φ

(
e

2imπ
a ,−k, t+π

2π

)
a2
(
−1 + eiπk

)
+

i2k−1kπk
(

i
a

)k
csc(t)e

2imt
a −

im(t+π)
a Φ

(
e−

2imπ
a , 1− k, π−t

2π

)
a
(
−1 + eiπk

)
−

i2k−1kπk
(

i
a

)k
csc(t)e−

im(t+π)
a Φ

(
e−

2imπ
a , 1− k, t+π

2π

)
a
(
−1 + eiπk

)
+

i2k−1kπk
(

i
a

)k
csc(t)e

2iπm
a −

im(t+π)
a Φ

(
e

2imπ
a , 1− k, π−t

2π

)
a
(
−1 + eiπk

)
−

i2k−1kπk
(

i
a

)k
csc(t)e

im(t+π)
a Φ

(
e

2imπ
a , 1− k, t+π

2π

)
a
(
−1 + eiπk

) (13)

7. Derivation of entry 3.514.4 in [1]

Using equation (12) we proceed by setting α = 1 and simplifying to get
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∫ ∞

0

xk sinh(ax) sinh(mx)
(cosh(ax) + cos(t))2 dx

=
2kπk+1m

(
i
a

)k
csc(t)e

2imt
a −

im(t+π)
a Φ

(
e−

2imπ
a ,−k, π−t

2π

)
a2
(
(−1)k + 1

)
−

2kπk+1m
(

i
a

)k
csc(t)e−

im(t+π)
a Φ

(
e−

2imπ
a ,−k, t+π

2π

)
a2
(
(−1)k + 1

)
+

2kπk+1m
(

i
a

)k
csc(t)e

2iπm
a −

im(t+π)
a Φ

(
e

2imπ
a ,−k, π−t

2π

)
a2
(
(−1)k + 1

)
−

2kπk+1m
(

i
a

)k
csc(t)e

im(t+π)
a Φ

(
e

2imπ
a ,−k, t+π

2π

)
a2
(
(−1)k + 1

)
+

i2k−1kπk
(

i
a

)k
csc(t)e

2imt
a −

im(t+π)
a Φ

(
e−

2imπ
a , 1− k, π−t

2π

)
a
(
(−1)k + 1

)
−

i2k−1kπk
(

i
a

)k
csc(t)e−

im(t+π)
a Φ

(
e−

2imπ
a , 1− k, t+π

2π

)
a
(
(−1)k + 1

)
−

i2k−1kπk
(

i
a

)k
csc(t)e

2iπm
a −

im(t+π)
a Φ

(
e

2imπ
a , 1− k, π−t

2π

)
a
(
(−1)k + 1

)
+

i2k−1kπk
(

i
a

)k
csc(t)e

im(t+π)
a Φ

(
e

2imπ
a , 1− k, t+π

2π

)
a
(
(−1)k + 1

) (14)

Note: When we replace k by k− 1 we get the Mellin transform.

Next we set k = 0 and m = b simplify to get

∫ ∞

0

sinh(ax) sinh(bx)
(cosh(ax) + cos(t))2 dx =

πb csc(t) csc
(

πb
a

)
sin
(

bt
a

)
a2 (15)

from entry (2) in Table (64:12:7) in [11], where −π < Re(t) < π and 0 < |b| < a.

8. Derivation of entry (2.3.1.19) in [13]

Using equation (13) and setting m = 0 simplifying we get

∫ ∞

0

xk sinh(ax)
(cosh(ax) + cos(t))2 dx

= 2k−1kπk
(

1
a

)k+1
csc
(

πk
2

)
csc(t)

(
ζ

(
1− k,

π − t
2π

)
− ζ

(
1− k,

t + π

2π

))
(16)

Next we set t = π/2 simplify to get
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∫ ∞

0
xs−1 tanh(ax)sech(ax)dx

= −2s−2πs−1(s− 1)
(

1
a

)s(
ζ

(
2− s,

1
4

)
− ζ

(
2− s,

3
4

))
sec
(πs

2

)
(17)

from entries (2) and (3) in Table (64:12:7) in [11].

9. Derivation of a new entry for Table 3.514 in [1]

Using equation (12) and setting k = −1, α = −1, a = 1, t = π/2, m = 1/2 and
simplifying we get

∫ ∞

0

sinh
( x

2
)

tanh(x)sech(x)
x2 + π2 dx

=

√
2

32π2

(
−ψ(1)

(
3
8

)
+ ψ(1)

(
5
8

)
+ ψ(1)

(
7
8

)
− ψ(1)

(
9
8

))
+ 16π

(√
2 + log

(
tan
(π

8

)))
(18)

from entry (3) Table (64:12:7:2) and entry (4) Table (64:12:7:3).

10. Definite integral in terms of the Hurwitz zeta function

Using equation (14) and setting m = 1 and a = 2 to get

∫ ∞

0

xk sinh(x) sinh(2x)
(cos(t) + cosh(2x))2

=
2k−3e

iπk
2 kπk csc

( t
2
)
ζ
(
1− k, π−t

4π

)
(−1)k + 1

−
2k−3e

iπk
2 kπk csc

( t
2
)
ζ
(
1− k, t+π

4π

)
(−1)k + 1

−
2k−3e

iπk
2 kπk csc

( t
2
)
ζ
(
1− k, 3

4 −
t

4π

)
(−1)k + 1

+
2k−3e

iπk
2 kπk csc

( t
2
)
ζ
(

1− k, 1
4
( t

π + 3
))

(−1)k + 1

+
2k−2e

iπk
2 πk+1 sec

( t
2
)
ζ
(
−k, π−t

4π

)
(−1)k + 1

+
2k−2e

iπk
2 πk+1 sec

( t
2
)
ζ
(
−k, t+π

4π

)
(−1)k + 1

−
2k−2e

iπk
2 πk+1 sec

( t
2
)
ζ
(
−k, 3

4 −
t

4π

)
(−1)k + 1

−
2k−2e

iπk
2 πk+1 sec

( t
2
)
ζ
(
−k, 1

4
( t

π + 3
))

(−1)k + 1
(19)

Next we apply L’Hôpital’s rule to the right-hand side as k→ 0 to get

∫ ∞

0

x sinh(x) sinh(2x)
(cos(t) + cosh(2x))2 dx

=
1
2

π sec
(

t
2

)
ζ

(
−1,

π − t
4π

)
+

1
2

π sec
(

t
2

)
ζ

(
−1,

t + π

4π

)
− 1

2
π sec

(
t
2

)
ζ

(
−1,

3
4
− t

4π

)
− 1

2
π sec

(
t
2

)
ζ

(
−1,

1
4

(
t
π

+ 3
))

+
1
4

csc
(

t
2

)
log
(

tan
(

t + π

4

))
(20)

from entry (1) in Table (64:4:2) in [11], where −π < Re(t) < π.
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11. Definite Integral in terms of the log-gamma log(Γ(x)) and Harmonic number Hk
functions

Using equation (19) taking the first partial derivative with respect to k and applying
L’Hopitals’ rule as k→ 0 and simplifying to get

∫ ∞

0

log(x) sinh(x) sinh(2x)
(cos(t) + cosh(2x))2 dx

=
1

16
H− t+π

4π
csc
(

t
2

)
− 1

16
H− t+3π

4π
csc
(

t
2

)
+

1
16

csc
(

t
2

)
ψ(0)

(
t + π

4π

)

− 1
16

csc
(

t
2

)
ψ(0)

(
1
4

(
t
π

+ 3
))

+
1
8

π sec
(

t
2

)
log

2πΓ
( 3

4 −
t

4π

)
Γ
(

1
4
( t

π + 3
))

Γ
(

π−t
4π

)
Γ
( t+π

4π

)
 (21)

from equations (64:4:1), (64:9:2), and (64:10:2) in [11].

11.1. Example 1

Using equation (21) and setting t = π/2 simplifying to get

∫ ∞

0
log(x) sinh(x) tanh(2x)sech(2x)dx =

1
8

4 sinh−1(1) +
√

2π log

2πΓ
( 5

8
)
Γ
( 7

8
)

Γ
(

1
8

)
Γ
( 3

8
)


(22)

11.2. Example 2

Using equation (21) and setting t = π/3 simplifying to get

∫ ∞

0

log(x) sinh(x) sinh(2x)
(2 cosh(2x) + 1)2 dx

=
1

288

10
√

3π log(2) + 6 log(64) + 9
√

3π log(π) + 6
√

3π log

 Γ
( 5

6
)

Γ
(

1
6

)2


 (23)

11.3. Example 3

Using equation (21) and setting t = π/4 simplifying to get

∫ ∞

0

log(x) sinh(x) sinh(2x)
(2 cosh(2x) + 1)2 dx

=
1

288

10
√

3π log(2) + 6 log(64) + 9
√

3π log(π) + 6
√

3π log

 Γ
( 5

6
)

Γ
(

1
6

)2


 (24)

11.4. Example 4

Using equation (21) and setting t = 2π/3 simplifying to get

∫ ∞

0

log(x) sinh(x) sinh(2x)
(2 cosh(2x)− 1)2 dx =

1
16

4 coth−1
(√

3
)
+ π log

2πΓ
( 7

12
)
Γ
(

11
12

)
Γ
(

1
12

)
Γ
( 5

12
)
 (25)
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11.5. Example 5

Using equation (21) and setting t = 0 and applying L’Hopital’s rule as t→ 0 simplify-
ing to get

∫ ∞

0
log(x) tanh2(x)sech(x)dx =

2C
π

+
1
4

π log

2πΓ
( 3

4
)2

Γ
(

1
4

)2

 (26)

12. Derivation of hyperbolic and algebraic forms
12.1. Example 1

Using equation (12) setting k = −1, t = π/2 and replacing α by eiβ simplifying we get

∫ ∞

0

x tanh(ax)sech(ax) cosh(mx)
β2 + x2 dx

=
ime−

iπm
2a Φ

(
e−

2imπ
a , 1, 2aβ+π

4π

)
4a

−
ime−

3iπm
2a Φ

(
e−

2imπ
a , 1, aβ

2π + 3
4

)
4a

+
e−

iπm
2a Φ

(
e−

2imπ
a , 2, 2aβ+π

4π

)
8π

−
e−

3iπm
2a Φ

(
e−

2imπ
a , 2, aβ

2π + 3
4

)
8π

−
ime

iπm
2a Φ

(
e

2imπ
a , 1, 2aβ+π

4π

)
4a

+
ime

3iπm
2a Φ

(
e

2imπ
a , 1, aβ

2π + 3
4

)
4a

+
e

iπm
2a Φ

(
e

2imπ
a , 2, 2aβ+π

4π

)
8π

−
e

3iπm
2a Φ

(
e

2imπ
a , 2, aβ

2π + 3
4

)
8π

(27)

from equation (9.550) in [1]. Next we set m = 0 simplifying in terms of the Trigamma
function ψ(1)(z) to get

∫ ∞

0

x tanh(ax)sech(ax)
β2 + x2 dx =

ψ(1)
(

2aβ+π
4π

)
− ψ(1)

(
aβ
2π + 3

4

)
4π

(28)

from equation (64:4:1) in [11].

12.2. Example 2

Using equation (12) and setting k = −2, t = π/2 and replacing α by eiβ simplifying
we get

∫ ∞

0

(
1

(x + iβ)2 +
1

(x− iβ)2

)
tanh(ax)sech(ax) sinh(mx)dx

= −
me−

iπm
2a Φ

(
e−

2imπ
a , 2, 2aβ+π

4π

)
4π

+
me−

3iπm
2a Φ

(
e−

2imπ
a , 2, aβ

2π + 3
4

)
4π

+
iae−

iπm
2a Φ

(
e−

2imπ
a , 3, 2aβ+π

4π

)
4π2 −

iae−
3iπm

2a Φ
(

e−
2imπ

a , 3, aβ
2π + 3

4

)
4π2

−
me

iπm
2a Φ

(
e

2imπ
a , 2, 2aβ+π

4π

)
4π

+
me

3iπm
2a Φ

(
e

2imπ
a , 2, aβ

2π + 3
4

)
4π

−
iae

iπm
2a Φ

(
e

2imπ
a , 3, 2aβ+π

4π

)
4π2

+
iae

3iπm
2a Φ

(
e

2imπ
a , 3, aβ

2π + 3
4

)
4π2 (29)

Next we take the first partial derivative with respect to m and setting m = 0 simplifying
to get
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∫ ∞

0

x(x− β)(β + x) tanh(ax)sech(ax)

(β2 + x2)
2 dx

=
πψ(1)

(
2aβ+π

4π

)
− πψ(1)

(
aβ
2π + 3

4

)
+ aβ

(
ζ
(

3, aβ
2π + 3

4

)
− ζ
(

3, 2aβ+π
4π

))
4π2 (30)

from equations (64:12:1) (64:13:3) and (64:4:1) in [11].

13. Discussion

In this article we derived the integrals of hyperbolic and logarithmic functions in
terms of the Lerch function. Then we used these integral formula to derive known and new
results. We were able to produce a formal derivation for equation (27) Table 27 in Bierens
de Haan [9] and equation (3.514.4) in [1] not previously published. The results presented
were numerically verified for both real and imaginary values of the parameters in the
integrals using Mathematica by Wolfram. In this work we used Mathematica software to
numerically evaluate both the definite integral and associated Special function for complex
values of the parameters k, α, a, m and t. We considered various ranges of these parameters
for real, integer, negative and positive values. We compared the evaluation of the definite
integral to the evaluated Special function and ensured agreement.

14. Conclusion

In this paper, we have derived a method for expressing definite integrals in terms of
Special functions using contour integration. The contour we used was specific to solving
integral representations in terms of the Lerch function. We expect that other contours and
integrals can be derived using this method.
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