
 

1 

 

 

 

 

 

 

 

 

 

 

Agroecological strategies to safeguard insect pollinators in biodiversity hotspots: Chile as a case 

study 

 
Patricia A. Henríquez-Piskulicha, Constanza Schapheerbc, Nicolas J. Vereeckend, Cristian Villagraa* 

 
aInstituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Av. José Pedro 
Alessandri 174, Santiago, Chile, zipcode: 7760197, Chile. 
bLaboratorio de Sistemática y Evolución, Departamento de Silvicultura y Conservación de la 
Naturaleza, Universidad de Chile.  
cPrograma de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de 
Chile. Santa Rosa 11315, La Pintana, Santiago, Chile. CP: 8820808. 
dAgroecology Lab, Interfaculty School of Bioengineering, Université libre de Bruxelles (ULB), 
Boulevard du Triomphe CP 264/02, B-1050 Brussels, Belgium. 
 
 
*Corresponding author:  Prof. Cristian A. Villagra Gil, IE UMCE. 
Phone number: +56999450246 
Email address: cristian.villagra@umce.cl 

 

 

 

 

 

 

 

 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2021                   doi:10.20944/preprints202105.0162.v1

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202105.0162.v1
http://creativecommons.org/licenses/by/4.0/


 

2 

Abstract 

Industrial agriculture (IA) is the predominant model of food production since the Green Revolution 

in the 1950s. IA has been recognized among the main drivers of biodiversity loss, climate change 

and native pollinator decline. This is controversial, given that native agricultural pollinators are an 

important resource biota already contributing to crop yield, especially in areas defined as "world 

biodiversity hotspots” (WBH). These areas often overlap with agricultural zones hosting a significant 

proportion of cultivated land, mainly through intensive agricultural practices. Pollinator biodiversity 

and pollination services in these places are currently under threat due to the negative consequences 

of IA. The dual role of insects as key players allowing the maintenance of the natural ecosystem, as 

well as main crop pollinators, is particularly exacerbated and urgently requires conservation actions 

in WBH and food-producing zones. Here we summarize the known negative effects of IA on 

pollinator biodiversity and illustrate these problems by considering the case of Chile. Food exports 

represent a considerable part of the economy in this OECD “developing country” in the “Global 

South”, and a large part of its surface has been highlighted as a unique WBH. This area is currently 

being replaced by IA businesses at a fast pace, threatening local biodiversity. We present 

agroecological strategies for sustainable food production and pollinator conservation in food-

producing WBHs like Chile. These alternatives recognize native pollinators as internal inputs that 

cannot be replaced by IA technological packages or external inputs and support the development of 

agroecological and biodiversity restoration practices to protect their existing biodiversity. We 

suggest a starting point strategy for food production change that integrates four fundamental pillars 

for producing food in a sustainable way, recognizing biodiversity and local cultural heritage: 1) Share 

the land, restore and protect; 2) Ecological intensification; 3) Localized knowledge, research and 

technological development; and 4) Territorial planning and implementation of socio-agroecological 

policies. We suggest that this approach does not need greater modification of native pollination 

services that sustain the world with food and basic subsistence goods, but a paradigm change where 

the interdependency of nature and human wellbeing are recognized for ensuring the present and 

future of the world’s food security and sovereignty as well as considering the reduction of 

consumerism and food waste. 

 

Key words: Agroecology, sacrifice zones, Apoidea, water deficit, pesticides. 
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Introduction  

Industrial agriculture (hereafter “IA”) promoted by the Green Revolution has arguably brought 

about significant increases in food production globally over the past 70 years1. These models involve 

the use of a «technical package» with strong dependency on fossil fuels, which includes: large-scale 

monocrop landscapes of improved/selected seeds, increased mechanization and the incorporation 

of “external inputs” to enhance plant growth and yield such as the introduction of managed 

pollinators, synthetic fertilizers and pesticides2. Yet these welcomed apparent enhancements in 

production are also partly responsible for the ongoing massive release of greenhouse gases, the 

unsustainable use of water and land resources3 and the contamination of soil as well as both surface 

and underground water reservoirs by fertilizers and pesticides. Under the current market model this 

intensive agriculture production is widely requested by “countries with higher developmental 

level”4, driving unprecedented amounts of food waste5. IA functions at the expense of ever-

increasing socio-ecological crises, and has been recognized among the main drivers of irreparable 

biodiversity losses, especially in areas chiefly focused on producing and exporting food crops (i.e. 

“developing countries”)6–9. Biodiversity decline has been associated with the above-mentioned 

negative externalities of IA such as habitat loss and fragmentation, pollution and climate change, 

among others10–15. This reduction in biological diversity is currently jeopardizing ecosystem 

functions and associated processes (including pollination, water and nutrient cycling) and putting 

human wellbeing at risk10,16–19. Considering these problems derived from IA and its associated 

market model, several authors have stressed the need for a paradigm shift in agriculture if we are 

to meet future food demands while preserving the ecosystems that sustain this food production20–

22. 
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Agroecology (hereafter “AE”) is considered today as the most relevant alternative to IA by a wide 

range of actors involved in food production, such as stakeholders, farmers, scientists, NGOs and 

policymakers23–25. AE is a scientific discipline as well as a practice that involves the development of 

diversified farming systems and short supply chains, the promotion of low external input schemes 

and conservation and regenerative agriculture2,23,26–30. As a political movement, AE promotes food 

security and sovereignty (see Appendix 1) as an essential human dimension of agricultural 

transitions in the world’s political agenda28. Agroecology goals include the application of 

ecologically-based knowledge to agriculture, with the aim of a sustainable food production while at 

the same time reducing the environmental impact by spending less energy and resources in the 

process31,32, for example by lessening agriculture dependency on the application of external inputs 

(such as exotic managed pollinators, pesticides and fertilizers) to maintain food production23. AE is 

considered as the scientific rediscovery of some of the ancient agricultural practices developed and 

preserved by peasant and native cultures as alternatives to IA around the world33–35. AE takes 

advantage of local biotic components and abiotic conditions found in the agricultural landscape, 

seeking to match crops with local abiotic conditions and promote beneficial associated organisms36; 

highlighting the value of local knowledge and biodiversity that benefits agricultural production37. 

For instance, AE considers available organisms that improve crop productivity such as pollination, 

biological control and decomposition as “resource biota”38,39. Through this lens, local diversity is 

regarded as a natural “internal input” (II), as opposed to “external inputs” required for IA 

production, enhancing sustainable food production in agroecologically-managed fields. II provides 

different ecosystem services and ecological interactions30,40. This latter include pollinators, 

predators, parasites and herbivores as well as non-crop vegetation, soil invertebrates and 

microorganisms, among other components of local biodiversity helping crop yield41.  
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Insects provide several ecosystem services to food production, and are considered irreplaceable 

resource biota under an AE approach42–44. For example, it has been established worldwide that 

native bee species can improve yield and production quality22,45–49. Insect pollinators can contribute 

to food production even in cases where crops are capable of autonomous self-reproduction50; as 

selfing can have detrimental effects on yield and quality due to inbreeding51,52. Regarding the 

economic relevance of insect pollination, it has been found that the productivity of five of the seven 

main crops of USA is limited by unavailability of pollinators. The USA annual production value of 

native pollinator services to these crops has been estimated to be over $1.5 billion53,54. In the case 

of pollinator species not visiting crops but associated with farmland hedgerow flora and/or wild 

plant patches, this additional diversity has also been found to contribute to agroecosystem 

functioning, thus the preservation of these native species must also be considered54,55. Pollinating 

insects are currently contributing to world food production, even though intensive IA practices are 

paying them back with detrimental effects on their health and survival (Figure 1A; Appendix 2)44,56–

58. All this is currently negatively impacting food security59,60, especially when managed pollinators 

may not be the solution to present wild pollination losses61,62. 

AE, by contrast, acknowledges the contribution of native pollinators and highlights them as priceless 

players for a lasting food production strategy63. Using the AE framework, this study proposes an 

agroecological strategy (AES) to face the current decline of native pollinators due to IA applying four 

fundamental AES pillars (Figure 1B). AES can be put in practice in order to counteract known 

biodiversity threats produced by IA and overcome these negative impacts. AES aims to enhance crop 

production while maintaining healthy ecosystems and native pollinator diversity64. To support AES, 

we emphasize the relevance and urgency of AE research, practices and policy-making, especially for 

areas of the planet currently considered reservoirs of pollinator diversity65 such as WBHs66. The 

reason for this emphasis is the fact that WBHs often overlap with prime agriculture zones67. 
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Therefore the continuity of food supply may be at stake, considering that biodiversity is a key 

contributing factor to world agricultural production4. Ironically, WBHs’ unique assembly of species 

and ecosystem services are being jeopardized by IA practices and its associated globalized market 

schemes6,68,69. As irreplaceable resource biota, native pollinator biodiversity could contribute to a 

sustainable long-term food production model39,70–73, therefore it merits a place in the design of a 

modern food production system. In this study we briefly outline the main effects of IA on native 

pollinators and its implication on insect decline. We use Chile as a case study, a fruit-exporting OCDE 

developing country with considerable endemism that hosts an unprotected biodiversity 

hotspot66,74,75. IA practices in Chile are one of the main causes of environmental and social 

problems76,77. This pattern can also be found in other countries around the world hosting WBHs, 

where raw material export-oriented economies have been often maintained with disregard for 

social unrest and damage to the environment produced78–80. We discuss to what extent a change in 

food production procedures which includes AE pillars may contribute to ameliorate native pollinator 

biodiversity decline in WBHs, and highlight the relevance to consider this not as local issues 

concerning agriculture-oriented economies but as a key matter for world environmental health and 

food security. 

 

Effects of IA on pollinators 

In the last five decades there has been a significant global increase in land use changes for 

agricultural production purposes81,82. As a consequence, landscapes on Earth have been simplified 

and homogenized83–86. This is concerning as both human-managed and natural ecosystems rely on 

their biodiversity for the provision of diverse services that allow their functioning87–89. Industrialized 

agriculture manages agroecosystems through the constant application of external inputs with the 

goal to maximize the production of commodities based on a small variety of crop species, mostly to 
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supply to international food market demands6,90. As was previously mentioned, this highly 

industrialized agribusiness is conducted largely in underdeveloped areas of the planet at the 

expense of reducing biodiversity, soil and water sources quality as well as the wellbeing of workers 

and local communities91–98. For instance, pesticides and fertilizers are among several indispensable 

external inputs needed for the maintenance of IA goals. These are often applied in massive amounts 

to fields in order to attain high productivity13,39, with disregard for the negative effects on biotic and 

abiotic components of these managed habitats99,100, including the resources needed by different 

insect species to complete their life cycle (e.g. nesting materials, resting refuge, egg laying and 

suitable larval development microhabitats)101. Industrialized agriculture has been recognized among 

the main threats to insect pollinators58,102,103. Great reductions in pollinator populations reported 

have been attributed to the IA practices for food production9,44,104–108, causing a general decline in 

native pollinator richness and visitation rates not only in surrounding patches of native vegetation 

but also in croplands109,110. In this section we summarize how landscape changes as well as the 

incorporation of external inputs by IA affect native insect pollinators, including native bees, drivers 

that act together and additively under an intensive agricultural scheme (Figure 1A)111. 

 

Landscape 

Landscape changes due to intensive agriculture may negatively impact pollinators9,108,112, by 

changing their composition (percentage of natural/semi-natural habitats in the landscape) and/or 

configuration (i.e. patch density and interpatch connectivity)113. The effects on native pollinators will 

also depend on species-specific traits of these insects and the landscape context114–122. For example, 

nesting resource availability seems to explain 61% of the variation found in different nesting guilds 

such as ground nesters, pre-existing cavity nesters, carpenters, hollow stem nesters and 
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cleptoparasite bee species123. Thus, the effects of IA may cause both overall decline and community 

structure alternations.  

IA farms are characterized by large-scale crops isolated from natural and/or semi-natural habitats, 

lacking enough floral and nesting resources as well as decreasing production and survival of insect 

pollinator offspring124. These industrialized croplands typically harbor low insect pollinator richness 

and abundance125, reducing pollination services and functional diversity115. Vulnerable species have 

been found to be the most affected under these circumstances126, losing millions of years of plant-

pollinator evolution in the process127. Landscape homogenization (hereafter “LH”; Appendix 1; 

Figure 1), appears to be an important driver of IA effects on biodiversity83. This might be linked to 

agroecosystems’ reduction of natural habitat patches and/or natural habitat elements115, decrease 

of available resources needed for the different components of biodiversity128 and the loss in 

connectivity of farmland to natural remnant patches120,129. LH also affects mutually beneficial 

interactions between flowering plants and insect pollinator communities130. Pollinator diversity in 

agricultural habitats under LH might end up being replaced by the few species able to survive these 

depauperated conditions, leading to further biotic homogenization131. This is represented in Figure 

1A by native bee specimens pictured in grayscales. The reduced surviving pollinators that remain 

may not guarantee the delivery of sufficient pollination services, both for human-managed and 

natural ecosystems132. For instance, coevolved associations between native insect pollinators and 

functionally specialized plants may become at risk of pollen limitation due to LH133. This evidence 

suggests that not only native pollinators currently visiting crop plants must be the focus of concern 

due to current agricultural practices, but also the whole wild bee guild that may also contribute to 

the maintenance of local plant diversity near agricultural landscapes134. 
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External inputs 

Because IA simplifies landscapes and their biological diversity, hampering their contribution to 

agricultural production13,135, it needs to incorporate “external inputs” (“EI” in Figure 1A and B) to 

replace the lost regulatory and supporting ecological services in modified landscapes otherwise 

provided by internal inputs (II)39. External inputs include abiotic and biotic factors. For example, 

chemical formulations such as fertilizers and pesticides are often used along with modified seeds 

(e.g. herbicide-tolerant crops) capable of enduring these applications while most local biodiversity 

cannot100. IA also introduces exotic managed organisms to provide pollination and biological control. 

Both pesticides and the use of managed pollinators have been regarded as main external inputs 

responsible for the decline in native pollinators 136. Below we detail this evidence. 

Pesticides: Pollinators under IA food production plans are exposed to multiple pesticides137, which 

have demonstrated deleterious effects in their nervous system, behavior and cognition as well as 

their development, reproduction and overall survival138–147 (Appendix 2). It has also been suggested 

that sublethal exposure to pesticides may produce immune suppression in pollinators148, increasing 

their susceptibility to pathogens. Recent evidence regarding epigenetic inheritance has 

demonstrated that pesticides drive pathological alterations in insect pollinators149, while in target 

organisms it has been reported the development of IA promotes epigenetic transgenerational 

resistance against pesticides150. Thus while pesticide detrimental impact may last several 

generations on non-target organisms, their efficacy on pest species may be reduced as they became 

immune to their effects151. 

 

Pesticides reduce the richness and abundance of pollinators and other beneficial native insects152–

154, resulting in mid- and long-term declines and higher extinction rates, whether they forage in 

treated crops or not (Figure 1A)25,155,156. Pesticide exposure routes are correlated with the different 
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materials these insects need to complete their life cycles (e.g. nesting and food resources)157–159. 

Pesticide residues have been found in food items and substrates used by target and non-target 

insects160–165. This impairs the delivery of pollination services, reducing pollen collection efficiency 

and affecting crop yield166–168. It has also been demonstrated that native pollinators respond 

differently to pesticide exposure compared to managed pollinators such as honeybees169, and in 

some cases they are more susceptible to their toxic effects170,171. Pollinator species may have 

different responses to pesticides (Appendix 2), making it difficult to predict the adverse 

consequences of these chemicals on pollination services172,173. The availability of this kind of data 

for every species seems unfeasible in the short-term, and thus species-specific traits (such as nesting 

behavior and sociality type) could be used as proxies to predict pesticide response116,158,174.  While 

there is a sustained use of large amounts of pesticides in IA schemes67, claims of a reduction of their 

environmental damage have been questioned by researchers. For example, recent reports 

considering the toxic effects of several pesticides for eight non-target species groups revealed a 

noticeable increase in the toxicity of applied insecticide over the last 25 years for both aquatic 

invertebrates and pollinators100. This was mainly attributed to the contributions of pyrethroids and 

neonicotinoids, respectively. The increase of pesticide toxicity included studies in GM corn crops 

(towards aquatic invertebrates and pollinators) as well as in GM herbicide-tolerant soybeans, where 

coexisting plant species were also heavily affected100. These updated findings stress the urgency to 

change how food is being produced, leaving current dependency on these external inputs for the 

sake of the survival of pollinating insects and human health. 

 

Managed pollinators: Regarding this external input largely use in IA schemes to secure crop 

pollination, most studies have reported negative effects on native pollinators due to 

the introduction/spread of exotic competing managed bee species (e.g. Apis mellifera, Bombus 
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terrestris) in agroecosystems9175–177. Managed bees affect the development and reproduction of 

native bee species that are close to their colonies178. For instance, sometimes managed bees mate 

with local species, resulting in inviable hybrids179,180. EI pollinators introduced under IA management 

might also compromise food and nesting resources available to other native insect pollinators 

through competition181. When managed bees become naturalized outside of their native range they 

can adapt easily to varied nesting substrates, potentially being less susceptible to nesting site 

shortages182, and overcoming this shortage by usurping closely related species’ nests183. In the 

presence of greater floral abundance, the number of managed bees visiting floral species is higher 

than those of pollinators184, potentially outcompeting them185. They are also able to amass a great 

amount of provisions rapidly 186, possibly depleting resources for other native insects187.  

Pathogen spillover might also be of concern in this context; managed bees are usually social insects 

and given their behavior could be more likely to host and spread pathogens188. These exotic 

pollinators are able to transport and spread pathogens to flower species while visiting 189. These 

then are transmitted to other wild flower visitors, including native pollinators190. Although 

pathogens have been indicated as one of the drivers of lower pollinator abundance191, their impact 

on native and introduced bee species seems to be so widely distributed that is difficult to pinpoint 

the direction of these spillovers192. Nonetheless, this is a recognized source of deterioration of native 

pollinator wellbeing. 

 

 

IA and AE in biodiversity hotspots: Chile, a case study 

Biodiversity hotspots are highly endemic biogeographic regions threatened by human activity66. The 

Neotropical region includes several of these areas, hosting an outstanding diversity and richness of 

native pollinators9. This area of the planet produces a considerable portion of food crops by IA and 
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it has been regarded as the zone has suffered one of the greatest declines in biodiversity and 

ecosystem services4,80. Chile includes in its territory almost an entire hotspot, named the “Chilean 

Winter rainfall-Valdivian Forests”. This consists of several biomes hosted within the Chilean 

Matorral and the Valdivian temperate rainforest66,193. The former could be considered a WBH and 

largely overlaps with IA food production areas194,195. Unfortunately, only 1.8% of Matorral land is 

under the Chilean national protection program196. The Chilean Matorral is also a region that hosts 

an important bee species diversity with elevated endemism65,197.  

Chile has subscribed to environmental treaties to know, conserve and restore its biodiversity as well 

as reforest endangered areas198–201, but so far there are no territorial management plans that aim 

to make agricultural production compatible with biodiversity conservation (appendix 2). This has 

resulted in a significant loss of natural habitats in a few decades202,203. National records report that 

approximately 70% (12,900,682 ha) of the land used for agriculture, livestock and plantation forestry 

is within the “Chilean Winter rainfall-Valdivian Forests” hotspot204. This hotspot holds an area of 

30,000,000 ha, which means that nearly 43% of it has already been replaced by these production 

schemes193. Even more concerning is that habitat loss rate in this hotspot keeps growing205. 

Agricultural practices in Chile are deeply rooted in export-oriented IA models67,206, directly 

attributed to the economic liberalization policies mandated by the military dictatorship after 

1973207. Measures established by force during this period included the privatization of the public 

sector, resulting in the concentration of agricultural land in the hands of a few and a significant 

exploitation of natural resources to supply international markets208, creating a globalized and 

capitalized commercial IA scheme at the expense of neglecting and marginalizing small farmers and 

indigenous people209,210.  

The rediscovery of AE alternatives in Chile began as a reaction towards the economic crisis that 

unfolded immediately after the application of Milton Friedman’s neoliberal policies in the early 
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1980s, due to an exponential increase in rural poverty and abandonment of the urban and rural 

working classes69,211. Chilean AE advances were made by a small number of NGOs, small farmers and 

academics35. Although some of these developments were recognized by the Food and Agriculture 

Organization of the United Nations212, only in rare cases have AE practices been adopted by 

corporations and promoted by policy makers, and at present these practices are not used on a 

productive scale in Chile69,213. 

 

Pesticides 

Around 9.6% of the pesticides approved by the Chilean government214 have been already banned 

by the European Union (Appendix 2), one of the main consumers of Chile’s fruit exports67. Most of 

these pesticides are highly toxic, with demonstrated negative effects on bees at sublethal doses 

(Appendix 2). For example, while neonicotinoids (e.g. clothianidin, imidacloprid, thiamethoxam) are 

being questioned by experts around the world and have restricted use in Europe due to harmful 

effects on native and managed bees98,156,215–218, they are widely used in Chile due to an alleged 

“absence of proof in the country of their negative effects”219,220. This is concerning given the 

chemical behavior of these pesticides, as these widely-used formulations are adsorbed by mineral 

clays and organic matter that form agricultural volcanic ash-derived soils221, damaging biodiversity 

as a consequence222, and most likely affecting native bee species directly, as nearly 70% of Chile’s 

wild Apoidea nest in soil substrates233. Despite the aforementioned issues, current regulatory 

protocols for the approval of new formulations and maintenance of pesticide use in Chile have not 

been updated based on current scientific acknowledge and do not require the development of local 

science-based risk-assessments over biodiversity for their approval for IA use224. 

 

Managed Pollinators 
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External biotic inputs in Chile are already impacting the environment; the main exotic bumblebee 

species commercially used for providing pollination services, the buff-tailed bumblebee Bombus 

terrestris Linnaeus, 1758 and B. ruderatus Fabricius, 1775 have rapidly replaced the Patagonian giant 

“moscardón” bumblebee Bombus dahlbomii Guérin-Méneville, 1835228,229 (Figure 2). B. dahlbomii 

was a source of medicinal honey and considered a sacred being by Mapuche, one of the First Nations 

people of Chile230. Scientists have demonstrated that Introduced bumblebee species are displacing 

native B. dahlbomii in Chile and Argentina, colonizing natural areas in most of the southern cone of 

South America, and have urged authorities to ban the imports of these IA-managed pollinators231,232. 

Even though this is a concerning situation, government policy still allows the importation of buff-

tailed bumblebees for IA crop pollination in Chile231.  

In the Mediterranean region of central Chile, a bee biodiversity hotspot65, avocado orchards have 

been recorded to be profusely visited by managed A. mellifera, while five native bees species have 

also been reported visiting this crop233. Although this finding was proposed as a demonstration of 

the compatibility of IA avocado production with native bee biodiversity, these observations were 

conducted through one-season focal observations and with no additional collection methods or 

control of native vegetation or wild bee abundance comparisons. Scarce and often preliminary local 

research in combination with fast-paced habitat loss in Chile paints a concerning picture for 

pollinators and their ecosystem services in the agricultural production canvas. Chile probably hosts 

around 800 bee species, with more than 450 species described and 70% endemicity197. Very little 

research has been published in regard to native insect performance as pollinators for native and 

crop plant species. For example, in the case of the endangered B. dahlbomii234, this native Apidae 

has been described as a possible pollinator of greenhouse tomatoes235, and has been seen visiting 

blueberry and avocado orchards233. Considering this evidence and the research from neighboring 

countries246–248, it seems likely that most native insect pollinators may already be pollinating crops 
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of economic importance. The knowledge of wild bee species association with native plants is largely 

incomplete197,239. Chile may hold an irreplaceable pollinator workforce in its native bee pollinators, 

contributing both to crop yield and the preservation of unique biomes, nonetheless they are 

threatened by intensive IA production and neglected by government policy makers. This highlights 

the unsuitability of Chile’s current agricultural production and market and jeopardizes the mid- and 

long-term contribution of this country to the production of fruit commodities and also to its own 

resilience against future environmental and food crises. In the following section we develop our 

proposal to face these issues and be able to protect pollinators in agriculturally-oriented WBHs like 

Chile. 

 

Protecting pollination: strategies for the future 

Human practices, including agriculture, need to return within the limits that keep our planet 

habitable89,240, for the sake of our own species and all living organisms241,242. Countries with 

invaluable biodiversity need to rethink critically the way they are doing agriculture and revaluate 

local and native sustainable practices243,244. Understanding that native pollinator species are unique 

“resource biota” (see Appendix 1) already contributing to current crop yield is to be aware of a 

strategic advantage compared to agriculture food production in non-WBH regions. Native 

pollinators are AE internal inputs that cannot be replaced by IA technological packages or external 

inputs245. Coexisting with our threatened biodiversity and valuing its cultural and biological wealth 

within productive ecosystems will protect the future of pollination services as well as contribute to 

food security and sovereignty. Here we focus on the development of agriculture schemes in WBHs 

considering native biodiversity, and compile a strategy summarized in four pillars based on 

agroecological thinking as well as First Nations’ knowledge: (1) sharing, restoring and protecting the 
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land; (2) AE as the paradigm of sustainable agriculture and pollinator protection; (3) localized 

research and technology; and (4) territorial planning and AE policies (Figure 1B). 

 

1. Sharing, restoring and protecting the land 

Natural ecosystems are far from simple, and to achieve sustainable agriculture there is a need 

to maintain their complexity40. Polycultures and florally diverse environments have been 

found to support native pollinator diversity due to a continuous supply of food resources246. 

Agricultural practices need to consider that pollinator functional diversity relies on these 

native habitats and that biodiversity hotspots by definition are already threatened, thus need 

to be considered with special care when conducting productive and extractive activities. A 

sustainable complex landscape matrix is needed to protect hotspots and ensure the delivery 

of pollination services to crops. This pillar should integrate restoration and protection of large 

areas of natural habitat and restoration of native land patches within agroecosystems to 

increase habitat quality (i.e. land sharing)247. Pollination services delivered by native insects 

have shown to rely strongly on their proximity to natural habitats 109,248,249. Protected natural 

areas host higher biodiversity250, but are not enough to sustain ecological stability251. To 

achieve stability, habitats that have been altered by human activities, including urban zones 

and areas utilized for productive activities, need to be restored as much as possible252, leading 

to effective conservation outcomes by assessing their coverage (i.e. the number and types of 

species included within their limits) and management253. Restoring native patches of 

anthropized land improves habitat quality within agroecosystems, maintaining and securing 

native insects254. Native patches buffer the negative effects of pesticide application on 

pollinators153,255, offer greater flower diversity and nesting sites256 and are correlated with 

higher pollinator density257. In farmlands these patches also serve as wildlife 
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corridors114,181,258–260, promoting heterogeneous landscapes261 and stabilizing crop 

pollination262. These patches could be implemented at field edges and should have mixed 

native plants with partial overlap in floral phenology as a way to provide resources for bees 

during the whole flowering season256. Pollinators benefit from florally diverse environments 

due to a continuous supply of food resources246, which are critical for ensuring their 

reproduction124. The size of these patches could be dependent on the crop type that they 

surround, and research should be carried out to define the appropriate cost-effective sizes 

within specific agroecosystems101,263.  

 

2. AE for sustainability and pollinator protection 

Among the core principles of AE science and practice is the preservation and use of local 

diversity as natural inputs contributing to crop yield264. This approach also advocates for food 

sovereignty while reducing the negative effects of agriculture on the environment and 

society265. Monocultures, organic or not, reduce the functional diversity of pollinators115. 

Under an agroecological strategy (AES), biodiversity is incorporated into agroecosystems to 

mimic natural ecological processes28. With higher biodiversity, agroecosystem inner 

complexity grows and reduces the dependence of crops on destructive external inputs, 

allowing the system to maintain its own soil fertility, productivity and protect itself from 

pests266, benefiting insects and attracting pollinators101. All this allows native pollinators to 

visit crops safely and thrive in an agroecosystem with food and nesting resources free of 

pesticides. This higher pollinator biodiversity could even reduce the need to incorporate large 

numbers of managed pollinators within crops as additional external input. Nonetheless, the 

aforementioned falls short of defining AE, as not only are academic, political and cultural 

perspectives tightly knitted to this model, AE places small farmers and local knowledge as the 
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key for food sovereignty267 and does not agree with the new Green Revolution approach, 

which seeks to perpetuate an IA system for food production268. Instead, AE focuses on the 

dissemination of knowledge from farmer to farmer based on their historical backgrounds and 

on reviving their ancestral farming roots269, strengthening communities and allowing them to 

become autonomous, securing local food production268. Mexican and Bolivian farmers are 

examples of how traditional low-intensity agriculture allows native bee species to provide 

successful pollination service270,271. There is no need for a new Green Revolution, as social 

vulnerability and income inequities are the main cause of hunger5. AES, summarized in this 

review, aim to protects pollinators not only by its effects in agroecosystems, but also by 

reducing poverty and improving people’s livelihoods, by both recovering local knowledges 

and developing local research technologies as well as implementing territorial planning and 

AE policies considering the needs of local communities (Explained further in following 

sections, Figure 1B)32. People can only protect or be concerned about biodiversity and its 

conservation once their basic needs have been met. Thus, the world does not need more food 

commodities to be traded globally; it needs equal access to nutritive food and production not 

focused only on market and profits272,273.  

 

3. Localized research and technology 

Science has proven that IA is leading a steady biodiversity decline and exceeding the planetary 

boundaries that allow humans to survive on Earth89. The IA production and market scheme 

keeps low-income WBH countries of the world relying on the import of technological 

packages and depending on globalized markets to achieve their productivity goals. 

Technological packages should not be imported without knowing their consequences to 

ecosystems, local communities and economies274,275. Critical knowledge gaps still exist 
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regarding taxonomy, ecosystem services and socio-ecological vulnerability in order to 

implement production alternatives considering native pollinators276. This is especially urgent 

in WBH countries risking their biodiversity, food sovereignty and human wellbeing277.  

Localized studies need to be conducted in regions where biodiversity knowledge is scarce and 

nature is heavily under threat due to industrialized food production activities80. As a starting 

point it is necessary to fill the current knowledge gap on species and their ecological 

associations278. There are still a great number of organisms and ecological interactions left to 

describe279, largely in WBH zones. Taxonomy is one of the foundations of the applied sciences. 

If species have not been described, it becomes challenging to understand how they respond 

to ecological changes and be able to monitor them280. This is especially urgent for insects, a 

group underrepresented in conservation research281 and under global decline8. Research in 

WBH countries is also key to assess native pollinator contribution to crop and native plant 

species reproduction, their nesting needs and different behaviors. Pollinator species have 

diverse life histories and traits, responding differently to the same threats83,114. Assessing how 

pollinators respond to potential dangers will allow for the modeling of proper AE production 

programs. To illustrate the urgent need of information we use the Apoidea, highly charismatic 

native pollinators. It has been estimated the number of native bee species in the Neotropical 

Region would be above 15,100, stressing that current knowledge on actual species richness 

would represent roughly one third of this total9. This is worrisome considering the high rates 

of biodiversity and ecosystem services losses reported for this region of the world 80, largely 

composed of WBHs focused on agriculture exports4. This may imply the potential extinction 

of many pollinators before even their description, “Centinelan Extintion” 282, and its neglect 

represents a threat to both local and global food security283. Therefore, the local study of bee 

biodiversity and conservation in these regions must be a global concern. Local farmers and 
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first nations have been recognized as “local knowledge holders” for already possessing the 

understanding regarding their pollinators and their pollination services in their local food 

production284–286. This wisdom needs to be recovered and applied, as they are key to 

implement and ensure AES allowing a gradual transition towards a sustainable global food 

production scheme287.  

Research will improve our understanding on how insect pollinators respond to agricultural 

practices in WBH countries and provide alternatives with the goal to advance towards the 

sustainability of socio-ecological systems, allowing for the development of AE tools and 

technology as part of the production chain as well as conservation in several food and plant-

derived goods needed by our species. Developing local AE knowledge will not only protect 

biodiversity (e.g. native pollinating insects) and agricultural productivity but also reduce the 

dependency on IA external drivers and inputs and contribute to the coupling of ecosystems 

and human wellbeing277. With this design, pollinator conservation will not be considered a 

trade-off against agroecosystems or society but as a partnership for our coexistence. 

As was already explained, AES for WBHs must consider the political and cultural perspectives 

along with the research program. Therefore, the rediscovery of AE must link human wellbeing 

and ecosystem integrity, thus the collecting of information about the ecological vulnerability 

of pollination services needs to be coupled with gathering information on social inequalities 

in this food-producing WBH277, as a link between economic vulnerability and biodiversity loss 

has been demonstrated288. Integrating all this will allow the development of local AE research 

and technology in consideration of the societal and ecological conditions of different WBH 

regions of the planet276,289,290, providing AE schemes for each socio-agroecosystem37. 

 

Territorial Planning and AE policies  
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World Biodiversity Hotspots are strongly threatened by the loss of their species and resource 

depletion (e.g. water scarcity) due to IA schemes, currently representing sacrifice zones that 

provide food and goods to global markets, so the developed side of the world can “go green”6. 

This needs to change. AE’s local biodiversity “internal inputs” such as native pollination 

services73 cannot be labeled as commodities (e.g. “natural capital”73), as its “exchange” 

threatens the sustainability of food production and commerce4. This is likely currently 

happening in a “Centinelan” pollination consumption (not a “trade”), as native bees cannot 

be replaced or recovered once species go extinct. Moreover, there is not a fair planetary-level 

exchange and interdependency between WBH exporters and international food commerce, 

as the resulting benefits have been demonstrated to be distributed globally in a both socially 

and economically unequal way4. For instance, in Chile IA is coupled with sustained social 

inequalities and unrest, local communities driven to unsanitary water deficit and unique 

biomes shrinking as IA expands, leading pollinating species to decline before having a chance 

to be studied207,211,291.  These are the challenges policy makers need to face; if we want to 

keep the remaining biodiversity of native pollinators in food-producing countries, intensive 

industrialized agriculture schemes must be first buffered by AES and gradually replaced by 

true sustainable food production9,72.  

In order to translate knowledge into policies, first the gathering of information needs to be 

supported. Science and local knowledge holders can provide a roadmap to make well- 

informed decisions (Figure 1B), but their work needs to be properly funded and listened to292. 

These policies can provide the data science and technology need to assess, propose and apply 

the best cost-effective strategy for pollinator conservation, food security and sovereignty293. 

This is already happening in main food consumer countries of the European Union and the 
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United States8. Unfortunately, this is not true for most WBH countries80, where not taking the 

steps in this direction will have global consequences.  

Strong environmental governments will be required in order to change IA schemes and 

prioritize the conservation of native pollinators and wildlife. Ecosystems, especially those 

belonging to biodiversity hotspots, need to be within an international legal framework of 

protection that starts by recognizing the context-specific complexity of agricultural systems 

and the irreplaceable relevance of local diversity, both biological and cultural286. Local 

deterioration of biodiversity due to extractivism has global consequences on the health of the 

Earth’s system and food security89. Small-scale farming applying AE schemes, such as that 

proposed in this work, must be prioritized in WBH 69. Agricultural businesses should be 

required to follow AES and sustainability standards273, including: coherence with crop and 

climatic conditions of local biomes, diversified farming and to prioritize the use of AE’s 

internal inputs. As a complement, rural and urban public awareness policies and AE education 

must be considered to provide tools towards conservation and food sovereignty294. 

Traditional ecological knowledge of local agricultural practice and native pollinators must be 

outreached to the public and applied, preferring small diversified AE farms instead of large 

monocrop IA. Moreover, urban AE initiatives and native plant gardening must be promoted 

as additional patches for native reforestation33,273,295. All these urgently need to be assessed 

and overseen, to ensure sustainable management practices and the conservation of 

biodiversity213.  

Agroecological management reduces the need for pesticide use and their undesirable 

consequences (Appendix 2), which is an opportunity for WBH countries to ban harmful 

pesticides, already done in main food consumer countries8. Given that insect decline is a 

global threat, taking sustainable measures in richer countries will not make this crisis 
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disappear without a global commitment60. WBH governments also urgently need to 

implement AE-inspired territorial management plans, including the protection of people’s 

livelihoods over large corporately owned agricultural areas (e.g. in Chile watering avocado 

orchards owned by a few cannot hamper entire communities’ access to water).  

Developed main food consumer countries need to consider that being climate neutral at the 

expense of importing food crops from underdeveloped countries does little to solve the 

negative effects of IA and completely ignores that the loss of ecosystem services will not make 

distinctions between geopolitical borders296. When trading with other nations, developed 

countries need to have policies that hold the same standards of sustainable production 

(including bans on GMOs and pesticides) as those applied to their own countries, and not 

insist on requiring “yield increases in many low-income countries”297.These low-income areas 

are often also world reservoirs of biodiversity (including pollinators). To consider WBS as 

sacrifice zones, for the sake of meeting current market needs, are putting in peril not only 

biodiversity itself, but also global food security and Earth system health6.  

 

Conclusion  

A new deal considering AE approaches must be implemented globally, considering WBH as key areas 

both for the preservation of native pollinator biodiversity and rights and wellbeing of local 

communities. The implementation of agroecological strategies in WBHs as starting point and buffer 

for IA may facilitate the transition towards a true sustainable food production.  AES will improve our 

understanding of ecological dynamics in agroecosystems, allowing sustainable development over 

time, ensuring local development and food sovereignty of WBH, for the sake of keeping native 

pollinator biodiversity and the wellbeing of the whole planet88,89.  
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Figures  
 
Figure 1. A: Industrial agriculture (IA) scheme rely on agricultural intensification, this is 

mainly done by the simplification of rural ecosystems due to increased landscape 

homogenization (LH). In addition IA depends, for the production of crop yield (CY), on the 

application of external inputs (EI), such as: pesticides, GMOs and managed exotic 

pollinators.  Nonetheless LH and EI are also causing a decline of biodiversity including wild 

pollinators like native bees (NB). This is exemplified in this illustration, from large to small, 

by genera: Bombus, Anthidium and Lasioglosum native species. This problem is especially 

critical at world biodiversity hotspots (WBHs) like central Chile, where relatively larger 

species have been found to be more likely affected by LH and EI (represented in gray in 

Figure A). B An agroecological strategy (AES) to counteract the effects of current IA 

intensification at world biodiversity hotspots (WBHs) by incorporating:  Land Sharing, 

Restoration and Preservation (LS R&P), the use of Internal Inputs (II) derived from local 

biodiversity, including microorganisms, native plants and animals. AES also propose the 

development of localized research and technology (LR&T) as well as Territorial Planning and 

Implementation of Agroecological policies (TP&AP). We propose that these AES pillars may 

contribute to the survival and performance of native pollinators such as wild bees, NB 

contribute directly to crop yield as well as indirectly by its influences on AES (e.g. helping LS 

R&P, II and LR&T). We suggest AES may be able to buffer current LH and EE from IA, as a 

start point towards a gradual change towards the implementation of an agroecological food 

production system; not focused on international market needs only, but on food 

sovereignty and safety as the base for a true global sustainable food production. Illustration 
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by Cristian Villagra. 

Figure 2. Giant bumblebee: Bombus dalhbomii (Hymenoptera), native from Chile and 

Argentina, legitimately visiting blueberry flowers in November, 2015, Villarica, X Region, 

Chile (scale: 1cm). This species has been categorized as “endangered” by the IUCN Red List. 

Photography by Marianela Castillo Arias. 
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Figure 2.     
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Appendix 1. Glossary 

Agroecology: agronomic discipline focused on an environmental and socially responsible agricultural 

management. This is achieved through the study of ecological processes inside agroecosystems and the 

application of this knowledge to agricultural practices.  

Agricultural intensification: agricultural scheme that seeks to maximize crop yield per unit of area through 

the use of external inputs. 

Ecological intensification: replacement of external inputs used in intensive agriculture (e.g. insecticides, 

fertilizers, growth regulators, etc.) by ecosystems services to maximize crop yield with minimum 

environmental impacts. 

Ecosystem services: ecological functions that benefit and are essential for human beings. 

Habitat: environment inhabited by a particular species. 

Landscape homogenization: simplification and reduction of biotic components inside an area of land, which 

leads to a community of similar functional and structural traits.   

Natural habitat: pristine environment inhabited by native species.   

Organic agriculture: agricultural scheme that does not use fertilizers and pesticides. 

Patch: area of land with the same characteristics, regardless of its size. 

Seminatural habitat: a native environment partially modified by human activities.  

Sustainable agriculture: agricultural scheme that efficiently maximizes production while protecting the 

habitat and natural resources from which it depends, safeguarding biodiversity in the long term. 
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Appendix 2. Active ingredients with effects in bees still used in Chile and not approved by the 

European Union. 

Use 
Classification 

in Chile¹ 
Active Ingredient ² Pesticide class ³Effect Reference 

I, R, A Acephate Organophosphate  Highly toxic to bees and other beneficial 
insects. 

Christiansen 
et al. 2011 

H Atrazine Triazine Oxidative stress responses and alteration 
acetylcholinesterase activity in honeybees; 
pesticide detected in native bee tissue; 
found in stored pollen of honeybees; 
decreases survival, reduces food 
consumption, and negatively affects 
behavior in stingless bees. 

Bernal et al. 
2010; Boily et 
al. 2013; 
Hladik et al. 
2016; 
Williams 
2016; dos 
Santos Araújo 
et al., 2021 

H Atrazine/S-metolachlor Triazine/Chloroacetamide  Oxidative stress responses and alteration 
acetylcholinesterase activity in honeybees; 
pesticide detected in native bee tissue; 
found in stored pollen of honeybees; 
decreases survival, reduces food 
consumption, and negatively affects 
behavior in stingless bees. 

Bernal et al. 
2010; Boily et 
al. 2013; 
Hladik et al. 
2016; 
Williams 
2016; dos 
Santos Araújo 
et al., 2021 

F, B Benomyl Benzimidazole Moderatly toxic to honeybees N.C. 
Agriculture 
2016 

I, R, A Cadusafos Organophosphate  Highly toxic to bees EFSA 2006 

I, R, A Carbaryl Carbamate Highly toxic to honeybees; found in stored 
pollen of honeybees 

Bernal et al. 
2010; Bond et 
al. 2016 

F, B Carbendazim Benzimidazole May alter the immune response and P450-
mediated detoxification of honeybees 

Shi et al. 2018 

F, B Carbendazim/Epoxiconazole Benzimidazole/Triazole May alter the immune response and P450-
mediated detoxification of honeybees; 
detected in corbicular pollen loads of 
honeybees 

Böhme et al. 
2018; Shi et 
al. 2018 

F, B Carbendazim/Mancozeb Benzimidazole/Carbamate May alter the immune response and P450-
mediated detoxification of honeybees 

Shi et al. 2018 

F, B Tebuconazole/Carbendazim Triazole/Benzimidazole May alter the immune response and P450-
mediated detoxification of honeybees; 
pesticide detected in native bee tissue 

Hladik et al. 
2016; Shi et 
al. 2018 

I, R, A Cartap hydrochloride Carbamate Toxic to bumblebees Marletto et al. 
2003 

I, R, A Cartap monohydrochloride  Carbamate Highly toxic to insects Kegley et al. 
2016 

I, R, A Chlorfenapyr Pyrrole Highly toxic to honeybees Rhodes & 
Scott 2006 

F, B Chlorothalonil/Carbendazim Chloronitrile/Benzimidazole May alter the immune response and P450-
mediated detoxification of honeybees; 
found in stored pollen of honeybees 

Bernal et al. 
2010; Shi et 
al. 2018 

F, B Copper 8-quinolinolate/Carbendazim Organometallic 
compound/Benzimidazole 

May alter the immune response and P450-
mediated detoxification of honeybees 

Shi et al. 2018 

F, B Copper oxychloride/Dibasic copper 
sulfate/Iprodione/Sulphur 

Copper salt/Copper 
salt/Dicarboximide/Chalcogen 

Decrease in honeybee's forager survival; 
found in stored pollen of honeybees 

Bernal et al. 
2010; Fisher 
et al. 2017 

I, R, A Diazinon Organophosphate Precocious foraging in honeybees; Impaired 
olfactory learning in honeybees; found in 
stored pollen of honeybees 

MacKenzie & 
Winston 
1989; Weick 
and Thorn 
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2002; Bernal 
et al. 2010 

I, R, A Fenpropathrin Pyrethroid Highly toxic to honeybees Gromisz 2001 

I, R, A Fenvalerate Pyrethroid Highly toxic to honeybees; hazardous to 
leafcutter bees  

National 
Research 
Council of 
Canada 1981 

I, R, A Fipronil Phenylpyrazole Highly toxic to honeybees; Impaired 
olfactory learning in honeybees; toxic to 
leafcutter bees; pesticide detected in native 
bee tissue; found in stored pollen of 
honeybees; causes lethargy, motor 
difficulty, paralysis and hyperexcitation in 
stingless bees  

Mayer & 
Lunden 1999; 
Hassani et al. 
2005; Bernal 
et al. 2010; 
Pisa et al. 
2015; Hladik 
et al. 2016; de 
Morais et al., 
2018 

H Glufosinate-ammonium Phosphinic acid Low toxicity in honeybees European 
Food Safety 
Authority 
2005 

H Imazamox/Imazapyr Imidazolinone/Imidazolinone Low toxicity in honeybees EPA 2005; 
European 
Food Safety 
Authority 
2016 

F, B Iprodione Dicarboximide Decrease in honeybee's forager survival; 
found in stored pollen of honeybees 

Bernal et al. 
2010; Fisher 
et al. 2017 

F, B Iprodione/Propiconazole Dicarboximide/Triazole Decrease in honeybee's forager survival; 
pesticide detected in native bee tissue; 
detected in corbicular pollen loads of 
honeybees; found in stored pollen of 
honeybees 

Bernal et al. 
2010; Hladik 
et al. 2016; 
Fisher et al. 
2017; Böhme 
et al. 2018 

F, B Iprodione/Sulphur Dicarboximide/Chalcogen Decrease in honeybee's forager survival; 
found in stored pollen of honeybees 

Bernal et al. 
2010; Fisher 
et al. 2017 

H Isoproturon Phenylurea High mortality in honeybees; detected in 
corbicular pollen loads of honeybees 

Abrol & 
Andotra 2001; 
Böhme et al. 
2018 

I, R, A Methidathion Organophosphate Highly toxic to honeybees; found in 
beeswax of honeybees  

EPA 2006; 
Chauzat & 
Faucon 2007 

I, R, A Novaluron Benzoylurea Highly toxic to honeybees Fine et al. 
2017 

H Paraquat dichloride Bipyridylium  Highly toxic to honeybees; changes the size 
of honeybee oenocytes 

Moffett et al. 
1972; Cousin 
et al. 2013 

H Paraquat dichloride/Diquat (dibromide) Bipyridylium/Bipyridylium Highly toxic to honeybees; changes the size 
of honeybee oenocytes 

Moffett et al. 
1972; Cousin 
et al. 2013 

I, R, A Permethrin Pyrethroid Highly toxic to honeybees; disorientation 
and disruption of normal behavior in 
honeybees; pesticide detected in native 
bee tissue 

Hagler et al. 
1989; Cox & 
Wilson 1984; 
Sanchez-Bayo 
& Goka 2014; 
Hladik et al. 
2016 

F, B Tebuconazole/Propiconazole/Permethrin Pyrethroid Highly toxic to honeybees; disorientation 
and disruption of normal behavior in 
honeybees; pesticide detected in native 
bee tissue 

Hagler et al. 
1989; Cox & 
Wilson 1984; 
Sanchez-Bayo 
& Goka 2014; 
Hladik et al. 
2016 
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F, B Procymidone Dicarboximide Low toxicity to bees; found in stored pollen 
and beeswax of honeybees 

FAO 2001; 
Chauzat & 
Faucon 2007; 
Bernal et al. 
2010 

I, R, A Profenofos Organophosphate Highly toxic to honeybees; high mortality in 
honeybees 

Melisie et al. 
2015; Stanley 
et al. 2015 

H Saflufenacil Pyrimidinedione Low toxicity to honeybees APVMA 2012 

I, R, A Thiocyclam hydrogen oxalate Oxalate salt Highly toxic to bees Jiménez & 
Cure 2016 

I, R, A Acetamiprid/Novaluron Neonicotinoid/Benzoylurea Highly toxic to honeybees; detected in 
corbicular pollen loads of honeybees; 
impaired long-term retention of olfactory 
learning and increased locomotor activity in 
honeybees; ataxia in bees; slow to no 
movements and ataxia in bumble bees and 
leafcutter bees; occur in sufficient 
quantities in natural bee food to have 
adverse effects on bees. 

Hassani et al. 
2008; Fine et 
al. 2017; 
Baines et al. 
2017; Böhme 
et al. 2018 

I, R, A Dinotefuran Neonicotinoid Highly toxic to honeybees; higher number 
of bouts of behaviour in honeybees 

EPA, 2004; 
Williamson et 
al. 2014 

I, R, A Fipronil/Imidacloprid Phenylpyrazole/Neonicotinoid Highly toxic to honeybees; Impaired 
olfactory learning in honeybees; honeybees 
line up in perfect rows or clusters; pesticide 
detected in native bee tissue; found in 
stored pollen of honeybees; honeybees 
loose postural control and spent more time 
laying on their backs; inhibited grooming, 
reduced walking and lower righting reflex in 
honeybees; increased foraging and homing 
flight times in honeybees; detected in 
corbicular pollen loads of honeybees; 
trembling, excessive grooming, 
uncontrolled proboscis extension, slow to 
no movements, ataxia and reduced survival 
in bumble bees and leafcutter bees; toxic to 
leafcutter bees; occur in sufficient 
quantities in natural bee food to have 
adverse effects on bees. 

Mayer & 
Lunden 1999; 
Hassani et al. 
2005; Bernal 
et al. 2010; 
Schneider et 
al. 2012; 
Williamson et 
al. 2014; Pisa 
et al. 2015; 
Hladik et al. 
2016; Baines 
et al. 2017; 
Böhme et al. 
2018 

I, R, A Fipronil/Thiamethoxam Phenylpyrazole/Neonicotinoid Highly toxic to honeybees; Impaired 
olfactory learning in honeybees; toxic to 
leafcutter bees; pesticide detected in native 
bee tissue; found in stored pollen of 
honeybees; honeybees loss postural 
control and spent more time laying on their 
backs; honeybees spend more time 
grooming; impaired  homing ability in 
honeybees; hyperactivity, ataxia, excessive 
grooming, permanent late-onset 
neuromuscular dysfunction and  reduced 
survival in bumble bees and leafcutter 
bees; occur in sufficient quantities in 
natural bee food to have adverse effects on 
bees. 

Mayer & 
Lunden 1999; 
Hassani et al. 
2005; Bernal 
et al. 2010; 
Henry et al. 
2012; 
Williamson et 
al. 2014; Pisa 
et al. 2015; 
Hladik et al. 
2016; Baines 
et al. 2017 

F, B Orthoboric acid/Borax Inorganic compound/Inorganic 
compound  

Toxic to honeybees Taylor et al. 
2007 

F, B Orthoboric 
acid/Fenpropimorph/Propiconazole 

Inorganic 
compound/Morpholine/Triazole 

Toxic to honeybees; detected in corbicular 
pollen loads of honeybees; found in stored 
pollen of honeybees 

Taylor et al. 
2007; Bernal 
et al. 2010; 
Böhme et al. 
2018 

F, B Picoxystrobin/Cyproconazole Strobilurin/Triazole Decreased survival, slight changes in 
pericardial cells and fat bodies in 
africanized honeybees; detected in 
corbicular pollen loads of honeybees 

Domingues et 
al. 2017; 
Böhme et al. 
2018 
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F, B Tributyltin naphthenate/Permethrin Organotin/Pyrethroid Highly toxic to honeybees; found in 
honeybees and beeswax; associated with 
winter losses of honeybee colonies; 
disorientation and disruption of normal 
behavior in honeybees; pesticide detected 
in native bee tissue 

Kalnins & 
Detroy 1984; 
Hagler et al. 
1989; Cox & 
Wilson 1984; 
Sanchez-Bayo 
& Goka 2014; 
Hladik et al. 
2016 

¹A=acaricide; B=bactericide; F=fungicide; H=herbicide; I=insecticide; R=rodencitide 
²Mixed active ingredients where considered not approved with one active ingredient not approved by the EU. 
³Effect can correspond to one or more of the mixed active ingredients. 
NA =  Not Applicable 
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