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Abstract

Industrial agriculture (lA) is the predominant model of food production since the Green Revolution
in the 1950s. IA has been recognized among the main drivers of biodiversity loss, climate change
and native pollinator decline. This is controversial, given that native agricultural pollinators are an
important resource biota already contributing to crop yield, especially in areas defined as "world
biodiversity hotspots” (WBH). These areas often overlap with agricultural zones hosting a significant
proportion of cultivated land, mainly through intensive agricultural practices. Pollinator biodiversity
and pollination services in these places are currently under threat due to the negative consequences
of IA. The dual role of insects as key players allowing the maintenance of the natural ecosystem, as
well as main crop pollinators, is particularly exacerbated and urgently requires conservation actions
in WBH and food-producing zones. Here we summarize the known negative effects of IA on
pollinator biodiversity and illustrate these problems by considering the case of Chile. Food exports
represent a considerable part of the economy in this OECD “developing country” in the “Global
South”, and a large part of its surface has been highlighted as a unique WBH. This area is currently
being replaced by IA businesses at a fast pace, threatening local biodiversity. We present
agroecological strategies for sustainable food production and pollinator conservation in food-
producing WBHs like Chile. These alternatives recognize native pollinators as internal inputs that
cannot be replaced by IA technological packages or external inputs and support the development of
agroecological and biodiversity restoration practices to protect their existing biodiversity. We
suggest a starting point strategy for food production change that integrates four fundamental pillars
for producing food in a sustainable way, recognizing biodiversity and local cultural heritage: 1) Share
the land, restore and protect; 2) Ecological intensification; 3) Localized knowledge, research and
technological development; and 4) Territorial planning and implementation of socio-agroecological
policies. We suggest that this approach does not need greater modification of native pollination
services that sustain the world with food and basic subsistence goods, but a paradigm change where
the interdependency of nature and human wellbeing are recognized for ensuring the present and
future of the world’s food security and sovereignty as well as considering the reduction of

consumerism and food waste.
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Introduction

Industrial agriculture (hereafter “IA”) promoted by the Green Revolution has arguably brought
about significant increases in food production globally over the past 70 years®. These models involve
the use of a «technical package» with strong dependency on fossil fuels, which includes: large-scale
monocrop landscapes of improved/selected seeds, increased mechanization and the incorporation
of “external inputs” to enhance plant growth and vyield such as the introduction of managed
pollinators, synthetic fertilizers and pesticides?. Yet these welcomed apparent enhancements in
production are also partly responsible for the ongoing massive release of greenhouse gases, the
unsustainable use of water and land resources® and the contamination of soil as well as both surface
and underground water reservoirs by fertilizers and pesticides. Under the current market model this
intensive agriculture production is widely requested by “countries with higher developmental
level”4, driving unprecedented amounts of food waste®. IA functions at the expense of ever-
increasing socio-ecological crises, and has been recognized among the main drivers of irreparable
biodiversity losses, especially in areas chiefly focused on producing and exporting food crops (i.e.
“developing countries”)®®. Biodiversity decline has been associated with the above-mentioned
negative externalities of IA such as habitat loss and fragmentation, pollution and climate change,

among others'®?®

. This reduction in biological diversity is currently jeopardizing ecosystem
functions and associated processes (including pollination, water and nutrient cycling) and putting
human wellbeing at risk!®6-1°, Considering these problems derived from IA and its associated

market model, several authors have stressed the need for a paradigm shift in agriculture if we are

to meet future food demands while preserving the ecosystems that sustain this food production®>

22
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Agroecology (hereafter “AE”) is considered today as the most relevant alternative to IA by a wide
range of actors involved in food production, such as stakeholders, farmers, scientists, NGOs and
policymakers?~2>. AE is a scientific discipline as well as a practice that involves the development of
diversified farming systems and short supply chains, the promotion of low external input schemes
and conservation and regenerative agriculture??>26-30_ As 3 political movement, AE promotes food
security and sovereignty (see Appendix 1) as an essential human dimension of agricultural
transitions in the world’s political agenda?®. Agroecology goals include the application of
ecologically-based knowledge to agriculture, with the aim of a sustainable food production while at
the same time reducing the environmental impact by spending less energy and resources in the
process®3?, for example by lessening agriculture dependency on the application of external inputs
(such as exotic managed pollinators, pesticides and fertilizers) to maintain food production?. AE is
considered as the scientific rediscovery of some of the ancient agricultural practices developed and
preserved by peasant and native cultures as alternatives to IA around the world®*%, AE takes
advantage of local biotic components and abiotic conditions found in the agricultural landscape,
seeking to match crops with local abiotic conditions and promote beneficial associated organisms®¢;
highlighting the value of local knowledge and biodiversity that benefits agricultural production®’.
For instance, AE considers available organisms that improve crop productivity such as pollination,
biological control and decomposition as “resource biota”3®%. Through this lens, local diversity is

IM

regarded as a natural “internal input” (IlI), as opposed to “external inputs” required for IA
production, enhancing sustainable food production in agroecologically-managed fields. Il provides
different ecosystem services and ecological interactions®>®, This latter include pollinators,

predators, parasites and herbivores as well as non-crop vegetation, soil invertebrates and

microorganisms, among other components of local biodiversity helping crop yield*..
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Insects provide several ecosystem services to food production, and are considered irreplaceable
resource biota under an AE approach**4. For example, it has been established worldwide that
native bee species can improve yield and production quality?>*°. Insect pollinators can contribute
to food production even in cases where crops are capable of autonomous self-reproduction®; as
selfing can have detrimental effects on yield and quality due to inbreeding®**2. Regarding the
economic relevance of insect pollination, it has been found that the productivity of five of the seven
main crops of USA is limited by unavailability of pollinators. The USA annual production value of
native pollinator services to these crops has been estimated to be over $1.5 billion®*, In the case
of pollinator species not visiting crops but associated with farmland hedgerow flora and/or wild
plant patches, this additional diversity has also been found to contribute to agroecosystem
functioning, thus the preservation of these native species must also be considered®**>. Pollinating
insects are currently contributing to world food production, even though intensive IA practices are
paying them back with detrimental effects on their health and survival (Figure 1A; Appendix 2)*>5
8 All this is currently negatively impacting food security>>®, especially when managed pollinators
may not be the solution to present wild pollination losses®%2,

AE, by contrast, acknowledges the contribution of native pollinators and highlights them as priceless
players for a lasting food production strategy®. Using the AE framework, this study proposes an
agroecological strategy (AES) to face the current decline of native pollinators due to IA applying four
fundamental AES pillars (Figure 1B). AES can be put in practice in order to counteract known
biodiversity threats produced by IA and overcome these negative impacts. AES aims to enhance crop
production while maintaining healthy ecosystems and native pollinator diversity®*. To support AES,
we emphasize the relevance and urgency of AE research, practices and policy-making, especially for
areas of the planet currently considered reservoirs of pollinator diversity® such as WBHs®®. The

reason for this emphasis is the fact that WBHs often overlap with prime agriculture zones®’.
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Therefore the continuity of food supply may be at stake, considering that biodiversity is a key
contributing factor to world agricultural production®. Ironically, WBHs’ unique assembly of species
and ecosystem services are being jeopardized by IA practices and its associated globalized market
schemes®%®%, As irreplaceable resource biota, native pollinator biodiversity could contribute to a
sustainable long-term food production model**7%73, therefore it merits a place in the design of a
modern food production system. In this study we briefly outline the main effects of IA on native
pollinators and its implication on insect decline. We use Chile as a case study, a fruit-exporting OCDE
developing country with considerable endemism that hosts an unprotected biodiversity
hotspot® 7475, |A practices in Chile are one of the main causes of environmental and social
problems’®””, This pattern can also be found in other countries around the world hosting WBHs,
where raw material export-oriented economies have been often maintained with disregard for
social unrest and damage to the environment produced’®8. We discuss to what extent a change in
food production procedures which includes AE pillars may contribute to ameliorate native pollinator
biodiversity decline in WBHs, and highlight the relevance to consider this not as local issues
concerning agriculture-oriented economies but as a key matter for world environmental health and

food security.

Effects of IA on pollinators

In the last five decades there has been a significant global increase in land use changes for
agricultural production purposes®®. As a consequence, landscapes on Earth have been simplified
and homogenized®2, This is concerning as both human-managed and natural ecosystems rely on
their biodiversity for the provision of diverse services that allow their functioning®2°. Industrialized
agriculture manages agroecosystems through the constant application of external inputs with the

goal to maximize the production of commodities based on a small variety of crop species, mostly to
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supply to international food market demands®®®. As was previously mentioned, this highly
industrialized agribusiness is conducted largely in underdeveloped areas of the planet at the
expense of reducing biodiversity, soil and water sources quality as well as the wellbeing of workers
and local communities®™8, For instance, pesticides and fertilizers are among several indispensable
external inputs needed for the maintenance of IA goals. These are often applied in massive amounts
to fields in order to attain high productivity!>3°, with disregard for the negative effects on biotic and
abiotic components of these managed habitats® 1%, including the resources needed by different
insect species to complete their life cycle (e.g. nesting materials, resting refuge, egg laying and
suitable larval development microhabitats)!°. Industrialized agriculture has been recognized among
the main threats to insect pollinators®®19219  Great reductions in pollinator populations reported
have been attributed to the IA practices for food production®#+1%4-1%8 cqusing a general decline in
native pollinator richness and visitation rates not only in surrounding patches of native vegetation
but also in croplands®*1° |n this section we summarize how landscape changes as well as the
incorporation of external inputs by IA affect native insect pollinators, including native bees, drivers

that act together and additively under an intensive agricultural scheme (Figure 1A)!%,

Landscape

Landscape changes due to intensive agriculture may negatively impact pollinators®1%12 by
changing their composition (percentage of natural/semi-natural habitats in the landscape) and/or
configuration (i.e. patch density and interpatch connectivity)!'3. The effects on native pollinators will
also depend on species-specific traits of these insects and the landscape context!'*122, For example,

nesting resource availability seems to explain 61% of the variation found in different nesting guilds

such as ground nesters, pre-existing cavity nesters, carpenters, hollow stem nesters and
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cleptoparasite bee species!?®. Thus, the effects of IA may cause both overall decline and community
structure alternations.

IA farms are characterized by large-scale crops isolated from natural and/or semi-natural habitats,
lacking enough floral and nesting resources as well as decreasing production and survival of insect
pollinator offspring?*. These industrialized croplands typically harbor low insect pollinator richness

125 reducing pollination services and functional diversity!'®. Vulnerable species have

and abundance
been found to be the most affected under these circumstances??®, losing millions of years of plant-
pollinator evolution in the process'?’. Landscape homogenization (hereafter “LH”; Appendix 1;
Figure 1), appears to be an important driver of IA effects on biodiversity®. This might be linked to
agroecosystems’ reduction of natural habitat patches and/or natural habitat elements!'®, decrease

128

of available resources needed for the different components of biodiversity'*® and the loss in

120129 | H also affects mutually beneficial

connectivity of farmland to natural remnant patches
interactions between flowering plants and insect pollinator communities'®. Pollinator diversity in
agricultural habitats under LH might end up being replaced by the few species able to survive these
depauperated conditions, leading to further biotic homogenization3!, This is represented in Figure
1A by native bee specimens pictured in grayscales. The reduced surviving pollinators that remain
may not guarantee the delivery of sufficient pollination services, both for human-managed and
natural ecosystems®2, For instance, coevolved associations between native insect pollinators and
functionally specialized plants may become at risk of pollen limitation due to LH!*. This evidence
suggests that not only native pollinators currently visiting crop plants must be the focus of concern

due to current agricultural practices, but also the whole wild bee guild that may also contribute to

the maintenance of local plant diversity near agricultural landscapes®®*.
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External inputs
Because IA simplifies landscapes and their biological diversity, hampering their contribution to

13135 it needs to incorporate “external inputs” (“EI” in Figure 1A and B) to

agricultural production
replace the lost regulatory and supporting ecological services in modified landscapes otherwise
provided by internal inputs (11)*°. External inputs include abiotic and biotic factors. For example,
chemical formulations such as fertilizers and pesticides are often used along with modified seeds
(e.g. herbicide-tolerant crops) capable of enduring these applications while most local biodiversity
cannot!®., |A also introduces exotic managed organisms to provide pollination and biological control.

Both pesticides and the use of managed pollinators have been regarded as main external inputs

responsible for the decline in native pollinators 1%, Below we detail this evidence.

137

Pesticides: Pollinators under IA food production plans are exposed to multiple pesticides™’, which

have demonstrated deleterious effects in their nervous system, behavior and cognition as well as
their development, reproduction and overall survival**®*” (Appendix 2). It has also been suggested

148

that sublethal exposure to pesticides may produce immune suppression in pollinators'*®, increasing

their susceptibility to pathogens. Recent evidence regarding epigenetic inheritance has

13 ‘while in target

demonstrated that pesticides drive pathological alterations in insect pollinators
organisms it has been reported the development of IA promotes epigenetic transgenerational
resistance against pesticides®™®. Thus while pesticide detrimental impact may last several
generations on non-target organisms, their efficacy on pest species may be reduced as they became

immune to their effects®™..

Pesticides reduce the richness and abundance of pollinators and other beneficial native insects>?
154 resulting in mid- and long-term declines and higher extinction rates, whether they forage in

treated crops or not (Figure 1A)?>15>156_ pesticide exposure routes are correlated with the different
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materials these insects need to complete their life cycles (e.g. nesting and food resources)’ 1%,
Pesticide residues have been found in food items and substrates used by target and non-target
insects!®®1%, This impairs the delivery of pollination services, reducing pollen collection efficiency
and affecting crop yield'®®%, |t has also been demonstrated that native pollinators respond
differently to pesticide exposure compared to managed pollinators such as honeybees!®®, and in
some cases they are more susceptible to their toxic effects!’®!’:, Pollinator species may have
different responses to pesticides (Appendix 2), making it difficult to predict the adverse
consequences of these chemicals on pollination services’%'73, The availability of this kind of data
for every species seems unfeasible in the short-term, and thus species-specific traits (such as nesting
behavior and sociality type) could be used as proxies to predict pesticide response!!61°8174 \While
there is a sustained use of large amounts of pesticides in IA schemes®, claims of a reduction of their
environmental damage have been questioned by researchers. For example, recent reports
considering the toxic effects of several pesticides for eight non-target species groups revealed a
noticeable increase in the toxicity of applied insecticide over the last 25 years for both aquatic
invertebrates and pollinators!®. This was mainly attributed to the contributions of pyrethroids and
neonicotinoids, respectively. The increase of pesticide toxicity included studies in GM corn crops
(towards aquatic invertebrates and pollinators) as well as in GM herbicide-tolerant soybeans, where
coexisting plant species were also heavily affected'®. These updated findings stress the urgency to
change how food is being produced, leaving current dependency on these external inputs for the

sake of the survival of pollinating insects and human health.

Managed pollinators: Regarding this external input largely use in IA schemes to secure crop

pollination, most studies have reported negative effects on native pollinators due to

the introduction/spread of exotic competing managed bee species (e.g. Apis mellifera, Bombus

10
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9175177 Managed bees affect the development and reproduction of

terrestris) in agroecosystems
native bee species that are close to their colonies'’®. For instance, sometimes managed bees mate
with local species, resulting in inviable hybrids'’>, E| pollinators introduced under IA management
might also compromise food and nesting resources available to other native insect pollinators

181

through competition™*. When managed bees become naturalized outside of their native range they

can adapt easily to varied nesting substrates, potentially being less susceptible to nesting site

182

shortages®®?, and overcoming this shortage by usurping closely related species’ nests!®. In the

presence of greater floral abundance, the number of managed bees visiting floral species is higher

184

than those of pollinators'®*, potentially outcompeting them®. They are also able to amass a great

186 possibly depleting resources for other native insects'®’,

amount of provisions rapidly
Pathogen spillover might also be of concern in this context; managed bees are usually social insects
and given their behavior could be more likely to host and spread pathogens'®. These exotic
pollinators are able to transport and spread pathogens to flower species while visiting . These
then are transmitted to other wild flower visitors, including native pollinators!®. Although
pathogens have been indicated as one of the drivers of lower pollinator abundance®®?, their impact
on native and introduced bee species seems to be so widely distributed that is difficult to pinpoint

the direction of these spillovers'®2. Nonetheless, this is a recognized source of deterioration of native

pollinator wellbeing.

IA and AE in biodiversity hotspots: Chile, a case study

Biodiversity hotspots are highly endemic biogeographic regions threatened by human activity®. The
Neotropical region includes several of these areas, hosting an outstanding diversity and richness of

native pollinators®. This area of the planet produces a considerable portion of food crops by IA and

11
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it has been regarded as the zone has suffered one of the greatest declines in biodiversity and
ecosystem services*°, Chile includes in its territory almost an entire hotspot, named the “Chilean
Winter rainfall-Valdivian Forests”. This consists of several biomes hosted within the Chilean
Matorral and the Valdivian temperate rainforest®®1%3, The former could be considered a WBH and
largely overlaps with IA food production areas'®*'*®, Unfortunately, only 1.8% of Matorral land is
under the Chilean national protection program®®®. The Chilean Matorral is also a region that hosts
an important bee species diversity with elevated endemism®1%’,

Chile has subscribed to environmental treaties to know, conserve and restore its biodiversity as well
as reforest endangered areas'®?%, but so far there are no territorial management plans that aim
to make agricultural production compatible with biodiversity conservation (appendix 2). This has
resulted in a significant loss of natural habitats in a few decades?%2%, National records report that
approximately 70% (12,900,682 ha) of the land used for agriculture, livestock and plantation forestry
is within the “Chilean Winter rainfall-Valdivian Forests” hotspot?®*. This hotspot holds an area of
30,000,000 ha, which means that nearly 43% of it has already been replaced by these production
schemes!®®, Even more concerning is that habitat loss rate in this hotspot keeps growing?®.
Agricultural practices in Chile are deeply rooted in export-oriented IA models®” %%, directly
attributed to the economic liberalization policies mandated by the military dictatorship after
1973%7. Measures established by force during this period included the privatization of the public
sector, resulting in the concentration of agricultural land in the hands of a few and a significant

208

exploitation of natural resources to supply international markets®®®, creating a globalized and

capitalized commercial IA scheme at the expense of neglecting and marginalizing small farmers and
indigenous people209210,

The rediscovery of AE alternatives in Chile began as a reaction towards the economic crisis that

unfolded immediately after the application of Milton Friedman’s neoliberal policies in the early

12
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1980s, due to an exponential increase in rural poverty and abandonment of the urban and rural
working classes®®?!!, Chilean AE advances were made by a small number of NGOs, small farmers and
academics®. Although some of these developments were recognized by the Food and Agriculture
Organization of the United Nations?'?, only in rare cases have AE practices been adopted by
corporations and promoted by policy makers, and at present these practices are not used on a

productive scale in Chile®?3,

Pesticides

Around 9.6% of the pesticides approved by the Chilean government?!* have been already banned
by the European Union (Appendix 2), one of the main consumers of Chile’s fruit exports®’. Most of
these pesticides are highly toxic, with demonstrated negative effects on bees at sublethal doses
(Appendix 2). For example, while neonicotinoids (e.g. clothianidin, imidacloprid, thiamethoxam) are
being questioned by experts around the world and have restricted use in Europe due to harmful
effects on native and managed bees%156:215-218 they are widely used in Chile due to an alleged
“absence of proof in the country of their negative effects”?!%22, This is concerning given the
chemical behavior of these pesticides, as these widely-used formulations are adsorbed by mineral
clays and organic matter that form agricultural volcanic ash-derived soils??!, damaging biodiversity

222

as a consequence”*, and most likely affecting native bee species directly, as nearly 70% of Chile’s

wild Apoidea nest in soil substrates®?

. Despite the aforementioned issues, current regulatory
protocols for the approval of new formulations and maintenance of pesticide use in Chile have not

been updated based on current scientific acknowledge and do not require the development of local

science-based risk-assessments over biodiversity for their approval for IA use??,

Managed Pollinators

13
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External biotic inputs in Chile are already impacting the environment; the main exotic bumblebee
species commercially used for providing pollination services, the buff-tailed bumblebee Bombus
terrestris Linnaeus, 1758 and B. ruderatus Fabricius, 1775 have rapidly replaced the Patagonian giant
“moscarddn” bumblebee Bombus dahlbomii Guérin-Méneville, 183522%22° (Figure 2). B. dahlbomii
was a source of medicinal honey and considered a sacred being by Mapuche, one of the First Nations
people of Chile?®. Scientists have demonstrated that Introduced bumblebee species are displacing
native B. dahlbomii in Chile and Argentina, colonizing natural areas in most of the southern cone of
South America, and have urged authorities to ban the imports of these IA-managed pollinators?332,
Even though this is a concerning situation, government policy still allows the importation of buff-
tailed bumblebees for IA crop pollination in Chile?!,

In the Mediterranean region of central Chile, a bee biodiversity hotspot®, avocado orchards have
been recorded to be profusely visited by managed A. mellifera, while five native bees species have
also been reported visiting this crop?. Although this finding was proposed as a demonstration of
the compatibility of IA avocado production with native bee biodiversity, these observations were
conducted through one-season focal observations and with no additional collection methods or
control of native vegetation or wild bee abundance comparisons. Scarce and often preliminary local
research in combination with fast-paced habitat loss in Chile paints a concerning picture for
pollinators and their ecosystem services in the agricultural production canvas. Chile probably hosts
around 800 bee species, with more than 450 species described and 70% endemicity'®’. Very little
research has been published in regard to native insect performance as pollinators for native and
crop plant species. For example, in the case of the endangered B. dahlbomii®**, this native Apidae
has been described as a possible pollinator of greenhouse tomatoes?®, and has been seen visiting
blueberry and avocado orchards®3. Considering this evidence and the research from neighboring

246-248

countries , it seems likely that most native insect pollinators may already be pollinating crops

14
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of economic importance. The knowledge of wild bee species association with native plants is largely
incomplete!®”23°, Chile may hold an irreplaceable pollinator workforce in its native bee pollinators,
contributing both to crop yield and the preservation of unique biomes, nonetheless they are
threatened by intensive IA production and neglected by government policy makers. This highlights
the unsuitability of Chile’s current agricultural production and market and jeopardizes the mid- and
long-term contribution of this country to the production of fruit commodities and also to its own
resilience against future environmental and food crises. In the following section we develop our
proposal to face these issues and be able to protect pollinators in agriculturally-oriented WBHs like

Chile.

Protecting pollination: strategies for the future
Human practices, including agriculture, need to return within the limits that keep our planet

241,282 - Countries with

habitable®2% for the sake of our own species and all living organisms
invaluable biodiversity need to rethink critically the way they are doing agriculture and revaluate
local and native sustainable practices?**?*4, Understanding that native pollinator species are unique
“resource biota” (see Appendix 1) already contributing to current crop yield is to be aware of a
strategic advantage compared to agriculture food production in non-WBH regions. Native
pollinators are AE internal inputs that cannot be replaced by IA technological packages or external
inputs?®®. Coexisting with our threatened biodiversity and valuing its cultural and biological wealth
within productive ecosystems will protect the future of pollination services as well as contribute to
food security and sovereignty. Here we focus on the development of agriculture schemes in WBHs

considering native biodiversity, and compile a strategy summarized in four pillars based on

agroecological thinking as well as First Nations’ knowledge: (1) sharing, restoring and protecting the

15
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land; (2) AE as the paradigm of sustainable agriculture and pollinator protection; (3) localized

research and technology; and (4) territorial planning and AE policies (Figure 1B).

1. Sharing, restoring and protecting the land
Natural ecosystems are far from simple, and to achieve sustainable agriculture there is a need
to maintain their complexity®®. Polycultures and florally diverse environments have been
found to support native pollinator diversity due to a continuous supply of food resources?*,
Agricultural practices need to consider that pollinator functional diversity relies on these
native habitats and that biodiversity hotspots by definition are already threatened, thus need
to be considered with special care when conducting productive and extractive activities. A
sustainable complex landscape matrix is needed to protect hotspots and ensure the delivery
of pollination services to crops. This pillar should integrate restoration and protection of large
areas of natural habitat and restoration of native land patches within agroecosystems to
increase habitat quality (i.e. land sharing)?¥. Pollination services delivered by native insects
have shown to rely strongly on their proximity to natural habitats 1248249 protected natural
areas host higher biodiversity®®’, but are not enough to sustain ecological stability*!. To
achieve stability, habitats that have been altered by human activities, including urban zones
and areas utilized for productive activities, need to be restored as much as possible?*?, leading
to effective conservation outcomes by assessing their coverage (i.e. the number and types of

t253

species included within their limits) and management®?. Restoring native patches of

anthropized land improves habitat quality within agroecosystems, maintaining and securing

native insects®*. Native patches buffer the negative effects of pesticide application on

153,255 256

pollinators , offer greater flower diversity and nesting sites®® and are correlated with

higher pollinator density?®. In farmlands these patches also serve as wildlife
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corridorst#181.258-260 - nromoting  heterogeneous landscapes®! and stabilizing crop

pollination?®2, These patches could be implemented at field edges and should have mixed
native plants with partial overlap in floral phenology as a way to provide resources for bees
during the whole flowering season?*®. Pollinators benefit from florally diverse environments
due to a continuous supply of food resources?, which are critical for ensuring their
reproduction’®*. The size of these patches could be dependent on the crop type that they
surround, and research should be carried out to define the appropriate cost-effective sizes

within specific agroecosystems0%-263,

2. AE for sustainability and pollinator protection
Among the core principles of AE science and practice is the preservation and use of local
diversity as natural inputs contributing to crop yield?%4. This approach also advocates for food
sovereignty while reducing the negative effects of agriculture on the environment and
society?®>, Monocultures, organic or not, reduce the functional diversity of pollinators®,
Under an agroecological strategy (AES), biodiversity is incorporated into agroecosystems to
mimic natural ecological processes®. With higher biodiversity, agroecosystem inner
complexity grows and reduces the dependence of crops on destructive external inputs,
allowing the system to maintain its own soil fertility, productivity and protect itself from
pests?®, benefiting insects and attracting pollinators!®®. All this allows native pollinators to
visit crops safely and thrive in an agroecosystem with food and nesting resources free of
pesticides. This higher pollinator biodiversity could even reduce the need to incorporate large
numbers of managed pollinators within crops as additional external input. Nonetheless, the
aforementioned falls short of defining AE, as not only are academic, political and cultural

perspectives tightly knitted to this model, AE places small farmers and local knowledge as the
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%7 and does not agree with the new Green Revolution approach,

key for food sovereignty
which seeks to perpetuate an IA system for food production?®. Instead, AE focuses on the
dissemination of knowledge from farmer to farmer based on their historical backgrounds and

269 strengthening communities and allowing them to

on reviving their ancestral farming roots
become autonomous, securing local food production?®®. Mexican and Bolivian farmers are
examples of how traditional low-intensity agriculture allows native bee species to provide
successful pollination service?’®?’?, There is no need for a new Green Revolution, as social
vulnerability and income inequities are the main cause of hunger®. AES, summarized in this
review, aim to protects pollinators not only by its effects in agroecosystems, but also by
reducing poverty and improving people’s livelihoods, by both recovering local knowledges
and developing local research technologies as well as implementing territorial planning and
AE policies considering the needs of local communities (Explained further in following
sections, Figure 1B)32. People can only protect or be concerned about biodiversity and its
conservation once their basic needs have been met. Thus, the world does not need more food

commodities to be traded globally; it needs equal access to nutritive food and production not

focused only on market and profits?’%?73,

3. Localized research and technology
Science has proven that IA is leading a steady biodiversity decline and exceeding the planetary
boundaries that allow humans to survive on Earth®. The IA production and market scheme
keeps low-income WBH countries of the world relying on the import of technological
packages and depending on globalized markets to achieve their productivity goals.
Technological packages should not be imported without knowing their consequences to

274,275

ecosystems, local communities and economies . Critical knowledge gaps still exist
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regarding taxonomy, ecosystem services and socio-ecological vulnerability in order to
implement production alternatives considering native pollinators?’®. This is especially urgent
in WBH countries risking their biodiversity, food sovereignty and human wellbeing?”’.

Localized studies need to be conducted in regions where biodiversity knowledge is scarce and
nature is heavily under threat due to industrialized food production activities®. As a starting
point it is necessary to fill the current knowledge gap on species and their ecological
associations?’®. There are still a great number of organisms and ecological interactions left to
describe?”, largely in WBH zones. Taxonomy is one of the foundations of the applied sciences.
If species have not been described, it becomes challenging to understand how they respond
to ecological changes and be able to monitor them??°. This is especially urgent for insects, a
group underrepresented in conservation research®! and under global decline®. Research in
WBH countries is also key to assess native pollinator contribution to crop and native plant
species reproduction, their nesting needs and different behaviors. Pollinator species have
diverse life histories and traits, responding differently to the same threats®!4, Assessing how
pollinators respond to potential dangers will allow for the modeling of proper AE production
programs. To illustrate the urgent need of information we use the Apoidea, highly charismatic
native pollinators. It has been estimated the number of native bee species in the Neotropical
Region would be above 15,100, stressing that current knowledge on actual species richness
would represent roughly one third of this total®. This is worrisome considering the high rates
of biodiversity and ecosystem services losses reported for this region of the world &, largely
composed of WBHs focused on agriculture exports®. This may imply the potential extinction

of many pollinators before even their description, “Centinelan Extintion” 282

, and its neglect
represents a threat to both local and global food security?®. Therefore, the local study of bee

biodiversity and conservation in these regions must be a global concern. Local farmers and
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first nations have been recognized as “local knowledge holders” for already possessing the
understanding regarding their pollinators and their pollination services in their local food
production®®*28_ This wisdom needs to be recovered and applied, as they are key to
implement and ensure AES allowing a gradual transition towards a sustainable global food
production scheme?®’,

Research will improve our understanding on how insect pollinators respond to agricultural
practices in WBH countries and provide alternatives with the goal to advance towards the
sustainability of socio-ecological systems, allowing for the development of AE tools and
technology as part of the production chain as well as conservation in several food and plant-
derived goods needed by our species. Developing local AE knowledge will not only protect
biodiversity (e.g. native pollinating insects) and agricultural productivity but also reduce the
dependency on IA external drivers and inputs and contribute to the coupling of ecosystems

277 With this design, pollinator conservation will not be considered a

and human wellbeing
trade-off against agroecosystems or society but as a partnership for our coexistence.

As was already explained, AES for WBHs must consider the political and cultural perspectives
along with the research program. Therefore, the rediscovery of AE must link human wellbeing
and ecosystem integrity, thus the collecting of information about the ecological vulnerability
of pollination services needs to be coupled with gathering information on social inequalities
in this food-producing WBH?”’, as a link between economic vulnerability and biodiversity loss
has been demonstrated?®, Integrating all this will allow the development of local AE research

and technology in consideration of the societal and ecological conditions of different WBH

regions of the planet?’®2892% providing AE schemes for each socio-agroecosystem?’.

Territorial Planning and AE policies
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World Biodiversity Hotspots are strongly threatened by the loss of their species and resource
depletion (e.g. water scarcity) due to IA schemes, currently representing sacrifice zones that
provide food and goods to global markets, so the developed side of the world can “go green”®.
This needs to change. AE’s local biodiversity “internal inputs” such as native pollination
services” cannot be labeled as commodities (e.g. “natural capital”’®), as its “exchange”
threatens the sustainability of food production and commerce®. This is likely currently
happening in a “Centinelan” pollination consumption (not a “trade”), as native bees cannot
be replaced or recovered once species go extinct. Moreover, there is not a fair planetary-level
exchange and interdependency between WBH exporters and international food commerce,
as the resulting benefits have been demonstrated to be distributed globally in a both socially
and economically unequal way®*. For instance, in Chile IA is coupled with sustained social
inequalities and unrest, local communities driven to unsanitary water deficit and unique
biomes shrinking as IA expands, leading pollinating species to decline before having a chance
to be studied?”2112%1 These are the challenges policy makers need to face; if we want to
keep the remaining biodiversity of native pollinators in food-producing countries, intensive
industrialized agriculture schemes must be first buffered by AES and gradually replaced by

true sustainable food production®72,

In order to translate knowledge into policies, first the gathering of information needs to be
supported. Science and local knowledge holders can provide a roadmap to make well-
informed decisions (Figure 1B), but their work needs to be properly funded and listened to?*2.
These policies can provide the data science and technology need to assess, propose and apply
293.

the best cost-effective strategy for pollinator conservation, food security and sovereignty

This is already happening in main food consumer countries of the European Union and the
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United States®. Unfortunately, this is not true for most WBH countries®, where not taking the

steps in this direction will have global consequences.

Strong environmental governments will be required in order to change IA schemes and
prioritize the conservation of native pollinators and wildlife. Ecosystems, especially those
belonging to biodiversity hotspots, need to be within an international legal framework of
protection that starts by recognizing the context-specific complexity of agricultural systems
and the irreplaceable relevance of local diversity, both biological and cultural®®. Local
deterioration of biodiversity due to extractivism has global consequences on the health of the
Earth’s system and food security®. Small-scale farming applying AE schemes, such as that
proposed in this work, must be prioritized in WBH ®°. Agricultural businesses should be

273 including: coherence with crop and

required to follow AES and sustainability standards
climatic conditions of local biomes, diversified farming and to prioritize the use of AE’s
internal inputs. As a complement, rural and urban public awareness policies and AE education
must be considered to provide tools towards conservation and food sovereignty®“.
Traditional ecological knowledge of local agricultural practice and native pollinators must be
outreached to the public and applied, preferring small diversified AE farms instead of large
monocrop IA. Moreover, urban AE initiatives and native plant gardening must be promoted
as additional patches for native reforestation32732%, All these urgently need to be assessed
and overseen, to ensure sustainable management practices and the conservation of

biodiversity?3.

Agroecological management reduces the need for pesticide use and their undesirable
consequences (Appendix 2), which is an opportunity for WBH countries to ban harmful
pesticides, already done in main food consumer countries®. Given that insect decline is a

global threat, taking sustainable measures in richer countries will not make this crisis
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disappear without a global commitment®. WBH governments also urgently need to
implement AE-inspired territorial management plans, including the protection of people’s
livelihoods over large corporately owned agricultural areas (e.g. in Chile watering avocado

orchards owned by a few cannot hamper entire communities’ access to water).

Developed main food consumer countries need to consider that being climate neutral at the
expense of importing food crops from underdeveloped countries does little to solve the
negative effects of IA and completely ignores that the loss of ecosystem services will not make

distinctions between geopolitical borders?®®

. When trading with other nations, developed
countries need to have policies that hold the same standards of sustainable production
(including bans on GMOs and pesticides) as those applied to their own countries, and not
insist on requiring “yield increases in many low-income countries”?’ These low-income areas
are often also world reservoirs of biodiversity (including pollinators). To consider WBS as

sacrifice zones, for the sake of meeting current market needs, are putting in peril not only

biodiversity itself, but also global food security and Earth system health®.

Conclusion

A new deal considering AE approaches must be implemented globally, considering WBH as key areas
both for the preservation of native pollinator biodiversity and rights and wellbeing of local
communities. The implementation of agroecological strategies in WBHs as starting point and buffer
for IA may facilitate the transition towards a true sustainable food production. AES will improve our
understanding of ecological dynamics in agroecosystems, allowing sustainable development over
time, ensuring local development and food sovereignty of WBH, for the sake of keeping native

pollinator biodiversity and the wellbeing of the whole planet®8,
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Figures

Figure 1. A: Industrial agriculture (IA) scheme rely on agricultural intensification, this is
mainly done by the simplification of rural ecosystems due to increased landscape
homogenization (LH). In addition IA depends, for the production of crop yield (CY), on the
application of external inputs (El), such as: pesticides, GMOs and managed exotic
pollinators. Nonetheless LH and El are also causing a decline of biodiversity including wild
pollinators like native bees (NB). This is exemplified in this illustration, from large to small,
by genera: Bombus, Anthidium and Lasioglosum native species. This problem is especially
critical at world biodiversity hotspots (WBHs) like central Chile, where relatively larger
species have been found to be more likely affected by LH and El (represented in gray in
Figure A). B An agroecological strategy (AES) to counteract the effects of current IA
intensification at world biodiversity hotspots (WBHs) by incorporating: Land Sharing,
Restoration and Preservation (LS R&P), the use of Internal Inputs (ll) derived from local
biodiversity, including microorganisms, native plants and animals. AES also propose the
development of localized research and technology (LR&T) as well as Territorial Planning and
Implementation of Agroecological policies (TP&AP). We propose that these AES pillars may
contribute to the survival and performance of native pollinators such as wild bees, NB
contribute directly to crop yield as well as indirectly by its influences on AES (e.g. helping LS
R&P, Il and LR&T). We suggest AES may be able to buffer current LH and EE from IA, as a
start point towards a gradual change towards the implementation of an agroecological food
production system; not focused on international market needs only, but on food

sovereignty and safety as the base for a true global sustainable food production. lllustration
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by Cristian Villagra.

Figure 2. Giant bumblebee: Bombus dalhbomii (Hymenoptera), native from Chile and
Argentina, legitimately visiting blueberry flowers in November, 2015, Villarica, X Region,
Chile (scale: 1cm). This species has been categorized as “endangered” by the IUCN Red List.

Photography by Marianela Castillo Arias.

52


https://doi.org/10.20944/preprints202105.0162.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2021 d0i:10.20944/preprints202105.0162.v1

Figure 1

A

53


https://doi.org/10.20944/preprints202105.0162.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2021 d0i:10.20944/preprints202105.0162.v1

54


https://doi.org/10.20944/preprints202105.0162.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2021 d0i:10.20944/preprints202105.0162.v1

Figure 2.
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Appendix 1. Glossary

Agroecology: agronomic discipline focused on an environmental and socially responsible agricultural
management. This is achieved through the study of ecological processes inside agroecosystems and the
application of this knowledge to agricultural practices.

Agricultural intensification: agricultural scheme that seeks to maximize crop yield per unit of area through
the use of external inputs.

Ecological intensification: replacement of external inputs used in intensive agriculture (e.g. insecticides,
fertilizers, growth regulators, etc.) by ecosystems services to maximize crop yield with minimum
environmental impacts.

Ecosystem services: ecological functions that benefit and are essential for human beings.
Habitat: environment inhabited by a particular species.

Landscape homogenization: simplification and reduction of biotic components inside an area of land, which
leads to a community of similar functional and structural traits.

Natural habitat: pristine environment inhabited by native species.

Organic agriculture: agricultural scheme that does not use fertilizers and pesticides.
Patch: area of land with the same characteristics, regardless of its size.

Seminatural habitat: a native environment partially modified by human activities.

Sustainable agriculture: agricultural scheme that efficiently maximizes production while protecting the
habitat and natural resources from which it depends, safeguarding biodiversity in the long term.
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Appendix 2. Active ingredients with effects in bees still used in Chile and not approved by the

European Union.

Use
Classification Active Ingredient 2 Pesticide class 3Effect Reference
in Chile'
IR, A Acephate Organophosphate Highly toxic to bees and other beneficial Christiansen
insects. etal. 2011
H Atrazine Triazine Oxidative stress responses and alteration Bernal et al.
acetylcholinesterase activity in honeybees;  2010; Boily et
pesticide detected in native bee tissue; al. 2013;
found in stored pollen of honeybees; Hladik et al.
decreases survival, reduces food 2016;
consumption, and negatively affects Williams
behavior in stingless bees. 2016; dos
Santos Araujo
etal.,, 2021
H Atrazine/S-metolachlor Triazine/Chloroacetamide Oxidative stress responses and alteration Bernal et al.
acetylcholinesterase activity in honeybees;  2010; Boily et
pesticide detected in native bee tissue; al. 2013;
found in stored pollen of honeybees; Hladik et al.
decreases survival, reduces food 2016;
consumption, and negatively affects Williams
behavior in stingless bees. 2016; dos
Santos Araujo
etal.,, 2021
F, B Benomyl Benzimidazole Moderatly toxic to honeybees N.C.
Agriculture
2016
IR, A Cadusafos Organophosphate Highly toxic to bees EFSA 2006
IR, A Carbaryl Carbamate Highly toxic to honeybees; found in stored  Bernal et al.
pollen of honeybees 2010; Bond et
al. 2016
F, B Carbendazim Benzimidazole May alter the immune response and P450-  Shi et al. 2018
mediated detoxification of honeybees
F,B Carbendazim/Epoxiconazole Benzimidazole/Triazole May alter the immune response and P450-  Bohme et al.
mediated detoxification of honeybees; 2018; Shi et
detected in corbicular pollen loads of al. 2018
honeybees
F, B Carbendazim/Mancozeb Benzimidazole/Carbamate May alter the immune response and P450-  Shi et al. 2018
mediated detoxification of honeybees
F,B Tebuconazole/Carbendazim Triazole/Benzimidazole May alter the immune response and P450-  Hladik et al.
mediated detoxification of honeybees; 2016; Shi et
pesticide detected in native bee tissue al. 2018
IR A Cartap hydrochloride Carbamate Toxic to bumblebees Marletto et al.
2003
IR, A Cartap monohydrochloride Carbamate Highly toxic to insects Kegley et al.
2016
I,R,A Chlorfenapyr Pyrrole Highly toxic to honeybees Rhodes &
Scott 2006
F,B Chlorothalonil/Carbendazim Chloronitrile/Benzimidazole May alter the immune response and P450-  Bernal et al.
mediated detoxification of honeybees; 2010; Shi et
found in stored pollen of honeybees al. 2018
F, B Copper 8-quinolinolate/Carbendazim Organometallic May alter the immune response and P450-  Shi et al. 2018
compound/Benzimidazole mediated detoxification of honeybees
F, B Copper oxychloride/Dibasic copper Copper salt/Copper Decrease in honeybee's forager survival; Bernal et al.
sulfate/Iprodione/Sulphur salt/Dicarboximide/Chalcogen found in stored pollen of honeybees 2010; Fisher
etal. 2017
IR, A Diazinon Organophosphate Precocious foraging in honeybees; Impaired MacKenzie &
olfactory learning in honeybees; found in Winston
stored pollen of honeybees 1989; Weick
and Thorn
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LR A

LR, A

LR, A

F, B

F, B

F, B

LR A

F, B

Fenpropathrin

Fenvalerate

Fipronil

Glufosinate-ammonium

Imazamox/Imazapyr

Iprodione

Iprodione/Propiconazole

Iprodione/Sulphur

Isoproturon

Methidathion

Novaluron

Paraquat dichloride

Paraquat dichloride/Diquat (dibromide)

Permethrin

Tebuconazole/Propiconazole/Permethrin

Pyrethroid

Pyrethroid

Phenylpyrazole

Phosphinic acid

Imidazolinone/Imidazolinone

Dicarboximide

Dicarboximide/Triazole

Dicarboximide/Chalcogen

Phenylurea

Organophosphate

Benzoylurea

Bipyridylium

Bipyridylium/Bipyridylium

Pyrethroid

Pyrethroid

d0i:10.20944/preprints202105.0162.v1

Highly toxic to honeybees

Highly toxic to honeybees; hazardous to
leafcutter bees

Highly toxic to honeybees; Impaired
olfactory learning in honeybees; toxic to
leafcutter bees; pesticide detected in native
bee tissue; found in stored pollen of
honeybees; causes lethargy, motor
difficulty, paralysis and hyperexcitation in
stingless bees

Low toxicity in honeybees

Low toxicity in honeybees

Decrease in honeybee's forager survival;
found in stored pollen of honeybees

Decrease in honeybee's forager survival;
pesticide detected in native bee tissue;
detected in corbicular pollen loads of
honeybees; found in stored pollen of
honeybees

Decrease in honeybee's forager survival;
found in stored pollen of honeybees

High mortality in honeybees; detected in
corbicular pollen loads of honeybees

Highly toxic to honeybees; found in
beeswax of honeybees

Highly toxic to honeybees

Highly toxic to honeybees; changes the size
of honeybee oenocytes

Highly toxic to honeybees; changes the size
of honeybee oenocytes

Highly toxic to honeybees; disorientation
and disruption of normal behavior in
honeybees; pesticide detected in native
bee tissue

Highly toxic to honeybees; disorientation
and disruption of normal behavior in
honeybees; pesticide detected in native
bee tissue

2002; Bernal
et al. 2010

Gromisz 2001

National
Research
Council of
Canada 1981
Mayer &
Lunden 1999;
Hassani et al.
2005; Bernal
et al. 2010;
Pisa et al.
2015; Hladik
et al. 2016; de
Morais et al.,
2018
European
Food Safety
Authority
2005

EPA 2005;
European
Food Safety
Authority
2016

Bernal et al.
2010; Fisher
etal. 2017
Bernal et al.
2010; Hladik
et al. 2016;
Fisher et al.
2017; Bohme
etal. 2018
Bernal et al.
2010; Fisher
etal. 2017
Abrol &
Andotra 2001;
Bohme et al.
2018

EPA 2006;
Chauzat &
Faucon 2007
Fine et al.
2017

Moffett et al.
1972; Cousin
etal. 2013
Moffett et al.
1972; Cousin
etal. 2013
Hagler et al.
1989; Cox &
Wilson 1984;
Sanchez-Bayo
& Goka 2014;
Hladik et al.
2016

Hagler et al.
1989; Cox &
Wilson 1984;
Sanchez-Bayo
& Goka 2014;
Hladik et al.
2016
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F, B

LR, A

F, B

F, B

F, B

Procymidone

Profenofos

Saflufenacil

Thiocyclam hydrogen oxalate

Acetamiprid/Novaluron

Dinotefuran

Fipronil/Imidacloprid

Fipronil/Thiamethoxam

Orthoboric acid/Borax

Orthoboric
acid/Fenpropimorph/Propiconazole

Picoxystrobin/Cyproconazole

Dicarboximide

Organophosphate

Pyrimidinedione

Oxalate salt

Neonicotinoid/Benzoylurea

Neonicotinoid

Phenylpyrazole/Neonicotinoid

Phenylpyrazole/Neonicotinoid

Inorganic compound/Inorganic
compound

Inorganic
compound/Morpholine/Triazole

Strobilurin/Triazole

d0i:10.20944/preprints202105.0162.v1

Low toxicity to bees; found in stored pollen
and beeswax of honeybees

Highly toxic to honeybees; high mortality in
honeybees

Low toxicity to honeybees

Highly toxic to bees

Highly toxic to honeybees; detected in
corbicular pollen loads of honeybees;
impaired long-term retention of olfactory
learning and increased locomotor activity in
honeybees; ataxia in bees; slow to no
movements and ataxia in bumble bees and
leafcutter bees; occur in sufficient
quantities in natural bee food to have
adverse effects on bees.

Highly toxic to honeybees; higher number
of bouts of behaviour in honeybees

Highly toxic to honeybees; Impaired
olfactory learning in honeybees; honeybees
line up in perfect rows or clusters; pesticide
detected in native bee tissue; found in
stored pollen of honeybees; honeybees
loose postural control and spent more time
laying on their backs; inhibited grooming,
reduced walking and lower righting reflex in
honeybees; increased foraging and homing
flight times in honeybees; detected in
corbicular pollen loads of honeybees;
trembling, excessive grooming,
uncontrolled proboscis extension, slow to
no movements, ataxia and reduced survival
in bumble bees and leafcutter bees; toxic to
leafcutter bees; occur in sufficient
quantities in natural bee food to have
adverse effects on bees.

Highly toxic to honeybees; Impaired
olfactory learning in honeybees; toxic to
leafcutter bees; pesticide detected in native
bee tissue; found in stored pollen of
honeybees; honeybees loss postural
control and spent more time laying on their
backs; honeybees spend more time
grooming; impaired homing ability in
honeybees; hyperactivity, ataxia, excessive
grooming, permanent late-onset
neuromuscular dysfunction and reduced
survival in bumble bees and leafcutter
bees; occur in sufficient quantities in
natural bee food to have adverse effects on
bees.

Toxic to honeybees

Toxic to honeybees; detected in corbicular
pollen loads of honeybees; found in stored
pollen of honeybees

Decreased survival, slight changes in
pericardial cells and fat bodies in
africanized honeybees; detected in
corbicular pollen loads of honeybees

FAO 2001;
Chauzat &
Faucon 2007;
Bernal et al.
2010

Melisie et al.
2015; Stanley
etal. 2015
APVMA 2012

Jiménez &
Cure 2016
Hassani et al.
2008; Fine et
al. 2017;
Baines et al.
2017; Bohme
etal. 2018

EPA, 2004;
Williamson et
al. 2014
Mayer &
Lunden 1999;
Hassani et al.
2005; Bernal
et al. 2010;
Schneider et
al. 2012;
Williamson et
al. 2014; Pisa
et al. 2015;
Hladik et al.
2016; Baines
etal. 2017;
Bohme et al.
2018

Mayer &
Lunden 1999;
Hassani et al.
2005; Bernal
et al. 2010;
Henry et al.
2012;
Williamson et
al. 2014; Pisa
et al. 2015;
Hladik et al.
2016; Baines
etal. 2017

Taylor et al.
2007

Taylor et al.
2007; Bernal
et al. 2010;
Bohme et al.
2018
Domingues et
al. 2017;
Bohme et al.
2018
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F, B Tributyltin naphthenate/Permethrin Organotin/Pyrethroid Highly toxic to honeybees; found in Kalnins &
honeybees and beeswax; associated with Detroy 1984;
winter losses of honeybee colonies; Hagler et al.
disorientation and disruption of normal 1989; Cox &
behavior in honeybees; pesticide detected ~ Wilson 1984;
in native bee tissue Sanchez-Bayo

& Goka 2014,
Hladik et al.
2016

'A=acaricide; B=bactericide; F=fungicide; H=herbicide; I=insecticide; R=rodencitide

2Mixed active ingredients where considered not approved with one active ingredient not approved by the EU.
3Effect can correspond to one or more of the mixed active ingredients.

NA = Not Applicable
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