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Abstract:  

In bioprocess engineering the Qualtiy by Design (QbD) initiative encourages the use of models to 

define design spaces. However, clear guides on how models for QbD are validated are still missing. 

In this review we provide a comprehensive overview about validation methods, mathematical 

approaches and metrics currently applied in bioprocess modeling. The methods cover analytics for 

data used for modeling, model training and selection, measures for predictiveness and model 

uncertainties. We point out general issues in model validation and calibration for different types of 

models and put this into context of existing health authority recommendations. This review provides 

the start-point for developing a guidance for model validation approaches. There is no one-fits-all 

approach but this review shall help to identify the best fitting validation method or combination of 

methods for the specific task and type of bioprocess models that is developed.   

Keywords: bioprocess models; model validation; model calibration; Quality by Design; mechanistical 

and statistical models; hybrid models; chemometric models; Biopharmaceutical engineering; 

regulatory guidance 
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1. Introduction 

During the last years, the biopharmaceutical industry aims at developing biopharmaceutical 

products and the corresponding process in a QbD manner instead of a quality by testing (QbT) 

approach [1]. Process analytical technology (PAT) initiatives have also been proposed by the 

regulatory authorities to enhance process understanding and control [2]. In QbD and PAT, the 

ultimate goal is to gain model predictive control (MPC) of the process to improve process 

performance and control of the critical quality attributes (CQAs) by advanced monitoring and 

control (AM&C) of key and critical process parameters (KPPs and CPPs). CPPs are according to ICH 

Q8 process parameters whose variability within defined ranges have an influence on one or many 

CQAs [3]. KPPs show an influence on process performance parameters. To control that the active 

pharmaceutical ingredient is produced with the desired quality and performance, these parameters 

have to be monitored or controlled. To do this, well designed measurements (e.g. in a design of 

experiments (DoE) workflow) of KPPs and CPPs are necessary as well as a corresponding process 

model which describes the dependencies between CQAs with the process parameters. During 

upstream processing online sensors or offline measurements address the monitoring and testing 

precondition. One possibility of upstream online monitoring in procaryotes is via online sensors e.g. 

for turbidity or metabolite probes (e.g. with Raman [4, 5] or MIR [4, 6]). However, the dynamic 

behavior of the cells during upstream processing and the dependencies of the parameters are, 

especially in mammalian cell culture, rarely understood in detail. Many approaches exist to describe 

and model the biological behavior of cells in upstream biopharmaceutical manufacturing by using 

small experimental based models (e.g. in combinations with DoEs [7-9]), mechanistic models [10] or 

more big data driven models like machine learning models [11, 12] partly also in in combinations 

like in hybrid models [13, 14]. However, the quality of the models e.g. in terms of predictability and 

interpretability has to be evaluated early on. This shall ensure that also later in the context of 

commercialization the models are well validated to make decisions on the models such as 

classification of parameters into KPP or CPP or the definition of ranges. So far, no clear 

recommendations are outlined for model validation and a straight forward and comprehensive 

workflow is difficult to define. One reason for this might be the diversity of mathematics (e.g. 

statistical, mechanistical, hybrid, etc.) and the different nature of the underlying data (scale 

differences, batch versus perfusion mode, sample size differences, and many more). There are no 

gold standard data sets available as the biology is that diverse (e.g. different host cell lines, different 

targets, and so on). Thus, there is generally no clear protocol for bioprocess models available which 

in turn leads to a large diversity of model validation methods [15-17].  

In this review, we describe model validation approaches which are used especially during upstream 

processing in the biopharmaceutical industry. We further discuss challenges and points to be 

considered when performing model validation. These challenges might arise from the type of the 

underlying data, the state of the model (e.g. model training and model selection) or the risk of 

overfitting. Furthermore, we state the regulatory view on model validation methods which is beside 

the diversity of academic research referring to a few methods only. 
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2. Model Validation Methods 

In this review paper we focus primarily on three group of models: 1) statistical and chemometric 

models, 2) mechanistic models and 3) hybrid models. For the first group, often design of experiment 

(DoE) data is used to make statistical models (e.g. response surface models) which describe e.g. the 

relation of input parameters (i.e. factors such as CPPs and KPPs) on output parameters (i.e. 

responses such as CQAs) or which are used to find an optimum of a certain parameter (e.g. yield). 

Basis is mostly a very small and limited set of experimental data. One-factor-at-time (OFATs) 

experiments which have a sufficiently high statistical power (e.g. above 80%) can be used to model 

the relationship of CPPs/KPPs on CQAs or process performance parameters as well. Currently, 

validation of such models is performed mostly via validation experiments [18-20]. However, this is 

not the scope of the QbD approach at and this implies that quite a variety of experimental data 

would be required to set up the model, depending on the experimental design and the number of 

parameters which are evaluated.  

 

Mechanistic models have been developed for different purposes and with different degrees of 

complexity ranging from simple systems of ordinary differential equations to genome-scale 

metabolic network models [21]. So-called unstructured mechanistic models describe cellular 

processes as a black-box and balance the conversion of metabolites into cells and products in the 

bioreactor using systems of ordinary differential equations [22, 23]. Here, the conversion and 

growth rates are modeled according to known or hypothesized mechanisms. These models can be 

naturally extended to balance also intracellular processes by the addition of intracellular 

compartments. In contrast to dynamic mechanistic models, metabolic network models are often 

static and valid for a distinct time-period during the bioprocess. Here the steady-state solutions of 

networks ranging from central-carbon metabolism to “genome”-scale are analyzed [24, 25]. The 

underlying assumption for these flux models is an intracellular pseudo-steady state i.e. that 

intracellular conversion rates are much faster than the growth rate or extracellular exchange rates. 

 

Hybrid (semi-parametric) models combine statistical and mechanistic models for describing a 

system of study [26, 27]. It can be used when the process is too complex to be described 

mechanistically, or the process data is insufficient for data-driven approaches like response surface 

models. The mechanistic part of the model has a fixed structure given by knowledge while the other 

parts do usually not have a fixed structure, but a flexible one which is determined by experimental 

data [13, 28, 29]. The advantage of a hybrid model is to use data to fill or improve knowledge gaps 

in first principles or mechanistics. Setbacks for the implementation of hybrid models rely on the 

difficulty to establish algorithms for the parameter identification which are error prone and 

laborious. However, once a general hybrid modelling framework is implemented it is possible to 

reuse it [30].   
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The validation of any model should depend on the purpose of the model and the type of the used 

model. One purpose might be to understand the dependencies of input parameters on output 

parameters to define KPPs and CPPs. However, sometimes the dependencies cannot be understood 

and modeled in detail, but still it is possible to make predictions for future batches. This is useful 

when e.g. computing the probability of having out of specification (OOS) runs in future 

manufacturing.  

 

As mentioned above, the simplest way to validate models is based on data (data-driven validation). 

This is currently the most often used way as it is also accepted by health authorities (see Section 4). 

The methods which are widely used during validation of upstream models are listed and described 

in the following subsections. 

2.1 Crossvalidation, such as leave-one-out crossvalidation (LOOCV) and leave-multiple-out CV 

Crossvalidation (CV) is an internal re-sampling method where the original dataset is split into 

training and validation datasets. These datasets are simultaneously used for model building and 

validation. The model is trained or built with the training dataset by leaving out a part of the original 

dataset. The validation dataset can be a part of the original dataset or an external dataset used only 

for validating the model. The trained model is then used to predict the responses based on the 

validation dataset [31]. CV is often applied to smaller datasets (e.g. sample size < 10) during initial 

model development and validation. CV at different levels provide important insights regarding 

model validation (e.g. source of variation, comparability) and to assess the main sources of variation. 

It is important with CV to include samples at different levels (e.g. scales) in the training and validation 

datasets to ensure model reliability. Validated R2 (see Section 2.4) from a smaller CV sample (e.g. 

LOOCV) is necessary for the initial training validation but not sufficient to ensure predictive 

performance in the validation and implementation stages [32]. Especially with chemometric and 

statistical models the underlying stratification, from splitting the original dataset into training and 

validation, plays an important role and must be taken into account for remediation and improving 

model performance.  

Monte Carlo CV (MCCV) has been shown in applications to be more consistent in comparison to 

conventional CV approaches [33]. The authors compared three different methods, namely MCCV, 

LOOCV and k-fold CV, to determine the optimal number of model variables to achieve 

predetermined prediction accuracy. Model validation using LOOCV renders unnecessarily high 

number of model variables due to overfitting, which ultimately reduced the predictive capability of 

the model. Furthermore, when k-fold CV is used the computational power increases exponentially 

to determine the optimal number of model variables to achieve the predetermined prediction 

accuracy. Optimization of model parameters has been recently proposed using a two-layered 

(internal and external) cross validation approach for chemometric models [34]. The model 
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parameters are optimized using an internal CV approach, whereas the generalized model evaluation 

was done using an external CV approach. Since preprocessing is a crucial step in chemometric model 

development, preprocessing parameters can also be optimized inside the internal CV iterative loop. 

Other re-sampling approaches such as Jacknife, holdout and bootstrapping were also tested and 

compared to the two-layered CV approach. Finally, k-fold and k-replicate CVs were used to analyze 

the difference between the calibration and test sets and to account for reproducibility between 

replicate samples [34].  

For selecting subsets for model calibration and validation for leave-multiple-out  Crossvalidation 

there are several resampling methods, namely Kennard and Stone algorithm (maximin criterion) 

[35], Duplex (modification of Kennard Stone) [36], D-optimality criterion (maximise determinant of 

the information matrix) [37], K-means or Kohonen mapping (latter: used in neural networks 

extensively) [38]. The resampling methods determine how the original dataset is split for validation. 

A comparison of various resampling methods have been reviewed elsewhere [39, 40].  

2.2. Specificity and Sensitivity (True Negatives and True Positives) and ROC 

Classification models, yet not used for predicting process variables, give a qualitative overview of 

the process performance and can be used to e.g. identify different phases in a process. 

Spectroscopic sensor data is used to build such classification chemometric models to monitor the 

process performance. The performance of such models is assessed with true negative and true 

positive rates (TNR and TPR) using internal CV and external validation approaches [41]. True positive 

and true negative means that the model classifies the observation into the class where it actually 

belongs to. The TPR is computed as TP/(TP+FN) where TP are true positives and FN are false 

negatives. TNR is computed as TN/(TN+FP) where TN are true negatives (positive events wrongly 

categorized as negative) and FP are false positives (negative events wrongly categorized as positive). 

The false positive rate (FPR=FP/(FP+TN)) is the ration of the number of FP and the total number of 

actual negative events (regardless of classification). Plotting the TPR against the FPR results in a 

receiver operating characteristic (ROC) curve and illustrates the ability of the classification if the 

discrimination is varied. The area under the ROC curce (AUROC) is perfect if it is equal to one and 

only as good as a random classification if it is equal to 0.5. 

Specificity and Sensitivity are measures for the proportion of true negatives respectively true 

positives that are correctly identified by the model. Thus, it is similar to the TNR and TPR measures. 

The sensitivity and specificity can be used for binary outcomes or classifications models for example 

in equivalence testing [42].  

2.3. Accuracy (closeness of prediction to real value) and precision (random error of model 

predictions comparable with reproducibility of real data) 

Accuracy is computed as (TP+TN)/(TP+TN+FP+FN) [43] and precision (sometimes also called positive 

predictive value) as TP/(TP+FP) [44]. Ideally, accuracy should be assessed by comparing the results 

obtained with the computational method (simulated in vitro data) with the results of an 
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independent set of real data (not used in training for example historical data). Then, for both data 

sets accuracy and precision can be computed and an acceptance criterion (computed e.g. on the 

historical data) can be determined to see whether the results are comparable. For analytical 

procedures there are different layers of precision (reproducibility, intermediate precision, analysis 

repeatability (replicates), systems repeatability (repeats) [45]). For computational models there are 

no such layers, however one should be aware of the precision which shall be reached by the model. 

Repeats have a narrower standard deviation than the reproducibility (e.g. long-term measurements). 

And not every model will aim at the same precision depending on its application, according to Box: 

“all models are wrong, but some are useful. However, the approximate nature of the model must 

always be borne in mind....” [46].  

2.4 R2 (the coefficient of determination) and RMSE (Root Mean Squared Error) 

The coefficient of determination (R2) is in its most general definition computed by [47]: 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 

With SSres being the sum of squares of residuals for measurements yi and mean of observed data (�̅�): 

𝑆𝑆𝑟𝑒𝑠 = ∑(𝑦𝑖 − �̅�)2

𝑖

 

And SStot being the total sum of squares of residuals: 

𝑆𝑆𝑡𝑜𝑡 = ∑(𝑦𝑖 − 𝑓(𝑦𝑖))2

𝑖

 

Where 𝑓(𝑦𝑖) is the model at point yi. R2 is commonly used in statistical models e.g. in response 

surface models generated with data performed during DoE runs to determine whether a model is 

adequate or not. To avoid overfitting, one should use the R2
adjusted which adjusts for the number of 

explanatory terms in the model in relation to the number of data points, as the R2 is increasing with 

an increasing number of factors in the models. The R2
predicted is computed by using the model for 

predictions of data which has not been used in training the model.  

The R2 is more independent than the RMSE since it does not depend on the unit and thus it can also 

be used to compare models trained on different data sets. Nevertheless, the R2 should never be 

looked at independently and the relation with the unexplained variance should be considered (see 

3.2). There might be models which have high R2 and R2
adjusted values, thus, they describe a lot of 

variance in the data, but the RMSE is far too high (e.g. in relation to historical data or method 

variability). This may indicate that some effects have been missed. On the other hand, if the RMSE 

is too small, overfitting might be a problem (see Section 3.2). To determine whether the RMSE is 

reasonable the analytical method variation can be used e.g. derived by control charts or historical 

data can be used.   
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The RMSE is computed by taking the square root of the mean square error [48]: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑓(𝑦𝑖) − 𝑦𝑖)2𝑛

𝑖=1

𝑑𝑜𝑓
 

With dof being the degrees of freedom. The RMSE is usually used to judge the performance of the 

trained model and to analyze the predictive power of the model e.g. with the validation dataset. 

RMSE of validation should be compared to the measurement error (reference method, 

reproducibility error) to avoid overfitting/underfitting (see 3.2). 

Alternatively to the RMSE, the mean absolute error of prediction (MAE) can be used [48]. If divided 

by the standard deviation of the experimental values the normalized MAE (nMAE) and normalized 

RMSE (nRMSE) are unbiased measurements for model predictions. 

2.5. Maximum Likelihood 

Likelihood is the probability density function that a dataset is observed given a parameter-set θ [12]:  

ℒ(𝜃 |𝑥) = 𝑝𝜃(𝑥) = 𝑃𝜃(𝑋 = 𝑥) 

Wherein X is a random variable with probability mass function p depending on θ. 

The formulation of a likelihood limits its application to parametric models, however there are 

extensions dealing with non-parametric likelihood approaches [49]. The likelihood function is the 

basis for objective functions and used to derive the so-called maximum likelihood estimator [50]. 

Under the assumption of normal distributed error terms this directly leads to the residual sum of 

squares (RSS) weighted by the standard deviation of the error term [51]. The maximum likelihood 

estimator is a widely used objective function for bioprocess models. The obtained likelihood value 

for a model with a dataset can be used for model comparison. Here the Likelihood ratio test is 

performed (see Likelihood ratio), but also the Akaike Information Criterion (AIC) (see 2.6) can be 

used. Likelihood values are also computed for model diagnostics [22] and for model uncertainty (see 

2.11).  

2.6. Information criteria (Akaike information criterion(AIC), Bayesian information criterion (BIC)) 

When fitting a mechanistic or statistical model, it is possible to increase the model fit by adding 

parameters, which can result in overfitting. In this sense, AIC, AICc (corrected AIC used for small 

sample sizes) [52] and BIC are the most widely used selection criteria for modelling and identification 

of upstream systems to achieve the simplest model with the least variables but with greatest 

explanatory power. Both AIC [53] and BIC measure the trade-off of model fit [54] (quantified in 

terms of the log-likelihood (see 2.5)) with model complexity (a penalty for using the sample data to 

estimate the model parameters): 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 2𝐾 

𝐵𝐼𝐶 =  −2 log 𝐿 + 𝐾 log 𝑁 
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where L is the likelihood, K is the number of model parameters, and N is the number of data points 

used to train a model (computed on the joint training/ validation data). A model with better fit has 

smaller AIC or BIC, and while AIC and BIC penalize a model for having many parameters, BIC 

penalizes a model more severely compared to AIC [55-57]. Therefore, BIC could be more suitable in 

selecting a correct model while the AIC is more apt in finding the best model for predicting future 

observations for a given data set. 

2.7. Goodness-of-fit 

The goodness-of-fit (GOF) of a set of results of a model describes how this set of simulated results 

fits the observation dataset. When multiple models of a process are available, the GOF gives an 

assessment of relative model fit and provides information on selecting the superior model. 

Therefore, in the context of model validation the GOF can be used for two purposes: i) validation of 

the simulation results of a single model and ii) relative validation of different models' simulations. 

The two most popular standard GOF statistics are Pearson’s statistics (𝜒2) [58],  

𝜒2 = ∑
(𝑝𝑐 − �̂�𝑐)2

�̂�𝑐

𝐶

𝑐=1

 

 

and the likelihood ratio, 

𝐺2 = 2𝑁 ∑ 𝑝𝑐𝑙𝑛
(𝑝𝑐)

�̂�𝑐

𝐶

𝑐=1

 

Where c is the contingency table, 𝜋𝑐 is the probability of the c, 𝑝𝑐 is the observed proportion and 

�̂�𝑐 is the probability of the cell c under the model. 

  

In order to use the GOF methods in the model selection studies, two most popular GOF indices, AIC 

and BIC can be used (section 2.6). 

2.8. Repeatability, intermediate precision 

In validation of analytical procedures quality testing is necessary to confirm that the analytical 

procedure is suitable for its intended use. To the same direction the validation of a computational 

model should confirm that the model is valid to describe the intended problem at hand [59, 60].  

For the analytical validation intermediate precision and repeatability (intra-assays precision) are to 

be determined. Intermediate precision of analytical procedures considers several different factors 

such as date of test, test analyst, apparatus etc. In terms of a computational model this relates to 

factors such as start parameters, data (data split in CV) and so on. Repeatability should be done 

independently for example using CV. There, one can have homogenous samples but also 
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heterogeneous samples. Especially replicates within the underlying data should be handled with 

care (e.g. use all replicates either within test or within validation set in CV). 

2.9. Homogeneity of variance 

Homogeneity of variance (HOV) is an assumption for the validity of many parametric tests such as 

the t-test and ANOVA that rely on the assumption that the true population variance for each group 

is the same as in the observed sample. Testing for HOV is also useful to compare two data sets that 

do not come from the same source or that have other intrinsic differences to decide if the data sets 

are comparable and can be used together for model training. For instance, in bioprocesses to 

compare daily average substrate consumption rates and product formation efficiencies for two 

different sets of bioreactors which were initiated using a different inoculum. If the assumption of 

HOV is not met, it might be problematic to use the datasets to develop models right away. In this 

case, data transformation (such as log transformation) of the response variable can be helpful. The 

most common test to check for HOV are Levene’s test [61], Bartlett’s test, Brown & Forsythe’s [62], 

Welch test and F-max test [63].  

2.10. Credibility score and continuous testing  

Model credibility accounts for the risk associated with the decisions made on the computational 

model. Based on a risk assessment quantitative and qualitative levels of credibility which need to be 

achieved have to be determined prior model building. This is a so called risk-informed credibility 

assessment framework used in the American Society of Mechanical Engineers (ASME) Norm for 

computational models of medical devices [64]. It goes in line with an in vitro (e.g. bench testing) and 

or in vivo testing (e.g. experiments) to demonstrate valid predictions of the computational model. 

The concept can be extended to other types of models such as statistical and machine learning 

models and their application on pharmaceutical and biological products as well [65, 66]. 

2.11. Model uncertainty, model robustness 

There exists a parallel between uncertainty about the data and uncertainty about the model and its 

predictions (see Section 2.9). The typical standard errors and confidence intervals indicate 

uncertainty about the data, measuring how an estimate changes with sampling. However, a robust 

model should also account for model structure and its predictive capability in terms of nonlinear 

effects, and heterogeneities.  

Data collection in upstream processes can be noisy, and susceptible to errors (i.e. corrupted sensors, 

errors in the measurement devices, etc.). Standard statistical models and data analytic techniques 

could fail under such scenarios, which can reduce their applicability. A robust model should handle 

various forms of errors as well as changes in the underlying data distribution in an automatic way, 

models that can be used in a reliable way, enabling their application even in complex applications 

such as biopharmaceutical bioprocess.  
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Many of the methods to characterize uncertainty in models apply equally to all types of models. 

However different assumptions are made and might be applicable for a certain model type and a 

certain dataset. In general, different approaches are utilized 

Linear approximations of confidence intervals. These methods rely on the numerical estimation of 

a Jacobi matrix of the model with respect to the parameters (or weights for artificial neural networks 

(ANNs)). Uncertainties in the training data can directly be propagated by linear approximation [17, 

67]. 

Bayesian approaches. Here the uncertainty in estimated parameters needs to be determined first 

(using e.g. Likelihood approaches). Model ensembles or distributions of outputs are then obtained 

by sampling the multi-dimensional parameter distributions using for example Markov-chain Monte 

Carlo methods [15, 68].  

Bootstrapping: Here, the original data for model-training is bootstrapped. This results in a model 

ensemble that produces an according output distribution that depends directly on data uncertainty 

[69]. 

Mean Variance Estimation (MVE) Method. This method is unique to ANNs. Here the ANN is trained 

to learn an additional output which is the uncertainty in the prediction [17, 67]. 

Validation Profile Likelihood. This method is based on the Maximum Likelihood Estimator (see 2.5). 

Here Likelihood values of hypothetical data-points are calculated and using the Χ2 distribution a 

confidence interval with level α can be determined [70].  

2.12. Summary of validation method 

In Figure 1 the model validation methods are summarized and an overview is given. Basically, four 

points should be considered when deciding which methods shall be used for model validation: 

Nature of the dataset: Are there replicates given in the data? Is the variation in the data high (e.g. 

does the DoE allow to model the full design space or are only runs with the same settings available). 

Sample size: Is the dataset which is used of low or high sample size (e.g. more than 10 samples)? 

Model state: In which state is the model, i.e. model selection (e.g. identify whether a linear model 

versus a quadratic model should be used), training (e.g. perform the linear fit) or implementation 

(e.g. make linear fit during each campaign of commercial manufacturing)? 

Model type: Is the model a statistical, a mechanistical or a hybrid model? 

 

All these four points are interconnected. The definition of what “low” and “high” sample size 

numbers mean depends on the other three points. For example, for the selection of a mechanistic 

model higher samples sizes (e.g., n > 10) might be necessary than for the selection of statistical 

models. However, for model training mechanistic models may need lower sample sizes than 
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statistical models. On the other hand, if there is a high sample size given, but if all measurements 

are performed with the same settings, thus only replicates of a single experiment are given, this will 

not be helpful for model training. Thus, there is not one-fits-all approach and the definition of a 

single workflow is probably hard to define. Furthermore, the comparison of different models and 

their validation is difficult due for example the lack of gold standard data sets. Nevertheless, this 

summary should show that there are a plethora of different validation methods and for each model 

it should be critically assessed which method or combination of methods is suited best for validation. 

 

 

Figure 1. An overview of the different aspects to consider in order to choose a validation statistic or 

method. Section 2 sub-headers, namely 2.1 – 2.11 are denoted as 1 – 11. 

 

3. Further points to consider 

3.1. Calibration / model fitting 

Model calibration plays a vital role in model validation and future of use of the calibrated model for 

prediction. The validation statistics could be interpreted only when the calibrated model and the 

data used for calibration are robust. Well calibrated models can be useful tools for studying the 

underlying mechanisms and rationalizing the results [12]. However, techniques used in model 

calibration also vary widely such as, subset or feature selection and data splitting approaches 

depending on the type of model (e.g. mechanistic vs chemometric). Therefore, clear calibration and 

validation protocols are not available [71]. The data needed to calibrate and validate a model is 

heavily reliant on the type of model in question. For example, a mechanistic model would require a 

much smaller dataset in comparison to an hybrid [13] or a chemometric model [72]. Therefore, 

validation statistics and approaches would also be dependent on the sample size of the datasets 

during model development. Nevertheless, use of sound validation statistics at each level of the 
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model calibration workflow would pave way for overall applicability and streamlining a model 

calibration protocol.  

3.2. Overfitting and underfitting: 

During model validation it is important to account for underfitting (i.e. oversimplifying e.g. by using 

a linear model instead of a quadratic model) but also overfitting should be avoided [38, 73]. In both 

scenarios the model will make error in predictions. In case of overfitting, measurement noise could 

be interpreted as being a process relevant effect, e.g. by fitting a quadratic function into a truly 

linear process. In case of underfitting, truly existing process effects might be missed. For example, 

if a linear fit is performed but the process is actually quadratic. 

In data driven approaches (e.g. Machine Learning) this phenomenon is captured by the so-called 

Bias-Variance tradeoff, which is a decomposition of the Mean Squared Error into the “Bias” term 

that represents how well an average value is predicted and “Variance” term that increases when 

the model is overfitted [74]. To obtain statistical models with good generalization properties it is 

either common to apply early stopping in the learning phase [75] or to use regularization terms in 

the loss functions [76]. If the model is trained using cross validation a comparison of the R2 values 

(see 2.4) for the training and test data (called Q2) can be informative to determine if overfitting 

occurs [77-79]. 

3.3. Limit of Detections and Limit of Quantification (LoD and LoQ)  

In some analytical procedures there are detection and/or quantification limits. The LoD is the lowest 

possible distinction from noise of the analytical method [80]. The LoQ is the lowest quantitatively 

measurable amount with suitable accuracy and precision for the analytical procedure [59, 81]. These 

limits should be considered when using data to build a model as the model might not reflect the 

limits and thus bias results upon a certain limit. The LoD and LoQ are computed as follows [82]: 

𝐿𝑜𝐷 = 3.3 ∗ 
𝑠𝑛𝑜𝑖𝑠𝑒

𝑏
 

𝐿𝑜𝑄 = 10 ∗
𝑠𝑛𝑜𝑖𝑠𝑒

𝑏
 

With 𝑠𝑛𝑜𝑖𝑠𝑒  being the standard deviation of the calibration curve and b being the slope of the 

regression line.  

3.4. Type of data 

As part of model validation, the predictive accuracy of a model must be evaluated by comparing the 

model prediction against measured process data to ensure a model was built correctly. Certain 

modelling approaches such as statistical and chemometric models can require a large amount of 

data for their calibration and testing. Therefore, quality training and test data sets need to have 

some features such as enough information (variability in process inputs), sufficient number of 

experiments and observations and in the case of on-line data, a low signal to noise ratio is critical to 
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obtain reliable models. Further aspects to consider are the sampling timing points and the process 

intrinsic variability. On the other hand, if a large number of measurements is given, but they show 

only small variations in the settings (e.g. only replicates are given) then a model is hard to build [83].  

Further, discrete data should be treated differently than continuous data. In general, it is 

recommended to use always the unrounded raw values when developing and validating a model.  

 

Biopharmaceutical upstream manufacturing largely depends on batch processes, with data sets 

containing time dependent information with a typical three-dimensional shape of batches x 

variables x time. Unfolding procedures are used to reduce this three-dimension matrix to a two-

dimensional format which is necessary for multivariate data analysis. The data set can be unfolded 

in different ways depending on the purpose of the analysis. Batch-wise unfolding, where each row 

in the matrix is a different batch, is used to analyze differences among batches by removing the 

dynamic behavior of the batch. Conversely, variable-wise unfolding is used to study the dynamic 

behavior of the batch relative to the mean of each variable [84, 85].  

Moreover, in biopharmaceutical upstream processes there are different kinds of parameters such 

as input parameters which are highly controlled in a quite narrow range and others which are 

controlled only indirectly within a broad range. Some parameter settings cannot be tested in real 

experiments as they would lead to an edge-of-failure. For some parameter online measures give a 

high time resolution and thus a large set of data for other parameters only offline measures at 

certain time steps are available. This has to be taken into account during data cleaning and polishing 

and should be an important part during the whole model lifecycle to ensure that the data fits the 

problem and is suited for the model. 

Intensified DoEs (iDoEs) have been recently used in upstream processing to develop hybrid models 

in an efficient manner with a small amount of data needed [14, 29, 86]. Independent of the number 

of samples measured, the nature of the data used for model generation plays also a role in model 

validation as described above. Furthermore, if there are replicates within a dataset they should be 

studied in detail. In CV it should be avoided to have replicates within the test and training set to not 

artificially improve validation measures such as RMSE.  

3.5. State of model 

Typical model states in bioprocesses are model development for generating base process 

knowledge, using developed model for process monitoring, prediction and optimization activities 

and, ultimately for continuous process improvement [87]. The amount of data needed during model 

development stages would be much higher than during implementation and maintenance stages. 

Maintenance of the model necessitates any improvements and changes in the model to be 

continuously assessed along the model lifecycle, namely through development, implementation and 

further maintenance. Based on the available data which are relevant for the model state, validation 

statistics would vary vastly.  
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3.6. Good Modeling Practice (GMoP)  

Ideally, during model validation several methods are combined to account for over- and underfitting 

but also to assess different aspects of the model. For example, there might be models which have a 

very small RMSE but model predictability is rather poor due to effects which are not considered (e.g. 

equipment variability). Therefore, it is essential to adhere to a good modelling practice. 

Consequently, this will address all the aforementioned points to consider into context.  Typically, it 

would start with a clear definition of an objective and necessary requirements for a specific model 

type. Based on the model nature, different assumptions are discussed, and model calibration is done. 

Thereon, the sensitivity analysis and an estimation of parameter uncertainty is done. Adhering to 

GMoP, would ensure a robust model capable of simulating and predicting outcomes [88]. 

 

4. Recommendations from health authorities 

According to the ICH guidelines Q8, Q9 and Q10, model validation is an essential part of model 

development and implementation, and verification of such models must be carried out throughout 

the lifecycle of the product [89]. Furthermore, models should be categorized based on high, medium 

or low impact models and validation extent for such models must be considered based on their level 

of impact on the process. The following points must be considered for high impact models, namely 

setting acceptance criteria, comparison of accuracy using internal cross validation, validation of the 

model using external cross validation and verify prediction accuracy by parallel testing with the 

reference method throughout the lifecycle. Validation procedures should take into account any 

change in material attributes or analytical procedures and differences arising from scales.  

In a PAT framework, validation procedures should consider analytical method validation and 

continuous quality assurance [45]. Statistical methods such as ANOVA to assess regression analysis 

(e.g. in a chemometric model), R (correlation coefficient) and R2 or linear regression for linearity can 

be used to assess validation characteristics [81]. Computational and simulation models should be 

described to assess its validity and their prediction capability of the model outputs with validated 

analytical methods [90]. The sensitivity of the model outputs on the key model parameters must be 

described with a systematic analysis of the uncertainty. Although different validation procedures 

are presented in academic research, only a few are mentioned in the regulatory documents. 

Intesified use of modelling approaches to accelerate product approval stages would enable addition 

of robust validation approaches in regulatory documents.  

Model implementation in production processes necessitates validation of the software, when the 

model is a part of the production process or the quality system [91]. 

5. Concluding Remarks 

In this review, validation methods currently used in bioprocess modelling are described. Motivated 

by QbD and the necessity of speed-to-clinic approaches makes modeling more and more important 

in biopharmaceutical industry. Beside the fact that extensive experimental set-ups are expensive 
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and time consuming, modeling approaches often allow a better process understanding, 

optimization and control. However, the reliability of the given model needs to be ensured before 

answering the questions at hand (e.g. optimization of titer or the definition of KPPs and CPPs). As 

there are many different model types (statistical, mechanistical, hybrid, and so on) a unique way for 

model validation is difficult. This is also due to the fact that there is no clear protocol for model 

generation in bioprocessing. Even health authorities are referring to some basic approaches like R 

and R2.  

 

There exists a plethora of methods for model validation and in consequence to the points mentioned 

above, using a combination of the methods mentioned above is recommended. This shall better 

allow to judge the reliability and predictability of the model. Furthermore, it helps to account for 

under/overfitting and to address the type of the model even throughout the modeling lifecycle like 

model calibration, validation and implementation. In any case, data is needed to set-up a model and 

thus, the data should be checked very carefully before model generation and validation. For 

example, the sample size, the variation within the data but also the number of replicates are to be 

considered. 

 

Ideally, beside using model validation in silico methods, models should undergo a lifecycle which 

includes continuously testing during a product lifecycle which is also recommended from health 

authorities [87]. Here also the purpose of the model shall be considered e.g. using a model for having 

a better process understanding in early stage development, for defining CPPs in late stage 

development or for process control during manufacturing. If the model has a high impact on the 

process, the model validation should be more detailed then for models with lower impact. We 

expect that the validation methods in bioprocess development will become more important as the 

models itself are getting widely accepted. Using all available and suitable modelling validation 

approaches will help to judge the models about their predictability and reliability. Reliable models 

will help to understand bioprocesses in their entire lifecycle (lab to market) and thereby, making 

them more robust and flexible.  
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