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The role of climate datasets in understanding climate extremes.
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Abstract: The impact of climate extremes on the society has been of great concern to
environmental scientist and policy makers. The destructive consequence attributed to natural
hazards associated with climates extremes has been estimated to billions of dollars across the
globe. To carry out a robust and effective researches that help to minimize or prevent the loss,
detailed datasets of the past, present and future are needed. This will help to give an accurate

prediction and early warning which is necessary for the policy making.
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1. History of datasets, types and climates proxies
The climate of the earth is in a continual state of variation, changing from days to billions of
years. These changes occur due to internal and external factors. To have an overview of the

earth’s climate history, a proper understanding of the present and past climate is necessary.

The usage of devices to measure climate parameters has only been in existence for about two
centuries, therefore to estimate past climate, climate researchers make use of indirect methods
of measurements known as climate proxies, which serves as natural archives of climate

information (Jones and Mann, 2004). These proxies kept records of atmospheric configuration
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and properties in form of written historical documentation or pictures that gives detailed
description of the climate in their time (IPCC, 2007). Each of these climate proxies serves as
an indirect methods of inferring past climate, which would require careful calibration and

validation against instrument records of the same time.

Many paleoclimate studies make use of multiple proxy data in order to obtain comprehensive
estimates (IPCC, 2007). Paleo climatological data is the first set of climate datasets that
provided information about past climate (Osama et al, 2020). Paleo climatological data was
first explored in the 20" century. The idea of the paleo climate was birthed in 1970 during the
study of ice age and the possibility of its recurrence in the future (IPCC, 2007). The subject of
paleoclimatology became important in order to understand the evolution of earth’s climate
from past to present (Jones and Mann, 2004, Osama et al, 2020). In the year 1990, when the
first IPCC assessment was done, very little knowledge about climate variation prior to
instrumental records was available, however about two decades later understanding improved
greatly (IPCC, 2007). Paleo climatological datasets has helped to understand how climate has
responded to climate forcing in the past and how it may respond to similar climate forcing in

the future.
1.1 Historical Documents and Records

Another type of proxy data is the historical documents and records, which contains information
about past climatic conditions. The climate information in this source are usually found in
record written by Mariners, Farmers, traveller’s diaries and Newspaper account of past weather.
This records are usually in the form of occurrence date of drought, famine, frost, freezing of
water bodies, snow and sea ice cover duration. Others may include phenological evidence such
as the start and end of planting season, time of plant flowering, or date of harvest, all of which
gives details of past climatic condition. Past and present graphical image of mountain glaciers
has been used as evidence to support glacial retreat; which is a direct consequence of climate
change. Despite the numerous uses of historical documentation, there are several limitations to
its usage as a paleo-climate proxy. Historical documentations are mostly found within regions
that have early writing traditions, therefore cannot be used to determine global climate
conditions. Furthermore, the documentation of the climate or weather event is subject to the
observer, as most of the writers would record the events in their local language, their timing
(calendar) and based on their own perception without following any standard meteorological

instrument’s usage. Historical documentation mostly takes note of extreme climate events,
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which may be considered as climate anomaly if careful consideration is not undertaken thereby

providing false interpretation of events (Jones and Mann, 2004).
TREE RINGS RECORD

Records about past climatic conditions can be obtained from trees ring’s archives containing
long rage of data, dating up to thousands of years (millennials); trees generally respond to
changing climate by altering their growth pattern, which can be seen from the thickness of their
rings. It is worthy to note that all tress can be used as proxies for climate studies, commonly
used trees are found in the subpolar and multitude regions, these are majorly extratropical
species, which can be cross-dated and chronologically developed. Several literatures consider
tree ring as the most accurate source of paleo climate data that provide annual and seasonal
accounts of climate condition (Jones and Mann, 2004, IPCC, 2007). Tree rings studies
(dendroclimatology) can be used to produce climate information regarding temperature,

precipitation, hydrology and fire.
ICE CORES RECORD

Thousands of years data of the past climatic conditions can also be obtained from ice cores of
mountain glaciers, the polar ice caps or ice sheets (Greenland and Antarctica). Ice cores are
found in the polar regions of Northern hemisphere and in the tropics and the sub tropics.
Though found in small fraction over the earth’s surface, it serve as complementary data sources
to tree rings and corals. Ice cores are used as a source of paleoclimate data because falling snow
traps air within tiny bubbles, which s latter compressed and converted to glacial ice with the
air bubble still trapped. This ice core air bubbles contain information about the atmospheric
composition of the atmosphere (rate of precipitation, fraction of melting ice and concentration
of chemical constituents etc.). Seasonal pause in the accumulation of ice are used to establish
chronology as observed layers or depths are connected with specific time space. Variation in

temperature and precipitation can also be inferred from changes in the layering thickness.

CORALS RECORDS

Corals reefs found in the ocean can also provide information about past climate events, as they
have been for millions of years and are exceedingly sensitive to changing climatic conditions.
Corals are sensitive to temperature changes in the ocean, which may lead to bleaching, changes

in pH levels, water pollution and runoff. Corals form their skeletons from calcium carbonate
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in ocean water as they grow; the density and geochemical characteristic of the choral skeleton
vary with the ocean properties (temperature, pH changes, fresh water influx, light, season, wave
action and nutrient condition). This variation forms growth rings similar to tree growth rings

and serves as the primary source of past annual and seasonal climate reconstruction from corals.

By observing trace elements, stable isotopes (oxygen isotopes) or variation in the density of
the coral structure, scientist can establish a record of the sea-surface temperature, sea surface
salinity and rainfall as well as the changes they have undergone overtime. Times of extreme
events, environmental stress, disease outbreak and bleaching can also be identified, which is
also helpful in determining condition that are harmful to the reef. Corals are found in both
tropical, subtropical and maritime environments, making them very good complements for tree
rings in terms of spatial coverage. Corals also provide a uniform window of climate information
because they can be precisely dated (annually and seasonally) and their environment can be
sampled continually over the period of a year. Its ability to determine past climate events in the

ocean makes it useful in prediction analysis of the ocean climate.
VARVED LAKES AND OCEAN SEDIMENTS RECORDS

The accumulation of sediments at the floors of Oceans and Lakes serves as a good source of
past climate information. Similar to ice cores, information on past climates are imbedded within
the layers of the ocean sediments. Scientist drill cores into the billions of tons of inorganic
sediments that have accumulated overtime from the ocean and lake floors and examine the
properties to determine past climate. Varved Lakes (VL) are important complements to proxies
like tree rings as they provide climate information in high latitude regions where such proxies
are limited or unavailable (Jones and Mann, 2004, IPCC, 2007). The deposition of sediments
in Varved Lakes are controlled by seasonal precipitation and temperature changes, the amount
of melted water discharge and sediment load into a bounded glacial lake are influenced by
precipitation and temperature pattern. Varved Lakes are important in determining the climate

temperature at the time the layer was formed.
OTHER PROXIES

There are certain other proxies that are still under development or seldomly used because of
low resolution or the technicalities involved in their calibration process. Some of these other
proxy sources include, but are not limited to; isotopes form molluscs, glacial evidence and

boreholes.
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TIMING OF PROXIES

As these climate proxies are used to define past climate with particular attention to year and
season of occurrence, it is important to know how the time frame for each of these proxies are
determined. For proxies like tree rings and corals that develop their layers annually, the rings
are simply counted to determine the exact year of occurrence. In other cases, radiometric dating
is used to determine time. Radioactive elements within the proxies reveals certain properties
that can be used to estimate the time of occurrence, however in certain cases for very old
proxies, some of the older radioactive elements might have decayed producing different

proportion of elements which may not be found in newer proxies (Osama et al, 2020).

b. Strength and weakness of datasets used in climate extremes studies

In the study of climate extreme systems (I believe would have been explained prior this
section), observational and gridded datasets have provided quality representation in spatial and
temporal understanding of our environment. Atmospheric variables can be monitored
consistently over time providing past and present understanding of climate systems. Today’s
understanding about the climate is developed from continuous observations and records of the
evolution of past systems. These records of observations are referred to as historical climate
datasets and are vital towards the accurate understanding of the dynamics of climate systems.
Climate datasets are continuous with past records providing understanding for present day
knowledge, and current observations as basis for the future.

More data means more information and understanding can be harnessed. This is important to
climate scientists and forecaster for accurate prediction of climate systems on a short- or long-
term. With great variability of observed climate systems, the quality of our understanding
depends on how much data are available to be accessed.

Slight change in the severity or frequency of occurrence in an extreme climate event could have
profound effect on the environment. The changes in wet spells for instance would have
tremendous effect on agriculture. The extent of these changes is quantified by the amount and
quality of dataset used. Hence, it is important we examine the strengths and shortcomings of
the type of datasets involved.

2.2.1 Gridded datasets: Observations, Reanalysis, Satellite and Climate models

These datasets are most commonly used in present day climate studies. Unlike station data,
gridded datasets are measurements or data interpolated at a regular or homogenous grid. These
datasets are either reanalyses products, derived through remote sensing or interpolated station
observations. Usually they extend over the whole globe or a limited area (regional). Gridded
data involves the grid representation or interpolation of multiple observation networks. Thus,
they provide an extensive view of the regional extent over the area of interest, and giving
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information of stations with missing or no data. Measurements from satellites are usually
processed in this format extending over the region of satellite coverage.

Reanalyses or Climate models’ output are represented in this data type. Although, dependent
on their resolution scales, they provide adequately high spatial representation of climate data.
High or fine resolution climate data are provided at smaller grid sizes or intervals, and are more
informative in regional studies. For example, precipitation retrievals from the Global
Precipitation Measurements (GPM) is provided on a 10km x 10km grid interval. Coarse or
lower resolution datasets are less informative for regional purposes and more suitable for global
studies. An extended range of climate data are available within this grid, ranging from 0.5° to
about 1° resolution. For example, the National Oceanic and Atmospheric Administration
(NOAA), the European Centre for Medium-Range Weather Forecasts (ECMWF), or the
National Center for Atmospheric Research (NCAR) provides continental or global data
extending over a large domain and a period of time. However, they are of limited usage in
regional or small-area studies e.g. precipitation over a small catchment area or surface
temperature in heat island analysis.
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Figure 1: A three-dimensional global grid system (source: https://www.nccs.nasa.gov/services/climate-data-
services; Varalakshmi et al. 2020)

Gridded climate data are quality controlled and suitable for use either in data assimilation or in
statistical/physical process studies. These datasets have undergone multiple screening
processes through sufficient analysis for biases, outliers, or error characterization before
accessed by the users.

Shortcomings of Gridded dataset in Climate Extreme Studies

Gridded data from satellites and reanalyses are not with their limitations. One of which is their
lack of long historical records. For example, precipitation retrievals from satellite
measurements only extends back to the 1970s, and there are significant biases existing in the
data (Gerstner and Heinemann 2008). As the evaluation of extremes require long historical
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records to identify significant and consistent factors attributed to these extremes. In analyzing
a one-in-ten years extreme e.g. a drought event, twenty to thirty years data may be insufficient
to reach a logical scientific conclusion.

This type of dataset is not also without biases (underestimation or overestimation) in
representation of climate extremes. For gridded observation networks, the quality of gridded
product is related to the number of contributing meteorological stations (Haylock et al. 2008).
More observation networks suggest better interpolation of observed variable across the grid
region. Also, complex topography or terrains are associated with unique weather systems
varying from surrounding plains or regions, thereby poor representation of mountains or cliffs
in the observation stations would result in a gridded product with large biases. Additionally,
when examining extreme rainfall data, there are dangers of over-smoothing precipitation data
when there are few stations used in the analysis. (Hofstra et al. 2010)

Climate models or reanalyses products are associated also with significant biases. Reanalyses
data from the National Centers for Environmental Protection/National Center for Atmospheric
Research (NCEP/NCAR) have significant underestimation in precipitation extremes (Hanson
et al. 2007). Reanalyses data generally differ due to disparities in assimilated observational
data and methods, the configurations of boundary layer processes, and the physics schemes.
These contributes to the level of uncertainties in the output product, which may be considerably
large in climatic extremes analysis. For instance, discrepancies between reanalyses for some
climate extreme indices, such as frost days in some regions, are sometimes as large as the
typical inter-model spread of the Coupled Model Intercomparison Project ensembles,
(Sillmann et al., 2013). The European Centre for Medium-Range Weather Forecasts (ECMWF)
Interim reanalysis, the fifth generation of ECMWF atmospheric reanalysis (ERA-5) and the
Department of Energy (DOE) Reanalysis 2 are most common reanalyses data in present-day
climate studies. A major limitation in earlier versions of ECMWF products are large biases in
precipitation estimates., while the newer version (ERA-5) has major improvements in
circulation patterns hence reducing these rainfall biases (Nogueira, 2017; 2020).

The use of the ensemble average from multiple climate models have been adopted lately in
most scientific studies. The configuration and parameterization of schemes differs in models.
The performance of these models also varies across regions affected by topography and the
dynamics of the climate. The result is in overestimation or underestimation of extremes,
varying in degrees with different GCMs or RCMs. The ensemble Mean of these models is a
way to reduce these biases. To estimate the mean ensemble in climate models requires all
models to be represented on equal grid resolutions.

Systematic biases are other limitations created through the use of gridded climate models in
analyses of climate extremes. For example, since models or reanalyses uses grid averages,
differences in hot and cold extremes are usually smaller across nearest grid locations as
compared to real time observations.

Additionally, non-stationarity is another limitation associated with some reanalysis products.
As reanalyses data combine observational datasets from differing sources on a long-term,
increasing variations in mean or variances affect the overall trend. Temporal inhomogeneities
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due to changing assimilated observations suggest reanalysis products are unsuitable for long
term climate analysis. The sensitivity of climate extreme analysis suggests these could
contribute to the uncertainties associated to its studies.

The highlighted issues above are the major limitations or weaknesses associated with the use
of gridded climate data in extreme climate scenario.

Advantages of Gridded dataset in climate extreme studies

The wide acceptability of gridded datasets in climate studies is met with its ability to provide
a wide or regional spatial information at a glance. Large scale regional studies are quite
impossible with station observation datasets. Hence, variability of systems responsible for the
evolution of climate extremes can be easily monitored and traced to source regions with
gridded datasets.

Another strength of gridded data in extreme climate studies is their ability in providing future
climate projections. The effects of the changing climate suggest that while it is important to
understand past or historical events, the knowledge of the future is more relevant to the state-
of-art science. Station observations are available at a fine resolution but only provide historical
observations at best. The continuous improvement in climate models and data assimilation
methods means they can become reliable in the projections of climate extremes. New groups
of models have incorporated finer spatial resolution, new physical processes and
biogeochemical cycles. For example, most models in the recent version of the Coupled Model
Intercomparison Project-Phase 6 (CMIP6) have an improved climate sensitivity, contributing
to higher warming projections up to 0.4°C as compared to similar scenario in the previous
version.

Gridded data also offers some advantages through availability of data in non-observed regions.
The use of station or point observations means data is only made available at specific
instrumented locations.

Regional or zonal analysis is simplified with gridded datasets. Unlike point measurements,
averaging data over region is straight forward in gridded dataset.

2.2.2 Station or Point Observations

Station observations provide more accurate historical record of climate events, thereby
improved results in climate extremes studies. They are helpful in providing significant details
in daily extreme analysis. Unlike climate extreme, daily extremes have a shorter temporal span
lasting between hours to days. Example is an abnormal increased (decreased) temperature
exceeding normal daily averages, generally referred to as heat (cold) waves.

Shortcomings of Station Observations

One of the major limitations of station observation is the coverage of less spatial extent. They
provide interesting results for microclimate studies, and cannot be applied in monitoring
synoptic or mesoscale events.
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In hydrological studies, particularly in stream flow experiments or simulations, instrumental
measurements of meteorological variables are of great concern. Most especially, precipitation
measurements are identified with different error sources including aerodynamic, wetting,
evaporation, splash in and out, and blowing and drifting snow factors, thus leading to
uncertainty in precipitation estimates (Taskinen and Sdderholm 2016). Microclimatic
variations (for instance a local storm) can also be challenging in the representativeness of
measured precipitation estimates (Orlowsky and Seneviratne, 2014).

Temperature measurement are more sensitive to the environment. Error arises from
thermometer exposure to solar radiation and the environment. Station observations can also be
subjected to bad observer practices or poor data processing. Ultimately, poor-quality data
resulting from these errors can lead to misinformation or incorrect model calibration (Beven
and Westerberg 2011).

Advantages/Strengths of Station Observations

The sensitivity of temperature measurements means stations observations are most advisable
to be used in local scale studies. Heat waves monitoring can vary within the local climate, and
are subject to environment conditioning. Hence, point measurements can provide instantaneous
monitoring of extreme weather events.

Station observations have less uncertainties resulting computational errors, and provide
improved accuracy in historical monitoring of climate extremes.

They are also available in fine resolutions are very useful in microclimate studies.

c. The Climate System: A data science perspective

Climate has a significant impact on life on earth because it plays an important role in the daily
experience of human and it is essential for health, food production and well-being. However, a
report presented scientific evidence that human activities are already influencing the climate
(IPCC, 2013). If we wish to understand, detect and predict the impact of human on climate, we
need to understand the system that determines the climate of the earth and of the processes that
lead to climate change (Baede et al., 2018). Global climate change has emerged as the greatest
environmental challenge of our era (21st century). Hence, understanding our changing world
has impelled many researchers from different fields of science to tackle complicated research
questions. The climate change research community now faces the daunting task of
disseminating massive amounts of information about possible future climates under varying
scenarios to a large audience (Pickard et al., 2015). They also need to make the data readily

accessible so that it can be used by scientists in other research fields.
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In understanding the climate of our planetary system (Earth) and its variations, and possibly
predicting the changes of the climate influenced by human activities, emphasis should be on
those factors and components that determine the climate. It is important we must understand
the climate system, the complicated and interactive system consisting of five major
components, including the atmosphere, the hydrosphere, the cryosphere, the lithosphere and
the biosphere (Faghmous et al., 2014; Baede et al., 2018). Directly or indirectly, all the
components are affected as a result of the global climate change. Hence, an adequate response
requires relating changes in the global climate to their impacts on local communities, such as
flood, severe droughts, wildfires, and hurricanes. However, this attempt faces significant
challenges because existing climate-model for studying these changes don’t resolve many
climate change impact phenomena at spatiotemporal scales relevant to policymakers,
community leaders, and other stakeholders (Faghmous et al., 2014; Faghmous and Kumar,
2014; Hassani and Huang, 2019).

Based on these limitations and the urgency of climate change, this necessitates the opportunity
for the data-driven methods to fill up knowledge gaps related to climate change and its societal
impacts. Climate science is a field focused on studying large-scale changes across the
components of climate system over long and short temporal periods and is becoming an
increasingly ripe domain for significant data-science contributions as data from earth orbiting
satellites, climate-model simulations, and paleoclimate records have been growing
exponentially and will continue to do so in the next decade (Faghmous et al., 2014). However,
Faghmous and Kumar (2014a) identify three major factors that could possibly slowed the
progress. Foremost, the data that climate science employs violate many of the assumptions and
practices held in traditional data science. For instance, the majority of climate data are
organized in a spatiotemporal grid. Intrinsically, the data are auto-correlated where regions in
spatial or temporal proximity tend to be highly related. Therefore, any methods that impose
independence assumptions among data points will have limited practicality with such data.
Secondly, they observed that the field of data science has historically focused more on certain
tasks and evaluation metrics (Langley, 2011; Faghmous and Kumar, 2014a; Jagadish, 2015)
that are not applicable to some of climate science’s biggest needs (Hassani and Huang, 2019).
Lastly, though is only a matter of time, climate science, its data, and challenges have not been

adequately exposed to the broader data science community until recently.
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Table 1: List of Climate Data Sources with Temporal Coverage of Each Data Source

Key Strength Key weakness
Climate model Ability to run forward simulations Relies solely on physics
In situ observation ~ Direct observations Spatial Bias
Satellite Global coverage Lack of continuity as missions
last on average 5 years
Paleoclimate Ability to use proxy data to infer pre- Techniques to analyze such
industrial climate trends data are still evolving

Source: Faghmous and Kumar (2014a)

d. Data challenges and continuously changing data

The use of climate data for applications and research globally has been scanty due to the
unavailability of and access to climate data is very limited. In many regions of the world
especially, developing countries, weather stations are sparse and their number has been
declining (Dinku, 2019). Besides, the distribution of existing stations is uneven, with most
located along major roads and other disturbances. Sparsity of climate data can refer to the
absence of data required to generate useful climate information to perform meaningful analysis
and inform climate-resilient growth. Data sparsity usually refers to the situation in which
climate data is not usable or accessible. Although this problem is prevalent globally, it is
especially prevalent in the developing nations, particularly in areas with difficult and remote
geographies, where conflict and data investment are a relatively low priority (Hunziker et al.,
2017; Hunziker et al., 2018). The meteorological or climatological agencies in any area are the
primary sources of climate observations. However, observation networks are insufficient in
different regions of the world, especially in developing countries, with the number and quality
of weather stations declining in many parts of the continents (Dinku et al., 2017; Parker et al.,
2011). Moreover, as most of the current weather stations have been found to be unevenly
distributed, with most of the stations clustered the in cities and towns. As a result, climate data
may not be available in rural areas where it can be verified that this data is most needed, with
very few stations in the forested and desert regions (Rotenberg and Yakir, 2010). In different
applications, such as location-based and sensor services, climate data is continually changing
(Xia et al., 2005). The issue of using data for the efficient assessment of environmental
components is increasingly relevant. Conventional indexes may have suffered from
continuously changing climate data due to the constantly changing nature of climate data,
which may contribute to poor performance (Xia et al., 2005).

Sparse station distribution is not the only challenge; the number of observation stations has

also been declining for decades in many regions. This decline may be attributed to some factors:
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the first one could be that the data are available but may not have been provided to the
appropriate institutions, and the second factor is an actual decline in observation, the third one
is inadequate tools and facilities (lack of finance). For example, between 1971 and 2001, the
average number of active stations in Madagascar declined from over 400 to under 50 (Dinku,
2019). This is a very serious loss and challenge to the use of climate data for research and
different applications in the region. The decline in investing in climate infrastructure is also
major obstacle to the operation and maintenance of climate observation networks and related
infrastructure, especially in low-income countries, for many climate services. This may be due
in part to difficulties in articulating the value added by meteorological agencies (Rogers and
Tsirkunov, 2010; Bouwer et al., 2014) and often to a lack of awareness of the benefits of climate

observations for growth (Hansen et al., 2007; Bryan et al., 2009; Roncoli et al., 2009).

To improve the availability, access, and use of climate data and derived information products
for research and applications, efforts to be made which will represent Data usage improvement
components (Table 1), which are data availability improvement, data accessibility
enhancement, promote usage of climate data and information products. Rising types and
volumes of climate data alone are a major challenge for the climate science community and its
funding institutions. In order to generate, format, record and distribute all these data,
institutional capacity must exist, while at the same time a much larger group of diverse users
applauds for access, understanding and use of climate data. These include a rising number of
scientists (across different fields) and decision-makers with real resources, livelihoods, and
even lives at stake in society (resource managers, farmers, public health officials, and others).
Key users, as well as their constituents in the general public, also include those with public
responsibilities who may support and understand the decisions that are taken on their behalf
(Overpeck et al., 2011; Faghmous and Kumar, 2014). As a result, climate scientists not only

have to share data with each other, but also have to meet a growing duty to promote access to
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data for others outside their community, and to respond to the wider users in order to ensure

that data is as useful as possible (Table 1).

Table 1. Data usage improvement components

Data Availability improvement

*Clim_atic sgati_ons
iapamty b_u llding . *Online awareness of
co[rzﬁrtgl staions quality data availability *Users engagement on
*Friendly and less data acquicition and
* Seasonal forecast sophisticated tools for | sage |
Improvement data analysis and ol .
*integration of ground | visualisation (LjJstersa mvlo veme?t in
and s;\)/acie-based *Data sharing *TJzerse\::Z[?:crile/nbuil ding
observation data mechanisms
to understand and use
climate data

In order to mitigate the challenges of data availability and access, different efforts are required.
These include the interpolation of existing observations from stations and the use of proxies,
such as forecasts of satellite rainfall and products for climate model reanalysis. A new approach
should aim at improving the availability, accuracy and access of data by combining quality-
controlled station data from the entire national observation network with proxies such as
satellite climate data estimates and climate model reanalysis products is important. This will
include comprehensive climate data and targeted information products that are directly
applicable to the needs of decision-makers at different levels, allowing a number of users to
leverage past, current and future climate information. Climate scientists and other types of
scientists who work effectively at the interface between science and applications can
increasingly interact closely with climate stakeholders in society, and also with collaborative
knowledge generation (Held, 2004; Knight and Jager, 2009). Together with the
interdisciplinary research community that supports them, these stakeholders are the users that

would drive the future climate data project.

e. Short observational record and evaluation challenges

Climate observations are sourced from numerous meteorological and related

observational networks and systems throughout the world. Narama et al 2010, stipulated in
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their study that to describe the whole climate system, we need to collect observations of the
atmosphere, ocean and land-based systems as it is these particular entities that govern and
supply the data for making deductions and sensings with regards to climate fluctuations and
consistencies. This is commonsensical and can be attuned to the importance and involvement
of water bodies in the overrunning of affairs that decide how Climate can be observed and how
the challenges can be surmounted. Also, Lenderink and Meijjgard (2018) tallies increases in
hourly precipitation extremes beyond expectations from temperature changes as core
observational parameters for gauging climate change. However, not all climate observations
are the same and some are considered of higher quality than others. Mitrovica 2015, made it
known as a corroboratory inference from his research that therefore, a climate observation
should be associated — either directly or indirectly — with a set of data (Metadata) describing
the conditions in which the climate observations were collected and that will provide users with
information, often implicitly, on how the observations should be interpreted and used. This is
straightforward and is tech-savvy, comprehensible and accessible. According to the Journal of
Geophysical research, 2019, assessing the impacts of our changing climate can be and is
scientifically challenging.

Historically, only a limited amount of information about past climate change and its
future impacts has been available at national level, while approaches to the science itself have
varied between countries. The statistical survey of Science Direct, 2019 reveals that there are
over 11,000 weather stations around the world measuring land, air and sea temperatures, as
well as satellites, ships and aircraft that also take measurements. There is the place of gears,
facilities and funding, and then there is the place of qualified personnel and intellectual
verbosity.

Evaluating challenges that come with observational studies can be daunting. (Lambeck
etal, 2010) argued that the influence of geophysical modelling on the accuracy of observational
studies can be so compelling that concise results don't get released until longer timescales are
spent. While the world has agreed on the need to tackle climate change for sustainable
development, it is critical to provide evidence-based analysis of past experiences and ongoing
innovations to shed light on how we might enhance the effectiveness and efficiency of actions
at various levels. Kjellstrom et al, 2009 posited that thorough and credible evaluations help us
identify what works, for whom, when and where and under what circumstances in order to
mitigate climate change, achieve astute situations for the society, the economy and the
environment, reduce risk and increase resilience in the face of changing climate conditions.

The onus lies on the climatologist to be innovative especially in a resource-limited setting.
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