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Abstract

In this paper, we introduce a new iteration scheme, named as the S**-iteration scheme, for ap-
proximation of fixed point of the nonexpansive mappings. This scheme is faster than Picard, Mann,
Ishikawa, Noor, Agarwal, Abbas, Thakur, and Ullah iteration schemes. We show the stability of our
instigated scheme and give a numerical example to vindicate our claim. We also put forward some
weak and strong convergence theorems for Suzuki’s generalized nonexpansive mappings in the setting
of uniformly convex Banach spaces. Our results comprehend, improve, and consolidate many results
in the existing literature.
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1 Introduction

Fixed point theory provides very useful tools to solve most of the nonlinear problems, that have application
in different fields, as they can be easily transformed into a fixed point problem. After establishing the
existence of a fixed point we find its value using iterative processes. Till now many iterative processes
have been developed, all of which can not be covered. Banach contraction principle [1], which is the
most celebrated result in fixed point theory uses Picard iteration process for approximating the fixed
point. The Picard iteration process is useful for the approximation of the fixed point of the contraction
mappings but when one is dealing with nonexpansive mappings then it may fail to converge to the fixed
point even if the fixed point is unique.

In 1953, Mann [2] introduced a new iterative scheme to approximate the fixed points of nonexpansive
mappings. For a nonempty subset C of a Banach space X, let T : C→ C be a mapping. In this iterative
scheme the sequence (tn) is generated by t0 ∈ C as:

tn+1 = (1− αn)tn + αnTtn for all n ≥ 0, (1)

where α ∈ (0, 1). But the Mann iterative scheme fails to converge to fixed points of pseudo-contractive
mappings.

In 1974, Ishikawa [3] introduced a two step Mann iterative scheme to approximate fixed points of
pseudo-contractive mappings, where the sequence (tn) is generated by t0 ∈ C as:

tn+1 = (1− αn)tn + αnTsn
sn = (1− βn)tn + βnTtn

}
, (2)

for all n ≥ 0, where αn, βn ∈ (0, 1).
Many authors studied Mann and Ishikawa iterative schemes for approximation of fixed point of nonex-
pansive mappings (for instance [4],[5] and [6]).

In 2000, Noor [7] established another iterative scheme, where the sequence (tn) is generated by t0 ∈ C
as:

tn+1 = (1− αn)tn + αnTsn
sn = (1− βn)tn + βnTrn
rn = (1− γn)tn + γnTtn

 , (3)
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for all n ≥ 0, where αn, βn, γn ∈ (0, 1).
In 2007, Agarwal et al. [8] introduced a two-step iteration process for nearly asymptotically nonex-

pansive mappings, for arbitrary t0 ∈ C, a sequence (tn) is generated by

tn+1 = (1− αn)Ttn + αnTsn
sn = (1− βn)tn + βnTtn

}
, (4)

for all n ≥ 0, where αn, βn ∈ (0, 1). This process converges faster than Mann iteration process for
contraction mappings.

In 2014, Abbas and Nazir [9] developed an iterative scheme which is faster than Agarwal et al.’s [8]
scheme, where a sequence (tn) is formulated from arbitrary t0 ∈ C by

tn+1 = (1− αn)Tsn + αnTrn
sn = (1− βn)Ttn + βnTrn
rn = (1− γn)tn + γnTtn

 , (5)

for all n ≥ 0, where αn, βn, γn ∈ (0, 1).
In 2016, Thakur et al. [10] developed an iterative procedure, where a sequence (tn) is generated

iteratively by arbitrary t0 ∈ C and

tn+1 = (1− αn)Trn + αnTsn
sn = (1− βn)rn + βnTrn
rn = (1− γn)tn + γnTtn

 , (6)

for all n ≥ 0, where αn, βn, γn ∈ (0, 1).
In 2018, Ullah and Arshad [11] developed a new iteration process which converges faster than all the

aforementioned process, where the sequence (tn) is constructed by taking arbitrary t0 ∈ C and

tn+1 = Tsn
sn = T((1− αn)rn + αnTrn)
rn = (1− βn)tn + βnTtn

 , (7)

for all n ≥ 0, where αn, βn ∈ (0, 1).

Recently, in 2020, Hassan et al. [12] introduced a new four-step iteration scheme for approximation
of fixed point of the nonexpansive mappings named as S*-iteration scheme, where the sequence (tn) is
generated by taking arbitrary t0 ∈ C and

tn+1 = T((1− αn)sn + αnTsn)
sn = T((1− βn)rn + βnTrn)
rn = T((1− γn)qn + γnTqn)
qn = T((1− δn)tn + δnTtn)

 , (8)

for all n ≥ 0, where αn, βn, γn, δn ∈ (0, 1).

In this paper, we introduce a new three-step iteration process which is faster than Picard, Mann,
Ishikawa, Noor, Agarwal, Abbas, Thakur, and Ullah iteration processes and prove the convergence results
using our iterative scheme for Suzuki’s generalized nonexpansive mappings in the context of uniformly
convex Banach spaces. We also show that our process is analytically stable. With the help of an example,
we compare the rate of convergence of our iteration process with the aforementioned iteration processes.

2 Preliminaries

Throughout this paper, C is a non-empty closed convex subset of a uniformly convex Banach space X,
N denotes the set of all positive integers, T : C → C be a mapping and F (T) denotes the set of all fixed
points of T.
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Definition 2.1. [13] A Banach space X is said to be uniformly convex if for each ε ∈ (0, 2], there exists
a δ > 0 such that for all x, y ∈ X,

‖x‖ ≤ 1,
‖y‖ ≤ 1,
‖x− y‖ > ε

 implies

∥∥∥∥x+ y

2

∥∥∥∥ ≤ δ. (9)

Definition 2.2. [14] A Banach space X is said to satisfy Opial property if for each sequence (tn) in X,
converging weakly to p ∈ X, we have

lim sup
n→∞

‖tn − p‖ < lim sup
n→∞

‖tn − q‖, (10)

for all q ∈ X such that p 6= q.

Definition 2.3. A mapping T : C→ C is called a contraction if there exists α ∈ (0, 1), such that

‖Tp− Tq‖ ≤ α‖p− q‖, for all p, q ∈ C. (11)

Definition 2.4. A mapping T : C → C is called quasi-nonexpansive if for all p ∈ C and q ∈ F (T), we
have

‖Tp− q‖ ≤ ‖p− q‖. (12)

In 2008, Suzuki introduced the concept of generalized nonexpansive mappings as follows.

Definition 2.5. [15] A mapping T : C→ C is called Suzuki’s generalized nonexpansive mapping if for all
p, q ∈ C, we have

1

2
‖p− Tp‖ ≤ α‖p− q‖ implies ‖Tp− Tq‖ ≤ ‖p− q‖. (13)

Suzuki [15] proved that the generalized nonexpansive mapping is weaker than nonexpansive mapping
and stronger than quasi-nonexpansive mapping and obtained some fixed points and convergence theo-
rems for Suzuki’s generalized nonexpansive mappings. Recently, many authors have studied fixed-point
theorems for Suzuki’s generalized nonexpansive mapping (e.g.,[16]).

Senter and Dotson [5] introduced a class of mappings satisfying condition (I).

Definition 2.6. A mapping T : C → C is said to satisfy condition (I), if there exists a nondecreasing
function f : [0,∞)→ [0,∞) with f(0) = 0 and f(δ) > 0, for all δ > 0 such that ‖q − Tq‖ ≥ f(d(q, F (T))),
for all q ∈ C, where d(q, F (T)) = inf

q∗∈F (T)
‖q − q∗‖.

Proposition 2.7. [17] Let T : C→ C be any mapping. Then
(i) If T is nonexpansive, then T is a Suzuki’s generalized nonexpansive mapping.
(ii) If T is a Suzuki’s generalized nonexpansive mapping and has a fixed point, then T is a quasi-
nonexpansive mapping.
(iii) If T is a Suzuki’s generalized nonexpansive mapping, then

‖p− Tq‖ ≤ 3‖Tp− p‖+ ‖p− q‖, for all p, q ∈ C. (14)

Lemma 2.8. [17] Suppose T : C → C is Suzuki’s generalized nonexpansive mapping satisfying Opial
property. If (tn) converges weakly to p and lim

n→∞
‖Ttn − tn‖ = 0, then Tp = p.

Lemma 2.9. [17] Let X be a uniformly convex Banach space and C a weakly convex compact subset of
X. Assume that T : C→ C is Suzuki’s generalized nonexpansive mapping. Then T has a fixed point.

Lemma 2.10. [18] Let X be a uniformly convex Banach space and xn be any real sequence such that
0 < a ≤ xn ≤ b < 1 for all n ≥ 1. Suppose that (un) and (vn) are any two sequences of X such that
lim sup
n→∞

‖un‖ ≤ r, lim sup
n→∞

‖vn‖ ≤ r and lim sup
n→∞

‖xnun + (1 − xn)vn‖ = r hold for some r ≥ 0. Then,

lim sup
n→∞

‖un − vn‖ = 0.
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Definition 2.11. [11] Let X be a Banach space and C a non-empty closed convex subset of X. Assume
that (tn) is a bounded sequence in X. For p ∈ X, we set r(p, (tn)) = lim sup

n→∞
‖tn − p‖. The asymptotic

radius of (tn) relative to C is the set r(C, (tn)) = inf{r(p, (tn)) : p ∈ C} and the asymptotic center of (tn)
relative to C is given by the following set:

A(C, (tn)) = {p ∈ C : r(p, (tn)) = r(C, (tn))}. (15)

It is known that, in a uniformly convex Banach space, A(C, (tn)) consists of exactly one point.

Definition 2.12. [19] Let X be a Banach space and T : X→ X. Suppose that t0 ∈ X and tn+1 = f(T, tn)
defines an iteration procedure which gives a sequence of points tn ∈ X. Assume that tn converges to
the fixed point p. Suppose (sn) be a sequence in X and εn be a sequence in R+ = [0,∞) given by
εn = ‖sn+1 − f(T, sn)‖. Then the iteration procedure defined by tn+1 = f(T, tn) is said to be T-stable or
stable with respect to T if lim

n→∞
εn = 0 iff lim

n→∞
sn = p.

Definition 2.13. [20] Let X be a Banach space and T : X→ X. Then T is called a contractive mapping
on X if there exist L ≥ 0, b ∈ [0, 1) such that for each p, q ∈ X

‖Tp− Tq‖ ≤ L‖p− Tp‖+ b‖p− q‖. (16)

By using (7), Osilike [20] established several stability results most of which are generalizations of the
results of Rhoades [21] and Harder and Hicks [22].

Definition 2.14. [23] Let X be a Banach space and T : X→ X. Then T is called a contractive mapping
on X if there exist a ∈ [0, 1) and a monotone increasing function ψ : R+ → R+ with ψ(0) = 0, such that
for each p, q ∈ X,

‖Tp− Tq‖ ≤ ψ(‖p− Tp‖) + a‖p− q‖. (17)

Lemma 2.15. [24] If λ is a real number such that 0 ≤ λ < 1, and (εn) is the sequence of positive numbers
such that

lim
n→∞

εn = 0, (18)

then for any sequence of positive numbers tn satisfying

tn+1 ≤ λtn + εn, for n = 1, 2, ..., (19)

we have
lim

n→∞
tn = 0. (20)

3 S**-Iteration Process

We introduce a new iteration scheme by generating the sequence (tn) iteratively, taking arbitrary t0 ∈ C,
as

tn+1 = T((1− µn)Trn + µnTsn)
sn = T((1− νn)rn + νnTrn)
rn = T((1− ξn)tn + ξnTtn)

 . (21)

for all n ≥ 0, where (µn), (νn) and (ξn) are real sequences in the interval (0, 1).

Further, we show that S**-iteration process converges faster than all aforementioned iteration pro-
cesses for contractive mappings due to Berinde [25] and is stable.

We will establish the convergence results for S**-iteration process foremost:

Theorem 3.1. Let C be a non-empty closed convex subset of a Banach space X and T a nonexpansive
mapping on C. Let (tn) be a sequence defined by (21) and F (T) 6= φ. Then lim

n→∞
‖tn − q‖ exists for all

q ∈ F (T).
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Proof. Let q ∈ F (T) for all n ∈ N. From (13), we have

‖rn − q‖ = ‖T((1− ξn)tn + ξnTtn)− q‖
≤ ‖(1− ξn)tn + ξnTtn − q‖
≤ (1− ξn)‖tn − q‖+ ξn‖Ttn − q‖
≤ (1− ξn)‖tn − q‖+ ξn‖tn − q‖
= ‖tn − q‖,

(22)

‖sn − q‖ = ‖T((1− νn)rn + νnTrn)− q‖
≤ ‖(1− νn)rn + νnTrn − q‖
≤ (1− νn)‖rn − q‖+ νn‖Trn − q‖
≤ (1− νn)‖rn − q‖+ νn‖rn − q‖
= ‖rn − q‖
≤ ‖tn − q‖,

(23)

‖tn+1 − q‖ = ‖T((1− µn)Trn + µnTsn)− q‖
≤ ‖(1− µn)Trn + µnTsn − q‖
≤ (1− µn)‖Trn − q‖+ µn‖Tsn − q‖
≤ (1− µn)‖rn − q‖+ µn‖sn − q‖
≤ (1− µn)‖tn − q‖+ µn‖tn − q‖
= ‖tn − q‖.

(24)

Hence lim
n→∞

‖tn − q‖ exists for all q ∈ F (T).

Theorem 3.2. Let C be a non-empty closed convex subset of a uniformly convex Banach space X and
T : C → C a nonexpansive mapping. Let (tn) be defined by the iteration process (21) and F (T) 6= φ.
Then the sequence (tn) converges to a point of F (T) iff lim infn→∞ d(tn, F (T)) = 0, where d(tn, F (T)) =
inf{‖tn − q‖ : q ∈ F (T)}.

Proof. It is obvious that if the sequence (tn) converges to a point of F (T) then lim infn→∞ d(tn, F (T)) = 0.
Now, suppose that lim infn→∞ d(tn, F (T)) = 0. From Theorem 3.1, we have lim

n→∞
‖tn − q‖ exists for all

q ∈ F (T), so lim
n→∞

d(tn, F (T)) exists and lim infn→∞ d(tn, F (T)) = 0 by assumption. Now, we will prove

that (tn) is a cauchy sequence in C. For a given ε > 0, ∃ N ∈ N s.t., for all n ∈ N,

d(tn, F (T)) < ε/2. (25)

In particular, inf{‖tn − q‖ : q ∈ F (T)} < ε/2. Hence, there exists q*∈ F (T) s.t. ‖tn − q*‖ < ε/2.
Now, for all m,n ∈ N,

‖tm+n − tn‖ ≤ ‖tm+n − q∗‖+ ‖tn − q∗‖ ≤ 2‖tn − q∗‖ < ε, (26)

which shows that (tn) is a cauchy sequence in C. Also C is given to be a closed subset of X, therefore
there exists q ∈ C s.t. lim

n→∞
tn = q. Now, lim

n→∞
d(tn, F (T)) = 0 gives d(q, F (T)) = 0 which implies that

q ∈ F (T).

We prove that our iteration process is T-stable.

Theorem 3.3. Let X be a Banach Space and T : X → X a mapping satisfying (21). Suppose T has a
fixed point q and (tn) be a sequence in X satisfying (21). Then (21) is T-stable.

Proof. Let (wn) be an arbitrary sequence in X and the sequence which is generated by (21) is tn+1 =
f(T, tn) converging to a unique fixed point q and εn = ‖wn+1 − f(T, wn)‖. We show that lim

n→∞
εn = 0 iff
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lim
n→∞

wn = q. First, assume that lim
n→∞

εn = 0 and

‖wn+1 − q‖ = ‖wn+1 − f(T, wn) + f(T, wn)− q‖
≤ ‖wn+1 − f(T, wn)‖+ ‖f(T, wn)− q‖
≤ ‖wn+1 − T((1− µn)Tun + µnTvn)‖+ ‖T((1− µn)Tun + µnTvn)− q‖
≤ εn + b[(1− µn)‖Tun − q‖+ µn‖Tvn − q‖]
≤ εn + b2[(1− µn)‖un − q‖+ µn‖vn − q‖]
≤ εn + b2[(1− µn)‖T((1− ξn)wn + ξnTwn)− q‖+ µn‖T((1− νn)un + νnTun)− q‖]
≤ εn + b3[(1− µn)‖(1− ξn)wn + ξnTwn − q‖+ µn‖(1− νn)un + νnTun − q‖]
≤ εn + b3[(1− µn)(1− ξn(1− b))‖wn − q‖+ µn(1− νn(1− b))‖un − q‖]
≤ εn + b3[(1− µn)(1− ξn(1− b))‖wn − q‖+ µn(1− νn(1− b))‖T((1− ξn)wn + ξnTwn)− q‖]
≤ εn + b3[(1− µn)(1− ξn(1− b))‖wn − q‖+ µn(1− νn(1− b))b‖(1− ξn)wn + ξnTwn − q‖]
≤ εn + b3[(1− µn)(1− ξn(1− b))‖wn − q‖+ bµn(1− νn(1− b))(1− ξn(1− b))‖wn − q‖]
= εn + b3[(1− µn)(1− ξn(1− b)) + bµn(1− νn(1− b))(1− ξn(1− b))]‖wn − q‖.

(27)
Since b ∈ [0, 1) and µn, νn and ξn are in [0, 1], we have

b3[(1− µn)(1− ξn(1− b)) + bµn(1− νn(1− b))(1− ξn(1− b))] < 1. (28)

Hence by Lemma 2.15, we have lim
n→∞

‖wn − q‖ = 0, which gives lim
n→∞

wn = q. Conversely, suppose that

lim
n→∞

wn = q. Then

εn = ‖wn+1 − f(T, wn)‖
= ‖wn+1 − q + q − f(T, wn)‖
≤ ‖wn+1 − q‖+ ‖T((1− µn)Tun + µnTvn)− q‖
≤ ‖wn+1 − q‖+ b[(1− µn)‖Tun − q‖+ µn‖Tvn − q‖]
≤ ‖wn+1 − q‖+ b2[(1− µn)‖un − q‖+ µn‖vn − q‖]
≤ ‖wn+1 − q‖+ b2[(1− µn)‖T((1− ξn)wn + ξnTwn)− q‖+ µn‖T((1− νn)un + νnTun)− q‖]
≤ ‖wn+1 − q‖+ b3[(1− µn)‖(1− ξn)wn + ξnTwn − q‖+ µn‖(1− νn)un + νnTun − q‖]
≤ ‖wn+1 − q‖+ b3[(1− µn)(1− ξn(1− b))‖wn − q‖+ µn(1− νn(1− b))‖un − q‖]
≤ ‖wn+1 − q‖+ b3[(1− µn)(1− ξn(1− b))‖wn − q‖+ µn(1− νn(1− b))‖T((1− ξn)wn + ξnTwn)− q‖]
≤ ‖wn+1 − q‖+ b3[(1− µn)(1− ξn(1− b))‖wn − q‖+ µn(1− νn(1− b))b‖(1− ξn)wn + ξnTwn − q‖]
≤ ‖wn+1 − q‖+ b3[(1− µn)(1− ξn(1− b))‖wn − q‖+ bµn(1− νn(1− b))(1− ξn(1− b))‖wn − q‖]
= ‖wn+1 − q‖+ b3[(1− µn)(1− ξn(1− b)) + bµn(1− νn(1− b))(1− ξn(1− b))]‖wn − q‖.

(29)
Taking limit as n→∞ in (29) gives lim

n→∞
εn = 0.

Now, we give an example to compare the rate of convergence of our iteration scheme with others.

Example 3.4. Let X = R, C = [1, 30] and T : C→ C be a mapping defined by Tt =
√
t2 − 7t+ 42 for all

t ∈ C. For t1 = 10 and µn = νn = ξn = 3/4, n = 1, 2, 3, .... From Table 1 we can see that all the iteration
procedures are converging to q∗ = 6.

In Figure 1, black curve represents our iteration process. The graphical view shows that our
iteration process requires less number of iterations as compared to the other iteration processes. The
number of iterations in which these processes attain the fixed point is given in Table 2.
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Table 1: Comparison of the rate of convergence with different iteration schemes

Step Picard Ishikawa Noor Agarwal Abbas Thakur K. Ullah S**-iteration

1 10 10 10 10 10 10 10 10

2 8.48528137423857 8.23747931068045 7.91839108945248 7.85879965424009 7.48299381981887 7.19365372863816 6.50327292180584 6.17058820431927

3 7.38938633313552 7.12242990301049 6.81657619384279 6.68921521738991 6.39390416650416 6.23393093417649 6.03083955536974 6.00307677148481

4 6.69905411594662 6.52015557529087 6.32662170051318 6.21650474463483 6.08687765191737 6.03851294451616 6.00170547093161 6.00005334404782

5 6.32328611061962 6.23041600151899 6.12724957655622 6.06293951132202 6.01810044948545 6.00610953889799 6.00009371908266 6.00000092420172

6 6.14173790245218 6.09984579840025 6.04906294167737 6.01781666894804 6.00372234157488 6.00096320048653 6.00000514824794 6.00000001601188

7 6.06042730715025 6.04283750316118 6.01884104150881 6.00500351572644 6.00076340654292 6.00015170386309 6.00000028280202 6.00000000027741

8 6.02542844909809 6.01829910956501 6.00722412363746 6.00140196803230 6.00015647717348 6.00002388960866 6.00000001553478 6.00000000000481

9 6.01063963746905 6.00780230235401 6.00276826752347 6.00039257571411 6.00003206977691 6.00000376193069 6.00000000085335 6.00000000000008

10 6.00444097224968 6.00332405204450 6.00106055283451 6.00010990841270 6.00000657250009 6.00000059239429 6.00000000004688 6.00000000000000

11 6.00185176287143 6.00141567799054 6.00040627375696 6.00003076923152 6.00000134698623 6.00000009328476 6.00000000000258 6.00000000000000

12 6.00077180397513 6.00060283424769 6.00015562908162 6.00000861382931 6.00000027605478 6.00000001468962 6.00000000000014 6.00000000000000

13 6.00032162600948 6.00025668732426 6.00005961522584 6.00000241142726 6.00000005657536 6.00000000231318 6.00000000000001 6.00000000000000

14 6.00013401796082 6.00010929479003 6.00002283607749 6.00000067507432 6.00000001159469 6.00000000036426 6.00000000000000 6.00000000000000

15 6.00005584205388 6.00004653606033 6.00000874752131 6.00000018898567 6.00000000237625 6.00000000005736 6.00000000000000 6.00000000000000

16 6.00002326773719 6.00001981425228 6.00000335079762 6.00000005290615 6.00000000048699 6.00000000000903 6.00000000000000 6.00000000000000

17 6.00000969492778 6.00000843654986 6.00000128354549 6.00000001481097 6.00000000009981 6.00000000000142 6.00000000000000 6.00000000000000

18 6.00000403955972 6.00000359212706 6.00000049167066 6.00000000414629 6.00000000002046 6.00000000000022 6.00000000000000 6.00000000000000

19 6.00000168315101 6.00000152946077 6.00000018833772 6.00000000116075 6.00000000000419 6.00000000000004 6.00000000000000 6.00000000000000

20 6.00000070131311 6.00000065121579 6.00000007214401 6.00000000032495 6.00000000000086 6.00000000000001 6.00000000000000 6.00000000000000

21 6.00000029221383 6.00000027727549 6.00000002763524 6.00000000009097 6.00000000000018 6.00000000000000 6.00000000000000 6.00000000000000

22 6.00000012175577 6.00000011805871 6.00000001058586 6.00000000002547 6.00000000000004 6.00000000000000 6.00000000000000 6.00000000000000

23 6.00000005073157 6.00000005026718 6.00000000405499 6.00000000000713 6.00000000000001 6.00000000000000 6.00000000000000 6.00000000000000

24 6.00000002113816 6.00000002140282 6.00000000155329 6.00000000000199 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

25 6.00000000880757 6.00000000911292 6.00000000059499 6.00000000000056 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

26 6.00000000366982 6.00000000388011 6.00000000022792 6.00000000000016 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

27 6.00000000152909 6.00000000165208 6.00000000008731 6.00000000000004 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

28 6.00000000063712 6.00000000070342 6.00000000003344 6.00000000000001 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

29 6.00000000026547 6.00000000029950 6.00000000001281 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

30 6.00000000011061 6.00000000012752 6.00000000000491 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

31 6.00000000004609 6.00000000005429 6.00000000000188 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

32 6.00000000001920 6.00000000002312 6.00000000000072 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

33 6.00000000000800 6.00000000000985 6.00000000000028 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

34 6.00000000000333 6.00000000000419 6.00000000000011 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

35 6.00000000000139 6.00000000000179 6.00000000000004 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

36 6.00000000000058 6.00000000000076 6.00000000000002 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

37 6.00000000000024 6.00000000000032 6.00000000000001 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

38 6.00000000000010 6.00000000000014 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

39 6.00000000000004 6.00000000000006 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

40 6.00000000000002 6.00000000000003 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

41 6.00000000000001 6.00000000000001 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

42 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000

43 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000 6.00000000000000
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Table 2: Number of iterations in which the fixed point is attained.

Iterative method Number of iterations

Picard 42

Ishikawa 42

Noor 38

Agarwal 29

Abbas 24

Thakur 21

K.Ullah 14

S**-iteration 10

Figure 1: Graphical representation of convergence of iterative schemes.

4 Some Convergence Results for Suzukis Generalized Nonex-
pansive Mappings

Now, we will prove some weak and strong convergence results for the sequence generated by the S**-
iteration process for Suzuki’s generalized nonexpansive mappings in the setting of uniformly convex
Banach spaces.

Lemma 4.1. Let C be a non-empty closed convex subset of a Banach space X and T : C→ C a Suzuki’s
generalised nonexpansive mapping with F (T) 6= φ. For t0 ∈ C, the sequence (tn) is generated by the
S**-iteration process. Then lim

n→∞
‖tn − q‖ exists for all q ∈ F (T).

Proof. From Proposition 2.7(i) and Theorem 3.1, we get our result.
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Lemma 4.2. Let C be a non-empty closed convex subset of a uniformly convex Banach space X and
T : C → C a Suzuki’s generalized nonexpansive mapping with F (T) 6= φ. For arbitrary t0 ∈ C the
sequence (tn) is generated by the S**-iteration process. Then F (T) 6= φ if and only if (tn) is bounded and
lim

n→∞
‖Ttn − tn‖ = 0.

Proof. Suppose that F (T) 6= φ and let q ∈ C. Then by previous Lemma, lim
n→∞

‖tn − q‖ exists and tn is

bounded. Let
lim

n→∞
‖tn − q‖ = c. (30)

From (22) and (30), we have

lim sup
n→∞

‖rn − q‖ ≤ lim sup
n→∞

‖tn − q‖ = c. (31)

By Proposition 2.7(iii), we have

lim sup
n→∞

‖Ttn − q‖ ≤ lim sup
n→∞

‖tn − q‖ = c. (32)

On the other hand
‖tn+1 − q‖ = ‖T((1− µn)Trn + µnTsn)− q‖

≤ ‖(1− µn)Trn + µnTsn − q‖
≤ (1− µn)‖rn − q‖+ µn‖sn − q‖
≤ (1− µn)‖rn − q‖+ µn‖rn − q‖
≤ (1− µn)‖tn − q‖+ µn‖rn − q‖.

This implies that

‖tn+1 − q‖ − ‖tn − q‖
µn

≤ [‖rn − q‖ − ‖tn − q‖]

‖tn+1 − q‖ − ‖tn − q‖ ≤
‖tn+1 − q‖ − ‖tn − q‖

µn

≤ [‖rn − q‖ − ‖tn − q‖]
‖tn+1 − q‖ ≤ ‖rn − q‖.

Therefore,
c ≤ lim inf

n→∞
‖rn − q‖. (33)

From (31) and (33), we get

c = lim
n→∞

‖rn − q‖

= lim
n→∞

‖(1− ξn)tn + ξnTtn − q‖

= lim
n→∞

‖(1− ξn)(tn − q) + ξn(Ttn − q)‖. (34)

From (30), (32), (34) and Lemma 2.10, we have lim
n→∞

‖Ttn − tn‖ = 0.

Conversely, suppose that (tn) is bounded and lim
n→∞

‖Ttn − tn‖ = 0. Let q ∈ A(C, (tn)). From

Proposition 2.7(iii), we get

r(Tq, (tn)) = lim sup
n→∞

‖tn − Tq‖

≤ lim sup
n→∞

[3‖Ttn − tn‖+ ‖tn − q‖]

≤ lim sup
n→∞

‖tn − q‖

= r(q, (tn)).

This shows that Tq ∈ A(C(tn)). Since X is uniformly convex, A(C(tn)) is singleton. Thus, Tq = q i.e.,
F (T) 6= φ.
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Theorem 4.3. Let C be a non-empty closed convex subset of a uniformly convex Banach space X with
the Opial property and T : C→ C a Suzuki’s generalised nonexpansive mapping. For arbitrary t0 ∈ C, let
the sequence (tn) be generated by the S**-iteration process with F (T) 6= φ. Then (tn) converges weakly
to a fixed point of T.

Proof. Since F (T) 6= φ, so by Lemma 4.2, we have that (tn) is bounded and lim
n→∞

‖Ttn − tn‖ = 0. As X

is uniformly convex so it is reflexive, thus by Eberlin’s theorem, there exists a subsequence of (tn), say
(tni

) which converges weakly to some q1 ∈ X. Now, C is a closed and convex subset of X so by Mazur’s
theorem q1 ∈ C. By Lemma 2.8, q1 ∈ F (T). Next we show that (tn) converges weakly to q1. Let us
assume that it is not true. So there must exists a subsequence of (tn), say (tnj

), such that (tnj
) converges

weakly to q2 ∈ C, with q1 6= q2. Using Lemma 2.8, we have q2 ∈ F (T). Now, since lim
n→∞

‖tn − q‖ exists

for all q ∈ F (T). Using Lemma 4.2 and Opial property, we have

lim
n→∞

‖tn − q1‖ = lim
i→∞
‖tni − q1‖ (35)

< lim
i→∞
‖tni − q2‖ (36)

= lim
n→∞

‖tn − q2‖ (37)

= lim
j→∞
‖tnj

− q2‖ (38)

< lim
j→∞
‖tnj

− q1‖ (39)

= lim
n→∞

‖tn − q1‖, (40)

which is a contradiction. Hence q1 = q2. This shows that (tn) converges weakly to a fixed point of T.

Theorem 4.4. Let C be a non-empty closed convex subset of a uniformly convex Banach space X and
T : C→ C a Suzuki’s generalised nonexpansive mapping. For arbitrary t0 ∈ C, let the sequence (tn) be
generated by the S**-iteration process with F (T) 6= φ. Then (tn) converges strongly to a fixed point of T.

Proof. From Lemma 2.9, we get F (T) 6= φ and so by Lemma 4.2, we get lim
n→∞

‖Ttn − tn‖ = 0. By the

compactness of C, there exists a subsequence of (tn), say (tni
), converging strongly to q for some q ∈ C.

Now, by using Proposition 2.7(iii), we get

‖tni
− Tq‖ ≤ 3‖Ttni

− tni
‖+ ‖tni

− q‖. (41)

Taking limit i → ∞, we get Tq = q i.e., q ∈ F (T). By using Lemma 4.1, lim
n→∞

‖tn − q‖ exists for all

q ∈ F (T). Thus, (tn) converges strongly to q.

Theorem 4.5. Let C be a non-empty closed convex subset of a uniformly convex Banach space X and
T : C→ C a Suzuki’s generalised nonexpansive mapping. For arbitrary t0 ∈ C, let the sequence (tn) be
generated by the S**-iteration process with F (T) 6= φ. If T satisfies condition (I), then (tn) converges
strongly to a fixed point of T.

Proof. By Lemma 4.2, lim
n→∞

‖tn− q‖ exists for all q ∈ F (T) and so lim
n→∞

d(tn, F (T)) exists. Let lim
n→∞

‖tn−
q‖ = α, for some α ≥ 0. If α = 0, then we are done. Suppose α > 0, from condition (I) and the
hypothesis, we have

f(d(tn, F (T))) ≤ ‖Ttn − tn‖. (42)

As F (T) 6= φ, by Lemma 4.1, we have lim
n→∞

‖Ttn − tn‖ = 0. Hence (42) implies that

lim
n→∞

f(d(tn, F (T))) = 0. (43)

Since f is a nondecreasing function, by equation (43), we get lim
n→∞

d(tn, F (T)) = 0. Thus, we have a

subsequence (tnk
) of (tn) and a sequence (zk) of F (T) such that

‖tnk
− zk‖ <

1

2k
, for all k ∈ N. (44)
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From equation (44),

‖tnk+1
− zk‖ ≤ ‖tnk

− zk‖ <
1

2k
, (45)

‖zk+1 − zk‖ ≤ ‖zk+1 − tk+1‖+ ‖tk+1 − zk‖ (46)

≤ 1

2k+1
+

1

2k
(47)

<
1

2k−1
. (48)

Letting i → ∞, we get 1
2k−1 → 0. Hence zk is a cauchy sequence in F (T), so it converges to q. As

F (T) is closed, q ∈ F (T) and therefore tnk
converges strongly to q. Since lim

n→∞
‖tn − q‖ exists, we have

tn → q ∈ F (T). Hence proved.
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