
Noname manuscript No.
(will be inserted by the editor)

Near-optimal Sparse Neural Trees

Tanujit Chakraborty

Received: date / Accepted: date

Abstract Decision tree algorithms have been among the most popular algo-
rithms for interpretable (transparent) machine learning since the early 1980s.
On the other hand, deep learning methods have boosted the capacity of ma-
chine learning algorithms and are now being used for non-trivial applications
in various applied domains. But training a fully-connected deep feed-forward
network by gradient-descent backpropagation is slow and requires arbitrary
choices regarding the number of hidden units and layers. In this paper, we
propose near-optimal neural regression trees, intending to make it much faster
than deep feed-forward networks and for which it is not essential to spec-
ify the number of hidden units in the hidden layers of the neural network in
advance. The key idea is to construct a decision tree and then simulate the
decision tree with a neural network. This work aims to build a mathematical
formulation of neural trees and gain the complementary benefits of both sparse
optimal decision trees and neural trees. We propose near-optimal sparse neu-
ral trees (NSNT) that is shown to be asymptotically consistent and robust in
nature. Additionally, the proposed NSNT model obtain a fast rate of conver-
gence which is near-optimal upto some logarithmic factor. We comprehensively
benchmark the proposed method on a sample of 80 datasets (40 classification
datasets and 40 regression datasets) from the UCI machine learning reposi-
tory. We establish that the proposed method is likely to outperform the current
state-of-the-art methods (random forest, XGBoost, optimal classification tree,
and near-optimal nonlinear trees) for the majority of the datasets.

Keywords Decision trees · Deep feed-forward network · Neural trees ·
Consistency · Optimal rate of convergence

Corresponding Author: Tanujit Chakraborty
International Institute of Information Technology, Bangalore, India.
E-mail: tanujit r@isical.ac.in

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202105.0117.v1
http://creativecommons.org/licenses/by/4.0/

2 Tanujit Chakraborty

1 Introduction

Decision trees [8] and deep feed-forward neural networks [23] are very popular
nonparametric prediction models due to their elegant mathematical basis and
ability to model both linear and non-linear decision boundaries. Since deci-
sion trees are rule-based, when small-sized, they are deemed to be leaders in
terms of interpretability whereas neural networks perform superior in terms of
out-of-sample predictability, but sometimes lack mathematical interpretabil-
ity due to having multiple hidden layers (usually unknown). Generally, these
networks have no built-in hierarchy and consequently are fully connected, viz.
all neurons in a layer are connected to all the neurons in the adjacent layers
[34]. Since the number of neurons in the hidden layers is not known apriori,
one designs a network with a varying number of neurons in different layers to
determine the best suitable architecture for a given problem. As a result of
these limitations, a considerable amount of design and training time is needed
in many situations, and even then one is not sure that the ‘optimal’ design
has been achieved. It is also well-known that the problem of building optimal
neural networks is NP-complete [7].

To overcome these drawbacks, a tree-structured hybrid representation of
the neural network was proposed in the previous literature [48][41][44]. The
main idea behind neural trees is to construct a decision tree and then simulate
the decision tree with a neural net [10]. Neural trees are composed of three
basic steps – (a) converting a tree into rules, (b) constructing a neural network
from the rules, and (c) training the neural net. The main motivation behind
converting the tree into a rule set is that it allows distinguishing among dif-
ferent contexts in which a decision node is used. The significance level of each
node is determined in terms of weights trained by the neural network model as
follows. The antecedents of a rule are used as input features that are linked to
the hidden unit(s) which represent the rule. Thus, the number of hidden units
in the network is the same as the total number of leaf nodes obtained from
the tree-based algorithm. All the hidden units and output units include bias
weights and network weights. These weights are further trained using gradient
backpropagation algorithm [39]. Training multilayer neural networks by back-
propagation is slow and requires arbitrary choices about the number of hidden
units and layers. Neural trees are much faster and for which it is not necessary
to specify the number of hidden units in advance [42]. To design neural trees
for a given problem, one first develops a decision tree which is then trans-
formed into a three-layered structure following a set of simple rules. Decision
trees can be automatically designed using a set of input-output mapping pairs.
Thus, the model can self-configure the architecture for a given problem. This
is very important as using the proper number of neurons in the hidden layers
affects the training time and the prediction performance [42][13]. The model
has been applied to solve classification and regression problems [44][47][38],
and various modification of the algorithm can be found in previous literature
[40][43][50][16][19][25][46]. However, most of these methods are non-scalable,
and their mathematical formulations are not aptly done. From a theoreti-

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

Near-optimal sparse neural trees 3

cal point of view, the literature on neural trees is less conclusive. Regardless
of the use of the model in applied problems of classification and regression,
asymptotic results are yet to be proved. This creates a gap between theory
and practice. To the best of our knowledge, there is no optimal (near or sub)
set-up available for the neural tree. However, in the current literature of deci-
sion trees, there are recent works that introduced optimal classification trees
[3][49][4] and sparse optimal decision trees [24][30][6] which are necessarily a
strong motivation behind the current work.

The aim of this work is to introduce a mathematical formulation of near-
optimal neural trees and gain the complementary benefits of both sparse opti-
mal decision trees and neural trees. To this end, we propose near-optimal sparse
neural trees (NSNT), which generalize and address the limitations of the previ-
ous works [44][41][19][6] that attempted the same unification. We aim to make
the proposed model scalable (the size of the data does not pose a problem),
robust (work well in a wide variety of problems in the presence of noisy sam-
ples), accurate (achieve higher predictive accuracy), statistically sound (have
desired asymptotic properties), and interpretable for its effective implementa-
tion in real-world classification and regression problems. We strongly desire
that, whilst achieving competitive performance on real-world datasets, NSNT
would benefit from (i) lightweight inference via conditional computation, (ii)
hierarchical separation of features useful to the neural network building stage,
and (iii) a mechanism to adapt the architecture to the size and complexity of
the training dataset. We further investigate asymptotic consistency and rate
of convergence for the theoretical robustness of the proposed NSNT model.

The most celebrated theoretical results in the field of decision trees and
neural networks have given the general sufficient conditions for almost-sure
L2-consistency of data-driven density estimates [31] and consistency for feed-
forward neural network estimates [32], respectively. Universal approximation
properties for two hidden layered neural networks with a bounded number of
neurons in hidden layers are proved [26][20]. In recent work, least-square es-
timates based on deep feed-forward neural networks are shown to circumvent
the curse of dimensionality in nonparametric regression [2]. Motivated by these
works, our current study proves the strong consistency of NSNT model, which
gives a basic theoretical guarantee for its effectiveness in practical studies.
The approach depends on the choice of the total number of leaves and certain
restrictions imposed on neural network hyper-parameters to ensure the con-
sistency of the model. We discuss an analysis of the algorithmic complexity
of the model along with the fast rate of convergence of the model. More in-
terestingly, a general bound on the expected L2 error of adaptive least square
estimates is established and applied to the regression function estimates of
the proposed model to obtain the rate of convergence in the case of additive
regression functions. The rate of convergence for the model is shown to be
near-optimal up to some logarithmic factor according to [45].

To show the practical utility of the proposal to machine learning prac-
titioners, we comprehensively benchmark NSNT against the state-of-the-art
models on a sample of 80 datasets from the UCI machine learning repository.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

4 Tanujit Chakraborty

We show that across this sample, proposed NSNT perform consistently well
for datasets with sizes in the thousands and yield higher out-of-sample ac-
curacy than the random forest [9], XGBoost [14], optimal classification tree
[3] and near-optimal nonlinear trees [4] on an average. The application of the
proposal is demonstrated with several standard classification and regression
data sets of various sizes. An implementation of the proposed NSNT model is
made available for public use at https://github.com/tanujit123/NSNT.

2 Formulation of Proposed NSNT Model

In this section, we describe how a pre-trained decision tree can be reformulated
as a two hidden-layered (2HL) deep feed-forward neural network with similar
types of predictive behavior [48][41][10][11]. Suppose we are given a training
sample Dn = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)} with n observations on p inde-
pendent variables. Consider a nonparametric regression framework in which p
input featuresX ∈ Cp = [0, 1]p are observed and we predict a square integrable
output function Y ∈ R. A decision tree can be viewed as a regression function
estimate using hierarchical axes-parallel splits of the feature space. Each tree
node must correspond to one of the segmentation subsets available in Cp. For
simplicity and easy interpretability, let us consider ordinary binary decision
tree where a node has exactly two child nodes or zero child nodes (leaf nodes).
Tree consists of split nodes (for example, x(i) ≥ α for some i ∈ {1, 2, ..., p} and
some α ∈ C) and leaf nodes. The feature space Cp is partitioned into axes-
parallel hyper-rectangles. The standard splitting criteria, MSE (mean squared
error) is used to create the decision tree. While making prediction, the input
vector is passed into root node of the decision tree and iteratively transmit-
ted further to the leaf node which belongs to the subspace where the input
is located; this is repeated until a leaf node is finally reached. If we suppose
that a leaf represents region S (S ⊆ Cp), then the natural regression function
estimate can be written in the following mathematical form:

tn(x) =

∑n
i=1 Yi · 1Xi∈S
Nn(S)

, x ∈ S

where Nn(S) is defined as the number of observations in cell S (by convention,
we assume 0

0 = 0). We obtain the predicted result for a query point x in leaf
node S as an average of the Y ′i s of all training samples which fall into the
region S. Below we present a formal description of the decision tree to be used
in the proposed model.

2.1 Background: Regression Trees

To be specific, we consider the decision tree by [8], also named as classification
and regression tree (CART) in our case. The main idea is to form a tree hav-
ing k leaf regions (k depends on n) defined by a partition of the p-dimensional

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

Near-optimal sparse neural trees 5

feature space with n observations. In the construction of the tree, the so-called
CART-split criterion (MSE for regression set up) is applied recursively. This
criterion helps in determining the input direction for the split and also for
finding the appropriate cut. A formal mathematical expression for the deci-
sion tree algorithm based on [8] is as follows.

We assume S to be a generic cell and Nn(S) to be the number of observa-
tions falling in S. Then a cut in S is a pair (i, α), where i ∈ {1, 2, ..., p} and
α ∈ [0, 1] is the position of the cut along the i-th coordinate, within the limits
of S. Let PS be the set of all such possible cuts in S. Then, with the notation

Xj =
(
Xj

(1), · · · , Xj
(p)
)

, the CART-split criterion for the decision tree takes

the following form,

Ln(i, α) =
1

Nn(S)

n∑
j=1

(
Yj − ȲS

)2
1Xj∈S (1)

− 1

Nn(S)

n∑
j=1

(
Yj − ȲSL1Xj(i)<α − ȲSR1Xj(i)≥α

)2

1Xj∈S ,

for any (i, α) ∈ PS , where SL = {x ∈ S, x(i) < α}, SR = {x ∈ S, x(i) ≥ α}, and
ȲS represents the average of the Yj belonging to S with the convention 0

0 =
0. Intuitively, Ln(i, α) measures the (re-normalized) difference between the
empirical variance in the node before and after a cut is performed. Specifically,
the best cut (i∗n, α

∗
n) for each cell S is selected by maximizing Ln(i, α) over

PS , viz.,

(i∗n, α
∗
n) ∈ argmax

(i,α)∈PS
Ln(i, α).

At each cell, the decision tree model evaluates the criterion (1) over all possible
cuts in the p directions and returns the best possible cut. In case of ties, the
best cut is usually selected in the middle of the two consecutive data points.
This process is recursively continued until the tree exactly contains k terminal
nodes, where k ≥ 2 is an integer eventually depends on n (k and kn have the
same meaning).

2.2 Near-optimal Sparse Neural Trees

Assuming that we have a decision tree tn (whose construction eventually
depends upon the data Dn) at hand, which takes constant values on each
of k ≥ 2 terminal nodes. It turns out that these estimate can be reinter-
preted as two hidden-layer neural networks, as summarized below. Let HL1 =
{H1, . . . ,Hk−1} denote the collection of all hyperplanes participating in the
construction of tn. Each Hk′ ∈ HL1 is of the form Hk′ = {x ∈ Cp : hk′ (x) =

0}, where hk′ (x) = x(i
k
′) − αi

k
′ for some (eventually data-dependent) ik′ ∈

{1, 2, ..., p} and αi
k
′ ∈ C. To reach the leaf of the query point x, one finds

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

6 Tanujit Chakraborty

the side on which x falls (+1 for right and −1 for left) for each hyperplane
Hk′ . Using the above notations, the tree estimate tn is mapped to the neural
network as discussed below.

Designing the first hidden layer (HL1): The input layer supplies
the features to the first hidden layer of neurons which corresponds to k − 1
perceptrons, with the threshold activation function defined as τ(hk′ (x)) =

τ(x(i
k
′) − αi

k
′), where τ(u) = 21u≥0 − 1. Therefore, for each split in the tree,

there is a neuron in HL1 whose activity encodes the relative position of an
input x with respect to the concerned split. The output of the first layer is
±1-vector (τ(h1(x)), . . . , τ(hk−1(x))), which describes all decisions of the in-
ner tree nodes (it also includes the nodes off the tree path of x). Note that
τ(hk′ (x)) takes the value +1 if x is on one side of the hyperplane Hk′ and −1
if x is on the other side of Hk′ (where, by convention, +1 if x ∈ Hk′). Also,

each neuron k
′

of the first hidden layer is connected to one and only one input
x(i

k
′) and the connection has weight +1 and offset −αi

k
′ .

Designing the second hidden layer (HL2): HL1 outputs a (k − 1)-
dimensional vector of ±1-bits that encodes the exact position of x in the
leaves of the tree. The leaf node identity of x can be extracted from the above-
mentioned vector using a weighted combination of the bits along with an
appropriate threshold function. Second hidden layer consists of k neurons, one
for each leaf, and assigns a terminal cell to x. Let HL2 = {L1, . . . , Lk} denote
the collection of all the leaf nodes of the tree, and let L(x) be the leaf that
contains x. We connect a unit k

′
from HL1 to a unit k′′ from HL2 if and only

if the hyperplane Hk′ is involved in the sequence of splits forming the path
from the root to the leaf Lk′′ . The connection has weight +1 if the split by Hk′

is from a node to a right child in that path and −1 otherwise. Suppose we have
(u1(x), . . . , uk−1(x)) as the vector of ±1-bits seen at the output of HL1. Then
the output vk′′(x) ∈ {−1, 1} of neuron k′′ is τ(

∑
k′→k′′ bk′,k′′uk′(x) + b0k′′),

where notation k′ → k′′ means that k′ is connected to k′′, and bk′,k′′ = ±1 is
the corresponding weight. The offset b0k′′ is set to

b0k′′ = −l(k′′) +
1

2
(2)

where l(k′′) is the length of the path from the root to Lk′′ . The rationale
behind the choice (2) is that there are exactly l(k′′) connections starting from
the first layer and pointing to k′′ and that{∑

k′→k′′ bk′,k′′uk′(x)− l(k′′) + 1/2 = 1/2 if x ∈ Lk′′∑
k′→k′′ bk′,k′′uk′(x)− l(k′′) + 1/2 ≤ −1/2 if x 6∈ Lk′′

(3)

Using (2), the argument of the threshold function is 1
2 if x ∈ Lk′′ , and is

smaller than −1
2 , otherwise. Thus, vk′′(x) = 1 if and only if the terminal cell

of x is Lk′′ . To summarize, HL2 outputs a vector of ±1-bits (v1(x), . . . , vk(x))
whose components equal −1 except the one corresponding to the leaf L(x),

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

Near-optimal sparse neural trees 7

which is +1.

Output layer (OL): Let (v1(x), . . . , vk(x)) be the output of the HL2.
If vk′′(x) = 1, then the output layer calculates the average Ȳk′′ of the Yi
corresponding to Xi falling in Lk′′ as follows:

tn(x) =

k∑
k′′=1

wk′′vk′′(x) + bout (4)

where wk′′ = Ȳk′′
2 and bout = 1

2

∑k
k′′=1 Ȳk′′ for all k′′ ∈ {1, . . . , k}.

In order to increase the generalization capabilities of the proposed NSNT
model, we replace the original relay-type activation function τ(u) with a hy-
perbolic tangent activation function σ(u) := tanh(u) that has ranges between
−1 to 1. Specifically, we use σ1(u) = σ(β1u) at every neuron of the first hidden
layer and σ2(u) = σ(β2u) at every neuron of the second hidden layer. Here,
β1 and β2 are positive hyper-parameters that determine the contrast of the
hyperbolic tangent activation; larger the parameters β1 and β2, sharper is the
transition from −1 to 1. As β1 and β2 approach to infinity, the continuous
functions σ1 and σ2 converge to the threshold function. The hyperbolic tan-
gent activation functions allow operations with a smooth approximation of
the discontinuous step activation function. Having a differentiable loss func-
tion with respect to the parameters almost everywhere in the network helps
the gradients to be backpropagated while training the model. The probabilis-
tic interpretation of the network output can be obtained by interpreting the
activation functions in the hidden layers.

Remark 1 The tree estimate tn, depending on Dn, can be interpreted as a
neural network estimate. The architecture of this network is kept fixed and
so are the weights and offsets of the network layers. The idea of building a
near-optimal neural tree with sparse connections is to keep the structure of
the network intact (as discussed above) and let the parameters vary in a subse-
quent network training procedure with backpropagation algorithm. Thus, once
we design the connections between the neurons of the NSNT model, we can
learn network parameters in a better way by minimizing the empirical MSE for
this network over the sample Dn. Fitting a fully-connected deep feed-forward
neural network model with two hidden layers (p input features, kn−1 neurons
in the HL1, and kn neurons in the HL2) requires o(pkn+k2

n) parameters to fit
whereas for the proposed NSNT model, it is o(knlogkn) (assuming that deci-
sion tree generates roughly balanced trees). We show the near-optimal rate of
convergence of the proposed frameworks for nonparametric regression set-up
in Section 4. Since the value of k depends on n, we can use kn instead of k in
the paper with the same meaning.

In the next section, we show the asymptotic consistency (local and strong)
of the proposed NSNT model in the context of nonparametric regression using
empirical risk minimization.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

8 Tanujit Chakraborty

3 Strong Consistency of the Proposed NSNT Model

Consider the tree structure and denote it by G1 ≡ G1(Dn), the bipartite graph
which creates the connections between the input vectors x = (x(1), . . . , x(p))
and the kn − 1 hidden neurons of HL1. Similarly, let G2 ≡ G2(Dn) be the
bipartite graph that represents the connections between the first hidden layer
and the kn hidden neurons of HL2. Let M(G1) be the set of p × (kn − 1)
matrices A = (aij) such that aij = 0 if (i, j) /∈ G1. Also let M(G2) be the
(kn−1)×kn matrices B = (bij) such that bij = 0 if (i, j) /∈ G2. The parameters
that specify the first hidden units are contained in a matrix A of M(G1)
identified by the weights over the edges of G1 and a column vector of biases
b1, of size kn − 1. Similarly, the parameters of the second hidden units are
represented by a matrix B of M(G2) of weights over G2 and by a column vector
b2 of offsets having size kn. Let us take the output weights and offset to be
Wout = (w1, . . . , wkn)> ∈ Rkn and bout ∈ R, respectively. And the parameters
that specify the model are represented by a vector:

λ = (A, b1,B, b2,Wout, bout) ∈M(G1)×Rkn−1 ×M(G2)×Rkn ×Rkn ×R.

We further assume that there exists a positive constant c1 such that

‖B‖∞ + ‖b2‖∞ + ‖Wout‖1 + |bout| ≤ c1kn, (5)

where ‖ · ‖∞ is the supremum norm of a matrix, and ‖ · ‖1 is the L1-norm
of a vector. The rationale behind this assumption (5) is that the weights and
offsets are taken by the computation units of the second hidden layer and the
output layer. It can be easily verified that the condition is satisfied by the
original random tree estimates when Y is assumed to be bounded.

Thus, we can assume that the absolute value of ‖Y ‖∞ ≤ L < ∞ almost
surely, for some L. Therefore, letting Λn =

{
λ = (A, b1, B, b2,Wout, bout) :

(5) is satisfied
}
, we see that the neural network implements functions of this

specific form

fλ(x) = W>outσ2

(
B>σ1(A>x+ b1) + b2

)
+ bout, x ∈ Rp,

where λ ∈ Λn. We aim to tune the parameters λ using the data Dn such that
the function realized by the obtained network becomes a ‘good’ estimate that
can minimize the empirical L2 error. Let Fn,kn =

{
fλ : λ ∈ Λn

}
be the class

of neural networks and mn be the network that minimizes the empirical L2

error which is defined as,

Jn(f) =
1

n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2

over all functions f ∈ Fn,kn , i.e., Jn(mn) ≤ Jn(f), where Fn is a rich class
of functions, including additive functions, polynomial functions having coef-
ficients of the same sign, products of continuous functions and etc. In or-
der to establish the consistency of the regression function estimates mn, we

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

Near-optimal sparse neural trees 9

specify some specific class Fn of functions over Cp. Consider a hyperplane
S = [a1, b1]× [a2, b2]× · · · × [ap, bp] ⊂ Cp, we are given a measurable function
f : Cp → R together with S ⊂ Cp. We consider the following two statements:

(a) For any i ∈ {1, 2, · · · , p}, the function

xi 7→
∫∏
j 6=i

[ai, bi]
f(x)dx1 · · · dxi−1dxi+1 · · · dxp

is constant on [ai, bi].
(b) the function f is constant on S.

Definition 1 If Fn be the class of continuous real function on Cp such that,
for any S = [a1, b1]× [a2, b2]× · · · × [ap, bp] ⊂ Cp, then (a) implies (b).

For example, the additive functions of the following form f(x) =
∑p
i=1 fi(x

(i)),
where each fi is continuous, belong to Fn. Also, the products of continuous
functions of the following form f(x) =

∏p
i=1 fi(x

(i)), where [fi > 0 or fi <
0] are included in Fn, for all i ∈ {1, 2, · · · , p}. Also, this will be true for
polynomial function whose coefficients have the same sign.
Thus, we aim to find an estimate mn : Cp → R of the regression function
m(X) = E[Y |X = x]. We say mn is consistent if (5) tends to 0 as n→∞. We
can write using Lemma 10.1 of [21]∫ ∣∣mn(X)−m(X)

∣∣2µ(dx) ≤ 2 sup
f∈Fn,kn

∣∣∣∣ 1n
n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣∣
+ inf
f∈Fn,kn

∫
Cp

∣∣f(x)−m(x)
∣∣2µ(dx),

(6)

where µ denotes the distribution of X. For the strong consistency of the near-
optimal sparse neural regression trees model, we show that the estimation
error (first term in the R.H.S. of Eqn. 6) and the approximation error (sec-
ond term in the R.H.S. of Eqn. 6) tend to 0. The former can be proved by
using non-asymptotic uniform deviation inequalities and covering numbers
corresponding to Fn, to be shown in Theorem 1. Approximation error can be
handled using a pseudo-estimate similar to decision tree generated function tn
and application of Lipschitz property on the activation function of the model,
as shown in Theorem 2. We further assume that X is uniformly distributed in
Cp and ‖Y ‖∞ ≤ L <∞ almost surely, for some L in the proof of Theorem 1
and 2.

The next two theorems state that with certain restrictions imposed on the
number kn of terminal nodes and with the parameters, β1 and β2 being prop-
erly regulated as functions of n, the empirical L2 risk-minimization provides
the strong consistency of the proposed NSNT model.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

10 Tanujit Chakraborty

Theorem 1 (Estimation error) Assume that X is uniformly distributed in
Cp and ‖Y ‖∞ ≤ L <∞. If kn, β2 satisfy

kn →∞, β2 →∞,
k6
nlog(β2k

5
n)

n
→ 0, and there exists δ > 0 such that

k4
n

n1−δ → 0,

then estimation error tends to zero (n→∞).

Proof Let Fn be the set containing all neural networks constrained by Eqn.
(4) with inputs in Rp having two hidden layers of respective size kn − 1 and
kn, and one output unit. We have assumed that for each f ∈ Fn,kn , f satisfies
‖f‖∞ ≤ c1kn and Y is also bounded (‖Y ‖∞ ≤ L <∞). Let zn1 = (z1, . . . , zn)
be a vector of n fixed points in Rp and let H be a set of functions from
Rp → R. For every ε > 0, we let N1(ε,H , zn1) be the L1 ε-covering number of
H with respect to z1, . . . , zn. N1(ε,H , zn1) is defined as the smallest integer
N such that there exist functions h1, . . . , hN : Rp → R with the property that
for every h ∈H , there is a j ∈ {1, . . . , N} such that

1

n

n∑
i=1

∣∣h(zi)− hj(zi)
∣∣ < ε.

Note that if Zn1 = (Z1, . . . , Zn) is a sequence of i.i.d. random variables, then
N1(ε,H , Zn1) is a random variable as well. Now, let Z = (X,Y), Z1 =
(X1, Y1), . . . , Zn = (Xn, Yn), and Cp = [0, 1]p, we write

Hn =

{
h(x, y) := |y − f(x)

∣∣2 : (x, y) ∈ Cp × [−L,L] and f ∈ Fn

}
.

The functions in Hn will satisfy the following: 0 ≤ h(x, y) ≤ 2c21k
2
n + 2L2 ≤

4c21k
2
n. This assumption holds for large n such that c1kn ≥ L is satisfied. Using

Pollard’s inequality [21], we have, for arbitrary ε > 0,

P

{
sup
f∈Fn

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣ > ε

}

= P

{
sup
h∈Hn

∣∣∣ 1
n

n∑
i=1

h(Zi)− E(h(Z))
∣∣∣ > ε

}
≤ 8E

[
N1

(ε
8
,Hn, Z

n
1

)]
exp

(
− nε2

128(4c21k
2
n)2

)
. (7)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

Near-optimal sparse neural trees 11

Next we bound the covering number
(
N1(ε8 ,Hn, Z

n
1

))
. Let us consider two

functions hi(x, y) = |y − fi(x)|2 of Hn for some fi ∈ Fn and i = 1, 2. We get

1

n

n∑
i=1

∣∣h1(Zi)− h2(Zi)
∣∣

=
1

n

n∑
i=1

∣∣∣∣∣Yi − f1(Xi)
∣∣2 − ∣∣Yi − f2(Xi)

∣∣2∣∣∣
=

1

n

n∑
i=1

∣∣f1(Xi)− f2(Xi)
∣∣× ∣∣f1(Xi)− Yi + f2(Xi)− Yi

∣∣
≤ 4c1kn

n

n∑
i=1

∣∣f1(Xi)− f2(Xi)
∣∣.

Thus, if {h1, h2, ..., hl} is an ε/8 packing of Hn on Zn1 , then {f1, f2, ..., fl} is
an ε/64c1kn packing of Fn.

Thus, N1

(ε
8
,Hn, Z

n
1

)
≤ N1

(ε

64c1kn
,Fn, X

n
1

)
. (8)

The covering number N1(ε
64c1kn

,Fn, X
n
1) can be upper bounded indepen-

dently of Xn
1 by extending the arguments of Theorem 16.1 of [21,] from a

network with one hidden layer to a network with two hidden layers. We will
now apply Theorem 9.4, Lemma 16.4, and Lemma 16.5 repeatedly in the rest
of the proof [21,]. Let the neurons of the first hidden layer output belong to
the class

G1 = {σ1(a>x+ a0) : a ∈ Rp, a0 ∈ R}.

For 0 < ε < 1/4,

N1(ε,G1, X
n
1) ≤ 3

(
2e

ε
log

3e

ε

)p+2

= 3
(3e

ε

)2p+4

.

Next, letting G2 = {bg : g ∈ G1, b ∈ [−c1kn, c1kn]} we get

N1(ε,G2, X
n
1) ≤ 4c1kn

ε
N1

(ε

2c1kn
, G1, X

n
1

)
=

3× 4c1kn
ε

(3e× 2c1kn
ε

)2p+4

≤
(12ec1kn

ε

)2p+5

.

The second units compute the functions of the collection

G3 =
{
σ2

(kn−1∑
i=1

gi + b0

)
: gi ∈ G2, b0 ∈ [−c1kn, c1kn]

}
.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

12 Tanujit Chakraborty

Note that σ2 satisfies the Lipschitz property |σ2(u)−σ2(v)| ≤ β2|u− v| for all
(u, v) ∈ R2. Thus,

N1(ε,G3, X
n
1) ≤ 2c1β2k

2
n

ε
N1

(ε

2β2kn
, G2, X

n
1

)kn−1

=
2c1β2k

2
n

ε

[(12ec1kn × 2β2kn
ε

)2p+5
]kn−1

≤
(24ec1β2k

2
n

ε

)(2p+5)kn
.

Also, letting

G4 = {wg : g ∈ G3, w ∈ [−c1kn, c1kn]},

By assuming without loss of generality c1, β2 ≥ 1, we get

N1(ε,G4, X
n
1) ≤ 4c1kn

ε
N1

(ε

2c1kn
, G3, X

n
1

)
=

4c1kn
ε

(48ec21β2k
3
n

ε

)(2p+5)kn

≤
(48ec21β2k

3
n

ε

)(2p+5)kn+1

.

Finally, we can write

Fn =
{ kn∑
i=1

gi + bout : gi ∈ G4, bout ∈ [−c1kn,−c1kn]
}
.

We conclude

N1(ε,Fn, X
n
1) ≤ 2c1kn(kn + 1)

ε

[
N1

(ε

kn + 1
, G4, X

n
1

)]kn
≤
(48ec21β2(kn + 1)4

ε

)(2p+5)k2n+kn+1

. (9)

Combining (7)-(9) together, we obtain

P

{
sup
f∈Fn

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣ > ε

}

≤ 8
(3072ec31β2(kn + 1)5

ε

)(2p+5)k2n+kn+1

e

(
− nε2

2048c41k
4
n

)
.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

Near-optimal sparse neural trees 13

Now if the conditions of Theorem 1 holds, then

∞∑
n=1

P

{
sup
f∈Fn

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣ > ε

}

≤
∞∑
n=1

8 exp

[(
(2p+ 5)k2

n + kn + 1
)

log
(3072ec31β2(kn + 1)5

ε

)
− nε2

2048c41k
4
n

]

≤
∞∑
n=1

8

[
− nδ.n

1−δ

k4
n

(
ε2

2048c41
−

(
(2p+ 5)k2

n + kn + 1
)
k4
n log

(
3072ec31β2(kn+1)5

ε

)
n

)]

<∞

This together with Borel-Cantelli lemma, gives

lim
n→∞

sup
f∈Fn

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣ = 0.

Remark 2 The above theorem assumes

k6
nlog(β2k

5
n)

n
→ 0, and there exists δ > 0 such that

k4
n

n1−δ → 0,

for strong consistency. For weak consistency, we need a more relaxed condition
to be satisfied [5]. Let Z̃ be a non-negative random variable. Using this for
any 0 < ε < 1/4 and large n, we can write

E
[
Z̃
]

=

∫ ∞
0

P [Z̃ > t]dt ≤ ε+

∫ ∞
ε

P [Z̃ > t]dt. (10)

Using (10), we can write

E

[
sup
f∈Fn

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣]
≤ ε+ 8

∫ ∞
ε

(3072ec31β2(kn + 1)5

t

)(2p+5)k2n+kn+1

exp

(
− nt2

2048c41k
4
n

)
dt

≤ ε+ 8
(3072ec31β2(kn + 1)5

ε

)(2p+5)k2n+kn+1

×
[
− 2048c41k

4
n

nε
e
− nεt

2048c41k
4
n

]∞
t=ε

≤ ε+ 8
(3072ec31β2(kn + 1)5

ε

)(2p+5)k2n+kn+1

×
(2048c41k

4
n

nε

)
e
− nε2

2048c41k
4
n

≤ ε+ 8
(2048c41k

4
n

nε

)
exp

[(
(2p+ 5)k2

n + kn + 1
)

log
(3072ec31β2(kn + 1)5

ε

)
− nε2

2048c41k
4
n

]
.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

14 Tanujit Chakraborty

As kn, β2 →∞, k6nlog(β2k
5
n)

n → 0, for large n, we have,

lim
n→∞

E

[
sup
f∈Fn

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣] = 0.

Theorem 2 (Approximation error) Assume that X is uniformly distributed
in Cp, ‖Y ‖∞ ≤ L <∞, and m ∈ Fn. If kn, β1, β2 satisfy

kn →∞, β1 →∞, β2 →∞, k2
ne
−2β2 → 0,

β2
2k

4
n

β1
→ 0, and

knlog(n)

n
→ 0,

then approximation error tends to zero (n→∞).

Proof Let us consider a piece-wise constant function (pseudo-estimate) similar
to the tree estimate tn, with only one difference: the function computes the true
conditional expectation E[Y |X ∈ Lk′′] in each leaf Lk′′ , but not the empirical
one, viz. Ȳk′′ . In another way, we can write (W ?

out)k′′ = E[Y |X ∈ Lk′′]/2

and b?out =
∑kn
k′′=1E[Y |X ∈ Lk′′]/2 in Eqn. (3) of Section 3. This tree-type

pseudo-estimate has the form

tλ?(x) = W ?>
out τ

(
B?>τ(A?>x+ b?1) + b?2

)
+ b?out, x ∈ Rp,

for some λ? = (A?, b?1, B
?, b?2,W

?
out, b

?
out). We can write the expression for ap-

proximation error as

inf
f∈Fn

∫
Cp

∣∣f(x)−m(x)
∣∣2µ(dx) ≤ 2

[∫
Cp

∣∣fλ?(x)− tλ?(x)
∣∣2µ(dx) +

∫
Cp

∣∣tλ?(x)−m(x)
∣∣2µ(dx)

]
.

(11)

Now, we show that the two terms in the R.H.S. of (11) tends to zero under
certain restrictions on kn, β1 and β2. The second term requires a careful anal-
ysis of the asymptotic behavior of the cells for the tree pseudo-estimate tλ?(x).
To deal with the first term we consider the following two expressions:

tλ?(x) = W ?>
out

[
τ
(
B?>τ(A?>x+ b?1) + b?2

)]
+ b?out,

fλ?(x) = W ?>
out

[
σ2

(
B?>σ1(A?>x+ b?1) + b?2

)]
+ b?out.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

Near-optimal sparse neural trees 15

Using Cauchy-Schwarz inequality and triangle inequality; we can write for all
x ∈ Rp∣∣fλ?(x)− tλ?(x)

∣∣2
≤ knL

2

4
×
∥∥∥σ2

(
B?>σ1(A?>x+ b?1) + b?2

)
− τ
(
B?>τ(A?>x+ b?1) + b?2

)∥∥∥2

≤ 2knL
2

4

[∥∥∥σ2

(
B?>τ(A?>x+ b?1) + b?2

)
− τ
(
B?>τ(A?>x+ b?1) + b?2

)∥∥∥2

+
∥∥∥σ2

(
B?>σ1(A?>x+ b?1) + b?2

)
− σ2

(
B?>τ(A?>x+ b?1) + b?2

)∥∥∥2
]

=
knL

2

2

[
I1 + I2

]
. (12)

To find the upper bounds of I1 and I2, we will use the following properties of
functions:

– Recall that σi is tan hyperbolic activation function and τ is a threshold
activation function, then we can write for all u ∈ R, |σi(u) − τ(u)| ≤
2e−2βi|u| for all i = 1, 2.

– Also, σi satisfies the Lipschitz property for continuous functions |σi(u) −
σi(v)| ≤ βi|u− v| for all (u, v) ∈ R2 and i = 1, 2.

Using the above properties of functions, we can write

I1 ≤ 4

kn∑
j=1

exp
[
− 4β2

∣∣(B?>τ(A?>x+ b?1) + b?2
)
j

∣∣] ≤ 4kne
−2β2 ,

since for every j,
∣∣(B?>τ(A?>x+ b?1) + b?2

)
j

∣∣ ≥ 1/2.

Using Lipschitz property and Cauchy-Schwarz inequality, we can find the
upper-bound for I2 as follows:

I2 ≤
kn∑
j=1

β2
2

∣∣∣(B?>(σ1(A?>x+ b?1)− τ(A?>x+ b?1)
)
j

∣∣∣2
≤ β2

2k
2
n

∥∥σ1(A?>x+ b?1)− τ(A?>x+ b?1)
∥∥2

≤ 4β2
2k

2
n

kn−1∑
j=1

exp

(
−4β1|(A?>x+ b?1)j |

)
≤ 4β2

2k
3
n exp

(
−4β1ε

)
(for some fixed j and arbitrary ε > 0)

For all n large enough, choosing ε = log(β1)
4β1

, to get I2 ≤ 4β2
2k

3
n

β1
.

Putting these upper bounds of I1 and I2 together and using Eqn. (12) we
get the following:∫

Cp

∣∣fλ?(x)− tλ?(x)
∣∣2µ(dx) ≤ 2L2

[
k2
ne
−2β2 +

β2
2k

4
n

β1

]
. (13)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

16 Tanujit Chakraborty

R.H.S. of (13) tends to zero if the conditions k2
ne
−2β2 → 0, and

β2
2k

4
n

β1
→ 0

hold.
To deal with the second term of Eqn. (11), we consider m ∈ Fn and X is
uniformly distributed in Cp and bounded Y .
Recall that tλ?(x) = E [Y |X ∈ Sn(x)], where Sn(x) be the cell of the tree that
contains x. Accordingly,∣∣tλ?(x)−m(x)

∣∣2 =
∣∣E [Y |X ∈ Sn(x)]−m(x)

∣∣2 (14)

=
∣∣E [m(X)|X ∈ Sn(x)]−m(x)

∣∣2
≤ sup
z,z′∈Sn(x)

∣∣m(z)−m(z′)
∣∣2

where m is continuous on Cp. It reduces to the problem of finding empirically
optimal regression trees (as in [8]) to yield consistent estimates of m(·). We
can directly use the consistency results of the CART model to show that the
R.H.S. of (14) tends to zero when kn → ∞ and kn = o(n/logn) as n → ∞
[36][12]. The condition suggests that the tree estimates are consistent when
the size of the tree grows with sample size n at a controller rate.

Remark 3 The consistency results for near-optimal sparse neural regression
trees depend on the choice of the total number of leaves and certain restric-
tions imposed on neural network hyper-parameters to ensure the theoretical
consistency of the model.

4 Analysis of Rate of Convergence

We can find the rate of convergence by using complexity regularization princi-
ple [28][22][27]. Using Equation (9), we can penalize the complexity of Fn,kn .
For a detailed discussion on penalized risk minimization, one may refer to
Chapter 12 of [21]. We balance the approximation error with the bounds on
the covering number to get the following theorem for the rate of convergence
of the near-optimal sparse neural regression trees model. The similar idea for
finding rate of convergence for single and multilayered perceptrons has been
used in [21][28][33]. In the sequel, we have assumed that m is Lipschitz (δ, c)-
smooth according to the following definition:

Definition 2 Let δ ∈ (0, 1] and c ∈ R+, then a function m : Cp → R is called
Lipschitz (δ, C)-smooth if it satisfies the following equation:

|m(x)−m(z)| ≤ c‖x− z‖δ

for all x, z ∈ [0, 1]p.

Theorem 3 (Rate of convergence) Assume that X is uniformly distributed
in Cp and ‖Y ‖∞ ≤ L <∞ a.s. and m is Lipschitz (δ, c)-smooth. Let mn be the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

Near-optimal sparse neural trees 17

estimate that minimizes empirical L2-risk and the network activation function
σi satisfies Lipschitz property. Then for any n ≥ max{β2, 2

p+1L}, we have

E

∫
Cp

∣∣mn(X)−m(X)
∣∣2µ(dx) = O

(
log(n)6

n

) 2δ
2δ+2p

,

where δ characterizes the smoothness of the true function.

Proof Assume for any n ≥ max{β2, 2
p+1L}. According to (9) and for any

Xn
1 ∈ Rp

N1(
1

n
,Fn,kn , X

n
1) ≤

(48ec21β2(kn + 1)4

1/n

)(2p+5)k2n+kn+1

≤
(

48ec21(n+ 1)6
)(2p+5)kn(kn+1)

. (15)

Next we use the complexity regularization principle to choose the parameter
kn of the estimate in a data-dependent way. To do this let

sup
Xn1

N1

(
1

n
,Fkn , X

n
1

)
≤ N1

(
1

n
,Fkn

)
be the upper bound on the covering number of Fkn and define for wkn ≥ 0

penn(kn) =
45L2logN1

(
1
n ,Fkn

)
+ wkn

n

as a penalty term penalizing the complexity of Fkn [28]. Thus (15) implies
that penn(kn) is of the following form with wkn = 1,

penn(kn) =
45L2(2p+ 5)kn(kn + 1)log

(
48ec21(n+ 1)6) + 1

n
= O

(
k2
nlog(n)6

n

)
.

Our proof for rate of convergence relies on an extension of the proof tech-
niques introduced by [28] and Chapter 12 of [21]. Assuming Y is bounded as
in Theorem 1 and 2, we write (6) as

E

∫
Cp

∣∣mn(X)−m(X)
∣∣2µ(dx) ≤ 2 min

kn≥1

{
penn(kn) + inf

f∈Fkn

∫
Cp

∣∣f(x)−m(x)
∣∣2µ(dx)

}
+O

(1

n

)
(16)

Thus, (16) becomes

E

∫
Cp

∣∣mn(X)−m(X)
∣∣2µ(dx) ≤ min

kn∈{1,2,...,n}

{
90L2(2p+ 5)kn(kn + 1)log

(
48ec21(n+ 1)6

)
+ 1

n

+2 inf
f∈Fkn

∫
Cp

∣∣f(x)−m(x)
∣∣2µ(dx)

}
+O

(1

n

)
(17)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

18 Tanujit Chakraborty

The approximation error inff∈Fkn

∫
Cp

∣∣f(x) − m(x)
∣∣2µ(dx) depends on the

smoothness of the regression function. According to Theorem 3.4 of [33] and
Corollary 1 of [28], for any deep feed-forward networks with two hidden layers
satisfying the assumptions of Theorem 3, we have

∣∣f(x)−m(x)
∣∣ ≤ c.(1

kn

) δ
p

for all x ∈ [0, 1]p. Using (17), we have

E

∫
Cp

∣∣mn(X)−m(X)
∣∣2µ(dx) ≤ k2

nlog(n)6

n
+ 2c2

(
1

kn

)2δ/p

(18)

for sufficiently large n.
Now we have to balance the approximation error with the bound on the cov-
ering number. Thus, taking

kn = c
2p

2p+2δ

(
n

log(n)6

) p
2p+2δ

,

and upon using (18), we get

E

∫
Cp

∣∣mn(X)−m(X)
∣∣2µ(dx) ≤ c1

(
log(n)6

n

) 2δ
2δ+2p

,

where c1 = 3c
4p

2p+2δ . Thus, we obtained the desired convergence rate for the
proposed NSNT model. The rate of convergence for the proposed model is
‘near-optimal’ upto some logarithmic factor according to [45].

Remark 4 Near-optimal sparse neural trees is a hybrid concept representation
which has a built-in strategy for neural networks. The architecture is less
complex and have less number of tuning parameters resulting in less training
time. Since the algorithm uses the prior knowledge of decision tress, thus the
algorithm has less restrictions on the geometry of the decision boundaries.
Theorem 1 and 2 point out the consistency results of the algorithm. Theorem
3 also points out a remarkable property of the proposed NSNT model and the
significance of the name for the proposal.

5 Performance Comparison on Real-world Datasets

In this section, we report the out-of-sample accuracy of our proposed NSNT
model in comparison with state-of-the-art models on 40 regression datasets and
40 classification datasets obtained from the UCI Machine Learning Repository
[17]. A summary of the datasets is available in Table 1. Our objective is to
assess the relative strength of NSNT. We partition each dataset into training
(50%), validation (25%), and testing sets (25%). We employ 10-fold cross-
validation with different randomly assigned training, validation, and test sets.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

Near-optimal sparse neural trees 19

We use the area under the receiver operating characteristic curve (AUC) as the
performance metric for classification datasets and the coefficient of determina-
tion (R2) for regression datasets. By convention, the higher the value of AUC
and R2, the better the model is. Further, we compare our proposed NSNT
model mostly with popularly used greedy, optimal, and near-optimal classi-
fiers. Multivariate adaptive regression splines (MARS) [18], regression trees
[8], random forest [9], XGBoost [14], optimal tree for classification and regres-
sion (OCT and ORT) [3], and near-optimal nonlinear trees for classification
and regression (NNCT and NNRT) [4] are used for comparison. The available
state-of-the-art models were implemented as follows. NNCT and NNRT were
implemented in the Julia programming language as in [4]. For testing the per-
formance of MARS, we used the earth package in the R language [35]. For
random forests, we used the random forest package in R [29]. For gradient-
boosted trees, we used the XGBoost library [15] with value of the parameter
ρ = 0.1. For OCT and ORT models, we used the OptimalTrees package in
Julia programming language with standard auto-tuning complexity parame-
ter as in [3]. We first compare all methods across all datasets and present the
out-of-sample performance among all methods with a maximum depth of 12
and results are reported in Table 2 and 3.

The training procedure for the proposed NSNT model is as follows. A
decision tree is first built using the ‘scikit-learn’ package [37] for tree designing.
From decision tree, we extract the set of all split directions and split positions
and use them to build neural network initialization parameters. The hybrid
models are then trained using the TensorFlow library in python software [1].
The optimization with the network model is done by minimizing the empirical
error on the training set. It is achieved by employing an iterative stochastic
gradient-descent optimization technique. The architecture of the network is
kept fixed, and thus the weights and offsets of the three-layered DFFNN model
are also fixed. A natural idea is then to keep the structure of the network
intact and let the parameters vary in a subsequent network training procedure
with backpropagation neural network training. For this, we used the default
functions available in TensorFlow. In our model set up, Neural Network was
trained for 100 epochs. The default hyper-parameter values were chosen for
the gradient-based optimization algorithm available in the Python machine
learning software. We experimentally found that using a lower value for β2

than that for β1 is appropriate for achieving the high accuracy of the model.
In this case, the initial parameters of the tan-hyperbolic activation function
in the two layers were chosen as: β1 = 100, β2 = 1. This is also evident from
the theoretical results presented in Section 3 and 4. This is also practically
very significant, since for a relatively small β2, the transition in the activation
function from −1 to +1 is smoother, and a very stronger stochastic gradient
signal reaches the first hidden layer in the backpropagation training. Similarly,
a converse explanation can be given for β1. The training time and memory
requirements are also quite low for the proposed NSNT model compared to
advanced deep neural network models. Our proposed model is faster, especially
when trained on a GPU. In Table 3, we present the results of different classifiers

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

20 Tanujit Chakraborty

Table 1 Description of the regression and classification datasets. Here, n denotes the total
number of observations and p denotes the number of features in the dataset.

Regression n p Classification n p No. of
Datasets Datasets Classes
abalone 4176 7 acute-nephritis 120 6 2
ailerons 7153 40 appendicitis 106 7 2
airfoil-self-noise 1502 5 australian 690 14 2
automobile 391 8 breast 569 32 2
autompg 158 51 breast-w 569 30 2
like sharing 17379 12 bupa 345 6 2
BlogFeedBack 52397 80 congress-voting 435 16 2
cart-artificial 40767 10 credit-a 690 15 2
CBM 11934 16 crx 690 15 2
combined cycle power plant 9568 4 cylinder-bands 512 35 2
communities-and-crime 122 122 fertility 100 9 2
computer-hardware 208 36 fourclass 862 2 2
concrete data 1030 8 german 1000 20 2
concrete-slump-test-compressive 102 7 heart-c 303 13 2
concrete-slump-test-flow 102 7 hepatitis 155 19 2
concrete-slump-test-slump 102 7 hill-valley 606 100 2
cpu-act 8191 21 ilpd-indian-liver 583 9 2
cpu-small 8191 12 ion 351 33 2
elevators 8751 18 iris 150 4 3
Facebook Comment Volume 50993 53 mammographic 961 5 2
friedman-artificial 40767 10 monks-1 124 6 2
geographic-origin 1059 68 monks-2 169 6 2
housing 505 13 monks-3 3190 6 2
hybrid-price 152 3 parkinsons 195 22 2
kin8 nm 8191 8 pima 768 8 2
lpga-2008 156 6 promoters 106 57 2
lpga-2009 145 11 ringnorm 300 20 2
Obesity levels 2111 16 sonar 1593 256 2
larkinsons-telemonitoring-motor 5874 16 spect 80 22 2
parkinsons-telemonitoring-total 5874 16 spectf 80 44 2
QSAR aquatic toxicity 546 8 splice-libsvm 1000 60 2
Real estate 414 6 tae 151 5 3
esidential-Building-Data-Set-1 372 107 threenorm 300 20 2
Residential-Building-Data-Set-2 372 107 tic-tac-toe 958 9 2
Slice localization data 53500 385 titanic 2201 3 2
TomsHardware 28178 96 transfusion 748 5 2
vote-for-clinton 2703 9 twonorm 300 20 2
wine-quality-red 1598 11 vote 435 16 2
wine-quality-white 4897 11 vote1 435 15 2
yacht-hydrodynamics 307 6 wine 178 13 3

on the standard UCI datasets. The experimental results on standard UCI
regression datasets in comparison with the state-of-the-art models are given
in Table 2.

To sum up, among five competitive methods, NSNT is the winner based
on the performance metrics (AUC value for classification datasets and R2 for
regression datasets) on an average. From the statistical point of view on the
nature of the problem, the robustness of the proposed method implies that
the designed NSNT model utilizes the sparse framework and near-optimal

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

Near-optimal sparse neural trees 21

rate of convergence asymptotically. Moreover, NNCT (NNRT) and XGBoost
are ‘second’ and ‘third’ best performing classifiers (regression models) in terms
of the performance metrics for the majority of the datasets as compared to
the other traditional methods considered in this study. From the experimental
evaluation of different classifiers, it can be concluded that, on average, the near-
optimal sparse neural trees model outperforms other greedy, optimal and near-
optimal statistical and machine learning models in a significant margin. Thus,
the proposed NSNT method can be a ‘good’ choice for statistical learning in
regression and classification datasets arising in various applied domains.

Table 2 Out of sample performance (R2) among all methods with maximum depth twelve.
The number in parenthesis indicates the standard deviation and the best results are made
bold.

Regression MARS Random XGBoost ORT NNRT Proposed
Datasets [18] Forest [9] [14] [3] [4] NSNT

abalone 0.559 (0.02) 0.488 (0.07) 0.536 (0.01) 0.549 (0.01) 0.564 (0.01) 0.587 (0.01)
ailerons 0.829 (0.01) 0.837 (0.007) 0.823 (0.01) 0.836 (0.01) 0.846 (0.0) 0.829 (0.005)
airfoil-self-noise 0.802 (0.01) 0.91 (0.013) 0.941 (0.006) 0.896 (0.003) 0.903 (0.007) 0.945 (0.0)
automobile 0.849 (0.04) 0.847 (0.01) 0.849 (0.06) 0.838 (0.03) 0.804 (0.022) 0.851 (0.0)
autompg 0.844 (0.03) 0.732 (0.03) 0.736 (0.04) 0.631 (0.02) 0.847 (0.02) 0.854 (0.01)
Bike sharing 0.935 (0.004) 0.93 (0.003) 0.951 (0.0) 0.939 (0.01) 0.949 (0.01) 0.948 (0.004)
BlogFeedBack 0.417 (0.001) 0.406 (0.001) 0.563 (0.0) 0.431 (0.0) 0.459 (0.0) 0.487 (0.001)
cart-artificial 0.945 (0.0) 0.945 (0.0) 0.948 (0.0) 0.948 (0.0) 0.948 (0.0) 0.948 (0.0)
CBM 0.93 (0.01) 0.942 (0.004) 0.934 (0.0) 0.927 (0.03) 0.935 (0.0) 0.945 (0.02)
combined cycle power plant 0.949 (0.01) 0.956 (0.01) 0.966 (0.004) 0.955 (0.004) 0.973 (0.0) 0.960 (0.003)
communities-and-crime 0.301 (0.15) 0.702 (0.11) 0.679 (0.12) 0.749 (0.06) 0.684 (0.06) 0.719 (0.09)
computer-hardware 0.961 (0.013) 0.929 (0.02) 0.929 (0.01) 0.973 (0.004) 0.986 (0.01) 0.988 (0.01)
concrete data 0.853 (0.005) 0.884 (0.005) 0.929 (0.06) 0.919 (0.003) 0.923 (0.003) 0.931 (0.03)
concrete-slump-test-compressive 0.947 (0.045) 0.69 (0.075) 0.792 (0.03) 0.873 (0.03) 0.953 (0.02) 0.854 (0.05)
concrete-slump-test-flow 0.364 (0.113) 0.437 (0.10) 0.396 (0.13) 0.476 (0.07) 0.524 (0.05) 0.555 (0.07)
concrete-slump-test-slump 0.265 (0.100) 0.359 (0.13) 0.272 (0.1) 0.277 (0.06) 0.439 (0.04) 0.408 (0.02)
cpu-act 0.975 (0.001) 0.982 (0.0) 0.98 (0.0) 0.984 (0.0) 0.981 (0.0) 0.984 (0.0)
cpu-small 0.966 (0.001) 0.975 (0.001) 0.975 (0.0) 0.974 (0.002) 0.971 (0.001) 0.973 (0.02)
elevators 0.895 (0.02) 0.811 (0.01) 0.833 (0.01) 0.912 (0.004) 0.918 (0.004) 0.920 (0.002)
Facebook Comment Volume 0.478 (0.001) 0.435 (0.0) 0.528 (0.0) 0.426 (0.0) 0.437 (0.0) 0.489 (0.0)
friedman-artificial 0.902 (0.0) 0.932 (0.0) 0.952 (0.0) 0.956 (0.0) 0.956 (0.0) 0.956 (0.0)
geographic-origin 0.609 (0.06) 0.608 (0.07) 0.627 (0.06) 0.53 (0.02) 0.562 (0.03) 0.638 (0.04)
housing 0.507 (0.031) 0.852 (0.03) 0.863 (0.03) 0.804 (0.02) 0.791 (0.01) 0.856 (0.02)
hybrid-price 0.62 (0.109) 0.615 (0.07) 0.577 (0.11) 0.648 (0.04) 0.642 (0.053) 0.638 (0.044)
kin8 nm 0.75 (0.01) 0.674 (0.01) 0.671 (0.01) 0.851 (0.005) 0.809 (0.005) 0.863 (0.002)
lpga-2008 0.897 (0.03) 0.77 (0.01) 0.775 (0.04) 0.851 (0.02) 0.863 (0.013) 0.897 (0.02)
lpga-2009 0.84 (0.014) 0.893 (0.02) 0.885 (0.02) 0.904 (0.009) 0.889 (0.01) 0.884 (0.01)
Obesity levels 0.842 (0.011) 0.867 (0.02) 0.882 (0.01) 0.85 (0.0) 0.863 (0.005) 0.875 (0.0)
parkinsons-telemonitoring-motor 0.3 (0.01) 0.341 (0.01) 0.264 (0.013) 0.281 (0.0) 0.245 (0.005) 0.295 (0.01)
parkinsons-telemonitoring-total 0.289 (0.018) 0.355 (0.014) 0.27 (0.019) 0.316 (0.01) 0.282 (0.0) 0.304 (0.015)
QSAR aquatic toxicity 0.401 (0.09) 0.539 (0.02) 0.541 (0.07) 0.569 (0.05) 0.585 (0.042) 0.600 (0.0)
Real estate 0.597 (0.07) 0.626 (0.05) 0.638 (0.1) 0.636 (0.033) 0.642 (0.033) 0.640 (0.04)
Residential-Building-Data-Set-1 0.971 (0.06) 0.957 (0.01) 0.973 (0.005) 0.979 (0.003) 0.985 (0.003) 0.988 (0.01)
Residential-Building-Data-Set-2 0.973 (0.006) 0.943 (0.006) 0.981 (0.007) 0.978 (0.003) 0.984 (0.003) 0.985 (0.005)
slice localization data 0.896 (0.001) 0.983 (0.001) 0.966 (0.0) 0.932 (0.0) 0.986 (0.0) 0.975 (0.0)
TomsHardware 0.953 (0.003) 0.998 (0.0) 0.999 (0.0) 0.957 (0.004) 0.973 (0.002) 0.967 (0.0)
vote-for-clinton 0.255 (0.016) 0.416 (0.02) 0.389 (0.02) 0.395 (0.004) 0.353 (0.012) 0.350 (0.01)
wine-quality-red 0.423 (0.023) 0.435 (0.02) 0.389 (0.03) 0.304 (0.011) 0.345 (0.01) 0.440 (0.02)
wine-quality-white 0.3 (0.008) 0.459 (0.01) 0.422 (0.01) 0.349 (0.01) 0.318 (0.004) 0.463 (0.01)
yacht-hydrodynamics 0.994 (0.003) 0.994 (0.004) 0.996 (0.002) 0.991 (0.0) 0.996 (0.0) 0.996 (0.02)

6 Conclusions and Discussions

In recent years, several studies attempted to build classification trees in which
the greedy sub-optimal construction approach is replaced by solving an opti-
mization problem, usually in integer variables. These procedures, while suc-
cessful against CART, are extremely time-consuming and can only address
problems of moderate size. In this paper, we have proposed a new soft pruning
approach to build classification trees and trained them using neural networks.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

22 Tanujit Chakraborty

Table 3 Out of sample performance (ROC-AUC) among all methods with maximum depth
twelve. The number in parenthesis indicates the standard deviation and the best results are
made bold.

Classification Regression Random OCT NNCT XGBoost Proposed
Datasets Tree [8] Forest [9] [3] [4] [14] NSNT
acute-nephritis 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
appendicitis 0.698 (0.139) 0.703 (0.183) 0.659 (0.181) 0.747 (0.147) 0.691 (0.188) 0.792 (0.081)
australian 0.797 (0.042) 0.858 (0.027) 0.798 (0.038) 0.860 (0.029) 0.856 (0.025) 0.862 (0.013)
breast 0.589 (0.082) 0.65 (0.058) 0.569 (0.07) 0.62 (0.058) 0.621 (0.077) 0.62 (0.024)
breast-w 0.944 (0.029) 0.97 (0.024) 0.95(0.024) 0.966(0.021) 0.968 (0.02) 0.965 (0.008)
bupa 0.597 (0.075) 0.685 (0.067) 0.597 (0.058) 0.695 (0.066) 0.704 (0.043) 0.715 (0.038)
congress-voting 0.945 (0.056) 0.967 (0.042) 0.957 (0.038) 0.963 (0.04) 0.961 (0.041) 0.936 (0.018)
credit-a 0.823 (0.045) 0.875 (0.028) 0.811 (0.051) 0.872 (0.035) 0.878 (0.035) 0.842 (0.02)
crx 0.821 (0.048) 0.864 (0.035) 0.812 (0.058) 0.884 (0.042) 0.883 (0.055) 0.854 (0.013)
cylinder-bands 0.647 (0.09) 0.72 (0.09) 0.642 (0.089) 0.73 (0.091) 0.708 (0.051) 0.69 (0.035)
fertility 0.519 (0.189) 0.539 (0.136) 0.546 (0.196) 0.564 (0.149) 0.592 (0.212) 0.712 (0.089)
fourclass 0.990 (0.013) 0.993 (0.011) 0.990 (0.012) 0.99 (0.012) 0.988 (0.01) 0.996 (0.004)
german 0.642 (0.047) 0.64 (0.025) 0.643 (0.039) 0.663 (0.048) 0.701 (0.045) 0.655 (0.022)
heart-c 0.725 (0.073) 0.795 (0.043) 0.733 (0.063) 0.81 (0.044) 0.814 (0.053) 0.745 (0.025)
hepatitis 0.695 (0.214) 0.708 (0.212) 0.749 (0.18) 0.792 (0.221) 0.588 (0.209) 0.803 (0.041)
hill-valley 0.546 (0.04) 0.581 (0.052) 0.508 (0.032) 0.58 (0.059) 0.601 (0.059) 0.552(0.027)
ilpd-indian-liver 0.573 (0.084) 0.563 (0.06) 0.598 (0.071) 0.600 (0.076) 0.59 (0.052) 0.537 (0.022)
ion 0.843 (0.043) 0.925 (0.04) 0.846 (0.061) 0.924 (0.044) 0.92 (0.017) 0.899 (0.011)
iris 0.935 (0.039) 0.993 (0.015) 0.735(0.023) 0.76 (0.013) 0.97 (0.024) 0.973 (0.01)
mammographic 0.772 (0.041) 0.784 (0.033) 0.771 (0.025) 0.786 (0.031) 0.805 (0.034) 0.788 (0.009)
monks-1 0.808 (0.128) 0.863 (0.084) 0.84 (0.112) 0.854 (0.106) 0.812 (0.04) 0.92 (0.062)
monks-2 0.764 (0.117) 0.631 (0.107) 0.754 (0.103) 0.618 (0.14) 0.736 (0.159) 0.663 (0.045)
monks-3 0.901 (0.063) 0.91 (0.087) 0.894 (0.063) 0.901 (0.073) 0.926 (0.087) 0.957 (0.015)
parkinsons 0.764 (0.121) 0.856 (0.111) 0.795 (0.123) 0.846 (0.111) 0.878 (0.079) 0.92 (0.025)
pima 0.69 (0.056) 0.704 (0.045) 0.679 (0.055) 0.712 (0.061) 0.714 (0.048) 0.723 (0.025)
promoters 0.707 (0.147) 0.84 (0.129) 0.783 (0.125) 0.875 (0.083) 0.89 (0.106) 0.846 (0.05)
ringnorm 0.788 (0.102) 0.914 (0.057) 0.794 (0.076) 0.897 (0.09) 0.889 (0.054) 0.90 (0.029)
sonar 0.726 (0.114) 0.8 (0.072) 0.885 (0.091) 0.791 (0.097) 0.878 (0.079) 0.801 (0.05)
spect 0.684 (0.084) 0.707 (0.1) 0.65 (0.074) 0.711 (0.01) 0.701 (0.113) 0.715 (0.031)
spectf 0.642 (0.127) 0.643 (0.102) 0.647 (0.1) 0.661 (0.094) 0.629 (0.108) 0.687 (0.048)
splice-libsvm 0.904 (0.015) 0.933 (0.014) 0.929 (0.028) 0.934 (0.023) 0.968 (0.021) 0.921 (0.013)
tae 0.75 (0.083) 0.754 (0.092) 0.602 (0.029) 0.599 (0.09) 0.708 (0.086) 0.761 (0.036)
threenorm 0.69 (0.097) 0.80 (0.047) 0.69 (0.068) 0.79 (0.084) 0.801 (0.021) 0.803 (0.027)
tic-tac-toe 0.882 (0.036) 0.923 (0.036) 0.896 (0.034) 0.925 (0.029) 0.908 (0.005) 0.902 (0.021)
titanic 0.715 (0.071) 0.719 (0.102) 0.773 (0.105) 0.706 (0.082) 0.794 (0.058) 0.821 (0.045)
transfusion 0.638 (0.064) 0.599 (0.061) 0.619 (0.066) 0.605 (0.066) 0.605 (0.064) 0.614 (0.02)
twonorm 0.757 (0.071) 0.933 (0.036) 0.813 (0.055) 0.933 (0.026) 0.937 (0.043) 0.947 (0.032)
vote 0.924 (0.04) 0.955 (0.026) 0.934 (0.042) 0.954 (0.024) 0.958 (0.029) 0.971 (0.01)
vote1 0.832 (0.059) 0.895 (0.032) 0.842 (0.061) 0.896 (0.047) 0.883 (0.042) 0.886 (0.013)
wine 0.935 (0.039) 0.943 (0.015) 0.735 (0.023) 0.76 (0.013) 0.970 (0.033) 0.973 (0.01)

By replacing the binary decisions with randomized decisions along with neural
trees, the resulting sparse framework is smooth and only contains continuous
variables, allowing one to use gradient information.

This paper developed an easily interpretable near-optimal sparse neural
tree that is asymptotically consistent, near-optimal convergence rate, scalable,
and accurate as compared to state-of-the-art models. The model is empirically
shown to perform consistently for a wide range of datasets of various sizes.
Strong empirical shreds of evidence show that with limited running time, our
method outperformed recent benchmarks, achieving significant improvement
over XGBoost, OCT, NNCT among many others. Both theoretically and ex-
perimentally, we evaluated the performance of the proposed NSNT model.
Improving the framework for imbalanced classification problems and survival
regression problems can be considered as future research questions.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

Near-optimal sparse neural trees 23

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning.
In: OSDI, vol. 16, pp. 265–283 (2016)

2. Bauer, B., Kohler, M., et al.: On deep learning as a remedy for the curse of dimension-
ality in nonparametric regression. The Annals of Statistics 47(4), 2261–2285 (2019)

3. Bertsimas, D., Dunn, J.: Optimal classification trees. Machine Learning 106(7), 1039–
1082 (2017)

4. Bertsimas, D., Dunn, J., Wang, Y.: Near-optimal nonlinear regression trees. Operations
Research Letters 49(2), 201–206 (2021)

5. Biau, G., Scornet, E., Welbl, J.: Neural random forests. Sankhya A pp. 1–40 (2018)
6. Blanquero, R., Carrizosa, E., Molero-Ŕıo, C., Morales, D.R.: Sparsity in optimal ran-

domized classification trees. European Journal of Operational Research 284(1), 255–272
(2020)

7. Blum, A.L., Rivest, R.L.: Training a 3-node neural network is np-complete. Neural
Networks 5(1), 117–127 (1992)

8. Breiman, L.: Classification and regression trees. Routledge (1984)
9. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

10. Brent, R.P.: Fast training algorithms for multilayer neural nets. IEEE Transactions on
Neural Networks 2(3), 346–354 (1991)

11. Chakraborty, T., Chakraborty, A.K.: Hellinger net: A hybrid imbalance learning model
to improve software defect prediction. IEEE Transactions on Reliability (2020)

12. Chakraborty, T., Chakraborty, A.K., Chattopadhyay, S.: A novel distribution-free hy-
brid regression model for manufacturing process efficiency improvement. Journal of
Computational and Applied Mathematics 362, 130–142 (2019)

13. Chakraborty, T., Chakraborty, A.K., Murthy, C.: A nonparametric ensemble binary
classifier and its statistical properties. Statistics & Probability Letters 149, 16–23
(2019)

14. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of
the 22nd ACM SIGKDD, pp. 785–794 (2016)

15. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., et al.: Xgboost:
extreme gradient boosting. R package version 0.4-2 1(4) (2015)

16. Chen, Y., Abraham, A., Yang, B.: Feature selection and classification using flexible
neural tree. Neurocomputing 70(1-3), 305–313 (2006)

17. Dua, D., Graff, C., et al.: Uci machine learning repository. UCI (2017)
18. Friedman, J.H.: Multivariate adaptive regression splines. The annals of statistics pp.

1–67 (1991)
19. Frosst, N., Hinton, G.: Distilling a neural network into a soft decision tree. arXiv

preprint arXiv:1711.09784 (2017)
20. Guliyev, N.J., Ismailov, V.E.: Approximation capability of two hidden layer feedforward

neural networks with fixed weights. Neurocomputing 316, 262–269 (2018)
21. Györfi, L., Kohler, M., Krzyzak, A., Walk, H.: A distribution-free theory of nonpara-

metric regression. Springer Science & Business Media (2006)
22. Hamers, M., Kohler, M.: A bound on the expected maximal deviation of averages from

their means. Statistics & Probability Letters 62(2), 137–144 (2003)
23. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal

approximators. Neural Networks 2(5), 359–366 (1989)
24. Hu, X., Rudin, C., Seltzer, M.: Optimal sparse decision trees. Advances in Neural

Information Processing Systems (NeurIPS) (2019)
25. Humbird, K.D., Peterson, J.L., McClarren, R.G.: Deep neural network initialization

with decision trees. IEEE Transactions on Neural Networks and Learning Systems
(2018)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

24 Tanujit Chakraborty

26. Ismailov, V.E.: On the approximation by neural networks with bounded number of
neurons in hidden layers. Journal of Mathematical Analysis and Applications 417(2),
963–969 (2014)

27. Kohler, M.: Nonparametric regression with additional measurement errors in the de-
pendent variable. Journal of Statistical Planning and Inference 136(10), 3339–3361
(2006)

28. Kohler, M., Krzyżak, A.: Adaptive regression estimation with multilayer feedforward
neural networks. Nonparametric Statistics 17(8), 891–913 (2005)

29. Liaw, A., Wiener, M.: randomforest: Breiman and cutler’s random forests for classifica-
tion and regression. R package version 4, 6–10 (2015)

30. Lin, J., Zhong, C., Hu, D., Rudin, C., Seltzer, M.: Generalized and scalable optimal
sparse decision trees. In: International Conference on Machine Learning, pp. 6150–6160.
PMLR (2020)

31. Lugosi, G., Nobel, A.: Consistency of data-driven histogram methods for density esti-
mation and classification. The Annals of Statistics 24(2), 687–706 (1996)

32. Lugosi, G., Zeger, K.: Nonparametric estimation via empirical risk minimization. IEEE
Transactions on information theory 41(3), 677–687 (1995)

33. Mhaskar, H.N.: Approximation properties of a multilayered feedforward artificial neural
network. Advances in Computational Mathematics 1(1), 61–80 (1993)

34. Mhaskar, H.N., Poggio, T.: Deep vs. shallow networks: An approximation theory per-
spective. Analysis and Applications 14(06), 829–848 (2016)

35. Milborrow, M.S.: Package ‘earth’ (2020)
36. Nobel, A.: Histogram regression estimation using data-dependent partitions. The Annals

of Statistics 24(3), 1084–1105 (1996)
37. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in
python. Journal of machine learning research 12(Oct), 2825–2830 (2011)

38. Rani, A., Foresti, G.L., Micheloni, C.: A neural tree for classification using convex
objective function. Pattern Recognition Letters 68, 41–47 (2015)

39. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by
error propagation. Tech. rep., California Univ San Diego La Jolla Inst for Cognitive
Science (1985)

40. Sakar, A., Mammone, R.J.: Growing and pruning neural tree networks. IEEE Transac-
tions on Computers 42(3), 291–299 (1993)

41. Sethi, I.K.: Entropy nets: from decision trees to neural networks. Proceedings of the
IEEE 78(10), 1605–1613 (1990)

42. Sethi, I.K.: Neural implementation of tree classifiers. IEEE transactions on systems,
man, and cybernetics 25(8), 1243–1249 (1995)

43. Setiono, R., Leow, W.K.: On mapping decision trees and neural networks. Knowledge-
Based Systems 12(3), 95–99 (1999)

44. Sirat, J., Nadal, J.: Neural trees: a new tool for classification. Network: Computation
in Neural Systems 1(4), 423–438 (1990)

45. Stone, C.J.: Optimal global rates of convergence for nonparametric regression. The
Annals of Statistics pp. 1040–1053 (1982)

46. Tanno, R., Arulkumaran, K., Alexander, D., Criminisi, A., Nori, A.: Adaptive neural
trees. In: International Conference on Machine Learning, pp. 6166–6175. PMLR (2019)

47. Tsujino, K., Nishida, S.: Implementation and refinement of decision trees using neural
networks for hybrid knowledge acquisition. Artificial Intelligence in Engineering 9(4),
265–276 (1995)

48. Utgoff, P.E.: Perceptron trees: A case study in hybrid concept representations. Connec-
tion Science 1(4), 377–391 (1989)

49. Verwer, S., Zhang, Y.: Learning optimal classification trees using a binary linear program
formulation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 1625–1632 (2019)

50. Zhou, Z.H., Chen, Z.Q.: Hybrid decision tree. Knowledge-based systems 15(8), 515–528
(2002)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2021 doi:10.20944/preprints202105.0117.v1

https://doi.org/10.20944/preprints202105.0117.v1

