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Abstract: Proposed as a response to the increasing global need for 

environmental protection, a green port balances economic vibrancy and 

environmental protection. However, because exhaust emissions (e.g., CO2 or 

sulfide) are difficult to monitor in and around ports, data on such emissions 

are often incomplete, which hinders research on this topic. To remedy this 

problem, this study aimed to formulate a method for collecting CO2 emissions 

data at their source; this method was applied to collect real-world operating 

data from a large container-handling company in Taiwan. Specifically, to 

account for undesirable outputs, we formulated a method that combines (1) 

data envelopment analysis based on a modified slack-based measure and (2) a 

multichoice goal programming approach. We found that rubber-tired gantry 

cranes are the greenest and should be used. Our findings aid port managers 

in selecting port equipment that best balances between environmental 

protection and profitability. 
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1. Introduction 

Environmental degradation and resource overconsumption are 

serious global problems, and sustainable development benefits a country 

(and its economy). Human activity is responsible for both environmental 

protection and environmentally damaging economic growth. 

Correspondingly, although a country’s natural resources (e.g., air, water, 

soil, and mineral resources) enable its development; their 

overexploitation is bound to backfire eventually, leaving future 

generations to pick up the pieces of environmental problems, such as 

wildlife extinction and natural resource depletion. 

Human overreliance on fossil fuels has resulted in climate change, 

which is disruptive at best and destructive at worst. Climate change has 

and will destroy marine ecosystems, melt glaciers, decimate the Amazon 

rainforest, and trigger large-scale human migration and conflict [1]. Sea 

levels will also rise due to climate change, and eroded coastal conditions, 

the release of inundated land, and the threat of submersion will be 

disastrous for island nations and low-lying coastal areas. This threat is 

especially serious given that half of the global population lives within 100 

km of a coast [2] and that coastal region tend to be wealthy. 

In response, many coastal governments have begun formulating 

strategies for sustainable development. Ports are a crucial driver of 

economic growth, but they are also energy intensive and a source of 
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pollution. To remedy this problem and to ensure sustainable development, 

the concept of a green port has been formulated. The move toward green 

ports has made much progress in many developed countries, as reflected 

in the “San Pedro Bay Clean Air Action Plan” (jointly implemented by 

the Port of Los Angeles, California, and the Port of Long Beach, New 

York and New Jersey), the “Clean Air Initiatives and Harbor Air 

Management Plan” (jointly implemented by port authorities in New York 

and New Jersey), the “Rijnmond Regional Air Quality Action Program” 

(implemented by the Port of Rotterdam, the Netherlands), and the “Green 

Port Guidelines” (implemented by the Port of Sydney, Australia). 

In the context of these developments, more scholarly attention has 

been paid to the rational utilization of port resources [3–8]. Studies have 

aimed to assist port managers in formulating feasible policies from a 

macroscopic perspective that accounts for scaling effects and the balance 

between economic vibrancy and environmental protection. However, 

these studies have not considered the sources of environmental damage in 

and around ports (e.g., sources of CO2 emissions). In response to this gap 

in the literature, this study focused on the container-handling system, 

which is closely related to daily port operations. Specifically, this study 

combined data envelopment analysis (DEA) and multichoice goal 

programming (MCGP) to evaluate the green performance of four types of 

cranes that are commonly used in ports. The findings aid port managers 
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in making their port greener. 

The remaining parts of the paper are organized as follows: Section 2 

reviews the literature on green ports. Section 3 introduces this study’s 

combination of DEA, based on the super slack-based measure (SBM), 

and the MCGP method that accounts for undesirable outputs. A 

real-world numerical example in Taiwan is presented in Section 4. Finally, 

Section 5 concludes the paper and discusses the managerial implications. 

2. Literature Review 

2.1 Green Ports 

In general, green port construction involves aspects such as improving 

water quality, supervising air quality, ensuring noise control, managing 

waste, managing hazardous cargo, conducting environmental education 

and training, and maintaining biodiversity in the port area. Scholars have 

researched these aspects.  

In analyzing the water circulation patterns in the port of Ensenada 

(one of Mexico’s most important ports), Espino et al. [9] suggested the 

use of a wave energy pumping system to gradually dilute the 

concentration of pollutants in the port area. Otene and Nnadi [10] focused 

on water quality indices and water quality conditions in the Port of 

Harcourt (Nigeria). Their study collected water samples from four key 

locations in the port and analyzed the water quality parameters using 

standard methods. Their findings indicated the poor state of 
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environmental monitoring, thus aiding the port’s managers. Lee et al. [11] 

analyzed a comprehensive 2010–2011 data set on marine environmental 

trends, including those of water quality, along the coast of Busan New 

Port. Their findings aided port managers in monitoring the impact of 

projects on the offshore marine environment around the port. Bolognese 

et al. [12] noted that in contrast to the many studies that have investigated 

the management of noise from transportation, few studies have 

investigated the management of noise from port operations. Those 

authors investigated the North Tyrrhenian Sea Port by collecting data 

from monitoring systems, noise measurements, and citizen complaints. 

Their findings indicated a neglect of noise levels by port managers. 

Reviewing the regulations and literature on environmental issues in port 

management systems, Vaio et al. [13] conducted semistructured 

interviews with users of an Italian port to explore how port management 

control systems assist port authorities in the decision-making process. To 

help port managers improve management efficiency during ship mooring, 

their study also assessed efficiency in port waste management. 

Focusing on official regulations, Prati et al. [14] investigated the air 

quality in the Port of Naples through two experiments. Measurements 

were made at 15 points within the port. In addition, a laboratory was 

established within the port area to take continuous measurements of 

pollutant concentrations, ambient parameters, particulate matter (PM) 
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levels, and wind direction and intensity. Their findings indicated that ship 

emissions contributed the most to SO2 concentrations compared with the 

concentrations of other pollutants. Kontos et al. [15] focused on the 

impact of gas emissions from cruise ships and passenger vessels on air 

quality and human health risks in the area around the Port of Thessaloniki. 

They estimated the surface concentration of pollutants caused by 

passenger ship traffic through the CALPUFF dispersion models for 2013, 

and their study also forecasted trends for future environmental conditions 

within the port area. Casazza et al. [16] used 3D modeling to achieve the 

effective regulation of air quality within a port area. Their study not only 

enabled air pollution monitoring in ports but also provided a new 

methodology in support of local environmental management systems. 

Progiou et al. [17] demonstrated that navigation emissions from ships are 

an important component of the total emissions, whether of a port, port 

city, or country. Their study used atmospheric models to simulate the 

dispersion of air pollutants, and their findings indicated a significant 

increase in activity in the Port of Piraeus over the last decade, especially 

from merchant ships. 

As evident in the preceding literature review, studies have typically 

monitored the environment in and around port areas through monitoring 

stations, thus gaining a macro-level understanding [18–21]. Few studies 

have monitored greenhouse gas emissions at their source. The cranes in a 
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port are one such source; they emit greenhouse gases when continually 

loading and unloading cargo. Therefore, the construction of an effective 

evaluation approach for selecting environmentally friendly cranes is a 

research problem of practical importance, and it is this problem (and gap 

in the literature) that this study aimed to address. 

2.2 DEA Applied in Green Ports 

Among the many existing methods for evaluating performance, DEA 

is well known by many managers or researchers because of its unique 

advantages in processing multiple inputs and outputs. The conventional 

DEA model was first proposed by Charnes et al. [22] in 1978. It was 

based on linear programming, which is a quantitative method of 

evaluating the relative effectiveness of comparable units of the same type. 

As DEA became methodologically more sophisticated with time, it has 

developed into a new field that integrates operations research, 

management science, and mathematical economics. Subsequently, Banker 

et al. [23] extended the DEA model to cover variable returns to scale 

(VRS). Since then, DEA models have been extended to other practical 

domains in the form of super-efficiency models [24–26], cross-efficiency 

models [27, 28], SBM models [29, 30], super-SBM models [31, 32], and 

network DEA models [33–35].  

Although DEA methods have often been used to evaluate 

performance with respect to CO2 emissions [36–39], few have applied 
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DEA to green ports specifically. Using an inseparable input–output 

SBM-DEA model, Na et al. [30] analyzed how environmentally friendly 

eight major container ports in China were by using 2005–2014 

environmental monitoring data. Their results indicated that the eight ports 

significantly differed in their CO2 emission levels and that their pure 

technical environmental efficiency was low. Li et al. [40] noted that the 

rapid development of China’s port industry has led to serious problems 

with CO2 emissions. Specifically, those authors analyzed 2013–2018 data 

on 16 Chinese port companies; the ports were segmented by size and 

complexity criteria in the analysis. Using an improved nonradial 

directional distance function, the authors determined the performance of 

these ports with respect to CO2 emissions. Wang et al. [41] constructed 

three DEA models to evaluate the environmental efficiency gained by 

cooperation between ports under the conditions of environmental control, 

non-environmental control, and PM emissions. They collected and 

analyzed data from 11 major Chinese ports and found that ports in the 

eastern region of China performed the best with respect to environmental 

friendliness. 

In general, few studies have focused on evaluating the environmental 

performance of green ports probably because port emissions data 

(pertaining to, for example, CO2 or sulfide) are difficult to collect; the 

present study aimed to fill this gap in the literature. 
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3. Methodology 

3.1 SBM-DEA Model 

Suppose that n decision-making units (DMUs) have m inputs and s 

outputs to be evaluated. Let ),...,( mixij = , and ),...,( sryrj = denote the ith 

input and rth output, respectively, of the jth DMU ),...,( nj = . The 

production possible set (PPS) given by the DMUs is as follows: 
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Where iv and ru  are nonnegative intensity vectors, indicating that the 

preceding definition corresponds to a situation of constant returns to scale 

(CRS). The original DEA-CCR model proposed by Charnes et al. [23] is 

a nonlinear programming model, which traditionally analyzes all positive 

data. Through the Charnes–Cooper transformation [42], the efficiency of 

DMU-k can be formulated as follows: 
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Model (1) is the basic DEA-CCR model in multiplier form. The dual 

model presented in the envelopment form is as follows: 
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Subsequently, Banker et al. [24] extended model (2) to cover VRS. 

However, the two radial approaches may be limited by some of the 

inefficient components not being reflected in the measurement results 

(such as the mix inefficiencies). To address this problem, Tone [29] 

proposed the following SBM model: 
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where +−

ri ss , denote the inefficient components. In model (3), Tone [29] 

defined the evaluated DMU to be efficient if and only if the optimal 

solution of == +− **

ri ss  for all i and r  (or equivalently, the efficiency 

=* ). To further enhance the discrimination of all efficient units, Tone 
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[43] constructed a new super-SBM model to identify the super-efficiency 

as follows: 
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In model (4), the new PPS can be defined as


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the inefficient DMUs, the efficiency evaluated by model (4) is necessarily 

1. That is, model (4) is only effective for distinguishing between efficient 

DMUs. Thus, applications typically use model (3) and model (4) in 

combination. 

Fang et al. [44] noted that model (4) does not incorporate slacks 

explicitly, and they suggested adding two slack variables ( +−

ri ww , ) to 

account for the incorporated slacks of the first two constraints of model 

(4). Furthermore, because our variable of CO2 emissions was considered 

an undesirable output in this study, referencing Fang et al. [44], we 

supposed that n DMUs obtain m inputs, s outputs, and g undesirable 
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outputs. Let three vectors ),...,(u and, h ghRRyRx gs

r

m

i =  denote m, 

s, and g, respectively. Correspondingly, we can obtain the matrices 

UYX  and , as follows:
nm

m RxxX 

 = ][ ,..., ,
ns

s RyyY 

 = ][ ,..., , and 

ng

g RuuU 

 = ][ ,..., .Note that because all the research data are 

nonnegative, we obtain  UYX  and , . The new PPS can be 

defined as follows: 

       = ,,,),,( UuYyXxuyxPPS hrihri ,      (5) 

where the intensity vector 
nR , and the preceding definition of PPS 

corresponds to the CRS in envelopment form. 

In fact, the original SBM-DEA model involved calculating the ratio 

of the average input reduction to the average output growth when 

evaluating the efficiency. In other words, the purpose of the objective 

function of the SBM-DEA model is to determine the most appropriate 

extent of improvement between inputs and outputs. Thus, the SBM-DEA 

model can be referred to as a non-radial model or non-oriented model. 

One advantage of this model is that it allows the analyst to evaluate the 

efficiency by analyzing the maximum adjustable quantity of each vector 

instead of only analyzing the improvement of one dimension (inputs or 

outputs) alone. In this study, we aimed to minimize both the inputs and 

undesired outputs. Therefore, we propose the following model to evaluate 

the super-efficiency: 
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where −+−

hri wandww  ,, denote the incorporate slacks (or super-efficient 

components) of inputs, good outputs, and undesirable outputs, 

respectively. In model (6), the constraints ),...,( sryw rkr =+
 and 

),...,( ghuw hkh =−
 ensure that the computed super-efficiency value is 

always nonnegative.   

Similar to model (4), model (6) is such that when DMU-k is located 

outside the new PPS (5), the efficiency value of DMU-k is greater than 1; 

this DMU is then evaluated as an efficient unit. In other words, model (6) 

can determine the minimum distance ( −+−

hri wandww  ,, ) between the 

efficient frontier and the evaluated DMU. However, for any evaluated 

DMU-k that falls within the region of the new PPS (5), the minimum 

distance ( −+−

hri wandww  ,, ) is necessarily zero; that is, model (6) cannot 

determine the gap between the evaluated DMU and its target. Thus, in 
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this study, we propose the following model to calculate the efficiency of 

inefficient DMUs: 
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where ***  ,, −+−

hri wandww  are the optimal solutions that are calculated using 

model (6), and the optimal solution of the new variables ***  ,, +−+

hri sandss

denote the inefficient components of the evaluated DMU. Therefore, we 

formulate efficiency as follows: 
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In this study, to determine the optimal loading tool that has 

satisfactory green performance, we further define a new green energy 
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index (GIj), which is obtained by first calculating the super-efficiency 

value DMU-j ),...,( nj =  before calculating the maximum value

 *

max max j

n

j
E =

=
. Finally, the green energy index GIj can be calculated as 

follows: 
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3.2 MCGP Model for Evaluating Crane Equipment 

   The MCGP approach encompasses the many modified GP methods in 

the literature. Chang (2008) developed a multichoice aspiration level 

model for solving multiobjectives decision-making problems [45]. A 

typical MCGP problem has the following structure. 

In a real-world decision-making problem for choosing crane equipment, 

the goals are often related. This problem is represented in the following 

MCGP equations:  

Minimize      +++
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          ,0,,, −+−+
eedd iiii         i = 1, 2,…, n.               (14) 

As illustrated in Equations (11), (12), and (13), selection restrictions are 

absent for any single goal, but some goals are dependent on another. For 

example, we can add the auxiliary constraint bbb iii 21 ++ +  to the MCGP 
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model, where ib , 1ib +  and 2ib +  are binary variables. Thus, 1ib +  or 2ib +  

must equal to 1 if bi = 1. This means that if goal 1 has been achieved, 

then either goal 2 or goal 3 has been achieved. 

4. Empirical Research 

4.1 SBM-DEA Model Variables 

In general, the selection of input and output variables is critical in 

the application of DEA. This is because the evaluation results become 

highly variable when the set of research variables changes. Thus, through 

considerations of the characteristics of port operations and through 

consultations with experts, we selected five variables: three inputs (X1, 

X2, and X3), one good output (Y1), and one undesirable output (U1), 

which are described as follows: 

⚫ X1: operational duration (hours), defined as how long each crane 

spends loading and unloading in a given year.  

⚫ X2: power consumption (kwh), defined as how much power each 

crane consumes. This constitutes a type of investment resource.  

⚫ X3: total energy cost (TWD), defined as the cost incurred by the 

port operator to operate this crane in a given year. 

⚫ Y1: working capacity (number of moves), defined as how many 

containers the crane can load and unload in 1 year. A higher Y1 

value indicates a more productive crane. 

⚫ U1: CO2 emission volume (kg). This study learned from experts 
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that the total CO2 emissions of each port crane in a given year 

can be calculated using the CO2 emission coefficients provided 

by China National Petroleum Corporation and Taiwan Electric 

Power Corporation. 

4.2 Evaluation Results 

This study aimed to evaluate the green performance of various 

cranes used to load and unload cargo in port operations. The four most 

common types of cranes used in international commercial ports in general 

and by a prominent container-handling company in Taiwan in particular 

are as follows: gantry cranes (GC), rail-mounted gantry (RMG) cranes, 

rubber-tired gantry (RTG) cranes, and empty container handlers (ECHs). 

This study collected and analyzed 2018–2020 data on these cranes 

(Tables 1–3). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 May 2021                   



18 

 

Table 1. Collected data and evaluation results for 2018 

DMU 

Input  Output 
 

Evaluation results 

Working 

time  

(hours) 

Energy 

consumption 

(kwh) 

Total  

energy cost 

(TWD) 

 

Working  

capacity 

(moves) 

CO2 emission 

volume 

(kg) 

 

Efficiency GIj
* Rank 

GC 4,487  534,344  1,528,224   134,595  278,928  
 

1.07794 0.99983 2 

RMG 3,556  174,728  499,706   74,670  91,205  
 

0.92779 0.86056 4 

RTG 4,983  235,677  674,063   109,617  123,029  
 

1.07813 1.00000 1 

ECH 4,464  418,122  1,241,924   102,671  112,548  
 

1.01733 0.94361 3 
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Table 2. Collected data and evaluation results for 2019 

DMU 

Input  Output 
 

Evaluation results 

Working 

time  

(hours) 

Energy 

consumption 

(kwh) 

Total  

energy cost 

(TWD) 

 

Working  

capacity 

(moves) 

CO2 emission 

volume 

(kg) 

 

Efficiency GIj
* Rank 

GC 3,323  445,287  1,280,598   106,811  223,893  
 

1.09938 0.95843 2 

RMG 3,726  168,256  552,876   78,236  96,662  
 

0.88134 0.76834 4 

RTG 3,397  117,838  485,277   74,737  84,842  
 

1.14707 1.00000 1 

ECH 3,478  312,197  629,643   79,997  87,692  
 

1.02027 0.88946 3 
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Table 3. Collected data and evaluation results for 2020 

DMU 

Input  Output 
 

Evaluation results 

Working 

time  

(hours) 

Energy 

consumption 

(kwh) 

Total  

energy cost 

(TWD) 

 

Working  

capacity 

(moves) 

CO2 emission 

volume 

(kg) 

 

Efficiency GIj
* Rank 

GC 3,712  442,106  1,388,211   63,635  123,968  
 

1.01786 0.94071 2 

RMG 3,235  158,952  499,118   49,402  54,047  
 

1.01518 0.93824 3 

RTG 3,313  149,582  469,690   53,008  61,514  
 

1.08201 1.00000 1 

ECH 3,047  259,434  812,980   48,752  60,026  
 

0.75103 0.69410 4 
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The Taiwanese company investigated in this study was large and operated many cranes 

(including 9 RMG cranes). The data for all cranes of each type also differed little. Thus, the 

data used in this study were the average values for each crane type. 

In Tables 1–3, the basic information on each crane is presented from the second to sixth 

columns from the left, and the performance values as computed using models (6) and (7) 

jointly are presented in the seventh column from the left. The penultimate and final columns 

present the value of the green energy index (GIj) and the ranking for all four crane types, 

respectively.  

The results indicated that the green performance ranking among the crane differed little 

from 2018 to 2019 and that the efficiency value of three crane types (RTG, GC, and ECH) 

exceeded 1. Thus, these three crane types operated efficiently throughout the years, with 

RTG having the best green performance and being the most efficient. In 2020 (Table 2), in 

contrast to previous years, RMG and ECH swapped rankings and the green performance of 

ECH was inefficient; RTG still had the best (and thus most stable) green performance and is 

thus optimal for use in global commercial ports. 

4.3 Tradeoff Analysis 

The aforementioned analysis informs port managers only of the green performance of 

each crane type; it does not provide a quantitative analysis of the advantages and 

disadvantages of each crane type. Thus, this study determined the most suitable tradeoff 

among X1, X2, X3, Y1, and U1 for the four crane types. The results are presented in Table 4. 
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 Table 4. Suitable adjustment for each variable 

DMU 

X1:Working 

Time  

(hours) 

  
X2:Energy 

Consumption 

(kwh) 

 

 
X3:Total  

Energy Cost 

(TWD) 

  

Y1:Working  

Capacity 

(moves) 

  

U1:CO2 

Emission 

Volume 

(kg) 

 

Benchmark 
Change 

Rate* 

 
Benchmark 

Change 

Rate* 

 
Benchmark 

Change 

Rate* 

 
Benchmark 

Change 

Rate* 

 
Benchmark 

Change 

Rate* 

GC 

2018 5,885 31.18%  85,583 -83.98%  1,528,224 0.00%  134,595 0.00%  147,983 -46.95% 

2019 3,977 7.14%  179,571 -59.38%  563,853 -59.38%  63,635 0.00%  73,847 -40.43% 

2020 4,644 39.75%  416,843 -6.39%  840,692 -34.35%  106,811 0.00%  117,085 -47.70% 

Ave 4,835 26.02%  227,332 -49.92%  977,590 -31.24%  101,681 0.00%  112,972 -45.03% 

                

RMG 

2018 3,556 0.00%  168,173 -3.75%  480,994 -3.74%  78,220 -4.75%  87,790 -3.74% 

2019 3,088 -4.55%  139,407 -12.30%  437,739 -12.30%  49,402 0.00%  57,330 6.07% 

2020 3,726 0.00%  129,227 -23.20%  532,175 -3.74%  81,959 -4.76%  93,042 -3.74% 

Ave 3,456 -1.52%  145,602 -13.08%  483,636 -6.60%  69,861 -3.17%  79,387 -0.47% 

                

RTG 

2018 5,175 3.85%  235,677 0.00%  792,201 17.53%  109,617 0.00%  132,532 7.72% 

2019 3,471 4.76%  170,554 14.02%  535,548 14.02%  53,008 0.00%  57,992 -5.73% 

2020 3,397 0.00%  153,429 30.20%  504,154 3.89%  71,341 4.54%  88,143 3.89% 

Ave 4,014 2.87%  186,553 14.74%  610,634 11.81%  77,989 1.51%  92,889 1.96% 

                

ECH 

2018 4,667 4.55%  220,741 -47.21%  631,346 -49.16%  102,671 0.00%  115,232 2.38% 

2019 3,047 0.00%  137,571 -46.97%  431,974 -46.87%  48,752 0.00%  56,575 -5.75% 

2020 3,636 4.55%  126,132 -59.60%  519,432 -17.50%  79,997 0.00%  90,814 3.56% 

Ave 3,783 3.03%  161,482 -51.26%  527,584 -37.84%  77,140 0.00%  87,540 0.07% 
                

Total AVE 4,022 7.60%  180,242 -24.88%  649,861 -15.97%  81,667 -0.41%  93,197 -10.87% 
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* = positive values denote the advantage of each input and undesirable output, and negative values denote the disadvantage  
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Table 4 presents the quantitative results for the tradeoff among the 

variables for each crane type. The results indicated the target that should 

be learned for each variable in a given year and the extent of adjustment 

(expressed in terms of an adjustment ratio) for each variable in the 

optimal tradeoff. For the input and undesired outputs, the adjustment ratio 

was calculated by subtracting the original resource value from the target 

value and then dividing this difference by the original values. A positive 

adjustment ratio represents the performance of the learning benchmark in 

that direction being not yet as good as that of the evaluated unit. In other 

words, a positive adjustment ratio can be interpreted as representing the 

advantage for a given crane type. 

Conversely, if the value of the adjustment ratio for an item is negative, it 

represents a disadvantage for a given crane type. For good-output 

variables, this study used reverse processing, in which the original data 

value was subtracted from the target value and this difference was divided 

by the target value. This was done to allow positive numbers to also 

represent advantages. 

Table 4 presents the adjustment ratios for all crane types. RTG was 

the best crane type with respect to all variables, especially in energy 

consumption and total energy cost, with average three-year advantages of 

14.74% and 11.81%, respectively. GC was the second-best crane type, 

and it was superior primarily in operational duration. Thus, GC is 
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especially advantageous when used to load and unload the same type of 

containers. Finally, RMG and ECH were disadvantaged by their high 

energy consumption and high total energy cost; among the two, ECH 

emitted less CO2 and had a better operational duration. These results are 

visualized in Figs. 1–4.  
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Fig 1. Adjustment ratios for GC cranes Fig 2. Adjustment ratios for RMG cranes 
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Fig 3. Adjustment ratios for RTG cranes Fig 4. Adjustment rate for ECHs 
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In the histograms in Figs. 1–4, which each present the adjustment ratios 

for a given crane type for all variables, the solid line segment indicates 

the average value of the adjustment ratio for each year. As mentioned, 

positive and negative values indicate advantages and disadvantages, 

respectively. The characteristic patterns presented in these four figures 

remain largely consistent with those highlighted by the average 

evaluation results. 

4.4 Using MCGP to Solve the Problem of Choosing Between Crane 

Equipment 

To solve the problem of choosing between types of cranes, the analyst 

must define the MCGP model according to the following goals. 

According to this case, suppose that the decision maker has the following 

set of priority goals derived from the DMU results for RTG cranes in 

Table 4: 

1. The first goal is Y1: working capacity is the RTG benchmark; the DMU 

of RTG was (71341, 77989) in the results.    

2. The second goal is U1: emission volume is the RTG benchmark; the 

DMU of RTG was (88143, 92889) in the results.  

3. The third goal is X1: operational duration is the DMU of RTG’s input; 

the DMU of RTG was (3397, 4014) in the results. 

4. The fourth goal is X2: energy consumption is the DMU of RTG’s input; 
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the DMU of RTG was (153,429, 186,553) in the results. 

5. The fifth goal is X3: total energy cost is the DMU of RTG’s input; the 

DMU of RTG was (504,154, 610,634) in the results. 

We then solve the following MCGP model: 

 Min  eeeeeeeeeedddddddd
−+−+−+−+−+−−−+−+−+ +++++++++++++++++ 554433221154332211  

y1 − e
+
1  + e

−
1  = 71341; y1≥71341; y1≤77,989 

123,968   s1 + 54,047   s2 + 61514   s3 + 60026   s4 + 

d
−
1  − d

+
1  = y2   b2 

y2 − e
+
2  + e

−
2  = 88,143; y2>=88,143; y2<=92,889 

3,712   s1 + 3235   s2 + 3313   s3 + 3,047   s4<=y3   b3 

y3 − e
+
3  + e

−
3  = 3397; y3≥3397; y3≤4,014; 

442,106   s1 + 158,952   s2 + 149,582   s3 + 259,434   s4 

= y4   b4 

y4 − e
+
4  + e

−
4  = 153,429; y4≥153,429; y4≤186,553; 

1,388,211   s1 + 499,118   s2 + 469,690   s3 + 12,980   s4 

= y5   b5; 

y5 − e
+
5  + e

−
5  = 504,154; y5≥504,154; y5≤610,634; 

        s1 + s2 + s3 + s4 = 1; 

        b1 = b2 + b3 + b4; 
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        b2 + b3 + b4 = 1; 

d
+
1 ≥ 0; d

−
1 ≥ 0; d

+
2 ≥ 0; d

−
2 ≥ 0; d

+
3 ≥ 0; d

−
3 ≥ 0; d

+
4 ≥ 0; d

−
4 ≥ 0; d

+
5 ≥  0; d

−
5 ≥  0; 

e
+
1 ≥ 0; e

−
1 ≥ 0; e

+
2 ≥ 0; e

−
2 ≥ 0. e

+
3 ≥ 0; e

−
3 ≥ 0; e

+
4 ≥ 0; e

−
4 ≥ 0. e

+
5 ≥ 0; e

−
5 ≥ 0. 

Using Lingo software (2002), we obtained the following solution: s1 = 0, 

s2 = 0, s3 = 1, and s4 = 0; y1 = 71,341, y2 = 88,143, y3 = 4,014, y4 = 

186,553, and y5 = 504,154. This means that RTG is a suitable crane.     

5. Conclusions and Implications 

5.1 Conclusion  

Green ports are becoming increasingly prominent with the increased 

need for environmental protection globally. However, few studies have 

monitored exhaust gas or PM emissions (such as CO2 or sulfide) in and 

around ports due to the difficulty of doing so, and the data obtained are 

incomplete. 

To fill this gap in the literature, this study measured CO2 emissions 

at their source, specifically container-handling cranes (which are 

indispensable to port operations). Five key variables, including CO2 

emissions, were identified based on consultations with experts. 

Subsequently, we (1) applied a method that combined a super-SBM-DEA 

model with the MCGP method to account for undesirable outputs and (2) 

defined a novel green energy index to evaluate green performance. Our 

findings determined (1) the crane type with the best green performance 
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and (2) how advantages and disadvantages are balanced in the use of each 

crane type. These findings can help port managers select the best 

machinery that makes their port greener, smarter, and more profitable. 

5.2 Managerial Implications 

We present the following managerial prescriptions based on our 

findings. First, we recommend RTG cranes because they are the most 

environmentally friendly when used in international commercial ports 

and they strike the best tradeoff between environmental protection and 

profitability. Second, RMG cranes and ECH consume much energy, 

which constitutes a point of concern that port managers must pay 

attention to. Third, to mitigate environmental harm and commercial loss, 

port managers should replace outdated equipment or, if they are unable to 

do so, supervise outdated equipment more intensely. Fourth, port 

managers can invest more in researching and developing smarter port 

equipment, which incorporates, for example, big data or Internet of 

Things technology. Smart port equipment minimizes operational waste to 

mitigate their environmental impact and enhance profitability. 

5.3 Limitations 

To mitigate the disadvantages of the DEA method, we used the 

MCGP method to verify the DEA results. To better cope with uncertainty, 

decision makers can use the novel fuzzy MCGP method in conjunction 
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with the multicriteria decision-making approach. 

5.4 Future Directions 

Future studies can use other new DEA methods to solve crane 

equipment selection problems. Additionally, other mathematical models, 

such as new MCGP models, can be combined with our study’s model 

which is the light of future direction. 
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