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Abstract

In this paper we provide a highly selected review and synthesis on some of the recent and no-

table contribution to research in portfolio analysis. A unique perspective on this development

in the literature is offered in this paper by judiciously identifying a few sample eigenvalues

adjustment patterns in a portfolio that leads to an improvement in the out-of-sample portfolio

Sharpe ratio when the population covariance matrix admits a high-dimensional factor model.

These patterns unveil a key insight into a portfolio performance improvement and shed an

important light on the effectiveness of a few recently introduced ”robust to estimation errors”

covariance matrix estimation approaches, which were not originally designed with the goal to

improve the out-of-sample portfolio performance.
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1 Introduction

Portfolio theory has remained a fascinating research topic since the publication by Markowitz

(1952). However the problems of estimation error in expected returns and covariance matrix es-

timators have impeded an effective implementation of this theory, as has been pointed out by

numerous authors, such as Merton (1980); Jagannathan and Ma (2003); Kempf and Memmel

(2006); Fan et al. (2008); DeMiguel et al. (2009b) among others. Despite this difficulty, consider-

able progress has been made steadily in improving the quality of estimators for an expected return

vector and a covariance matrix of the portfolio. Instead of simply ignoring the expected return

vector and focussing on the minimum-variance portfolios1, there are a few methods recently in-

troduced in the literature, which seem to work better than those obtained from using a sample

estimator for the expected return vector, e.g., Bayesian approach (Jorion (1986); MacKinlay and

Pástor (2000)), equilibrium expected returns approach (Black and Litterman (1990)), robust port-

folio approach which incorporates estimation errors (Ceria and Stubbs (2006)), etc. In addition,

researchers trying to explain the cross-sectional asset returns also have uncovered a considerable

amount of pricing anomalies (see Harvey et al. (2016) for a review), and such anomalies, in turn,

have enabled investors to find reasonably good proxies for the expected returns on the assets in the

portfolio.

Unlike expected returns covariance matrices are usually estimated from the price history, al-

though the quality of the sample covariance matrix can be seriously compromised as the number

of assets in the portfolio becomes increasingly large relative to the sample size. A few well-known

approaches to address this issue have focussed on an adjustment of the sample covariance matrix,

or more specifically, an adjustment of sample eigenvalues.2 Well-known examples of this include

a “shrinkage towards identity” estimator (Ledoit and Wolf (2004)), a more general linear shrink-

age estimator (Bodnar et al. (2014)), a “nonlinear shrinkage” estimator (Ledoit and Wolf (2017)),

and a spectral cut-off method (Carrasco and Noumon (2011)). All of these covariance estimators

reconstructed from adjusted sample eigenvalues. When they are used to build an optimized port-

1The minimum-variance portfolios implicitly exploit risk-based pricing anomalies (Scherer (2010)) and have been
noted for surprisingly high returns and low realized volatilities in both the US market and the global market (Jagan-
nathan and Ma (2003); Clarke et al. (2006)).

2There are other methods that have been proposed to mitigate the adverse effect of estimation errors in the covariance
matrix estimator, which, for instance, focus on constraining portfolio weights (Jagannathan and Ma (2003); DeMiguel
et al. (2009a); Fan et al. (2012)), imposing factor structure (Fan et al. (2008, 2011, 2013)), shrinking to a target portfolio
(Bodnar et al. (2018)), etc.
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folio, they have been shown empirically to be able to boost the portfolio’s out-of-sample Sharpe

ratio. However it is important to emphasize that not all of these improved estimators were de-

signed originally to achieve this goal. Notably, Ledoit and Wolf (2004) and Bodnar et al. (2014)

minimize the expected Frobenius loss; Carrasco and Noumon (2011) use the expected utility of a

mean-variance investor as the objective function. Since the improvement in these objective func-

tions does not necessarily lead to a higher out-of-sample Sharpe ratio, it is not clear at first glance

why these methods can lead to an enhanced portfolio performance.

To take stock of the relatively recent and notable contribution to research on this issue in the lit-

erature, we investigate how to judiciously adjust sample eigenvalues for the purpose of improving

the out-of-sample portfolio Sharpe ratio when the underlying theoretical model for asset returns

is a high-dimensional factor model. The latter has become increasingly popular in the literature

(Fama and French (1993); Bai and Ng (2002); Fan et al. (2013)). Later it will be seen that how

our findings can be used to provide a novel synthesis and perpsective on some of these existing

methods. Specifically our focus of analysis in this paper centers on mitigating estimation errors

and improving portfolio performance in at least three important aspects.

First, while in the literature most improved covariance matrix or portfolio weight estimators

optimize a particular objective function within a certain class of candidate covariance/weight esti-

mators3, we focus our analyses in this paper on certain adjustment patterns which, when applied

to the sample eigenvalues, could lead to a concrete marginal improvement4 in terms of the out-of-

sample portfolio Sharpe ratio as both the sample size and the portfolio size are sufficiently large.

This pattern, if it is suitably identified, can fruitfully shed an important light on the key factors

for improving a portfolio’s out-of-sample performance. More importantly each realization of the

sample covariance matrix benefits, in terms of the out-of-sample portfolio Sharpe ratio calculated

in the two-step approach, from such an adjustment. It is important to stress that the motivation for

our particular focus on the marginal effects of eigenvalues adjustment in this paper largely stems

from the observation that most improved estimators typically deviate only mildly from the sample

covariance matrix.

Second, our simultaneous selection of the out-of-sample Sharpe ratio as a target and the covari-

3Usually, the problem can be reduced to first deriving the optimal value of the decision variable and then looking for
its bona fide estimator (Ledoit and Wolf (2004)) or convergence limit (Bodnar et al. (2018)). In Ledoit and Wolf (2017),
the authors search among the candidates for the one that optimizes the convergence limit of the objective function.

4The marginal effect refers to the effect of an infinitesimal adjustment (according to some pattern) of the sample
eigenvalues on the out-of-sample portfolio Sharpe ratio. This effect is formally quantified in Section 2.
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ance estimators reconstructed based on adjusted sample eigenvalues as candidates differentiates

this paper from its peers in the literature which adopt other objectives (Ledoit and Wolf (2004);

Carrasco and Noumon (2011); Bodnar et al. (2014)) and those which consider other candidate

estimators (Ledoit and Wolf (2004); Kan and Zhou (2007); Bodnar et al. (2018)). To the best of

our knowledge Ledoit and Wolf (2017) are the only authors who optimize (convergence limit of)

the out-of-sample Sharpe ratio over the same class of estimators that we consider in this paper.

The main difference between our paper and theirs will be elaborated in the next paragraph.

Third, in this paper we assume in our theoretical analysis that the asset return generating

process follows a high-dimensional factor model, where the returns of an increasing number of

assets are governed by a fixed number of common factors. The high-dimensional factor model

assumption implies a spiked structure in the population covariance matrix: as the number of assets

increases to infinity, the first few eigenvalues increase at the same rate and the remaining ones are

bounded. The spiked structure with rapidly-growing spiked eigenvalues renders many of the re-

sults developed within the framework of the Random Matrix Theory (RMT) practically impotent,

in that the spectral convergence results for this type of population covariance matrix have not yet

been fully worked out to this date. This technical hurdle prevents us from deriving the optimal

eigenvalues adjustment under a factor model. The few papers that borrow results from the RMT to

improve portfolios (Ledoit and Wolf (2017), Engle et al. (2017), Bodnar et al. (2018)5) assume the

population covariance matrix to have bounded eigenvalues, which contradicts conventional factor

model assumptions. Expoiting the important results obtained by Shen et al. (2016) on the consis-

tency of Principal Component Analysis (PCA) under a variety of assumptions on the population

covariance matrix and different asymptotics, we are able to find a suitable adjustment pattern that

ensures a positive marginal effect under certain high-dimensional asymptotics.

According to the main theoretical results of this paper, if the population covariance matrix

admits a high-dimensional K-factor model, adjusting one of the first K sample eigenvalues has

a diminishing effect under the high-dimensional asymptotics that the number of assets p and the

sample size n both go to infinity with n = O(p1+c) for any c > 0. In addition either shrinking a

large but non-spiked (excluding the first K) sample eigenvalues or lifting a small one also has a

positive effect on the out-of-sample Sharpe ratio asymptotically. We also analyze a simultaneous

5It is important to point out that although the authors did not explicitly assume the population covariance matrix
to have bounded eigenvalues, in their major technical reference (Rubio and Mestre (2011)), the population covariance
matrix is indeed assumed to have a bounded spectral norm.
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adjustment of multiple eigenvalues. Let {λ̂i}p
i=1 denote decreasingly sorted sample eigenvalues.

Then, for any value of k and any a< 1, simultaneously amplifying the smallest sample eigenvalues

{λ̂i : i ≥ k} to {λ̂i + λλ̂ a
i : i ≥ k} for some small λ > 0 leads to an improvement in the out-

of-sample Sharpe ratio under the high-dimensional asymptotics. In addition, if the underlying

model is a single-factor model and the factor pricing relation is assumed to hold true, i.e., if both

the expected return vector and the covariance matrix are driven by the single-factor model (see

a discussion in MacKinlay and Pástor (2000)), the aforementioned way of adjusting eigenvalues

also always leads to an improvement in the out-of-sample portfolio Sharpe ratio, regardless of the

values of p and n.

Our results shed an important light on the reason for the effectiveness of the shrinkage-

towards-identity method (k = 1, a = 0) and the spectral cut-off method (k ≥ min{k : λ̂k < 1},

a = −∞) in the construction of real-world portfolios in practice. A useful implication of our

results is that the key to improving the out-of-sample portfolio performance is to make the eigen-

values overall less dispersed (this will be formally defined later) after the adjustment. Although

Ledoit and Wolf (2004) have made a similar statement, the reasoning underlying their argument

is based on the fact that sample eigenvalues are more dispersed compared with their population

counterparts and, thus, should be corrected to reduce the expected Frobenius loss. By showing

that the shrinkage towards identity type estimator has a concrete marginal effect of improving the

out-of-sample Sharpe ratio under factor model assumptions, we provide this well-known method

with a fresh new insight.

The remaining part of the paper is organized as follows. Section 2 provides an expression

for the marginal effect of sample eigenvalues adjustment on the out-of-sample Sharpe ratio and

discusses what type of an adjustment pattern would ensure a positive effect. Section 3 uses a

simulation experiment to further illustrate the theoretical results established in Section 2. Section 4

provides synthesis on some of the recent research in portfolio analysis by highlighting an important

connection of the main results in this paper with a few existing approaches recently introduced in

the literature. Section 5 concludes the paper.
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2 Main Results

Throughout the paper we use bold capital letters to denote matrices, bold lowercase letters to

denote vectors, and plain lowercase letters to denote scalars. The term “return” on a given asset

denotes the asset’s return in excess of the riskless rate. Let X = (x1,x2, . . . ,xn) denote a p× n

matrix containing n independently and identically distributed observations on a system of p(< n)

asset returns with some mean vector, a positive definite covariance matrix ΣΣΣ, and a finite fourth

moment. We denote the eigen-decomposition of the population covariance matrix by ΣΣΣ = UΛΛΛUT ,

where ΛΛΛ = diag{λ1 ≥ ·· · ≥ λp} and U = (u1,u2, . . . ,up). Let S = 1
n−1 ∑

n
i=1(xi− x̄)(xi− x̄)T ,

where x̄ = 1
n ∑

n
i=1 xi, denote the sample covariance matrix, whose eigen-decomposition is S =

ÛΛ̂ΛΛÛT . Similarly, we denote Λ̂ΛΛ = diag{λ̂1 ≥ ·· · ≥ λ̂p} and Û = (û1, û2, . . . , ûp). Since we focus

on occasions where n is greater than p in the theoretical analysis, we assume that S is invertible

throughout the paper without loss of generality. In addition, ‖a‖ and ‖a‖
∞

denote the Euclidean

norm and the maximum norm of a vector a respectively. Lastly, Ek denotes a conforming diagonal

matrix with 1 being its kth diagonal entry and 0 elsewhere; Ek+ denotes a conforming diagonal

matrix with 0 being its first k− 1 diagonal entries and 1 being its diagonal entries beyond (and

including) the kth entry.

2.1 Problem Setup

Suppose that an investor adopts a two-step approach to construct a single-period maximum Sharpe

ratio (MSR) portfolio of p risky assets. Further suppose that the investor believes that the vector

of expected returns is an exogenously given vector µµµ , and estimates the covariance matrix from

assets’ price history. We consider such a case because it has been widely noticed that estimating

expected returns from price history is a major source of estimation error (Jorion (1985); Jagan-

nathan and Ma (2003); DeMiguel et al. (2009b)) and investors, as a result, resort to alternative

approaches to acquire the expected returns (recall the first paragraph of Section 1). In particular

many researchers have exploited asset pricing anomalies to find better proxies for the expected re-

turns. Harvey et al. (2016) contains a review of hundreds of cross-sectional return patterns. Given

the abundance of choice for µµµ , we leave it to the investor to make her/his own individual choice

and simply take µµµ as exogenously given for the purpose of our analysis in this paper.

When a sample covariance matrix S is adopted as the covariance estimator, the two-step ap-
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proach based MSR portfolio can be solved from the following optimization program:

ŵMSR := argmax
w

wT µµµ√
wT Sw

s.t. wT 1 = 1, (1)

where 1 is a column vector of ones. Note that in the above Sharpe ratio maximization problem, the

objective function represents an ex-ante Sharpe ratio, since µµµ represents the investor’s subjective

belief on expected asset returns over the investment horizon. The solution to the above program,

if it exists, is given by

ŵMSR =
S−1µµµ

1T S−1µµµ
, (2)

and the out-of-sample Sharpe ratio is given by

SR =
ŵT

MSRµµµ√
ŵT

MSRΣΣΣŵMSR

=
µµµT S−1µµµ√

µµµT S−1ΣΣΣS−1µµµ
. (3)

It has become widely accepted in this literature that the out-of-sample Sharpe ratio of the two-

step approach based MSR portfolio could deviate substantially from its actual maximum value,

especially when p is large relative to n, due to significant estimation errors in the sample covariance

matrix. Based on this reason, we exploit the possibility of improving the out-of-sample Sharpe

ratio by substituting S with a re-constructed covariance matrix estimator S̃ and assign a portfolio

weight as w̃MSR = S̃−1µµµ

1T S̃−1µµµ
.

In this paper we focus on adjusting the eigenvalues of the sample covariance matrix, which

means that we consider a covariance matrix estimator that takes the form S̃ = ÛΛ̃ΛΛÛT , with Λ̃ΛΛ

being a diagonal matrix. This is known as a class of “rotation-equivariant” estimators which was

originally introduced by Stein (1986) and which has been considered as candidate covariance

estimators by Ledoit and Wolf (2017). We set out our analyses in this paper by slightly pulling

a number of sample eigenvalues away from their original levels and explore the marginal effect

of such an adjustment on the out-of-sample Sharpe ratio. For this purpose we use a diagonal

matrix V = diag{v1,v2, . . . ,vp} and a scalar λ to parameterize the sample eigenvalues adjustment
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as follows:

SV,λ := Û



λ̂1− v1λ

. . .
λ̂k− vkλ

. . .
λ̂p− vpλ


ÛT .

The parameterization above is quite general in that when V takes different forms, it could reduce

to a number of ways in which to adjust sample eigenvalues. For instance, when V is a scalar

multiple of an identity matrix, the adjustment is similar to (but not the same as6) the construction

of the “shrinkage towards identity” method proposed by Ledoit and Wolf (2004). The shrinkage

towards identity estimator is usually referred to as a “linear” shrinkage in the sense that if we plot

the eigenvalues after adjustment versus their original counterparts, all points will lie on a straight

line. This notion is in contrast to the recent development of a “nonlinear” shrinkage estimator

(Ledoit and Wolf (2017)) in which each eigenvalue is adjusted differently. It is important also to

point out that our parameterization allows for a nonlinear shrinkage since it does not restrict the

vk’s to be the same. In addition, this setup also accommodates the cases in which only a subset of

the sample eigenvalues are adjusted.

The MSR portfolio constructed based on SV,λ has a weight vector given by:

ŵMSR(V,λ ) =
S−1

V,λ µµµ

1T S−1
V,λ µµµ

. (4)

It is worth pointing out that the vkλ ’s in the above expression for SV,λ is not necessarily positive.

This implies a shrinkage on the kth eigenvalue for a positive vkλ and an amplification for a negative

vkλ . With the weight vector ŵMSR(V,λ ) given in equation (4), the out-of-sample Sharpe ratio

could also be expressed as a function of V and λ :

SR(V,λ ) :=
ŵT

MSR(V,λ )µµµ√
ŵT

MSR(V,λ )ΣΣΣŵMSR(V,λ )
=

µµµT S−1
V,λ µµµ√

µµµT S−1
V,λ ΣΣΣS−1

V,λ µµµ

. (5)

Therefore our goal of studying the marginal effect of adjusting sample eigenvalues on the out-of-

sample Sharpe ratio can be reduced to one of studying the property of the derivative SR′V(0) :=

∂SR(V,λ )
∂λ

∣∣
λ=0.

6In a shrinkage towards identity estimator, the trace of the shrunk covariance matrix remains the same as the sample
covariance matrix, but it is obviously not the case if V is a scalar multiple of an identity matrix.
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2.2 Marginal Effect of Eigenvalues Adjustment

As the first step, we derive a simplified expression for SR′V(0) as given in the following theorem.

Theorem 2.1. The marginal effect of an eigenvalues adjustment specified by a diagonal matrix V

on the out-of-sample Sharpe ratio admits the following expression:

SR′V(0) =−
µµµT S−1µµµ

(µµµT S−1ΣΣΣS−1µµµ)
3
2

(
µµµ

T S−1
ΣΣΣÛΛ̂ΛΛ

−2
VÛT

µµµ−µµµ
T ÛΛ̂ΛΛ

−2
VÛT

µµµ
µµµT S−1ΣΣΣS−1µµµ

µµµT S−1µµµ

)
. (6)

Proof. See the Appendix.

Obviously SR′V(0) is a random variable in that it depends on the sample covariance matrix.

We cannot observe the realization of the random variable purely based on a sample, because the

random variable also relies on the unobservable population covariance matrix ΣΣΣ. Ideally it will

be intriguing to find a set of matrices, denoted by M , such that for any V ∈M , the inequality

SR′V(0) > 0 holds for any value of p and n, or less preferably, holds asymptotically in certain

limiting scenarios. If such a set can be identified we can improve an MSR portfolio’s out-of-

sample Sharpe ratio by replacing S with S−λV for a small positive number λ and some V ∈M .

Given the complexity of the expression for SR′V(0) it is in general quite challenging to deter-

mine its sign without imposing any explicit structural assumption on ΣΣΣ. Therefore, in the next two

sections we look for the set of matrices M under two distinctive sets of assumptions on ΣΣΣ.

2.3 High-Dimensional Factor Model

In this section we motivate our theoretical analyses with the assumption that the asset returns

are generated by a high-dimensional K-factor model, which is a well-known and extensively used

model for cross-sectional financial returns (Fama and French (1992); Bai and Ng (2002); Fan et al.

(2008)). To be more specific we assume that the systematic portion of the asset prices movement

is driven by K common factors and the idiosyncratic returns are mutually uncorrelated7, so that the

population covariance matrix has a “low rank + diagonal” structure. However we do not assume

that the factor pricing relation to hold8, nor do we assume the factor returns and, thus, the asset

7Uncorrelatedness of residual returns is an assumption of the strict factor model. Recently researchers have been
considering a more practical approximate factor model (Fan et al. (2011)) which allows for a sparse residual covariance
matrix. But in this paper we focus on the strict factor model for viability reasons.

8If the factor pricing relation holds, µµµ should be estimated according to the factor model. We refer readers to
MacKinlay and Pástor (2000) for a discussion.
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returns to have a mean vector independent of time. Rather we still view µµµ as exogenously given.

Our goal is to find a collection of V matrices which make SR′V(0) asymptotically positive as both

p and n go to infinity.

It is worth mentioning that we are not the first to consider manipulation of sample eigen-

values for the purpose of improving the out-of-sample Sharpe ratio under the high-dimensional

asymptotics. For instance, Ledoit and Wolf (2017), after imposing a set of technical assumptions,

derived a convergence limit for the out-of-sample Sharpe ratio as both the number of assets p and

the sample size n go to infinity at the same rate. In the next step they look for an optimal shrinkage

on each sample eigenvalue to maximize the deterministic convergence limit of the out-of-sample

Sharpe ratio. However one of the technical assumptions made in Ledoit and Wolf (2017) (As-

sumption 2) indicates that as p increases, the eigenvalues of the population covariance matrix are

contained in a compact set, or to put it simply, the largest population eigenvalue does not increase

at the rate O(p). This assumption indicates that the authors work under a framework seemingly

at odds with the standard high-dimensional K-factor model framework. In the latter the largest K

population eigenvalues increase at the rate O(p). This discrepancy in assumptions, as well as the

popularity of the factor model structure, makes it necessary to examine the limiting behavior of

the marginal effect random variable under the high-dimensional asymptotics as well as the factor

model assumptions.

Under a K-factor model the cross-sectional returns of the p assets are assumed to be driven by

K common factors:

yt = Bft + εεε t , t = 1,2, . . . ,n, (7)

where yt is a p× 1 vector of asset returns at time t, B is a p×K deterministic matrix of factor

loadings, ft is a K×1 vector of factor returns at time t, and εεε t is a p×1 noise vector independent of

ft with a zero mean, a covariance matrix ΣΣΣε , and a finite fourth moment. Our subsequent analysis

in this section is based on the following high-dimensional K-factor model assumptions.

Assumption 2.1. The autocovariance functions for both {ft}n
t=1 and {εεε t}n

t=1 are independent of t.

This assumption ensures that ΣΣΣ = Bcov(ft)BT +ΣΣΣε and that ΣΣΣ is constant across time.

Assumption 2.2. The K×K covariance matrix cov(ft) is of full rank.

This assumption implies that none of the common factors can be written into a linear combi-

nation of the remaining ones. As a result the rank of the matrix Bcov(ft)BT is K as long as the
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rank of B is K.

Assumption 2.3. The eigenvalues of p−1BT B are bounded away from zero for all sufficiently large

p.

Fan et al. (2013) provide an insightful explanation for this assumption. The authors point out

that this assumption easily holds when the factors are pervasive in the sense that a non-negligible

fraction of factor loadings should be non-vanishing. This assumption, together with Assumption

2.2, ensures that the K non-zero eigenvalues of Bcov(ft)BT diverge at rate O(p).

Assumption 2.4. The residual covariance matrix ΣΣΣε is a constant multiple of the identity matrix,

i.e. ΣΣΣε = σ2I.

Admittedly this assumption serves purely as a technical purpose without which we would

be unable to verify the Theorem 2.2 below. Notwithstanding its restrictiveness, this assumption

captures a well-known stylized fact in finance that assets’ idiosyncratic variances are of a similar

scale. The same assumption is also used by MacKinlay and Pástor (2000) in a factor model.

Assumption 2.5. As p→∞, ‖µµµ‖=O(p1/2) and
∥∥UT

F µµµ
∥∥

∞
= o(p1/2), where UF = (u1,u2, . . . ,uK).

The first half of the assumption stipulates that a non-vanishing proportion of the assets has a

non-zero expected return. This assumption is relatively straightforward and not unduly restrictive.

The second half of the assumption restrains µµµ from having an excessive loading on the first K

eigenvectors. Typically there is no a priori reason to believe that µµµ has an excessive loading on any

specific eigenvector, since µµµ can be obtained from multiple resources. An example of violation

of this assumption is when µµµ is a linear combination of the first K eigenvectors, in which case∥∥UT
F µµµ
∥∥

∞
has rate O(p1/2). Guo et al. (2019) point out that in such a scenario, even directly using

the sample covariance matrix still leads to a consistent portfolio weight estimator. In this paper

we focus on the more common cases where manipulation of sample eigenvalues potentially leads

to some improvement. So we exclude such extreme scenarios from consideration by imposing

Assumption 2.5.

Theorem 2.2. Under Assumptions 2.1 - 2.5 and as p,n go to infinity with the rate of n being

n = O(p1+c) for some c > 0, the following results hold:

(a) For 1≤ k ≤ K,

SR′Ek
(0) a.s.−−→ 0. (8)
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In addition there also exists an integer K∗ ∈ {K +2, . . . , p−1} such that for each k ∈ {K +

1, . . . , p}, there exists a sequence of almost surely positive random variables denoted by

{X (p)
k }p=2,3,..., such that


SR′Ek

(0)

X (p)
k

a.s.−−→ 1, K +1≤ k < K∗

SR′−Ek
(0)

X (p)
k

a.s.−−→ 1, K∗ < k ≤ p
. (9)

(b) For any a< 1 and any k∈{1, . . . , p} there exists a sequence of almost surely positive random

variables denoted by {Y (p)
k }p=2,3,..., such that

SR′
−Λ̂ΛΛ

a
Ek+

(0)

Y (p)
k

a.s.−−→ 1, (10)

where Λ̂ΛΛ
a

denotes the diagonal matrix diag{λ̂ a
1 , λ̂

a
2 , . . . , λ̂

a
p}.

Proof. See the Appendix.

Remark 2.1. Theorem 2.2 identifies a few forms of the V matrix that can lead to a marginal

improvement in the out-of-sample Sharpe ratio under the high-dimensional asymptotic that both

p,n go to infinity with the rate of n being n = O(p1+c) for some c > 0. It is important to stress that

in the literature, the “high-dimensional asymptotics” term is typically used to refer to the cases

when both p and n go to infinity at the same rate. The asymptotics we base our analysis on in

this paper is only of a slightly lower-dimensional nature, since c can be arbitrarily small. For this

reason, although the ratio p/n eventually converges to 0, we still view these asymptotics, perhaps

with a slight abuse of terminology, as a high-dimensional case.

Remark 2.2. Many results in this paper hold “almost surely”. Unless otherwise stated, “some

random variable is positive almost surely” can be understood as that it takes the value of 0 only

when S = ΣΣΣ, an event that happens with probability 0.

Part (a) of Theorem 2.2 discusses the effect of an incremental adjustment of an individual sam-

ple eigenvalue. The result indicates that when p and n become large enough, the marginal effect

of modifying one of the largest K sample eigenvalues starts to diminish (see eq. (8)). The finding

of the fading marginal effect of adjusting a spiked eigenvalue is perfectly consistent with the intu-

ition, because as Shen et al. (2016) showed correctly, under the high-dimensional K-factor model
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assumptions, the largest K eigenvalues can be consistently estimated by their sample counterparts

in the sense that λ̂i
λi

a.s.−−→ 1, i = 1,2, . . . ,K.

In addition, according to part (a) of Theorem 2.2 (see eq. (9)), both a mild shrinkage on a

large but non-spiked (excluding the first K) sample eigenvalue and a mild amplification on a small

one help to improve the out-of-sample Sharpe ratio. This result is in line with the intuition that

the sample eigenvalues should be pushed back towards their grand mean for the purpose of im-

proving the MSR portfolio, because sample eigenvalues are more dispersed than their population

counterparts (Marčenko and Pastur (1967)). Before stating this theorem formally, we should be

cautious about rushing to form such an intuition. The reason is that even though pushing sample

eigenvalues back to their grand mean can help alleviating the estimation errors measured by the

expected Frobenius loss E(‖S−ΣΣΣ‖F) (Ledoit and Wolf (2004)), the out-of-sample Sharpe ratio

will not be necessarily affected in the same direction. More discussion in this regard will be given

in Section 4.

Part (b) of Theorem 2.2 focuses on a joint manipulation of multiple sample eigenvalues. The

parameter a specifies the relative intensity of the adjustment on different sample eigenvalues. The

result indicates that a joint amplification on a collection of tail sample eigenvalues has the marginal

effect of improving the out-of-sample Sharpe ratio, as long as a < 1. It is worth highlighting

that the eigenvalues to be adjusted must form a complete “tail” - no matter where we start the

adjustment, we should adjust all of the eigenvalues beyond (smaller than) the starting point. The

proposed range for a implies that the eigenvalues should become overall less dispersed after the

adjustment, in the sense that the inequality λ̃i

λ̃ j
≤ λ̂i

λ̂ j
holds for any i < j, where λ̃i is the ith largest

eigenvalue after the adjustment. When k = 1 and a = 1, the adjustment is equivalent to replacing

S with its scalar multiple. Such an adjustment will not lead to any change in the out-of-sample

Sharpe ratio. This is why a must be strictly less than 1 to ensure the positiveness of SR′
−Λ̂ΛΛ

a
Ek+

(0).

When k = 1 and a = 0, the adjustment is consistent with the notion of a “linear” shrinkage, since

each eigenvalue is lifted by the same amount. Other values of a correspond to a “nonlinear”

shrinkage. Instead of using p parameters to parameterize a nonlinear shrinkage, as in Ledoit and

Wolf (2017), we use 2 by requiring that the shrinkage intensity matrix V is a power of the sample

eigenvalue matrix times an “indicator matrix” specifying the starting point of the manipulation.

This parameterization is rich in its implication despite of its parsimonity.

The out-of-sample Sharpe ratio is scale-invariant in the covariance matrix estimator. Although

13

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2021                   doi:10.20944/preprints202105.0031.v1

https://doi.org/10.20944/preprints202105.0031.v1


in a shrinkage towards identity estimator the large eigenvalues are shrunk and the small ones are

lifted, the estimator has an equivalent (in the sense of leading to the same out-of-sample Sharpe

ratio) rotation-equivariant correspondence each of whose eigenvalues is amplified. Therefore our

results provide support to shrinkage estimators with trace at different levels. The connection be-

tween our results and the shrinkage estimators will be discussed in detail in Section 4.

2.4 Single-Factor Model

In this section we assess the marginal effect of adjusting sample eigenvalue(s) under a single-factor

model, which assumes that a single unobservable factor drives the price movement of all assets.

MacKinlay and Pástor (2000) showed by using an “optimal orthogonal portfolio” (MacKinlay

(1995)) argument that if the exact single-factor pricing relation holds and the uncorrelated residual

returns have equal variance σ2, the true expected return (still denoted by µµµ) and the covariance

matrix has the following relationship:

ΣΣΣ = µµµµµµ
T 1

s2
h
+σ

2I, (11)

where sh denotes µh
σh

, the Sharpe ratio of the factor portfolio h.

In the following Theorem 2.3 we will show that if the exact single-factor pricing relation is

satisfied and if the subjective view on expected returns coincides with the true expected returns

vector, we can find a set of V matrices that make SR′V(0) positive even when both p and n are

small. It is important to clarify that Theorem 2.3 could not serve a practical purpose because

of the following paradox: for an arbitrary µµµ supplied by some “alpha model”, if the structural

assumption in eq. (11) is not satisfied, the subsequent results in the theorem do not necessarily

hold; otherwise, we would immediately obtain the population covariance matrix and the issue of

estimation errors will not be an issue any longer. However Theorem 2.3 has a strong theoretical

implication in that at least, it identifies a set of V matrices that work when p and n can be any

number under a reasonable economic model.

Theorem 2.3. If ΣΣΣ can be expressed by the exogenously given µµµ as in eq. (11), then the following

results hold for any value of p, n, sh, and σ2:

(a) There exists an integer K ∈ {2,3, . . . , p− 1} such that with probability 1, SR′Ek
(0) > 0 for

all k < K and SR′−Ek
(0)> 0 for all k > K.
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(b) For any a < 1 and k ∈ {1,2 . . . , p}, SR′
−Λ̂ΛΛ

a
Ek+

(0)> 0 with probability 1.

Remark 2.3. Since the set of V matrices given in Theorems 2.2 and 2.3 is the same, the latter

theorem may seem to be a finite sample analogous to the former, while there is a major difference

between these two sets of results: the structural assumption on ΣΣΣ in eq. (11) implies that µµµ only

has a non-zero loading on the dominant eigenvector9 of ΣΣΣ, but this specific scenario is excluded

from the previous analyses by Assumption 2.5. Therefore Theorem 2.3 can be usefully viewed as

a complement to Theorem 2.2 that impresses us with its insightful finite sample results.

Part (a) of Theorem 2.3 focuses on adjusting an individual sample eigenvalue. Both an in-

cremental shrinkage on a large sample eigenvalue and an incremental amplification on a small

sample eigenvalue lead to an increase in the out-of-sample Sharpe ratio. In addition there also

exists a cutting point between such large eigenvalues and small eigenvalues. This result also helps

to partly justify the use of the shrinkage towards identity method. Part (b) of Theorem 2.3 focuses

on simultaneously adjusting a few eigenvalues. The results indicate that if we apply a mild ampli-

fication on a collection of tail eigenvalues, so that the eigenvalues become overall less dispersed,

this will result in improvement in the out-of-sample Sharpe ratio of the protfolio.

3 Simulation Study

In this section we perform a simulation study to further illustrate the theoretical findings reported

in Section 2.3. In particular we demonstrate, via simulation, the property of the sample-dependent

random variable SR′V(0) for some V matrices, which we have discussed in the previous section.

3.1 Simulation Setup

In each experiment we pre-specify a p× 1 (subjective) expected returns vector µµµ and a p× p

population covariance matrix ΣΣΣ and repeat the following procedure 100 times:

(a) Generate n(p) = [p1.5] random vectors from a multivariate normal distribution with an ex-

pected return vector µµµ and a covariance matrix ΣΣΣ. Calculate the sample covariance matrix

S based on the n simulated vectors.

(b) Calculate SR′Ek
(0) and SR′−Ek+

(0) for k = 1,2, . . . , p based on S, ΣΣΣ, and µµµ .

9The dominant eigenvector refers to the eigenvector that corresponds to the largest eigenvalue.
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Once we have collected the 100 realizations of the 2p marginal effect random variables, we

can calculate the average value of each, denoted by SR′Ek
(0) and SR′−Ek+

(0) respectively, k =

1,2, . . . , p. Then we plot SR′Ek
(0) as a function of k to demonstrate the marginal effect of shrinking

the kth sample eigenvalue. Likewise we also plot SR′−Ek+
(0) as a function of k to illustrate the

marginal effect of simultaneously amplifying the smallest p− k sample eigenvalues.

In this simulation study we consider 8 different combinations of p, ΣΣΣ, and µµµ when specifying

the true parameters. To be more specific we provide two choices for each parameter:

p: The value of p is set in this simulation exercise to either 100 or 500 in consideration of

the required computational time. The idea is that when p = 500, the results that we obtain

should better reflect the asymptotic results stated in Theorem 2.2. Note that we do not treat

the sample size n as another parameter but simply let it be a function of p to be consistent

with the asymptotics we are working with.

ΣΣΣ: The population covariance matrix ΣΣΣ either strictly conforms to Assumptions 2.1 - 2.410

or violates Assumption 2.4 but satisfies the remaining ones. Recall that Assumption 2.4

requires all of the non-spiked population eigenvalues to be equal to each other. This as-

sumption is indispensable for the proof of our theoretical results but is hard to be satisfied

in reality. Thus we resort to the simulation study to explore to what extent the numerical

results will be affected if we allow for distinct small population eigenvalues. However it is

worth pointing out that either choice for ΣΣΣ admits the K-factor model. In this study we fix

the value of K to be 3.

µµµ: The expected return vector µµµ is either an “arbitrary” one in the sense that it has a non-zero

loading on each of the eigenvectors of ΣΣΣ or a “low-rank” one which can be expressed as a

linear combination of the first K eigenvectors of ΣΣΣ. To obtain an “arbitrary” µµµ , we simulate

a p× 1 vector of independent components generated from the distribution N(0.05,0.052).

When a “low-rank” µµµ is desired, we project the simulated µµµ onto the subspace spanned by

the first K eigenvectors of ΣΣΣ and re-scale the projection so that it remains the same length as

the “arbitrary” µµµ . The purpose of such a design is to highlight the finding that the marginal

effect of manipulating one or more sample eigenvalues not only depends on ΣΣΣ but also on

µµµ .
10Note that Assumption 2.5 is not about the population covariance matrix.
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Figure 1: SR′Ek
(0) vs. k: marginal effect of shrinking the kth sample eigenvalue

In each panel, the x-axis measures k and the y-axis measures SR′Ek
(0). In panels (a) and (c), p = 100 and n = 1000;

in panels (b) and (d), p = 500 and n = 11180. In panels (a) and (b), the ΣΣΣ has 3 spiked eigenvalues and the remaining
ones equal to 0.05; in panels (c) and (d), the ΣΣΣ has 3 spiked eigenvalues and the remaining ones are a sorted sample
generated from Uniform(0.025,0.075). In each panel the red dots correspond to the case where µµµ can have loading on
all eigenvectors; the blue dots correspond to the case where µµµ is a linear combination of {u1,u2,u3}.

3.2 Shrinkage on Individual Eigenvalue

In this section we show the simulation results on the marginal effect of shrinking a single sample

eigenvalue. Specifically we illustrate how SR′Ek
(0) varies with k in Figure 1.

According to Figure 1, when Assumptions 2.1 - 2.5 are satisfied (see the red dots in panels

(a) and (b)), the marginal effect of shrinking one of the first K sample eigenvalues is almost 0,

shrinking a large eigenvalue beyond the Kth leads to a marginal improvement on the out-of-sample

Sharpe ratio, and shrinking a small eigenvalue leads to a deterioration of it. The last observation

is equivalent to the statement that amplifying a small eigenvalue has a positive marginal effect on

the Sharpe ratio. Moreover the magnitude (in the sense of absolute value) of the marginal effect of

adjusting one of the smallest eigenvalues is quite large. The population covariance matrix ΣΣΣ used
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in panels (c) and (d) has distinct tail eigenvalues, however, we observe a very similar pattern (in

the red dots) to that observed in the two panels at the top.

The blue dots come from the setup where µµµ is from the 3-dimensional space span{u1,u2,u3}.

As mentioned in Guo et al. (2019), in such a scenario, the sample-based MSR portfolio is a consis-

tent estimator of the true MSR portfolio, and it, thus, becomes less necessary to seek improvement

via adjustment of eigenvalues. What we observe from the blue dots in Figure 1 supports this ar-

gument - the magnitude of the marginal effect of eigenvalues adjustment is negligible compared

with the case where µµµ is an “arbitrary” vector.

Table 1: Proportion of positive SR′Ek
(0) among the 100 replications

k K+1 K+2 K+6 p-5 p-1 p
(a) p = 100, equal tail 1.00 0.97 0.96 0.02 0.02 0.00
(b) p = 500, equal tail 0.98 0.99 1.00 0.03 0.00 0.00

(c) p = 100, distinct tail 0.89 0.90 0.88 0.12 0.15 0.17
(d) p = 500, distinct tail 0.88 0.82 0.84 0.16 0.15 0.15

In this table, we only report results for the cases where µµµ is an “arbitrary” vector and can have loading on all eigenvec-
tors. In (a) and (b), the ΣΣΣ has 3 spiked eigenvalues and the remaining ones equal 0.05; in (c) and (d), the ΣΣΣ has 3 spiked
eigenvalues and the remaining ones are a sorted sample generated from Uniform(0.025,0.075).

Figure 1 only reflects the average value of the marginal effect across the 100 replications. We

are also interested in the distribution of the adjustment effect random variables; especially we are

interested in what proportion among the 100 realizations of SR′Ek
(0) are positive. Table 1 reports

such information. According to the first two rows, when the last p−K population eigenvalues are

equal, shrinking a large but non-spiked eigenvalue or amplifying a small one almost always leads

to a marginal improvement in the out-of-sample Sharpe ratio. When the ‘flat tail” assumption is

removed, there is still a high chance (around 85% according to Table 1) that such manipulation

leads to further improvement.

3.3 Amplification on Tail Eigenvalues

In this section we present the simulation results on the marginal effect of amplifying a collection

of tail eigenvalues. In particular we illustrate how SR′−Ek+
(0) varies with k in Figure 2.

Consistent with the theoretical results of Theorem 2.2, in panels (a) and (b) of Figure 2, the

average marginal effect is positive for any k, regardless of the µµµ used. In other words, applying

a linear amplification on a few tail sample eigenvalues always has a positive marginal effect on

the out-of-sample Sharpe ratio, no matter how long the tail is. Comparing the red dots with the
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Figure 2: SR′−Ek+
(0) vs. k: marginal effect of amplifying eigenvalues beyond the kth

In each panel the x-axis measures k and the y-axis measures SR′−Ek+
(0). In panels (a) and (c) p = 100 and n = 1000;

in panels (b) and (d) p = 500 and n = 11180. In panels (a) and (b) the ΣΣΣ has 3 spiked eigenvalues and the remaining
ones equal 0.05; in panels (c) and (d) the ΣΣΣ has 3 spiked eigenvalues and the remaining ones are a sorted sample
generated from Uniform(0.025,0.075). In each panel the red dots correspond to the case where µµµ can have loading on
all eigenvectors; the blue dots correspond to the case where µµµ is a linear combination of {u1,u2,u3}.

blue ones we conclude that when µµµ lies in the subspace spanned by the first K eigenvectors, the

marginal adjustment effect on the out-of-sample Sharpe ratio is minutely small in magnitude. The

reason is the same as we have previously stated, i.e., this happens because the sample-based MSR

portfolio is good enough to yield a Sharpe ratio close to the actual maximum one. As we move to

panels (c) and (d), where the “flat tail” assumption is violated, no marked difference from the two

panels at the top is observed.

In addition, even a quick glance of Figure 2 reminds us that there is some “optimal” k which

corresponds to the strongest marginal effect. This result is expected because amplifying the largest

few eigenvalues might counteract the improvement brought by amplifying the small ones; so it

could be better to solely amplify the small ones. However it is not our specific goal in this paper
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to find an optimal k. One reason for this is the technical difficulty associated with it, and another

reason is that it is not meaningful to look for the optimal k without making sure that a higher

SR′−Ek+
(0) leads to a higher SR(−Ek+ ,λ )− SR(−Ek+ ,0), where λ is a small positive number.11

Although we do not intend to discuss how to find the optimal k, it is important to point out that the

answer to this problem depends on the relationship between µµµ and ΣΣΣ. A simple illustration on this

point is that the optimal k based on the red dots and that based on the blue ones are quite different.

Table 2: Proportion of positive SR′−Ek+
(0) among the 100 replications

k K K+1 K+5 p-6 p-2 p-1
(a) p = 100, equal tail 1.00 1.00 1.00 1.00 1.00 1.00
(b) p = 500, equal tail 1.00 1.00 1.00 1.00 1.00 1.00

(c) p = 100, distinct tail 1.00 1.00 1.00 1.00 0.94 0.83
(d) p = 500, distinct tail 1.00 1.00 1.00 1.00 0.96 0.85

In this table, we only report results for the cases where µµµ is an “arbitrary” vector and can have loading on all eigenvec-
tors. In (a) and (b), the ΣΣΣ has 3 spiked eigenvalues and the remaining ones equal 0.05; in (c) and (d), the ΣΣΣ has 3 spiked
eigenvalues and the remaining ones are a sorted sample generated from Uniform(0.025,0.075).

Figure 2 only shows the average value of the 100 realizations of the marginal effect random

variables. As in the previous section we are interested in what proportion of the realizations of

each random variable is positive. Table 2 reports these proportions. According to the first two rows

of Table 2, when all assumptions about the population covariance matrix are met, the six reported

marginal effect random variables are positive in all replications. When Assumption 2.4 is violated,

as can be seen in the last two rows of Table 2, there are a few occasions where amplifying the last

sample eigenvalue does not lead to improvement; when it comes to amplifying the smallest two

eigenvalues however, there are fewer such occasions. In all replications amplifying the smallest

six eigenvalues has a positive marginal effect on the out-of-sample Sharpe ratio.

The simulation results provide support to the theoretical conclusions reached in Section 2. To

recap under a large-dimensional K-factor model (envisaged in the theoretical analsysis), shrinking

a large non-spiked sample eigenvalue and amplifying a small one by a small amount both lead

to improvement in the out-of-sample Sharpe ratio. In addition a mild linear amplification on any

number of tail sample eigenvalues also leads to improvement.

11Information about the higher-order derivatives is needed here.
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4 Connection with Existing Methods

In this section we provide synthesis on some of the recent research in the portfolio analysis by

highlighting an important connection between our theoretical results and a few recently introduced

methods in the literature with the goal to improve optimized portfolios.

4.1 Shrinkage towards Identity Estimator

The shrinkage towards identity estimator (Ledoit and Wolf (2004)) is a weighted average of the

sample covariance matrix and an identity matrix, i.e., SST I = s1S+ s2I for some s1,s2 > 0. The

effectiveness of this estimator can be partially explained by our theoretical results. Since the

out-of-sample Sharpe ratio is scale-invariant in the covariance matrix estimator, an equivalent

covariance estimator is S∗ST I = S+ s2
s1

I. Since both s1 and s2 are positive, S∗ST I conforms to our

proposed way of adjusting the sample eigenvalues if we let the parameters in V = −Λ̂ΛΛ
a
Ek+ be

a = 0 and k = 1.

Readers may be quick to attribute the improved out-of-sample performance of the minimum-

variance portfolio to the reduced expected Frobenius loss brought by the shrinkage estimator.

Actually the link between a reduced expected Frobenius loss and an increased out-of-sample

Sharpe ratio is a little bit more tenuous. Although for both objective functions, E(
∥∥∥Σ̂ΣΣ−ΣΣΣ

∥∥∥
F
)

and µµµT Σ̂ΣΣ
−1

µµµ√
µµµT Σ̂ΣΣ

−1
ΣΣΣΣ̂ΣΣ
−1

µµµ

, optimality is attained at Σ̂ΣΣ = ΣΣΣ, an improvement in one of them does not nec-

essarily ameliorate the other. In this paper we adopt a more involved objective function so that

the improved out-of-sample performance of the portfolio can be more clearly explained. However

this achievement comes at a cost: we can only derive analytically exact results for the marginal

effect of adjusting eigenvalues instead of determining the optimal amount of the adjustment. This

is why it was emphasized at the beginning of this section that the effectiveness of the shrinkage

towards identity method could only be partially explained in this paper.

4.2 Nonlinear Shrinkage Estimator

The nonlinear shrinkage estimator (Ledoit and Wolf (2017)) extends the shrinkage towards iden-

tity estimator by allowing different eigenvalues to be adjusted independently. As mentioned in

Section 2.3, under a few assumptions about the population covariance matrix, the authors derive a

convergence limit of the out-of-sample Sharpe ratio as p and n go to infinity at the same rate. Then
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they search for the optimal shrinkage which maximizes the limiting out-of-sample Sharpe ratio.

Since there is no explicit formula for the optimal shrinkage, we resort to the numerical results

provided in Ledoit and Wolf (2017) to ascertain just how the sample eigenvalues are adjusted.

Figure 2 in Ledoit and Wolf (2017) shows a comparison among the eigenvalues of a nonlinear

shrinkage estimator, those of a linear shrinkage estimator, and the sample eigenvalues. According

to the figure, after the nonlinear adjustment, the smallest eigenvalues become overall less dispersed

in the sense that λ̃i

λ̃ j
≤ λ̂i

λ̂ j
, where λ̃i is the ith eigenvalue after the nonlinear shrinkage, and i, j

(i < j) both index some small eigenvalues. Among the large eigenvalues there is at least one i, j

pair (i < j) such that λ̃i

λ̃ j
> λ̂i

λ̂ j
. As a resultthere is no guarantee that after a nonlinear shrinkage, the

eigenvalues become overall less dispersed. From this perspective our results are unable to provide

a clear assurance for the improvement brought by the nonlinear estimator. But readers should

note that our theoretical results present only a few sufficient conditions for achieving a marginal

out-of-sample Sharpe ratio improvement. So, even if the nonlinear shrinkage estimator does not

make each pair of eigenvalues less dispersed, it still can lead to improvement.

As has been mentioned earlier there is some similarity between this paper and Ledoit and

Wolf (2017), in particular in terms of the objective function used and the family of estimator

considered. However the key difference lies in the assumption about the population covariance

matrix: our main theoretical results are based on a high-dimensional K-factor model under which

the largest K population eigenvalues increase with p at rate O(p); a technical assumption in Ledoit

and Wolf (2017) implies that they work under a framework where the largest population eigenvalue

is bounded. Our assumption is seemingly more appropriate for financial asset returns covariance

matrix, but the cost of adopting it is the divergence of the out-of-sample Sharpe ratio; conversely,

the assumption of bounded eigenvalues is less realistic, but it ensures convergence of the out-of-

sample Sharpe ratio and, thus, enables the authors to find an optimal shrinkage.

4.3 Spectral Cut-off Method

The spectral cut-off method is a stabilization technique applied to the process of inverting an

ill-posed covariance matrix. This method reconstructs the inverse covariance estimator after dis-

carding the eigenvectors associated with the smallest eigenvalues. Carrasco and Noumon (2011)

propose a data-driven method for determining the number of eigenvectors to discard. A con-

templation about the spectral cut-off method suggests that it can be viewed as a method which
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amplifies the smallest eigenvalues to infinity while keeping the large ones unchanged. From this

perspective this method falls into our framework as a polar extreme case if we let the parameters in

V =−Λ̂ΛΛ
a
Ek+ be k≥min{k : λ̂k < 1} and a =−∞. Our theoretical results in Section 2.2 also imply

that if we simply target a marginal improvement in the out-of-sample Sharpe ratio, the number of

eigenvectors to discard does not play a significant role.

5 Conclusion

We have provided a highly selected review and synthesis on some of the recent and notable contri-

bution to research in the portfolio analyis. A unique perspective on this development was offered

in this paper with emphasis on the ways in which to improve the out-of-sample Sharpe ratio of an

MSR portfolio constructed based on the two-step approach. To accomplish this goal we assume a

high-dimensional K-factor model in our theoretical analysis and investigate how improvement can

be achieved by adjusting the sample eigenvalues according to certain patterns. Our main theoret-

ical results show that simply adjusting one of the first K eigenvalues has a diminishing marginal

effect; mildly shrinking a large but non-spiked one and amplifying a small one both lead to an

improvement in the out-of-sample portfolio Sharpe ratio under the high-dimensional asymptotics.

The effect of adjusting multiple eigenvalues is also studied in the paper. Our results show that

simultaneously amplifying a collection of tail eigenvalues according to certain nonlinear pattern

yields a positive effect for the out-of-sample Sharpe ratio improvement. Our theoretical results are

subsequently illustrated by means of a set of simulation studies performed in this paper.

Lastly, by judiciously identifying a few eigenvalues adjustment patterns in the portfolio that

ensures a marginal improvement in the out-of-sample portfolio Sharpe ratio, we are able to provide

a much-needed and critical synthesis on two approaches which have recently been introduced in

the literature with the goal to improve the the portfolio performances. These approaches are the

shrinkage towards identity method and the spectral cut-off method.
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A Proofs of Technical Results

Proof of Theorem 2.1. Let g(V,λ ) :=
µµµT S−1

V,λ ΣΣΣS−1
V,λ µµµ

(µµµT S−1
V,λ µµµ)2 . We first calculate g′V(0) ≡

∂g(V,λ )
∂λ

∣∣
λ=0. Tak-

ing a partial derivative of g(V,λ ) with respect to λ , we obtain

∂g(V,λ )

∂λ
=

(
2ΣΣΣ

S−1
V,λ µµµ

µµµT S−1
V,λ µµµ

)T ∂
( S−1

V,λ µµµ

µµµT S−1
V,λ µµµ

)
∂λ

. (12)

The derivative in eq. (12) can be simplified as follows:

∂
( S−1

V,λ µµµ

µµµT S−1
V,λ µµµ

)
∂λ

=
µµµT S−1

V,λ µµµ
∂S−1

V,λ µµµ

∂λ
−

∂ µµµT S−1
V,λ µµµ

∂λ
S−1

V,λ µµµ

(µµµT S−1
V,λ µµµ)2

. (13)

According to the definition of SV,λ it is easy to check that

∂S−1
V,λ µµµ

∂λ

∣∣∣∣
λ=0

= ÛΛ̂ΛΛ
−2

VÛT
µµµ and

∂ µµµT S−1
V,λ µµµ

∂λ

∣∣∣∣
λ=0

= µµµ
T ÛΛ̂ΛΛ

−2
VÛT

µµµ. (14)

Now we can readily evaluate g′V(0) with the assistance of eq. (13) and eq. (14). After a few

straightforward steps of calculation we obtain:

g′V(0) =
2

(µµµT S−1µµµ)2

(
µµµ

T S−1
ΣΣΣÛΛ̂ΛΛ

−2
VÛT

µµµ−µµµ
T ÛΛ̂ΛΛ

−2
VÛT

µµµ
µµµT S−1ΣΣΣS−1µµµ

µµµT S−1µµµ

)
. (15)

Since SR(V,λ ) = 1√
g(V,λ )

, we get SR′V(0) =−
g′V(0)

2[g(V,0)]
3
2

. It thus follows that:

SR′V(0) =−
µµµT S−1µµµ

(µµµT S−1ΣΣΣS−1µµµ)
3
2

(
µµµ

T S−1
ΣΣΣÛΛ̂ΛΛ

−2
VÛT

µµµ−µµµ
T ÛΛ̂ΛΛ

−2
VÛT

µµµ
µµµT S−1ΣΣΣS−1µµµ

µµµT S−1µµµ

)
. (16)

Proof of Theorem 2.2. Before proceeding to the proof, we introduce a few necessary notations.

Let UF = (u1, . . . ,uK) and UI = (uK+1, . . . ,up) denote the eigenvectors that correspond to the

factors and the idiosyncratic components respectively. Further, let ΛΛΛF = diag{λ1, . . . ,λK} and

ΛΛΛI = diag{λK+1, . . . ,λp}. The sample quantities can be conformably partitioned into a factor part

and an idiosyncratic part, i.e. ÛF = (û1, . . . , ûK), ÛI = (ûK+1, . . . , ûp), Λ̂ΛΛF = diag{λ̂1, . . . , λ̂K},

and Λ̂ΛΛI = diag{λ̂K+1, . . . , λ̂p}. Let a = UT µµµ = (aT
F ,aT

I )
T = (a1, . . . ,ap)

T denote the loading of the
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expected returns vector on the linear space spanned by the population eigenvectors. Similarly let

â = ÛT µµµ = (âT
F , âT

I )
T = (â1, . . . , âp)

T denote the loading on the sample eigenvectors. Here aF and

âF are K×1 vectors; aI and âI are (p−K)×1 vectors. Let ek denote a conformable column vector

with its kth element being 1 and everywhere else being 0. Denote ξτ = oa.s.(aτ) if limτ→∞
ξτ

aτ
= 0

almost surely. Denote ξτ = Oa.s.(aτ) if limsupτ→∞ |
ξτ

aτ
| ≤M, where M is a positive constant.

According to Theorem 1 case (a) in Shen et al. (2016), as both p and n go to infinity with rate

of n being n = O(p1+c) for some c > 0, we obtain the following results:

(1) λ̂ j
λ j

a.s.−−→ 1, for j = 1,2, . . . ,K.

(2) angle(û j,span{u j}) = oa.s.(1), for j = 1,2, . . . ,K.

(3) angle(û j,span{uK+1, . . . ,up}) = oa.s.
( 1√

p

)
, for j = K +1,K +2, . . . , p.

The angle between a vector and a space is defined as the angle between the vector and its projection

onto the space. We first derive the convergence rate for an inner product between population

eigenvectors and their sample counterparts based on the results above. According to the definition

of an angle, for j = 1,2, . . . ,K, we have:

arccos
(
< û j,u juT

j û j >∥∥û j
∥∥∥∥∥u juT

j û j

∥∥∥
)
= arccos(uT

j û j) = oa.s.(1).

Thus, by applying a Taylor expansion on both sides of the above equation, we obtain:

uT
j û j = cos(arccos(uT

j û j)) = 1+oa.s.(1), j−1,2, . . . ,K.

For j = K +1, . . . , p, we have:

arccos
(
< û j,UIUT

I û j >∥∥û j
∥∥∥∥UIUT

I û j
∥∥
)
= arccos(

√
ûT

j UIUT
I û j) = oa.s.(p−1/2).

Applying the Taylor expansion on both sides of the above equation and taking square of the re-

sulting expression we get:

ûT
j UIUT

I û j = (1−0.5(oa.s.(p−1/2))2)2 = 1+oa.s.(p−1), j = K +1, . . . , p. (17)
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Since û j is of a unit length it follows that:

ûT
j

( K

∑
i=1

uiuT
i +UIUT

I

)
û j = 1

→
K

∑
i=1

(uT
i û j)

2 = oa.s.(p−1)

→ uT
i û j = oa.s.(p−1/2), i = 1, . . . ,K, j = K +1, . . . , p.

In addition we also can show that for i, j ∈ {K +1, . . . , p} and i 6= j,

ûT
i UIUT

I û j =−ûT
i

( K

∑
k=1

ukuT
k

)
û j =−

K

∑
k=1

ûT
i ukuT

k û j = oa.s.(p−1). (18)

According to eq. (17) and eq. (18), ÛT
I UIUT

I ÛI = I(p−K)×(p−K)+E, where E is a noise matrix

whose elements have rate oa.s.(p−1).

Using the matrix notations introduced above the matrix ÛT ΣΣΣÛ can be expanded as:

ÛT
ΣΣΣÛ =

[
ÛT

F
ÛT

I

][
UF UI

][ΛΛΛF
ΛΛΛI

][
UT

F
UT

I

][
ÛF ÛI

]
=

[
ÛT

FUFΛΛΛFUT
FÛF + ÛT

FUIΛΛΛIUT
I ÛF ÛT

FUFΛΛΛFUT
FÛI + ÛT

FUIΛΛΛIUT
I ÛI

ÛT
I UFΛΛΛFUT

FÛF + ÛT
I UIΛΛΛIUT

I ÛF ÛT
I UFΛΛΛFUT

FÛI + ÛT
I UIΛΛΛIUT

I ÛI

]
. (19)

Let b = (bT
F ,bT

I )
T be a p×1 random vector. According to the convergence results derived above

one of the two terms in the summation in each element of eq. (19) is negligible compared with the

other term. The quadratic form bT ÛT ΣΣΣÛb, under the large dimensional asymptotics and Assump-

tion 2.4, can be rewritten as:

bT ÛT
ΣΣΣÛb = bT

FΛΛΛFbF(1+oa.s.(1))+2bT
FΛΛΛFUT

FÛIbI(1+oa.s.(1))+σ
2bT

I bI(1+oa.s.(1)).

For example, when b = Λ̂ΛΛ
−1

ÛT µµµ = Λ̂ΛΛ
−1

â and under the Assumption 2.5 that ‖µµµ‖= O(p1/2) and
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‖aF‖∞
=
∥∥UT

F µµµ
∥∥

∞
= o(p1/2),

bT ÛT
ΣΣΣÛb

=µµµ
T S−1

ΣΣΣS−1
µµµ

=âT
F Λ̂ΛΛ
−1
F ΛΛΛF Λ̂ΛΛ

−1
F âF(1+oa.s.(1))+2âT

F Λ̂ΛΛ
−1
F ΛΛΛFUT

FÛIΛ̂ΛΛ
−1
I âI(1+oa.s.(1))

+σ
2âT

I Λ̂ΛΛ
−2
I âI(1+oa.s.(1))

=âT
F Λ̂ΛΛ
−1
F âF(1+oa.s.(1))+2âT

FUT
FÛIΛ̂ΛΛ

−1
I âI(1+oa.s.(1))+σ

2âT
I Λ̂ΛΛ
−2
I âI(1+oa.s.(1))

=σ
2âT

I Λ̂ΛΛ
−2
I âI(1+oa.s.(1)). (20)

The last equality holds because the diagonal elements of ΛΛΛF increase at a rate of O(p) and because

elements in the matrix UT
FÛI have a rate of oa.s.(p−1/2). This result will be used in the subsequent

proof. Now we prove the results one-by-one.

(a) When V takes the form of Ek and as p,n go to infinity with rate of n being n = O(p1+c)

(c > 0), for any k ∈ {1, . . . , p}, the first term inside the bracket in eq. (6) can be expanded

as follows:

µµµ
T S−1

ΣΣΣÛΛ̂ΛΛ
−2

EkÛT
µµµ = âT

Λ̂ΛΛ
−1

ÛT
ΣΣΣÛΛ̂ΛΛ

−2
Ekâ

=
âk

λ̂ 2
k

âT
Λ̂ΛΛ
−1

ÛT
ΣΣΣÛek

=


âk

λ̂ 2
k

âT
Fek(1+oa.s.(1)) k ≤ K

âk

λ̂ 2
k

σ2âT
I Λ̂ΛΛ
−1
I ek−K(1+oa.s.(1)) k > K

=


â2

k

λ̂ 2
k
(1+oa.s.(1)) k ≤ K

σ2â2
k

λ̂ 3
k
(1+oa.s.(1)) k > K

.

Since µµµT S−1µµµ = âT
F Λ̂ΛΛ
−1
F âF + âT

I Λ̂ΛΛ
−1
I âI = âT

I Λ̂ΛΛ
−1
I âI(1+oa.s.(1)), the marginal effect random

variable is:

SR′Ek
(0) =


− â2

k âT
I Λ̂ΛΛ
−1
I âI

λ̂ 2
k (σ

2âT
I Λ̂ΛΛ
−2
I âI)

3
2

(
1+oa.s.(1)− σ2âT

I Λ̂ΛΛ
−2
I âI

âT
I Λ̂ΛΛ
−1
I âI

(1+oa.s.(1))
)

k ≤ K

− â2
k âT

I Λ̂ΛΛ
−1
I âI

λ̂ 2
k (σ

2âT
I Λ̂ΛΛ
−2
I âI)

3
2

(
σ2

λ̂k
(1+oa.s.(1))− σ2âT

I Λ̂ΛΛ
−2
I âI

âT
I Λ̂ΛΛ
−1
I âI

(1+oa.s.(1))
)

k > K
.
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Next we show SR′Ek
(0) a.s.−−→ 0, for k = 1,2, . . . ,K. According to the equation above, for any

k ≤ K,

SR′Ek
(0) =−

â2
k âT

I Λ̂ΛΛ
−1
I âI

λ̂ 2
k (σ

2âT
I Λ̂ΛΛ
−2
I âI)

3
2

(1+oa.s.(1))+
â2

k

λ̂ 2
k (σ

2âT
I Λ̂ΛΛ
−2
I âI)

1
2

(1+oa.s.(1)) (21)

Since âF
I Λ̂ΛΛ
−1
I âI

âF
I Λ̂ΛΛ
−2
I âI
∈ [λ̂p, λ̂K+1] and 1

(âT
I Λ̂ΛΛ
−2
I âI)

1
2
≤ λ̂K+1

(âT
I âI)

1
2

, the absolute value of the first term (with-

out the (1+oa.s.(1)) part) on the RHS of eq. (21) satisfies

â2
k âT

I Λ̂ΛΛ
−1
I âI

λ̂ 2
k (σ

2âT
I Λ̂ΛΛ
−2
I âI)

3
2

≤
â2

k λ̂ 2
K+1

σ3λ̂ 2
k (â

T
I âI)

1
2
≤

â2
k

σ3(âT
I âI)

1
2
= oa.s.(1).

Similarly the absolute value of the second term satisfies

â2
k

λ̂ 2
k (σ

2âT
I Λ̂ΛΛ
−2
I âI)

1
2

≤
â2

k λ̂K+1

σλ̂ 2
k (â

T
I âI)

1
2
≤

â2
k

σλ̂k(âT
I âI)

1
2
= oa.s.(1).

It thus follows that SR′Ek
(0) a.s.−−→ 0 for k = 1,2, . . . ,K. For k = K + 1,K + 2, . . . , p, define a

random variable

X (p)∗
k =−

â2
k âT

I Λ̂ΛΛ
−1
I âI

λ̂ 2
k (σ

2âT
I Λ̂ΛΛ
−2
I âI)

3
2

(
σ2

λ̂k
− σ2âT

I Λ̂ΛΛ
−2
I âI

âT
I Λ̂ΛΛ
−1
I âI

)
.

Since âT
I Λ̂ΛΛ
−2
I âI

âT
I Λ̂ΛΛ
−1
I âI
∈
( 1

λ̂K+1
, 1

λ̂p

)
with probability 1, there exists a K∗ ∈ {K + 2, . . . , p− 1}, such

that with probability 1, X (p)∗
k > 0 for any K+1≤ k < K∗ and X (p)∗

k < 0 for any K∗ < k≤ p.

We complete the proof by letting X (p)
k = sign(X (p)∗

k )X (p)∗
k .

(b) When V takes the form of Ek+ and as p,n go to infinity with rate of n being n = O(p1+c)

(c > 0), for any k ∈ {1,2, . . . , p}, the first term inside the bracket in eq. (6) can be expanded

as follows:

−µµµ
T S−1

ΣΣΣÛΛ̂ΛΛ
−2

Λ̂ΛΛ
a
Ek+ÛT

µµµ =−âT
Λ̂ΛΛ
−1

ÛT
ΣΣΣÛΛ̂ΛΛ

−2
Λ̂ΛΛ

a
Ek+ â

=


−σ2âT

I Λ̂ΛΛ
−3+a
I âI(1+oa.s.(1)) k ≤ K

−σ2âT
I Λ̂ΛΛ
−3+a
I E(k−K)+ âI(1+oa.s.(1)) k > K

=−σ
2âT

I Λ̂ΛΛ
−3+a
I Emax{k−K,1}+ âI(1+oa.s.(1)).
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The second term inside the bracket in eq. (6) can be written as:

µµµ
T ÛΛ̂ΛΛ

−2
Λ̂ΛΛ

a
Ek+ÛT

µµµ
µµµT S−1ΣΣΣS−1µµµ

µµµT S−1µµµ
= âT

I Λ̂ΛΛ
−2+a
I Emax{k−K,1}+ âI

σ2âT
I Λ̂ΛΛ
−2
I âI

âT Λ̂ΛΛ
−1
I âI

(1+oa.s.(1)).

Let

Y (p)
k =

σ2µµµT S−1µµµ âT
I Λ̂ΛΛ
−2+a
I Emax{k−K,1}+ âI

(µµµT S−1ΣΣΣS−1µµµ)
3
2

( âT
I Λ̂ΛΛ
−3+a
I Emax{k−K,1}+ âI

âT
I Λ̂ΛΛ
−2+a
I Emax{k−K,1}+ âI

− âT
I Λ̂ΛΛ
−2
I âI

âT Λ̂ΛΛ
−1
I âI

)
.

Then, under the high-dimensional asymptotics,
SR′
−Λ̂ΛΛ

aEk+
(0)

Y (p)
k

a.s.−−→ 1. It is easy to obtain:

âT
I Λ̂ΛΛ
−2
I âI

âT Λ̂ΛΛ
−1
I âI

≤
âT

I Λ̂ΛΛ
−2
I Emax{k−K,1}+ âI

âT Λ̂ΛΛ
−1
I Emax{k−K,1}+ âI

, k = 1,2, . . . , p.

When a < 1, with probability 1, we have:

âT
I Λ̂ΛΛ
−3+a
I Emax{k−K,1}+ âI

âT Λ̂ΛΛ
−2+a
I Emax{k−K,1}+ âI

>
âT

I Λ̂ΛΛ
−2
I Emax{k−K,1}+ âI

âT Λ̂ΛΛ
−1
I Emax{k−K,1}+ âI

, k = 1,2, . . . , p.

Thus Y (p)
k > 0 with probability 1 for any p and k ∈ {1,2, . . . , p}.

Proof of Theorem 2.3. With the additional assumption that ΣΣΣ = µµµµµµT 1
s2

h
+σ2I, the terms inside the

bracket in eq. (6) become:

∆≡ µµµ
T S−1(µµµµµµ

T 1
s2

h
+σ

2I)ÛΛ̂ΛΛ
−2

VÛT
µµµ−µµµ

T ÛΛ̂ΛΛ
−2

VÛT
µµµ

µµµT S−1(µµµµµµT 1
s2

h
+σ2I)S−1µµµ

µµµT S−1µµµ

= σ
2
(

µµµ
T ÛΛ̂ΛΛ

−3
VÛT

µµµ−µµµ
T ÛΛ̂ΛΛ

−2
VÛT

µµµ
µµµT S−2µµµ

µµµT S−1µµµ

)
.

Next we prove the two conclusions one-by-one.

(a) We can find the lower bound of µµµT S−2µµµ

µµµT S−1µµµ
through the following inequality:

µµµT S−2µµµ

µµµT S−1µµµ
=

µµµT ÛΛ̂ΛΛ
−2

ÛT µµµ

µµµT ÛΛ̂ΛΛ
−1

ÛT µµµ

≥
λ̂
−1
1 µµµT ÛΛ̂ΛΛ

−1
ÛT µµµ

µµµT ÛΛ̂ΛΛ
−1

ÛT µµµ

=
1

λ̂1
.
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The equality is attained only when λ̂1 = · · ·= λ̂p or when ÛT µµµ = 0. Thus, µµµT S−2µµµ

µµµT S−1µµµ
> 1

λ̂1
with

probability 1. Similarly we can show that µµµT S−2µµµ

µµµT S−1µµµ
< 1

λ̂p
with probability 1. When V takes

the form of Ek for some k ∈ {1, . . . , p}, the expression for ∆ can be further simplified:

∆ =
σ2(ûT

k µµµ)2

λ̂ 2
k

(
1

λ̂k
− µµµT S−2µµµ

µµµT S−1µµµ

)
.

Thus the expression for SR′Ek
(0) becomes:

SR′Ek
(0) =−

σ2(ûT
k µµµ)2µµµT S−1µµµ

λ̂ 2
k (µµµ

T S−1ΣΣΣS−1µµµ)
3
2

(
1

λ̂k
− µµµT S−2µµµ

µµµT S−1µµµ

)
.

Since the sequence {1/λ̂k}k=1,...,p increases in k and µµµT S−2µµµ

µµµT S−1µµµ
∈
( 1

λ̂1
, 1

λ̂p

)
with probability 1,

there exists a K ∈ {2,3, . . . , p−1}, such that for all k < K, SR′Ek
(0)> 0, and for all k > K,

SR′Ek
(0)< 0, or equivalently, SR′−Ek

(0)> 0, with probability 1.

(b) When V takes the form of −Λ̂ΛΛ
a
Ek+ the marginal effect random variable becomes:

SR′
−Λ̂ΛΛ

a
Ek+

(0) =
σ2µµµT S−1µµµµµµT ÛΛ̂ΛΛ

−2+a
Ek+ÛT µµµ

(µµµT S−1ΣΣΣS−1µµµ)
3
2

(
µµµT ÛΛ̂ΛΛ

−3+a
Ek+ÛT µµµ

µµµT ÛΛ̂ΛΛ
−2+a

Ek+ÛT µµµ

− µµµT S−2µµµ

µµµT S−1µµµ

)
.

(22)

The terms inside the bracket in eq. (22), denoted as ∆, can be further simplified as:

∆ =
µµµT ÛΛ̂ΛΛ

−3+a
Ek+ÛT µµµ

µµµT ÛΛ̂ΛΛ
−2+a

Ek+ÛT µµµ

− µµµT ÛΛ̂ΛΛ
−2

ÛT µµµ

µµµT ÛΛ̂ΛΛ
−1

ÛT µµµ

≥ µµµT ÛΛ̂ΛΛ
−3+a

Ek+ÛT µµµ

µµµT ÛΛ̂ΛΛ
−2+a

Ek+ÛT µµµ

− µµµT ÛΛ̂ΛΛ
−2

Ek+ÛT µµµ

µµµT ÛΛ̂ΛΛ
−1

Ek+ÛT µµµ

.

∆ is positive with probability 1 only when |3−a−1|> |2−a−2|, which is equivalent to a<

1. Therefore, SR′
−Λ̂ΛΛ

a
Ek+

(0)> 0 with probability 1, for any a < 1 and any k ∈ {1,2, . . . , p}.
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