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Abstract: The concerning worldwide increase of obesity and chronic metabolic diseases such as
T2D, dyslipidemia, and cardiovascular disease motivates further investigations into preventive and
alternative therapeutic approaches. Over the past decade, there is growing evidence that the for-
mation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat
obesity and its associated diseases owing to its capacity to increase energy expenditure and to mod-
ulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown
and beige adipocytes formation and activation will facilitate the development of strategies to com-
bat metabolic disorders. Here, we provide a comprehensive overview of pathways and players in-
volved in the development of brown and beige fat as well as the role of thermogenic adipocytes in
energy homeostasis and metabolism. Also, we discuss the alterations in brown and beige adipose
tissue function during obesity and, explore the therapeutic potential of thermogenic activation to
treat metabolic syndrome.
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1. Introduction

Obesity is the main driver of insulin resistance (IR), type two diabetes (T2D), and
metabolic syndrome. Obese subjects, especially the ones with a high percentage of intra-
abdominal fat have a greater risk of developing cardiovascular disease (CVD), the leading
causes of death in industrial countries (1). The prevalence of obesity is multifactorial and
includes socioeconomic, educational status, issues concerning mental health, genetics,
sedentarism, and diet (2). It is now appreciated that obesity develops when energy con-
sumption (food intake) overcomes energy expenditure. This induces white adipose tissue
(WAT) expansion followed by reduced mass and activity of brown/beige adipocytes (fat
cells), thereby contributing to the development of metabolic disorders during obesity (3).

WAT is the principal site for energy storage, while brown and beige adipocytes are
the sites for energy expenditure (EE) due to their thermogenic capacity (4). Adipose tissue
(AT) is also an important endocrine organ responsible for the secretion of many molecules
including lipids (5,6), proteins (7-9), and miRNAs (10). These factors serve as paracrine-
endocrine signals, critical for the function of AT itself, as well as non-adipose tissues, reg-
ulation of whole-body metabolism, and insulin sensitivity (11). Therefore, interventions
that can induce the formation and activation of brown and beige adipocytes such as cold
exposure (12), pharmacological activation of the adrenergic pathways (13), or even genetic
manipulation of adipocytes (14) are attractive therapies to improve metabolic health in
obese humans.

2. Adipose Tissue Development and Origin
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Adipocytes are categorized as white or brown depending on their function and mor-
phological characteristics. As an endocrine tissue responsible for hormonal secretion,
WAT plays a role in fatty acid (FA) biosynthesis by storing triglyceride (TG), and it is
composed of unilocular adipocytes containing a large lipid droplet. By comparison,
brown adipose tissue (BAT) plays a role in glucose uptake and FA breakdown, leading to
energy dissipation and heat production. Brown adipocytes are multilocular cells with cen-
tral nuclei and mitochondria rich in the expression of uncoupling protein 1 (Ucpl) (15~
17). The primary function of BAT is non-shivering thermogenesis, an energy-intensive
process in which chemical fuel is turned into physical heat. In addition to BAT, the process
of thermogenesis can also be carried out by a third type of adipocytes known as beige
adipocytes. Beige adipocytes share many of their morphological features with brown ad-
ipocytes namely the presence of multilocular lipid droplets and abundant mitochondria
expressing Ucpl (15,18). However, unlike brown adipocytes which are committed to the
process of thermogenesis, beige adipocytes are a form of thermogenic adipocytes that may
be induced within WAT depots sporadically via a white-to-brown transition known as
“browning”. The extreme plasticity of beige adipocytes causes the browning process to be
reversible and highly dependent on the continuation of energy imbalance caused by ex-
ternal cues. Interestingly, the induced beige adipocytes transition to their original white
state soon after the energy balance is restored (19-24).

Even though WAT itself may be categorized broadly into two subtypes of visceral
white adipose tissue (vWAT) and subcutaneous white adipose tissue (scWAT), beige ad-
ipocytes are mainly known to be induced within scWAT depots (16). vVWAT comprises
perirenal (prvWAT), perigonadal (pgvWAT), mesenteric (mvWAT), and retroperitoneal
(rpvWAT) white adipose tissues. In humans, there are sc(WAT depots in the cranial, nasal,
gastrointestinal, femoral, and gluteal areas. Correspondingly, such sc(WAT depots are also
found in rodents in the anterior subcutaneous white adipose tissues (ascWAT) and the
posterior subcutaneous (pscWAT) which include inguinal, dorso-lumbal, and gluteal
WAT (15,25). Anatomically, BAT depots are dispersed in the scapulae (interscapular, cer-
vical, and axillary) and thoracic (mediastinal) areas of mice and rats (26). As opposed to
the previously held view, that BAT is only present in the neck and shoulder regions of
newborn children and infants (27), it has been widely proven by various studies, that ac-
tive BAT depots with thermogenic capacity are found lying between anterior neck mus-
cles and in the paracervical and supraclavicular regions of adult humans (27-31).

The timeline for the formation of BAT and WAT during embryogenesis also varies
with the emergence and development of BAT occurring earlier in all mammalian species
compared to WAT. In humans, BAT formation starts at the second gestational trimester
where it is observed mainly in the head and neck and it later develops in the trunk, upper,
and lower limb regions as well. In rodents, the formation of interscapular BAT occurs
between E15-16 (embryonic phase) and increases postnatally between P15-21. Functional
BAT formation with the ability to carry out thermogenesis is completed 2 days before birth
during the E18-19 (32-35). WAT development also occurs prenatally and the formation of
both sc(WAT and vWAT is completed at the end of gestational weeks 23 and 28, respec-
tively (36). Unlike humans, wherein the formation of WAT is initiated and mostly com-
pleted in utero, for rodents, the development of sc(WAT and vVWAT is mostly postnatal.
vWAT formation commences after birth and sc(WAT formation is completed 56 days post-
partum (37-39).

Brown and white AT originate and evolve from the mesoderm. vVWAT arises from
intermediate and lateral plate mesoderm (40-43), while BAT originates from paraxial mes-
oderm (44). The origin of scWAT is still under dispute, with evidence indicating that the
progenitor cells for this AT originate from both mesoderm and neuroectoderm (45-48).
Additionally, each type of fat depot consists of distinct and different precursor/progenitor
populations that are regulated by various factors affected by age, gender, and environ-
mental conditions. The recent advances in lineage tracing strategies, as well as gene ex-
pression studies, showed that white and brown adipocytes originate from different
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mesenchymal stem cells (MSCs). In brief, vWAT depots are largely derived from progen-
itors expressing Wilms tumor 1 (Wt1) (42,49,50) and scWAT depots mainly originate from
paired related homeobox 1 (Prx1) expressing progenitors (51-55). Although in the past, it
was believed that myogenic factor 5 (Myf5), paired box 3 (Pax3), and paired box 7 (Pax7)
expressing progenitors were only responsible for the formation of BAT, it is now under-
stood that sc(WAT depots of the dorsal-anterior body regions also partly share their origin
with the above-listed progenitors (17,47,56-59). Thus, it may be noted that even though
adipocytes may develop from a common lineage, they may or may not have similar func-
tions.

Several studies have noted that the existence of various cell surface markers may be
used as a strategy to isolate beige and brown progenitors (60). In humans, it was found
that Cd34+/Cd31- and Cd34+/Cd146-/Cd45-/Cd56- cells were BAT progenitors in small
vessels and fetal muscles, respectively (61). Cd29+/Cd31-/Cd34-/Cd45- progenitor cells
lead differentiation to the beige adipocytes within the sc(WAT depots of humans (62).
Moreover, beige adipocytes progenitors in mouse scWAT are marked by Cd81+/Scal/Lin-
and the Cd81+/Pdgfa+/Lin- mark the beige progenitors in human scWAT (63).

One can assume from these studies that Cd34 and Cd81 may be used as markers to
identify brown and beige progenitors, respectively. However, isolation of different adipo-
cytes based on such cell surface markers must be done cautiously considering factors such
as the location of the depots within which the progenitors have resided and the effect of
the surrounding microenvironment (64). It is also known that adipocyte progenitors ex-
press platelet-derived growth factor receptors a (Pdgfra) and g (Pdgfrp) (65). In ex vivo
studies, the presence of both Pdgfra and Pdgfr{ in adipose stromal cells (ASCs) was con-
firmed (66). However, in adult mice, the progenitors only expressed either Pdgfra or Pdg-
frp (67,68). Using Pdgfra Cre recombinase mouse models, the existence of the Pdgfra ex-
pressing cells during the normal establishment of WAT was shown. However, the exist-
ence of multiple Pdgfra+ populations that some of them are not adipogenic further indi-
cates that Pdgfra expression alone cannot be used to identify adipocyte progenitor popu-
lations within WAT (37). Studies in humans and mice have confirmed that commitment
towards either beige or white adipogenesis is predetermined by the balance between Pdg-
fra and Pdgfrf3 signaling in adipocyte progenitors, and a high level of Pdgfra expression
precedes ASCs differentiation into beige adipocytes. Also, in vitro studies showed that
during the initial stages of adipocyte lineage development, Pdgfr3 signaling promotes
white adipogenesis, whereas Pdgfra signaling is followed by brown adipogenesis (69). As
a result of impaired (-adrenergic signaling (a common cue for initiation of browning), a
subset of Pdgfro+/Cd34+/Cd29+ progenitors in scWAT expresses myoblast determination
protein (MyoD); which supports beige adipogenesis following cold acclimation. How-
ever, these MyoD derived beige adipocytes are different from standard beige adipocytes
in terms of their developmental origin and their metabolism with these beige adipocytes
having enhanced glucose metabolism and therefore, named as glycolytic beige adipocyte.
It is now postulated that multiple subtypes of beige thermogenic adipocytes exist and
their functions vary based on the nature of external stimuli, such as cold acclimation or
diet (70).

3. Molecular Circuits Regulating Brown and Beige Adipose Tissue Development and
Function

Adipocyte differentiation happens when multipotent stem cells commit to forming
preadipocytes that further undergo terminal differentiation to form mature adipocytes.
Despite the differences in developmental origins of brown and beige adipocytes, both cell
types share a similar transcriptional cascade involving a distinct chromatin landscape
governing a vast gene expression program that controls the process of fat differentiation.
The chromatin landscape itself comprises an intricate and complex network of transcrip-
tional regulators (transcription factors and cofactors), epigenetic factors (histone marks
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and chromatin methylation), and non-coding RNAs (long non-coding RNAs and mi-
croRNAs).

3.1. Transcriptional Regulation of Brown and Beige Adipocytes

Transcription factors (TFs) are DNA binding proteins that activate or repress RNA
polymerase II (Pol II)-mediated transcription. These proteins bind to DNA sequences at
promoter or other regulatory regions such as enhancers. The core transcriptional machin-
ery coordinated by peroxisome proliferator-activated receptor gamma (Ppary) and mem-
bers of the C/ebp family of transcription factors (TFs) governing the differentiation pro-
cess of adipocytes are similar for all types of fat cells and have been extensively discussed
elsewhere (16,71-73). Various TFs, cofactors (corepressors and coactivators), and nuclear
receptors (NRs) which regulate the process of white versus brown lineage commitment
are already known and coordinate functionally in a concerted manner to modulate the
principal adipogenic transcriptional machinery. Overall, the process of formation of beige
and brown AT by TFs is mainly regulated via a two-fold mechanism i.e., either activation
of BAT and beige-selective genes or by suppressing WAT-specific genes. Here, we de-
scribe the main brown and beige fat-selective signatures of TFs.

¥ Early pB-cell factor 2 (Ebf2) is a marker of committed brown adipocytes that inhibits
the expression of MyoD and muscle-specific transcription factor (myogenin) (33,74). The
high expression level of Ebf2 in adult human brown preadipocytes suggests its role in
brown preadipocyte determination (75). Ebf2 also promotes brown adipocytes differenti-
ation by recruiting Ppary to its BAT-selective binding sites (74). Ebf2 knockdown dimin-
ished the brown fat-specific features of BAT (74). Besides, Ebf2 overexpression in WAT
induces browning and thermogenesis (76).

¥ Ewing sarcoma (Ews) regulates the expression of bone morphogenic protein 7
(Bmp?7) and thereby plays an important role in the commitment of early mesenchymal
progenitors to brown adipocytes. Ews is also involved in the differentiation process of
BAT as the brown preadipocytes isolated from the newborn Ews null mice did not differ-
entiate ex vivo. In addition, decreased number of multilocular lipid droplets and mito-
chondria, as well as reduced Ucp1 expression in the BAT of Ews null mice, indicates the
critical role of Ews in brown fat phenotype and thermogenic function. Ews also plays role
in the browning of WAT as the Ews heterozygous mice showed fewer beige cells formed
in the WAT exposed to the browning stimuli such as Ppary agonists and [33-adrenergic
stimulation (77). The role of Ews in controlling the thermogenic function of beige and
brown AT is proposed to be via stabilizing Pgcla (78).

¥ Y box binding protein 1 (Ybx1) is a cold shock domain protein that together with
Ews regulates the Bmp7 expression through which plays a role in the commitment of pre-
cursor cells to BAT. In the same complex with Ews, Ybx1 also regulates the differentiation
of brown preadipocytes (77). We recently demonstrated a critical role of Ybx1 in priming
and maintaining the thermogenic capacity during adipogenesis (79).

¥ Heat shock factor 1 (Hsf1) deficient mice are more sensitive to low temperatures,
reduced Ucpl expression in sc(WAT and BAT, and decreased thermogenesis and 3-oxida-
tion indicating an overall reduced brown and beige tissue functionality (80,81).

¥ TATA-binding protein-associated factor 7L (Taf71), the study by Zhou et al. per-
formed in mice as well as in cell lines introduced the Taf7l as a commitment factor that
enhances the brown fat lineage as compared to muscle. Taf7] mediates the loop formation
in chromatin bringing together the distal enhancer regions and the promoters, and in that
way controls the expression of BAT-selective genes (82).

¥ Zinc finger in the cerebellum 1 (Zic1) has been described with a controversial role
in beige and BAT formation. Overexpression of Zicl in C3H10T1/2 mouse MSCs attenu-
ated the expression of BAT-selective genes and increased the expression of myogenic
genes (83). In mice, however, the expression of Zicl mRNA was increased in WAT with
cold-induced browning (84).


https://doi.org/10.20944/preprints202105.0008.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2021 d0i:10.20944/preprints202105.0008.v1

5 of 39

% Zinc finger and BTB domain-containing protein 16 (Zbtb16/Zfp14) is increased
in BAT during adaptive thermogenesis in mice (85,86) and also promotes the WAT brown-
ing and thermogenic function in vitro in cells.

% Zinc finger protein 238 (Zfp238) expression is induced upon p-adrenergic stimu-
lation in sc(WAT of mice. Zfp238 suppresses the inhibitory role of Foxol and increases the
expression of thermogenic genes. The adipose-specific Zfp238 KO mice and 3T3-L1 cells
significantly decreased Ucpl expression (87).

7 PR domain zinc finger 16 (Prdm16) is a TF promoting brown and beige adipocyte
differentiation and repressing the myogenic program (56,88). The role of Prdm16 in initi-
ating the brown/beige program versus myogenic is fulfilled by being in the same complex
with histone methyltransferase Ehmt1 with its inhibitory role on the myogenic program
(89). The role of Prdm16 in inhibiting the WAT gene expression is via interacting with
carboxy-terminal binding proteins, Ctbp1 and Ctbp2 co-repressor complexes (90). Lack-
ing Prdm16 in Myf5 positive progenitors does not affect BAT and beige development, due
to the potential compensatory role of Prdm3 (91). In the same complex with C/ebp(3 and
Ppary, Prdm16 functions to promote brown/beige adipogenesis (56,92). In addition to its
role in determining brown/beige fat identity and adipogenesis, Prdm16 is also important
in maintaining the brown fat identity by binding to the enhances of brown-selective genes
and working together with the mediator complex to establish an enhancer-promoter loop
leading to the expression of Ppara and Pgcla (93). Also, Prdm16 directly interacts with
Pgcla and induces its transcription (88,91,94). Prdm16 also inhibits the signaling of re-
pressor type 1 interferon response genes thereby preventing mitochondrial dysfunction
and reduced Ucpl levels (95). Prdm16 regulates the browning of WAT as its overexpres-
sion increases beige adipocytes and thermogenesis in WAT while its deficiency inhibits
beige adipocyte formation (96,97).

¥ PR domain zinc finger 3 (Prdm3) has a complementary role to Prdm16 especially
during early developmental stages in mice and, interacts with mediator complex subunit
1 (Med1) at chromatin level to regulate the brown-specific program. As a commitment
factor, Prdm3 also induces the expression of Ucpl and Pgcla in C2C12 myogenic cells
(91,93).

¥ Ppary co-activator 1A (Pgcla) plays a crucial role in cold-induced thermogenesis
and thermogenic maintenance in differentiated brown and beige adipocytes. Pgcla ex-
pression is highly induced in response to the cold and upon its further activation after
being phosphorylated as a downstream target of the cAMP pathway, Pgcla interacts with
several TRs including Prdm16 and Ppary and activates the thermogenic genes (98,99).
Among others, the Pgcla-Irf4 complex regulates the Ucpl gene expression (100), the com-
plex formed by thyroid hormone receptor (TR), Pgcla, Prdm16, and Med1 also activates
Ucpl transcription (94,101). The complex formed by Pgcla and nuclear respiratory fac-
tors, Nrfl and Nrf2, promotes the activation of several mitochondrial genes (102). Pgcla
overexpression induces the thermogenesis in adipocytes and myocytes (103,104). Brown
adipocytes lacking Pgcla express almost the same level of Ucp1l and other thermogenic
genes, however, show a lower level of Ucpl expression in response to the adrenergic stim-
uli (105,106). Pgcla is also required for the browning of WAT (107).

% Interferon regulatory factor 4 (Irf4) interacts with Pgcla upon cold stimuli and
regulates the expression of Ucpl through binding to its regulatory regions on the chroma-
tin (100).

% Zinc finger protein 516 (Zfp516) also increases brown adipogenesis as well as ther-
mogenesis upon cold induction by interacting with Prdm16 which activates Ucpl and
Pgcla gene expression (108).

% cAMP-responsive element-binding and activating transcription factor 2 (Creb-
Atf2); cold induction increases the adrenergic pathways as well as the intracellular levels
of cAMP. This leads to PKA-dependent phosphorylation and activation of Creb and Atf2
which will further result in activation of Ucpl and Pgcla gene expression (109).
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¥ Forkhead box protein C2 (Foxc2) expression increases beige adipocyte formation
by promoting the protein kinase A (PKA) activity that is a main downstream kinase acti-
vated by adrenergic pathway upon cold induction (110). The Foxc2 transgenic mice that
show increased mitochondrial number and respiration in sc(WAT do not gain weight on
the high-fat diet (HFD) as compared to the control mice. Also, the expression of Foxc2 in
3T3-L1 cells inhibits adipogenesis by blocking the Ppary expression (111).

¥ Kriippel-like factor 11 (K1f11) expression is induced in vitro in human white adi-
pocytes in response to Ppary agonist, rosiglitazone, and via maintaining the association
of Ppary with super-enhancers of beige-selective genes, Klf11 promotes beige adipocyte-
selective gene expression (112).

¥ Kriippel-like factor 9 (K1f9) in vitro and in vivo in mice regulates the cold-induced
browning of WAT and thermogenic function of AT through enhancing the Pgcloa expres-
sion (113).

¥ GA-binding protein a (Gabpa) is the TF expressed in myoblasts that inhibits my-
ogenesis and promotes adipogenesis and beige fat development. In vitro, in C2C12 my-
oblasts, Gabpa expression increased beige adipogenesis to the levels comparable to
Prdm16. The interaction between Pgcla and Gabpa is also shown to stimulate mitochon-
drial biogenesis and the OXPHOS (mitochondrial oxidative phosphorylation) program
(114-116). Gabpa expressing beige adipocytes unlike other beige adipocytes have a higher
glucose oxidation rate than FA oxidation (70).

9 Nuclear receptors including the Reverba (117,118), Erra (119), Erry (119), Rxra
(120), and Nur77 (121) have been described to positively regulate the brown and beige
adipose development and function.

Several TFs and activating cofactors are shown to have negative effects on
beige/brown fat formation and function including Hes1 (122), Irx3 (123), Irx5 (123), Rip140
(124-126), Tle3 (127), Zfp423 (128,129), Hoxc8 (130), Hoxc10 (131), Twistl (132), Foxa3
(133,134), Foxol1 (135,136), Foxp1 (137), Rb (138), Src2 (Tif2), Smad3 (139), Usf1 (140), Mrtfa
(141), Lxr (142), and P107 (143-145). Transcriptional repressors such as Ctbpl and Ctbp2
(90,146) suppress the WAT gene expression and promote the browning of WAT.

3.2. Epigenetic Regulation of Brown and Beige Adipocytes

Epigenetic regulation is a heritable mechanism that includes DNA modifications,
mainly DNA methylation, and histone modifications altering gene transcription without
changes in DNA sequence. The chromatin landscape governs brown/beige differentiation
and commitment, and its activation is regulated by a tight collaboration between TFs and
epigenetic modifiers.

Chromatin immunoprecipitation (ChIP) of Ppary, the master regulator of adipogen-
esis, combined with deep sequencing (ChIP-seq) analysis revealed that up to 55% of Ppary
binding sites are similar among the prevalent fat typesi.e.,, BAT, scWAT, and vWAT with
only 10% of the Ppary binding sites being specific to BAT. Also, only a 10% difference in
the Ppary binding sites was recognized in BAT versus WAT upon rosiglitazone (PPARYy
agonist) treatment, further confirming that beige and brown AT characteristics are ac-
quired from small specificity of the chromatin landscape (74,112,147). Using transgenic
Nuclear tagging and Translating Ribosome Affinity Purification, NuTRAP mice, and Nu-
TRAP reporters in adipocytes, the transcriptomic and epigenomic profiles of beige,
brown, and white adipocytes are defined in vivo. These strategies further confirmed the
stability of chromatin landscape in BAT and the plasticity of beige adipocytes upon tem-
perature change (148).

The enrichment of active histone marks such as H3K4me1/2/3 and H3K27ac at DNA
regulatory regions (promoter and enhancer) promotes the expression of nearby genes.
Contrarily, the recruitment of repressive histone marks such as H3K27ac, H3K27me3,
H4K20me3 to DNA regulatory regions suppresses the gene expression. Active histone
marks such as H3K4mel/2 and H3K27ac are enriched in BAT and not WAT lineage en-
hancers (149). Ucpl promoters in BAT are enriched in active histone mark H3K4me3, and
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in WAT are enriched in H3K27me3 repressive mark (150). The expression of repressive
histone marks is diminished upon cold induction in brown adipocytes (151). Overall, the
recruitment of active histone marks to the regulatory regions of BAT-selective genes
seems to play an important role in the expression of these genes.

Several histone methyltransferases and demethylases have been identified to regu-
late the chromatin landscape in brown fat through alteration of the active and repressive
histone marks (152,153). For instance, the ubiquitously transcribed tetratricopeptide re-
peat on chromosome X (Utx) through coordinated regulation of H3K27me3 demethyla-
tion and H3K27 acetylation switches the transcriptionally repressive to the active state at
the promoters of Ucpl and Pgcla, thereby, positively modulating BAT thermogenesis
(150,154). Additionally, demethylation of H3K27me3 by Jmjd3 is also necessary for the
expression of BAT-selective genes and for the development of beige adipocytes both in
vitro and in vivo (150). In response to acute cAMP stimuli, jumonji domain-containing 1A
(Jmjdla) demethylates the repressive H3K27me3 in brown adipocytes and regulates the
Ucpl gene expression (155). Lysine-specific histone demethylase 1 (Lsd1), through inter-
action with Zfp516 (brown fat-enriched and cold-inducible TF), is recruited to Ucpl and
other BAT-selective genes such as Pgcla, to work as a coactivator by demethylating H3K9
(156). M114/Kmt2d co-localizes with lineage-determining TFs on active enhancers and its
deletion significantly reduces the H3K4me1/2 active histone mark and polymerase II lev-
els on enhancers which consequently impairs brown adipogenesis in mice (157). Euchro-
matic histone-lysine N-methyltransferase 1 (Ehmt1) is a BAT enriched methyltransferase
that controls brown adipose cell fate and its loss in brown adipocytes in vivo diminishes
brown fat characteristics and induces muscle differentiation through demethylation of
histone 3 lysine 9 of the muscle-selective genes (89). Histone deacetylase 3 (Hdac3) acti-
vates estrogen-related receptor a (Erra) in BAT, which itself is governed by deacetylation
of Pgcla and is essential for the transcription of Ucpl, Pgcla, and OXPHOS genes which
are engaged and necessary for thermogenic programming (158). Kmt5c methyltransferase
regulates the expression of thermogenic genes by increasing the H4K20me3 repressive
mark in the vicinity of enhanced transformation-related protein 53 (Trp53) promoters
(159).

Brahma homolog related gene 1 (Brgl), a member of the SWI/SNF family plays a
central role for thermogenesis on {3-adrenergic activation by forming a complex with
Jmjdla and Ppary; wherein this complex enhances Ucpl expression by facilitating the en-
hancer-promoter chromatin looping (155). Additional roles of histone modifiers including
histone acetyltransferases (Hats), histone deacetylases (Hdacs), histone methyltransfer-
ases (Hmts), and histone demethylases have been comprehensively reviewed by Nanduri
(160).

The role of DNA (de)methylation events in beige and brown AT development and
function are well discussed by others (161). Several genes including members of the Hox
family genes are identified to be differentially methylated between white and brown fat
tissue implying the role of methylation in lineage specificity (162). DNA methylation at
CG sites on the Ucpl enhancer regions is decreased with cold-induced browning in WAT.
DNA methylation inhibitor, 5-azacytidine, increases the expression of Hox genes (mainly
Hoxc10), thereby suppressing the browning of WAT (131,162). In mice, Dnmt1 expression
leads to the development of brown fat versus muscle by increasing the DNA methylation
at the MyoD1 promoter and thereby inhibiting the expression of the muscle-specific gene,
MyoD1 (163). DNA demethylase ten-eleven translocation 1 (Tetl) inhibits the thermo-
genic function of BAT by suppressing the thermogenic gene, Hdacl. The expression of
Tetl is decreased with cold-induced browning of sc(WAT in mice, and the Tet1-KO in
WAT showed enhanced thermogenic function in adipocytes as measured by the expres-
sion of the thermogenic genes including Ucp1l and Pgcla (164).

3.3. Non-Coding RNAs
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In addition to TFs and epigenetic regulation, non-coding RNAs including mi-
croRNAs (miRNAs) and long-noncoding RNAs (IncRNAs) have been found to play im-
portant roles in beige and brown fat commitment, differentiation, and function either by
repressing or inducing the expression of genes involved in these processes.

3.3.1. MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are small (21 to 25 nucleotides) non-coding RNAs, fundamen-
tal to the regulation of gene expression. They are processed by RNase III enzymes, Drosha
and Dicer, in the nucleus and cytoplasm respectively. In the cytoplasm, the mature
miRNA is loaded into the RNA-induced silencing complex (RISC), which contains Argo-
naute 2 (AGO?2), the protein responsible for guiding the mature miRNA to its target
mRNA. Once the miRNA-RISC complex binds to its target mRNA, translation is inhibited
and, in some cases, mRNA is destabilized and degraded (165). The importance of this
pathway to adipocyte differentiation and function is evidenced by in vivo studies where
deletion of AT Dicer or the Drosha’s cofactor, Dgcr8, almost completely ablated the pro-
duction of mature miRNAs in the targeted cell, and altered WAT and BAT distribution,
morphology and function (166). Additionally, studies have also evaluated the contribu-
tion of individual miRNAs and described their role in beige and brown fat formation and
function (167). For instance, miR-133 represses the adipogenic lineage commitment of sat-
ellite cells by decreasing the expression of Prdm16. During cold exposure, miR-133 is
downregulated leading to satellite cell-derived brown adipocytes (168). On the other
hand, miR-328 and miR-193b induce brown adipogenesis and block muscle progenitor
commitment, in part, through downregulation of 3-secretase Bacel (169). Moreover, miR-
30 was shown to regulate browning of WAT, and the thermogenic function of beige and
brown adipocytes by targeting Rip140, a known thermogenic corepressor (170).

3.3.2. Long Non-Coding RNAs (IncRNAs)

The molecular regulation by RNAs is not limited to small RNAs and increasing evi-
dence has suggested that long non-coding RNAs (IncRNAs) also play a role in beige and
brown development and function (171). LncRNAs are RNA molecules with more than 200
nucleotides in length and their mechanism of action includes chromatin remodeling, chro-
matin interactions, natural antisense transcripts (NATs), as well as interacting with RNA
binding proteins in the cytosol (172). Studies evaluating the role of IncRNAs in beige and
brown fat formation and thermogenesis have observed the interaction of the IncRNA-
Blnc1 with the TF of Ebf2 and the zinc finger protein Zbtb7b. Mechanistically, these factors
form a ribonucleoprotein complex with IncRNA-Blncl and stimulate a thermogenic gene
program in beige and brown adipocytes (173-175). The IncRNA-BATE1 was also shown
to positively regulate the beige and BAT formation. In the cytosol, IncRNA-BATE1 binds
to the RNA binding protein Celfl, which is known to bind to the Pgcla mRNA inducing
its degeneration and suppressing its translation (176).

4. Thermogenesis Pathways and Players

The browning process involves trans-differentiation of mature white adipocytes or
de novo adipogenesis of beige adipocytes. It can be induced by adrenergic stimuli, HFD
feeding, and cold exposure (177-180). This de novo adipogenesis process involves prolif-
eration and differentiation of beige adipocytes from its progenitor pool which are present
in adipose vasculature mural cells as well as smooth muscle cells that express smooth
muscle actin (Sma), Myh-11, or Pdgfra (181). Another contribution to the overall beige fat
content is by activation of dormant beige adipocytes which is also considered a trans-
differentiation process as no intermediate progenitors are involved (21,67,180,182-185).
While current tracing technologies are unable of distinguishing between white to beige
adipocyte trans-differentiation and the activation of dormant beige cells, Sebo &
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Rodeheffer have extensively discussed existing strategies available for lineage segregation
of adipocytes (186).

Initiation of various signaling processes in AT may lead to thermogenic activation of
BAT and browning of WAT. Several receptors on AT play a central role in such pathways
leading to the increased thermogenic function of adipocytes. The physiological ligands for
such receptors on adipocytes are either adipokines secreted by AT itself (187-189) or fac-
tors released from the various organs in response to environmental challenges such as
cold, fasting, feeding, and exercise (190). Here, we summarize the main signaling path-
ways described in WAT browning and thermogenic activation.

Adrenergic signaling: ADR3 is the main receptor on AT involved in adrenergic
pathways related to adaptive thermogenesis in brown or beige adipocytes. Norepineph-
rine (NE) released from the sympathetic nervous system (SNS) and M2 macrophages
(188,191,192) is the primary ligand of ADR{3 that upon binding activates the protein ki-
nase A (PKA) and subsequently activates the p38 MAPK and thyroxine 5’-deiodinase
leading to the induction of thermogenic gene program (137,193,194).

Thyroid hormone (TH) signaling: the main TH receptors in adipocytes are TH re-
ceptor a (TRa) that mediates synergistic effects of TH signaling and SNS, TH receptor 3
(TRB) that modulates the expression of Ucpl. During the thermogenic adaptation, the thy-
roxine (T4) released from the hypothalamic-pituitary-thyroid axis after entering the AT
will be converted into the triiodothyronine (T3) by type II thyroxine 5'-deiodinase (Dio2),
an enzyme controlled by NE. Besides, TH affects the hypothalamus and promotes the
AMP-kinase induction, and enhances the SNS function of NE production, leading to an
increased thermogenic function (195).

Bile acid signaling: the main bile acid receptor on AT is the G-protein-coupled bile
acid receptor, Gpbarl (TGR5). It has been shown that the bile acids released from the liver
after a meal and bound to the TGR5 receptors on AT also contribute to the regulation of
Dio2 expression by increasing the levels of cAMP(196). TGRS signaling induces the WAT
browning and thermogenesis by increasing lipolysis, free fatty acids (FFAs) production,
and p-oxidation. TGR5 signaling also increases the number of mitochondria by inducing
the mitochondrial fission (separates one into two) through the Erk/Drp1 pathway, further
improving mitochondrial respiration (197).

Angiotensin II signaling: the primary angiotensin II (Angll) receptors in AT are an-
giotensin type 1 or type 2 receptors (AT1R and AT2R). AT is a major source of Angll and,
indicating the autocrine and paracrine role of Angll in regulating adipose functions and
self-remodeling. The in vitro study conducted in mouse and human primary adipocytes
showed that activation of AT2R increases the WAT browning and brown adipogenesis by
increasing the Ppary expression as well as enhancing the Erk1/2, PI3kinase/Akt, and
AMPK signaling pathways. In mice also, Angll contributes to the browning of WAT and
enhanced thermogenesis by increasing the adiponectin release and decreasing the levels
of TNFa, TGs, and FFAs in blood serum (198).

Fibroblast growth factors (Fgf) signaling: the Fgf receptor (FgfR)/b-Klotho com-
plexes are also located on the adipocytes cell surface in mice and humans. The main Fgfs
regulating the BAT activity and WAT browning include Fgf15, Fgf19, and Fgf21 secreted
from the liver, and Fgf6& Fgf9 released from the BAT. The main action of Fgf21 is con-
ducted by inducing the expression of Pgcla, Fgf6, and Fgf9 that involve Fgf receptor-3
(FgfR3), prostaglandin-E2, and interaction between estrogen receptor-related alpha,
flightless-1 (FIII), and leucine-rich-repeat-(in FllI)-interacting-protein-1 as a regulatory
complex for Ucpl1 transcription. Fgf15 and Fgf19 increase the blood levels of Cxcl14 which
is a batokine regulating the Ucpl expression and thermogenesis (199-201).

BMP signaling: BMP signaling relies on the binding of BMPs to type I and II BMP
receptors on AT. The main BMPs regulating the thermogenic commitment and activity of
beige and brown AT include BMP4, BMP7, and BMP-8b. Although BMPs are mainly
known as adipokines, the precise source of BMP’s secretion remains elusive. BMP-8b is a
batokine induced by nutritional and thermogenic factors in mature BAT which increases
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the thermogenic activity of BAT by; I) increasing the p38 MAPK/Creb signaling and sen-
sitizing the BAT to NE, and II) acting on the hypothalamus increasing the AMP-activated
protein kinase (AMPK) phosphorylation, leading to an anorexigenic state. BMP4 and
BMP7 increase the Ucpl expression and mitochondrial biogenesis via a p38 MAPK and
Pgcla dependent pathway (202-204).

Natriuretic peptides (NPs) signaling: NPs are mainly released from the heart and
bind to the natriuretic peptide receptors (NPRs) on the AT. Activating the cGMP-depend-
ent protein kinase (PKG), the action of NPs is additive to the effects of adrenergic signaling
leading to BAT activation and browning of WAT (205-207).

Irisin signaling pathway: in rodents and humans, exercise enhances the release of
the irisin from the muscle. Although the irisin receptors in fat are still debated, the irisin-
induced thermogenic gene program was shown to be mediated via the integrin aV family
of receptors. Irisin expression in muscle is regulated by Pgcla expression. In AT, irisin
induces the WAT browning and enhances the thermogenic activity of BAT (208,209).

5. Brown and Beige Adipose Tissue Function

Due to differences in the makeup and location of the fat itself, both brown and beige
fat depots differ from white fat in terms of their physiological function, especially in terms
of energy homeostasis and their secretory role. White fat is known to play a major role in
FA biosynthesis and store energy in the form of TG whereas brown and beige fat are the
important players in the process of heat dissipation/energy expenditure (219-221). These
contradictory roles among different types of fat can be partly attributed to the difference
in the mitochondrial proteome and lipid composition discussed below.

5.1. Role of Brown and Beige Fat in Thermoregulation

Unless exposed to extreme conditions or fluctuating temperatures, mammals can
keep their body temperature within a narrow range which is critical for the survival of
these species as the critical biochemical reactions that occur under normal physiological
conditions are affected when core body temperature is disrupted (213). Brown and beige
fat are important organs involved in thermoregulation. For instance, when humans are
exposed to colder temperatures, BAT mass and activity are increased resulting in in-
creased cold tolerance (214-216). On the other hand, removal of BAT and beige AT in mice
using genetic approaches leads to fatal hypothermia when these mice are exposed to cold
(217).

At the cellular level, brown and beige adipocyte mitochondria are rich in proteins
involved in the tricarboxylic acid cycle (TCA), electron transport chain complexes I-IV,
and FA oxidation (218). The main characteristic of both brown and beige adipocytes is the
presence of Ucpl at the inner membrane of mitochondria (219). Thermogenesis occurs
when Ucpl uncouples the proton motive force of the respiratory chain. Under normal
conditions, the electron transport chain generates a proton gradient in the inner mitochon-
drial membrane which powers ATP production by ATPase. When Ucpl is active, it trans-
fers the protons generated from the electron transport chain back across this membrane,
dissipating the electrochemical gradient. Oxidative metabolism that is required to main-
tain the normal function of the cells consumes calories and leads to an increased temper-
ature of the cells (220). Thermogenesis by its nature is an energy-intensive process that
upon activation increases the whole-body EE. To sustain this process, activated brown
and beige fat depots require a continuous supply of substrates in the form of glucose,
FFAs, and intracellular TGs. This directly contributes to reduced blood glucose, improved
insulin sensitivity, TG serum clearance, loss of body fat, and consequently a general im-
proved metabolic health (221-223).

Although Ucpl mediated energy dissipation and its role in metabolism and ther-
moregulation have been most widely discussed in the literature, it is now understood that
several other thermogenic mechanisms also exist. For example, at thermoneutral
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temperature, deletion of Ucp1 has no effect on EE or weight gain when mice are submitted
to HFD (224-228). When exposed to cold, Ucpl-/- gradually adapt to the temperature and
maintain their normal body temperature (108,229-232).

Though these Ucpl independent mechanisms are predominantly studied in beige
AT, they have also been detected in classic brown AT (233). Some Ucpl independent ther-
mogenic pathways include; I) the endogenous uncoupler peptidase M20 domain contain-
ing 1 (Pm20d1) which produces N-acyl amino acid and independent from Ucp1 increases
mitochondrial respiration and brown and beige fat thermogenesis (234), II) Slc25a25
which transports ATP-Mg?/P(i) across the mitochondrial inner membrane and produces
heat independent from Ucp1 (235), III) the ADP/ATP carrier (AAC) in mitochondrial inner
membrane mediates the proton leak from the intermembrane mitochondrial space to the
matrix and dissipates the energy in the form of heat (236), IV) the futile creatine cycle also
is known to dissipate the energy and produce heat in response to cold or (3-adrenergic
activation in mice and humans and inactivation of this cycle reduces the thermogenic po-
tential (237-240), V) the futile cycling of lipolysis/re-esterification in which ATP is used to
produce the triacylglycerols, diacylglycerols, or monoacylglycerols from acylglycerol is
Ucpl-independent and is activated in response to adrenergic stimuli in WAT and BAT
(241,242), VI) the ATP-dependent Ca?" cycling via Sarco/endoplasmic reticulum Ca?-
ATPase2b (Serca2b) and ryanodine receptor 2 (Ryr2) is also an Ucpl-independent ther-
mogenic pathway. The activation of a1/33-adrenergic receptors or the Serca2b-Ryr2 path-
way enhances the Ca? cycling thereby, increases the Ucpl independent thermogenesis
(243,244), and VII) the increase of adenine nucleotide translocase 2 (Ant2), an inner mito-
chondrial membrane, caused by high-fat diet feeding increases the protons leak and pro-
motes diet-induced thermogenesis independent from Ucp1 (245,246).

5.2. Glucose and Lipid Metabolism by Brown and Beige Fat

In addition to endogenous TG breakdown, circulating TG-rich lipoproteins are hy-
drolyzed by lipoprotein lipase (Lpl) and FFAs are taken up through transporters such as
Fatpl and Cd36 to meet the high supply of fuel demand for thermogenesis (247,248).
Moreover, FFAs derived from WAT are also taken up by BAT via insulin-mediated trans-
location of the above-mentioned FA transporters (249). Paradoxically, mild cold exposure
induces de novo lipogenesis (DNL) and this is required for optimum BAT function. This
counterintuitive mechanism is believed to be important to restore lipid droplets and may
contribute to the synthesis of signaling lipids. Furthermore, enhanced DNL is known to
increase the levels of cellular acetyl-CoA and malonyl-CoA, which can be a source of ace-
tyl groups for protein lysine acetylation. This is turn, may regulate epigenetic signals in
BAT to sustain thermogenesis (250).

BAT and beige activation also increase insulin-independent glucose uptake, medi-
ated by AMPK pathway and the glucose transporters Glutl and Glut 4. This leads to the
hypothesis that thermogenesis activation may be used as therapy for insulin resistance
and diabetes, which will be discussed later. In the cell, glucose will be utilized by the DNL
pathway (251,252), stored as glycogen, or oxidized in the TCA cycle to feed the electric
transport chain during thermogenesis activation (253).

5.3. Secretory Role of Brown and Beige Adipose Tissue

WAT is well known for its endocrine function due to the secretion of signaling mol-
ecules, so-called adipokines. These include leptin and adiponectin, and their impact on
metabolism and appetite-control have been well studied. However, this secretory activity
is not limited to white fat and intensive research is being carried out to gain information
regarding brown and beige secretome (254,255). Brown and beige fat are already known
to release hormonal factors such as peptides (adipokines), lipids (oxylipokines), and exo-
somal miRNAs collectively termed as “batokines” which have autocrine, paracrine, and
endocrine functions and are responsible for various processes within the human body
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such as EE, appetite control, lipid and glucose metabolism, insulin sensitivity, inflamma-
tion and tissue repair (256-258). The secretory activity of brown and beige fat is comple-
mentary to the process of thermogenesis itself leading to further recruitment and activa-
tion of these fats. For most of the paracrine factors released from these thermogenic adi-
pocytes, they act on cells present within the BAT such as preadipocytes, M2 macrophages,
and endothelial cells consequently leading to differentiation and formation of mature ad-
ipocytes as well as increased vascularity. This intercellular communication is required for
an efficient thermogenic process. There is still an ongoing debate as to how the secretory
profile of beige AT differs from BAT as well as its implications. Also, some of the factors
released by BAT have already been known to be majorly secreted by some other organs,
causing an extra layer of complexity assigning an autocrine/paracrine/endocrine function
to beige or brown AT.

A complete secretory profile of brown and beige fat might potentially play a role in
designing therapeutic interventions for the maintenance of metabolic health. Some of
these factors within the categories mentioned above and their known biological functions
are disclosed in Table 1.

Table 1. Secretory Profile of Brown and Beige Adipose Tissue.

Type of secretion

Secreted by

Physiological Function Secreted by Overall

Auto-  Para- Endo- BAT/beige in vivo BAT/beige Thermogenic ;rfrsr?; References
p . - Humans Rodents in vitro effect g
crine  crine  crine
(a) Factors released for substrate utilization (Lipids)
(1) 12,13-dihydroxy-9Z-octade- .
cenoic acid (12,13-diHOME) YES N/A YES Brown Brown YES Positive BAT, SM,H (259-263)
(2) 12-hydroxyeicosa -
pentaenoic acid (12-HEPA) YES YES YES Brown Brown YES Positive SM, BAT (259,264)
(3) 14-hydroxydocosahexanoic -
acid (14-HDHA) YES N/A N/A Brown Brown YES Positive BAT (264)
. Brown/ -
(4) Prostaglandins (PGs) YES N/A YES Brown beige N/A Positive WAT, BAT (265-268)
(b) Factors released for vascular regulation
ggt\o’ff‘z{%g”g_‘g?e“a' gowth  ves  vES  NA  NIA Bg;‘gg’ N/A Positive oAl (2s9-272)
Lo Brown/ . BAT,
(2) Nitric oxide (NO) YES YES N/A N/A beige N/A Positive WAT (273,274)
. Brown/ - BAT,
(3) Hydrogen peroxide (H202) YES YES N/A N/A beige N/A Positive WAT (275)
(4) Neuregulin-4 YES YES YES  Beige Bg;‘gg’ YES Positive L,SNS  (276-279)
(c) Factors released for requlation of thermogenesis and metabolic homeostasis
H, P,
(1) Fibroblast growth Factor 21 Brown/  Brown/ i, SN, g
(FGF21) YES YES YES beige beige YES Positive WAT, (280-287)
BAT
gnggirggathgFrg;’“h Factor6& — \/a  vES  NIS ngi‘ggl ngi‘g’gl Yes Positive  BAT, WAT  (201)
(3) Endothelin-1 (ET-1) YES YES NA  NA ngi"g;’:/ YES Negative ~ BAT,WAT  (288)
E“A),\lAé‘g'Tofg)'e“”"'ke 8 YES YES N/A  Brown  Brown YES Negative BAT  (289-291)
E?@F?'Toff)'e“”"'ke 4 YES YES N/A  Brown  Brown YES Negative BAT (292-294)
(6) Growth and differentiation . g
Factor-8 (GDF-8/myostatin) YES YES YES N/A Brown N/A Negative BAT, SM (295-297)
(7) Triiodothyronine (T3) YES N/A ? Brown Brown YES Positive BAT (298-301)
(8) Adenosine YES NA NA N/A  Brown YES Positive ~ BAT, WAT  (302)
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(9) Ependymin-related protein 1 - BAT,
(EPDR1) YES YES N/A Brown Brown YES Positive WAT (303)
(10) Follistatin-like 1 (FSTL-1)  YES YES N/A N/A Brown YES Positive BAT (254,304)
(11) Endocannabinoids YES YES N/A N/A Brown YES Negative BAT (305-307)
(12) Low-density lipoprotein re-
ceptor relative, soluble form YES N/A N/A N/A Brown YES Negative BAT (308)
(sLR 11)
(13) SLIT2 and C-terminal frag- Brown/ BAT
ment of SLIT2 protein (SLIT- YES N/A N/A N/A beige N/A Positive i (309,310)
20) WAT
(14) Bone morphogenetic pro- - (277,311,312
tein-8b (BMP-8b) YES YES YES N/A Brown YES Positive BAT, SNS )
(15) Insulin-like growth factor- Brown/ . .
binding protein 2 (IGFBP-2) YES N/A YES YES Beige N/A Negative B, BAT (313-317)
(16) 3-methyl-2-oxovaleric acid  YES YES YES Beige Beige YES Positive MSVE‘? T, (318)
(17) 5-oxoproline YES YES YES Beige Beige YES Positive MS\’li.l'A_‘T’ (318)
. - . . o MC, BAT,

(18) B-hydroxyisobutyric acid YES YES YES Beige Beige YES Positive WAT (318)
(d) Factors released for regulation of immune cells within brown and/or beige adipose tissue

. Brown/ - MC, BAT  (286,319-
(1) Interleukin-6 (1L-6) YES YES YES N/A beige YES Positive WAT, P, H 322)
(2) C-X-C motif chemokine lig- -
and-14 (CXCL-14) YES YES N/A N/A Brown YES Positive BAT, MC (323)
(3) Adiponectin YES YES N/A N/A Beige YES Positive WAT, MC (324)
(4) Meteorin-like (METRNL) YES YES N/A N/A Beige YES Positive WAT, MC (325)
(5) Growth and differentiation Brown/ .
Factor-15 (GDF-15) YES YES N/A N/A beige YES Positive BAT,MC  (326,327)
E?();'Frfsll)‘"”"'ke growth Factor  yes \jA YES  N/A Brown YES Positive ~ BAT,L,MC (328-331)
(7) Chemerin YES YES N/A N/A Brown YES Negative BAT, MC (254’3)3 2,333
(e) Exosomal microRNAs
(1) miRNA-99b N/A N/A YES N/A Brown N/A Negative L (334)
(2) miRNA-92a YES N/A N/A Brown Brown YES Negative BAT (335
(f) Additional regulatory factors
W ?&g’lf)a”d nervegrowthfac-  ves  yvEs  N/A Brown  Brown  YES Positive BAT  (336-338)
(2) Wingless-related MMTV in- . .
tegration site 10b (WNT10b) N/A YES N/A N/A Beige NA Negative BM (313)
(3) Retinol binding protein-4 " " " " ) (254,339-
(RBP-4) 7 7 7 N/A Brown YES 7 341)

SM: Skeletal Muscle, MC: Recruitment of Macrophages, WAT: White Adipose Tissue (induction of browning/formation of beige phenotype),
SNS: Sympathetic Nervous System, L: Liver, H: Heart, BAT: Brown Adipose Tissue, P: Pancreas, B: Bone (remodeling), BM: Bone Marrow

6. Brown and Beige Adipose Tissue in Obesity, Aging and Metabolic Disease

Obesity is the major contributor to the development of metabolic diseases such as IR,
T2D, dyslipidemia, and CVD. These metabolic disorders are also observed during aging
(342) raising the hypothesis that unhealthy excess of body fat may accelerate the aging
processes. In this regard, diet-induced obese mice are shorter-lived compared to their con-
trols (343). Similarly, in obese humans, the risk of premature death is increased by 1.45 to
2.76 folds (344). The pathophysiology of obesity and aging-associated diseases are com-
plex and share dysregulations at the cellular level (342,345). Consistent with this, robust
evidence suggests that changes in AT distribution and metabolic dysfunction are impli-
cated in the development and disease progression during obesity and aging (346-348).
Here we discuss how obesity changes AT biology and its implication for the development
of the metabolic syndrome. Some factors altering the AT and contributing to obesity and
aging are summarized in Figure 1.
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Figure 1. The leading causes of obesity and aging are driven by adipose tissue distribution, func-
tion, and environment. Contributions of the central nervous system (CNS), sexual dimorphism,
diet, life style, and adipose tissue distribution to obesity and aging are well known. In addition,
the composition of adipose tissue itself with increased collagen, extra cellular matrix (ECM), reac-
tive oxygen species (ROS), immune cells, macrophages, and senescent cells is another major con-
tributor to obesity and aging. Furthermore, the functionality of mitochondria and endoplasmic
reticulum (ER) in adipocytes plays an important role in preventing obesity and aging complica-
tions. Figure created with ©BioRender.io.

6.1. Adipose Tissue Distribution

In humans, AT distribution can be influenced by sexual hormones, diet, and aging.
In general, females exhibit higher scWAT (gynoid fat deposition) and BAT mass, while
vWAT is more preeminent in men (android fat deposition) (349). During obesity, even
though AT expansion is observed in all types of fat depots, female subjects very often
present lower visceral and larger subcutaneous AT compared with males (350). This sex-
ual dimorphism is also observed in BAT, where BAT mass (30), and Ucpl mRNA expres-
sion are still higher in women (351). Genetics and hormones are the major players in sex-
ual dimorphism (352), however, some evidence suggests that these differences persist
even after menopause (30). Interestingly, this dimorphism is associated with a lower risk
to develop metabolic diseases in women and may contribute to a longer lifespan com-
pared to men (353).

6.2. Metabolic Function

It is now appreciated that AT function is also regulated in a sex-dependent manner
that is widely reviewed elsewhere (349,354,355). Here we will give an overall view of some
biological processes that are impaired in the AT of obese mice and humans. These pro-
cesses are interconnected and mediate the development of obesity-associated diseases.

6.2.1. Sympathetic Nervous System (SNS)

Overactivation of the sympathetic nervous system is often observed in obese subjects
which contributes to the development of high blood pressure and cardiovascular diseases
(356-360). In AT, hyperactivation of the SNS pathway induces negative feedback, and
downregulates the abundance of adrenergic receptors, decreasing the lipolytic (357), and
thermogenic capacity (361). This contributes to an increased WAT expansion, whitening
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of beige adipocytes (362), and decreased basal EE. Additionally, whitening of beige fat
induces macrophage infiltration, brown adipocyte death and increased senescent cells,
crown-like structure (CLS) formation, fibrosis, and local inflammation (362).

6.2.2. Endoplasmic Reticulum Stress (ER)

This organelle is composed of a membranous network responsible for the synthesis,
maturation, and trafficking of proteins. It is also highly sensitive to nutrient availability.
Upon nutrient overload, the increased protein synthesis followed by their misfolding and
accumulation in the ER lumen induces ER stress. As a result, proteins from the unfolded
protein response (UPR) Atf6, Perk, and Irel are recruited to reestablish the ER homeosta-
sis (363). In obesity, this process is hyperactivated in multiples tissues including adipose.
This contributes to AT inflammation and insulin resistance (364,365). Mechanistically,
Atf6 and Perk acts through activation of NF-kB which translocate to the nucleus and in-
duces the expression of pro-inflammatory cytokines such as IL-1 and TNFa, while Irela
interacts with the tumor necrosis factor-a (TNFa)-receptor-associated factor 2 (Traf2), ac-
tivates Jnk and IkB kinase (IKK) and downstream mediators of inflammation (363,366).
Adipocyte ER stress also leads to increased basal lipolysis through downregulation of
perilipin and insulin receptor, decrease adiponectin assembling and secretion as well as,
decrease in leptin release (366,367).

6.2.3. Mitochondrial Dysfunction

As the central contributors to energy metabolism, mitochondria play key roles in the
production of ATP, oxidative phosphorylation, production of reactive oxygen species
(ROS), and Ca?* homeostasis. Mitochondria also play an important role in AT homeostasis
and remodeling (368,369). The rate-limiting steps of oxidative reaction that regulate the
thermogenesis in the beige adipocytes take place in mitochondria. Brown and beige fat
depots are packed with mitochondria (the cells’ tiny power plants) with high expression
of Ucpl1 across the mitochondria inner membrane which uncouples the respiratory chain
from ATP (energy) and thereby, it increases thermogenesis by heat production. The
browning of the WAT is accompanied by an increase in the number of mitochondria
caused by de novo biogenesis of mitochondria as well as mitochondrial fission (fission
separates one into two) (370). Contrarily, a reduced number of mitochondria resulted from
mitochondrial fusion (fusion joins two mitochondria together), and mitochondrial disap-
pearance (mitophagy) is reported during beige to white fat transition (371,372). Mitochon-
drial dysfunction is present in many organs including WAT and BAT. It is characterized
by increased mitochondrial DNA (mtDNA) mutations and damage, decreased oxidative
phosphorylation (OXPHOS), reduced activity of metabolic enzymes, as well as changes in
mitochondrial morphology, dynamics, and biogenesis (373-375). In line with this, multi-
ple symmetric lipomatosis (MSL), an adipose disorder (AD) characterized by upper body
lipomatous masses, is frequently linked to multiple mutations in mitochondrial genes
such as Mttk (gene encoding mitochondrial tRNA lysine involved in the assembly of pro-
teins that carry out oxidative phosphorylation), and Mfn2 (gene encoding mitofusin 2 that
helps to regulate the morphology of mitochondria by controlling the fusion process)
(376,377).

6.2.4. Inflammation and Endocrine Dysfunction

During obesity, adipocytes increase in size and number to accommodate the excess
of nutrients in form of lipids. Excessive expansion of WAT followed by capillary rarefac-
tion triggers a cascade of the biological processes including, ER-stress, mitochondrial dys-
function, hypoxia, changes in extracellular matrix mobility, and adipocyte death which
are thought to contribute to inflammation (378). Activation of the inflammatory response
leads to the secretion of several pro-inflammatory factors TNFa, Il-1b, I1-6, and monocyte
chemoattractant protein (Mcp-1) from adipocytes (379,380). This is accompanied by


https://doi.org/10.20944/preprints202105.0008.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2021 d0i:10.20944/preprints202105.0008.v1

16 of 39

infiltration of immune cells such as M1 macrophages (381), Cd8+ T cells (382), B cells (383),
and eosinophils (384), thereby enhancing local and systemic inflammation (385). The
chronic low-grade inflammatory state observed in obesity is an important contributor to
AT insulin resistance (IR). This is important because impaired insulin signaling in adipo-
cytes leads to uncontrolled basal lipolysis, which can induce cell death, and also increase
the circulating levels of FFAs. In turn, this leads to lipids accumulation in non-adipose

organs inducing systemic IR and increasing the risk to develop cardiovascular disease and
T2D (386-388).

7. Activation of Thermogenesis as Therapy for Obesity-Associated Metabolic Dis-
eases

Over the years, the development of drugs to treat obesity was mainly focused on
weight loss, primarily due to a reduction in food intake. Many of these molecules failed
to meet the desired efficacy and some of them were even withdrawn from the market
because of their limited success and harmful side effects (389,390). This, with the observa-
tion that adult humans have BAT with the capability to dissipate energy, activation of
BAT and thermogenesis began to be envisioned as therapy. Ever since the development
of interventions that can stimulate browning of WAT as well as BAT mass increase and
activation have gained greater attention and will be discussed here. A summary of the
potential therapeutic interventions for obesity and metabolic disorders accompanied by
aging is shown in Figure 2.

Natural products Molecular -based therapies

Genome editing 3D biopri_nting RNA therapy Lean

Obese m .
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Figure 2. Illustration of the potential therapeutic interventions for the therapy of obesity. In-
ducion of the browning process, the transition from white to brown-like or beige adipocytes,
holds a promising therapeutic potential to combat obesity and its complications. Several phar-
macological (small molecules, synthetic peptides, hormonal analogs) and non-pharmacological
(natural products) interventions are known to induce browning. The role of environmental
challenges such as cold exposure on white adipose tissue browning and thermogenesis is also
identified. In addition, molecular-based therapies including CRIPR-based genome editing,
RNA therapy, and 3D bioprinting are evolving approaches to alter the white adipocytes as a
therapeutic target in obesity. Figure created with ©BioRender.io.

7.1. Cold-Induced Thermogenesis

Currently, cold exposure is the most effective intervention to activate BAT in obese
humans improving whole-body insulin sensitivity and weight loss (391,392). Some candi-
dates have been strongly suggested to mediate the metabolic effect of BAT activation. One
of the most well-investigated molecules is FGF21. This protein is mainly present in the
liver, but it is also expressed in, skeletal muscle, pancreas, WAT, and BAT. Upon short-
term cold exposure, FGF21 expression in adipocytes is significantly increased (393,394).
FGF21 induces browning of WAT in an autocrine manner (395) and enhances insulin
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signaling in the same cell (396). Moreover, cold exposure also increases the circulating
levels of FGF21 (397,398) which activates the SNS enhancing EE and weight loss (398).

Most recently, another member from the FGF family, FGF9 was also demonstrated
to be upregulated in the scWAT and BAT of cold-exposed mice. Exerting an autocrine-
paracrine regulation, FGF9 binds to FGFR3 receptor in adipocytes to regulate Ucp1 ex-
pression (399). In addition to proteins, cold exposure induces the secretion of lipid species
from BAT including 12,13-diHOME and 12-HEPE, which enhance BAT fatty acids (6) and
glucose uptake (400) respectively. Altogether, cold exposure triggers an intricate meta-
bolic network between the central nervous system (CNS) and AT which redirects the uti-
lization of circulating glucose and FFAs to support heat production ultimately improving
WAT and BAT function and whole-body metabolism.

7.2. Natural Thermogenic Compounds

7.2.1. Berberine

Berberine is a plant-based alkaloid compound traditionally used in Chinese medicine
to treat diarrhea and some infectious diseases (401). Berberine has been extensively stud-
ied due to its potential as a cardioprotective, anti-hyperlipidemic, and antidiabetic com-
pound (402,403). Most recently, berberine was shown to induce Ucpl gene expression in
brown and white adipocytes through activation of 5 AMP-activated protein kinase
(AMPK) leading to an increased BAT activity, improved EE, and decreased weight gain
in db/db mice (404). More importantly, 1 month of berberine supplementation increased
BAT volume and activity, reduced body weight, improved insulin sensitivity in patients
with non-alcoholic fatty liver (405).

7.2.2. Capsaicin and Capsinoids

Capsaicin and its analog capsinoids are compounds found in red peppers (406). Sev-
eral studies have shown the anti-obesity, anti-diabetic, and anti-inflammatory effects of
these compounds. In rodents, capsinoids supplementation improves glucose metabolism,
hepaticlipid content and enhances cold-induced EE and WAT browning (407). In humans,
chronic supplementation with capsinoids over 6 weeks decreased body weight and en-
hanced cold-induced thermogenesis in healthy adult men lacking detectable BAT, sug-
gesting that cold exposure in combination with capsinoid ingestion recruits the activation
of brown and beige adipocytes (392). These adaptations occur through activation of the
transient receptor potential cation channel subfamily V member 1 TRPV1 receptor (tran-
sient receptor potential cation channel subfamily V member 1) in the gut which sends
signals to the CNS leading to 32-AR signaling activation in AT (407).

7.2.3. Curcumin

Curcumin is a well-known flavonoid found in turmeric root. It has many therapeutic
properties including, antioxidant, anti-inflammatory, anti-diabetic, and anti-obesity (408).
This is corroborated by the observation that curcumin supplementation reduces BMI, per-
centage of body fat, lower circulating leptin, and increased adiponectin levels in obese
humans (409). Part of these effects may be explained by the induction of browning in WAT
via AMPK activation (410,411) and inhibition of preadipocyte differentiation by downreg-
ulating the Ppary and C/ebpa (412). In mice, supplementation with curcumin for 50 days
induces higher expression of mitochondrial and thermogenic genes, higher NE levels, in-
creased B3-AR expression in scWAT, improved cold tolerance, and lower body fat (411).

7.2.4. Green Tea

Green tea is made from the leaves of Camellia sinensis and contains several different
catechins, especially epigallocatechin gallate (EGCG), which accounts for about 50% to
70% of green tea catechins, and caffeine (413). Green tea extract has several metabolic
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properties such as antioxidant, anti-hypertensive, anti-carcinogenic, hypocholesterolemia
and has also been shown to induce weight loss (414,415). This evidence is supported by
the reduction of body weight, mainly due to loss of vVWAT mass, in obese women and
men subjects submitted to catechins supplementation (414,416). There are several poten-
tial mechanisms proposed to explain the anti-obesity effects of green tea compounds such
as inhibition of de novo lipogenesis, increased FA oxidation, browning of WAT, and acti-
vation of BAT (415,417). The effect of thermogenesis seems to be dependent on the inter-
action between catechins, caffeine, and NE. At the cellular level, catechins inhibit catechol-
O-methyltransferase, one of several enzymes that degrade catecholamines, and caffeine
inhibits phosphodiesterase resulting in higher levels of cyclic AMP (cAMP). This results
in higher levels of NE and cAMP leading to fat oxidation and thermogenic activation
(418).

7.2.5. Resveratrol

3,5,4"-trihydroxy-trans-stilbene (Resveratrol) is a natural compound that belongs to
polyphenols” group. It is found in more than 70 different plants including grapes and has
gained greater attention over the years due to its biological properties including the
weight loss effect (419). Consistent with this, resveratrol supplementation was shown to
reduce the weight gain in diet-induced obese mice. This effect was mediated by improved
oxidative capacity in muscle and AT and increased EE (420). Moreover, resveratrol inhib-
its adipocyte differentiation and lipid accumulation (421) and induces browning of WAT
(422). The molecular effect of resveratrol is not completely understood, but some evidence
suggests that interaction between AMPK activation and NAD-dependent protein deacety-
lase sirtuin-1 (Sirt1) leads to increased expression of Pgcla, thereby inducing mitochon-
drial biogenesis (422). In humans, the effect on weight loss and thermogenesis is not clear
and differences in dose and duration of resveratrol supplementation across studies have
yielded inconsistent results. Despite this limitation, some beneficial effects including im-
proved HOMA-index have been observed 30 days after resveratrol supplementation, sug-
gesting positive effects on insulin sensitivity (423).

7.3. Pharmacological Intervention

7.3.1. Beta 3-Agonist Drugs

In mice, pharmacological activation of BAT using B3-adrenoreceptor agonist drugs
increases EE reduces circulating insulin levels and body fat (424-426). However, the trans-
lational potential of this approach is debatable since human B3-adrenoceptor have differ-
ent binding characteristics compared to rodents and drug bioavailability also varies across
species which limits the capacity to effectively activate BAT (427,428). Despite these limi-
tations, a new FDA-approved drug, referred to as Mirabegron, developed to treat overre-
active bladder, has been shown to improve glucose tolerance and FA oxidation. At its
maximal concentration (200-mg), a single dose of Mirabegron increased BAT glucose up-
take and WAT lipolysis (429). Also, chronic Mirabegron treatment enhances BAT activity,
induces WAT loss, increases HDL, and improves insulin sensitivity in lean and obese sub-
jects (13,430). Nevertheless, a recent study performed by Blondin et al. raises some con-
cerns regarding the use of Mirabegron (431). According to the authors, in human adipose
tissue, Mirabegron seems to work mainly through b2-adrenoceptor, since b3-adrenocep-
tor is quite low expressed. This suggesting that this drug lacks receptor selectivity (431)
and may explain some of its effects on heart rate and blood pressure (429).

7.3.2. GLP-1 Receptor Agonist

Glucagon-like peptide 1 is a molecule secreted in response to the absorption of nutri-
tion by the L-cells in the gastrointestinal tract. Innumerous clinical studies have
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demonstrated its capacity to reduce food intake, enhance insulin secretion, inhibit gluco-
neogenesis and improve skeletal muscle IR. Besides, recent evidence suggests that GLP-1
increased browning of WAT and BAT activation via GLP-1 binding to its receptor GLP-
1R in the hypothalamus (432-434). Since GLP-1 has a short half-life, GLP-1 analogs have
been developed and approved as therapies to treat obesity and T2D (432). In mice, GLP-1
analogs have the potential to induce WAT browning and BAT activation (435). In obese
and T2D humans, GLP-1 analogs enhance body weight loss and improve overall metabo-
lism, whether this is dependent on decreased food intake or increased BAT activation yet
needs to be addressed.

7.4. Gene Therapy

7.4.1. Ex Vivo Gene Therapy

The revolutionary approach of cellular-based therapy combined with gene editing
has been considered an alternative to treat metabolic diseases and a pre-clinical study per-
formed has shown promising results. Wang et al. used the CRISPR-Cas9 system (CRISPR-
SAM) to overexpress Ucpl in human white preadipocytes to generate the human
beige/brown-like adipocytes (HUMBLE). These cells exhibit gene signatures and meta-
bolic function similar to human brown adipocytes. Upon transplantation into mice, the
HUMBLE cells differentiate into mature and functional adipocytes. Importantly, trans-
plantation of HUMBLE cells into diet-induced obese mice resulted in increased heat pro-
duction, decreased weight gain, improved insulin sensitivity, and glucose tolerance. Most
strikingly, these metabolic effects were induced by the communication between the HUM-
BLE cells and the endogenous BAT via nitric oxide (14). Looking forward one could envi-
sion the generation of personalized HUMBLE cells, where adipocyte progenitor cells
would be isolated from the patient’s scWAT, cultivated in vitro, transformed into HUM-
BLE, and placed back into the patient.

7.4.2. In Vivo Gene Therapy

A more straightforward alternative to modulating the expression of a gene or a pro-
tein is the delivery of nucleotides (DNA or RNA species) to the cell of interest. Over the
years a variety of viral and non-viral methods have been developed to deliver DNA, RNA,
or protein to human cells to treat different types of diseases. Currently, 12 gene therapy-
based drugs are available in the market and many others are being tested in clinal trials
(436), however, none of them were developed with the intent to treat obesity and its asso-
ciated disease.

Hopefully, in a near future, with the use of viral vectors, we will be able to target
specific tissues and overexpress a protein of interest. In line with this, one could envision
the transfection of white and brown AT with the Ucpl mRNA. A second approach will be
to use the same CRISPR-Cas9 system used to generate the HUMBLE cells (14) to induce
endogenous Ucpl overexpression. The advantage of this technique compared to the oth-
ers discussed earlier relies on the fact that it can be personalized, it may induce more per-
sistent therapeutic outcomes reducing or eliminating the need for medication and avoid-
ing any complication related to the cell transplantation.

7.5. 3D Bioprinting

3D bioprinting technology, allowing the construction of biological tissue in an accu-
rate and reproducible manner is a potential approach for tissue engineering and regener-
ative medicine. AT bioprinting has particular needs including morphology, composition,
and heterogeneity, as well as the microenvironment, and crosstalk with other cells such
as immune cells, vascularization, and ECM. 3D bioprinting of brown and beige AT aiming
to create an optimal size and function and transplanting it to the patients seems like a
potential strategy in the treatment of obesity and metabolic diseases. This could also be
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used for testing chemical and pharmaceutical products as well as evaluating the toxicity
of the new drugs. Kuss et al. used 3D printed gels to test the effects of stiff vs. soft gels on
immortalized human white and brown AT precursor cells and showed that white progen-
itors prefer soft gels to differentiate as compared to brown progenitors that their differen-
tiation reaches an optimal level interacting with stiffer gels (437). The feasibility of bi-
oprinting the breast structure including the AT and mammary glands has been discussed
by Chen et al. and despite several challenges including poor vascularization, it is a prom-
ising strategy to count on for the treatment of patients with breast cancer (438). Nonethe-
less, most of the bioprinted tissue and organs are yet at the level of laboratory uses and
there is a long way till they will be clinically applicable.

8. Perspectives

More than just a number on a scale or the body size, obesity is linked to many dis-
eases and complications including diabetes, heart disease, and many types of cancer. It is
a complex dilemma and a public health concern worldwide. Activating BAT and induc-
tion of WAT browning and thereby increasing the thermogenesis is a promising strategy
to improve the whole-body energy metabolism and combat obesity and its complications.
In line with this, the majority of studies are performed in animals or in vitro in 2D cell
cultures. Hence, the detailed mechanisms underlying the browning of WAT and BAT ac-
tivation needs to be further investigated in humans. Furthermore, considering the great
heterogeneity of AT, in vitro studies shall highly consider the use of 3D culture models of
AT in which the native tissue function and its cellular heterogeneity would be resumed.
Finally, considering the brown and beige AT as therapeutic targets, one must consider the
variations that might be caused by the differences in gender, ethnicity, age, and body com-
position.
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