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Abstract: The concerning worldwide increase of obesity and chronic metabolic diseases such as 

T2D, dyslipidemia, and cardiovascular disease motivates further investigations into preventive and 

alternative therapeutic approaches. Over the past decade, there is growing evidence that the for-

mation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat 

obesity and its associated diseases owing to its capacity to increase energy expenditure and to mod-

ulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown 

and beige adipocytes formation and activation will facilitate the development of strategies to com-

bat metabolic disorders. Here, we provide a comprehensive overview of pathways and players in-

volved in the development of brown and beige fat as well as the role of thermogenic adipocytes in 

energy homeostasis and metabolism. Also, we discuss the alterations in brown and beige adipose 

tissue function during obesity and, explore the therapeutic potential of thermogenic activation to 

treat metabolic syndrome.  
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1. Introduction 

Obesity is the main driver of insulin resistance (IR), type two diabetes (T2D), and 

metabolic syndrome. Obese subjects, especially the ones with a high percentage of intra-

abdominal fat have a greater risk of developing cardiovascular disease (CVD), the leading 

causes of death in industrial countries (1). The prevalence of obesity is multifactorial and 

includes socioeconomic, educational status, issues concerning mental health, genetics, 

sedentarism, and diet (2). It is now appreciated that obesity develops when energy con-

sumption (food intake) overcomes energy expenditure. This induces white adipose tissue 

(WAT) expansion followed by reduced mass and activity of brown/beige adipocytes (fat 

cells), thereby contributing to the development of metabolic disorders during obesity (3). 

WAT is the principal site for energy storage, while brown and beige adipocytes are 

the sites for energy expenditure (EE) due to their thermogenic capacity (4). Adipose tissue 

(AT) is also an important endocrine organ responsible for the secretion of many molecules 

including lipids (5,6), proteins (7–9), and miRNAs (10). These factors serve as paracrine-

endocrine signals, critical for the function of AT itself, as well as non-adipose tissues, reg-

ulation of whole-body metabolism, and insulin sensitivity (11). Therefore, interventions 

that can induce the formation and activation of brown and beige adipocytes such as cold 

exposure (12), pharmacological activation of the adrenergic pathways (13), or even genetic 

manipulation of adipocytes (14) are attractive therapies to improve metabolic health in 

obese humans. 

2. Adipose Tissue Development and Origin 
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Adipocytes are categorized as white or brown depending on their function and mor-

phological characteristics. As an endocrine tissue responsible for hormonal secretion, 

WAT plays a role in fatty acid (FA) biosynthesis by storing triglyceride (TG), and it is 

composed of unilocular adipocytes containing a large lipid droplet. By comparison, 

brown adipose tissue (BAT) plays a role in glucose uptake and FA breakdown, leading to 

energy dissipation and heat production. Brown adipocytes are multilocular cells with cen-

tral nuclei and mitochondria rich in the expression of uncoupling protein 1 (Ucp1) (15–

17). The primary function of BAT is non-shivering thermogenesis, an energy-intensive 

process in which chemical fuel is turned into physical heat. In addition to BAT, the process 

of thermogenesis can also be carried out by a third type of adipocytes known as beige 

adipocytes. Beige adipocytes share many of their morphological features with brown ad-

ipocytes namely the presence of multilocular lipid droplets and abundant mitochondria 

expressing Ucp1 (15,18). However, unlike brown adipocytes which are committed to the 

process of thermogenesis, beige adipocytes are a form of thermogenic adipocytes that may 

be induced within WAT depots sporadically via a white-to-brown transition known as 

“browning”. The extreme plasticity of beige adipocytes causes the browning process to be 

reversible and highly dependent on the continuation of energy imbalance caused by ex-

ternal cues. Interestingly, the induced beige adipocytes transition to their original white 

state soon after the energy balance is restored (19–24).  

Even though WAT itself may be categorized broadly into two subtypes of visceral 

white adipose tissue (vWAT) and subcutaneous white adipose tissue (scWAT), beige ad-

ipocytes are mainly known to be induced within scWAT depots (16). vWAT comprises 

perirenal (prvWAT), perigonadal (pgvWAT), mesenteric (mvWAT), and retroperitoneal 

(rpvWAT) white adipose tissues. In humans, there are scWAT depots in the cranial, nasal, 

gastrointestinal, femoral, and gluteal areas. Correspondingly, such scWAT depots are also 

found in rodents in the anterior subcutaneous white adipose tissues (ascWAT) and the 

posterior subcutaneous (pscWAT) which include inguinal, dorso-lumbal, and gluteal 

WAT (15,25). Anatomically, BAT depots are dispersed in the scapulae (interscapular, cer-

vical, and axillary) and thoracic (mediastinal) areas of mice and rats (26). As opposed to 

the previously held view, that BAT is only present in the neck and shoulder regions of 

newborn children and infants (27), it has been widely proven by various studies, that ac-

tive BAT depots with thermogenic capacity are found lying between anterior neck mus-

cles and in the paracervical and supraclavicular regions of adult humans (27–31).  

The timeline for the formation of BAT and WAT during embryogenesis also varies 

with the emergence and development of BAT occurring earlier in all mammalian species 

compared to WAT. In humans, BAT formation starts at the second gestational trimester 

where it is observed mainly in the head and neck and it later develops in the trunk, upper, 

and lower limb regions as well. In rodents, the formation of interscapular BAT occurs 

between E15-16 (embryonic phase) and increases postnatally between P15-21. Functional 

BAT formation with the ability to carry out thermogenesis is completed 2 days before birth 

during the E18-19 (32–35). WAT development also occurs prenatally and the formation of 

both scWAT and vWAT is completed at the end of gestational weeks 23 and 28, respec-

tively (36). Unlike humans, wherein the formation of WAT is initiated and mostly com-

pleted in utero, for rodents, the development of scWAT and vWAT is mostly postnatal. 

vWAT formation commences after birth and scWAT formation is completed 56 days post-

partum (37–39). 

Brown and white AT originate and evolve from the mesoderm. vWAT arises from 

intermediate and lateral plate mesoderm (40–43), while BAT originates from paraxial mes-

oderm (44). The origin of scWAT is still under dispute, with evidence indicating that the 

progenitor cells for this AT originate from both mesoderm and neuroectoderm (45–48). 

Additionally, each type of fat depot consists of distinct and different precursor/progenitor 

populations that are regulated by various factors affected by age, gender, and environ-

mental conditions. The recent advances in lineage tracing strategies, as well as gene ex-

pression studies, showed that white and brown adipocytes originate from different 
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mesenchymal stem cells (MSCs). In brief, vWAT depots are largely derived from progen-

itors expressing Wilms tumor 1 (Wt1) (42,49,50) and scWAT depots mainly originate from 

paired related homeobox 1 (Prx1) expressing progenitors (51–55). Although in the past, it 

was believed that myogenic factor 5 (Myf5), paired box 3 (Pax3), and paired box 7 (Pax7) 

expressing progenitors were only responsible for the formation of BAT, it is now under-

stood that scWAT depots of the dorsal–anterior body regions also partly share their origin 

with the above-listed progenitors (17,47,56–59). Thus, it may be noted that even though 

adipocytes may develop from a common lineage, they may or may not have similar func-

tions.  

Several studies have noted that the existence of various cell surface markers may be 

used as a strategy to isolate beige and brown progenitors (60). In humans, it was found 

that Cd34+/Cd31- and Cd34+/Cd146-/Cd45-/Cd56- cells were BAT progenitors in small 

vessels and fetal muscles, respectively (61). Cd29+/Cd31-/Cd34-/Cd45- progenitor cells 

lead differentiation to the beige adipocytes within the scWAT depots of humans (62). 

Moreover, beige adipocytes progenitors in mouse scWAT are marked by Cd81+/Sca1/Lin- 

and the Cd81+/Pdgfα+/Lin- mark the beige progenitors in human scWAT (63).  

One can assume from these studies that Cd34 and Cd81 may be used as markers to 

identify brown and beige progenitors, respectively. However, isolation of different adipo-

cytes based on such cell surface markers must be done cautiously considering factors such 

as the location of the depots within which the progenitors have resided and the effect of 

the surrounding microenvironment (64). It is also known that adipocyte progenitors ex-

press platelet-derived growth factor receptors α (Pdgfrα) and β (Pdgfrβ) (65). In ex vivo 

studies, the presence of both Pdgfrα and Pdgfrβ in adipose stromal cells (ASCs) was con-

firmed (66). However, in adult mice, the progenitors only expressed either Pdgfrα or Pdg-

frβ (67,68). Using Pdgfrα Cre recombinase mouse models, the existence of the Pdgfrα ex-

pressing cells during the normal establishment of WAT was shown. However, the exist-

ence of multiple Pdgfrα+ populations that some of them are not adipogenic further indi-

cates that Pdgfrα expression alone cannot be used to identify adipocyte progenitor popu-

lations within WAT (37). Studies in humans and mice have confirmed that commitment 

towards either beige or white adipogenesis is predetermined by the balance between Pdg-

frα and Pdgfrβ signaling in adipocyte progenitors, and a high level of Pdgfrα expression 

precedes ASCs differentiation into beige adipocytes. Also, in vitro studies showed that 

during the initial stages of adipocyte lineage development, Pdgfrβ signaling promotes 

white adipogenesis, whereas Pdgfrα signaling is followed by brown adipogenesis (69). As 

a result of impaired β-adrenergic signaling (a common cue for initiation of browning), a 

subset of Pdgfrα+/Cd34+/Cd29+ progenitors in scWAT expresses myoblast determination 

protein (MyoD); which supports beige adipogenesis following cold acclimation. How-

ever, these MyoD derived beige adipocytes are different from standard beige adipocytes 

in terms of their developmental origin and their metabolism with these beige adipocytes 

having enhanced glucose metabolism and therefore, named as glycolytic beige adipocyte. 

It is now postulated that multiple subtypes of beige thermogenic adipocytes exist and 

their functions vary based on the nature of external stimuli, such as cold acclimation or 

diet (70). 

3. Molecular Circuits Regulating Brown and Beige Adipose Tissue Development and 

Function 

Adipocyte differentiation happens when multipotent stem cells commit to forming 

preadipocytes that further undergo terminal differentiation to form mature adipocytes. 

Despite the differences in developmental origins of brown and beige adipocytes, both cell 

types share a similar transcriptional cascade involving a distinct chromatin landscape 

governing a vast gene expression program that controls the process of fat differentiation. 

The chromatin landscape itself comprises an intricate and complex network of transcrip-

tional regulators (transcription factors and cofactors), epigenetic factors (histone marks 
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and chromatin methylation), and non-coding RNAs (long non-coding RNAs and mi-

croRNAs). 

3.1. Transcriptional Regulation of Brown and Beige Adipocytes  

Transcription factors (TFs) are DNA binding proteins that activate or repress RNA 

polymerase II (Pol II)-mediated transcription. These proteins bind to DNA sequences at 

promoter or other regulatory regions such as enhancers. The core transcriptional machin-

ery coordinated by peroxisome proliferator-activated receptor gamma (Pparγ) and mem-

bers of the C/ebp family of transcription factors (TFs) governing the differentiation pro-

cess of adipocytes are similar for all types of fat cells and have been extensively discussed 

elsewhere (16,71–73). Various TFs, cofactors (corepressors and coactivators), and nuclear 

receptors (NRs) which regulate the process of white versus brown lineage commitment 

are already known and coordinate functionally in a concerted manner to modulate the 

principal adipogenic transcriptional machinery. Overall, the process of formation of beige 

and brown AT by TFs is mainly regulated via a two-fold mechanism i.e., either activation 

of BAT and beige-selective genes or by suppressing WAT-specific genes. Here, we de-

scribe the main brown and beige fat-selective signatures of TFs.  

 Early β-cell factor 2 (Ebf2) is a marker of committed brown adipocytes that inhibits 

the expression of MyoD and muscle-specific transcription factor (myogenin) (33,74). The 

high expression level of Ebf2 in adult human brown preadipocytes suggests its role in 

brown preadipocyte determination (75). Ebf2 also promotes brown adipocytes differenti-

ation by recruiting Pparγ to its BAT-selective binding sites (74). Ebf2 knockdown dimin-

ished the brown fat-specific features of BAT (74). Besides, Ebf2 overexpression in WAT 

induces browning and thermogenesis (76). 

 Ewing sarcoma (Ews) regulates the expression of bone morphogenic protein 7 

(Bmp7) and thereby plays an important role in the commitment of early mesenchymal 

progenitors to brown adipocytes. Ews is also involved in the differentiation process of 

BAT as the brown preadipocytes isolated from the newborn Ews null mice did not differ-

entiate ex vivo. In addition, decreased number of multilocular lipid droplets and mito-

chondria, as well as reduced Ucp1 expression in the BAT of Ews null mice, indicates the 

critical role of Ews in brown fat phenotype and thermogenic function. Ews also plays role 

in the browning of WAT as the Ews heterozygous mice showed fewer beige cells formed 

in the WAT exposed to the browning stimuli such as Pparγ agonists and β3-adrenergic 

stimulation (77). The role of Ews in controlling the thermogenic function of beige and 

brown AT is proposed to be via stabilizing Pgc1α (78).  

 Y box binding protein 1 (Ybx1) is a cold shock domain protein that together with 

Ews regulates the Bmp7 expression through which plays a role in the commitment of pre-

cursor cells to BAT. In the same complex with Ews, Ybx1 also regulates the differentiation 

of brown preadipocytes (77). We recently demonstrated a critical role of Ybx1 in priming 

and maintaining the thermogenic capacity during adipogenesis (79). 

 Heat shock factor 1 (Hsf1) deficient mice are more sensitive to low temperatures, 

reduced Ucp1 expression in scWAT and BAT, and decreased thermogenesis and β-oxida-

tion indicating an overall reduced brown and beige tissue functionality (80,81). 

 TATA-binding protein-associated factor 7L (Taf7l), the study by Zhou et al. per-

formed in mice as well as in cell lines introduced the Taf7l as a commitment factor that 

enhances the brown fat lineage as compared to muscle. Taf7l mediates the loop formation 

in chromatin bringing together the distal enhancer regions and the promoters, and in that 

way controls the expression of BAT-selective genes (82). 

 Zinc finger in the cerebellum 1 (Zic1) has been described with a controversial role 

in beige and BAT formation. Overexpression of Zic1 in C3H10T1/2 mouse MSCs attenu-

ated the expression of BAT-selective genes and increased the expression of myogenic 

genes (83). In mice, however, the expression of Zic1 mRNA was increased in WAT with 

cold-induced browning (84). 
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 Zinc finger and BTB domain-containing protein 16 (Zbtb16/Zfp14) is increased 

in BAT during adaptive thermogenesis in mice (85,86) and also promotes the WAT brown-

ing and thermogenic function in vitro in cells. 

 Zinc finger protein 238 (Zfp238) expression is induced upon β-adrenergic stimu-

lation in scWAT of mice. Zfp238 suppresses the inhibitory role of Foxo1 and increases the 

expression of thermogenic genes. The adipose-specific Zfp238 KO mice and 3T3-L1 cells 

significantly decreased Ucp1 expression (87). 

 PR domain zinc finger 16 (Prdm16) is a TF promoting brown and beige adipocyte 

differentiation and repressing the myogenic program (56,88). The role of Prdm16 in initi-

ating the brown/beige program versus myogenic is fulfilled by being in the same complex 

with histone methyltransferase Ehmt1 with its inhibitory role on the myogenic program 

(89). The role of Prdm16 in inhibiting the WAT gene expression is via interacting with 

carboxy-terminal binding proteins, Ctbp1 and Ctbp2 co-repressor complexes (90). Lack-

ing Prdm16 in Myf5 positive progenitors does not affect BAT and beige development, due 

to the potential compensatory role of Prdm3 (91). In the same complex with C/ebpβ and 

Pparγ, Prdm16 functions to promote brown/beige adipogenesis (56,92). In addition to its 

role in determining brown/beige fat identity and adipogenesis, Prdm16 is also important 

in maintaining the brown fat identity by binding to the enhances of brown-selective genes 

and working together with the mediator complex to establish an enhancer-promoter loop 

leading to the expression of Pparα and Pgc1α (93). Also, Prdm16 directly interacts with 

Pgc1α and induces its transcription (88,91,94). Prdm16 also inhibits the signaling of re-

pressor type 1 interferon response genes thereby preventing mitochondrial dysfunction 

and reduced Ucp1 levels (95). Prdm16 regulates the browning of WAT as its overexpres-

sion increases beige adipocytes and thermogenesis in WAT while its deficiency inhibits 

beige adipocyte formation (96,97). 

 PR domain zinc finger 3 (Prdm3) has a complementary role to Prdm16 especially 

during early developmental stages in mice and, interacts with mediator complex subunit 

1 (Med1) at chromatin level to regulate the brown-specific program. As a commitment 

factor, Prdm3 also induces the expression of Ucp1 and Pgc1α in C2C12 myogenic cells 

(91,93). 

 Pparγ co-activator 1A (Pgc1α) plays a crucial role in cold-induced thermogenesis 

and thermogenic maintenance in differentiated brown and beige adipocytes. Pgc1α ex-

pression is highly induced in response to the cold and upon its further activation after 

being phosphorylated as a downstream target of the cAMP pathway, Pgc1α interacts with 

several TRs including Prdm16 and Pparγ and activates the thermogenic genes (98,99). 

Among others, the Pgc1α-Irf4 complex regulates the Ucp1 gene expression (100), the com-

plex formed by thyroid hormone receptor (TR), Pgc1α, Prdm16, and Med1 also activates 

Ucp1 transcription (94,101). The complex formed by Pgc1α and nuclear respiratory fac-

tors, Nrf1 and Nrf2, promotes the activation of several mitochondrial genes (102). Pgc1α 

overexpression induces the thermogenesis in adipocytes and myocytes (103,104). Brown 

adipocytes lacking Pgc1α express almost the same level of Ucp1 and other thermogenic 

genes, however, show a lower level of Ucp1 expression in response to the adrenergic stim-

uli (105,106). Pgc1α is also required for the browning of WAT (107). 

 Interferon regulatory factor 4 (Irf4) interacts with Pgc1α upon cold stimuli and 

regulates the expression of Ucp1 through binding to its regulatory regions on the chroma-

tin (100).  

 Zinc finger protein 516 (Zfp516) also increases brown adipogenesis as well as ther-

mogenesis upon cold induction by interacting with Prdm16 which activates Ucp1 and 

Pgc1α gene expression (108). 

 cAMP-responsive element-binding and activating transcription factor 2 (Creb-

Atf2); cold induction increases the adrenergic pathways as well as the intracellular levels 

of cAMP. This leads to PKA-dependent phosphorylation and activation of Creb and Atf2 

which will further result in activation of Ucp1 and Pgc1α gene expression (109). 
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 Forkhead box protein C2 (Foxc2) expression increases beige adipocyte formation 

by promoting the protein kinase A (PKA) activity that is a main downstream kinase acti-

vated by adrenergic pathway upon cold induction (110). The Foxc2 transgenic mice that 

show increased mitochondrial number and respiration in scWAT do not gain weight on 

the high-fat diet (HFD) as compared to the control mice. Also, the expression of Foxc2 in 

3T3-L1 cells inhibits adipogenesis by blocking the Pparγ expression (111). 

 Krüppel-like factor 11 (Klf11) expression is induced in vitro in human white adi-

pocytes in response to Pparγ agonist, rosiglitazone, and via maintaining the association 

of Pparγ with super-enhancers of beige-selective genes, Klf11 promotes beige adipocyte-

selective gene expression (112).  

 Krüppel-like factor 9 (Klf9) in vitro and in vivo in mice regulates the cold-induced 

browning of WAT and thermogenic function of AT through enhancing the Pgc1α expres-

sion (113). 

 GA-binding protein α (Gabpα) is the TF expressed in myoblasts that inhibits my-

ogenesis and promotes adipogenesis and beige fat development. In vitro, in C2C12 my-

oblasts, Gabpα expression increased beige adipogenesis to the levels comparable to 

Prdm16. The interaction between Pgc1α and Gabpα is also shown to stimulate mitochon-

drial biogenesis and the OXPHOS (mitochondrial oxidative phosphorylation) program 

(114–116). Gabpα expressing beige adipocytes unlike other beige adipocytes have a higher 

glucose oxidation rate than FA oxidation (70). 

 Nuclear receptors including the Reverbα (117,118), Errα (119), Εrrγ (119), Rxrα 

(120), and Nur77 (121) have been described to positively regulate the brown and beige 

adipose development and function. 

Several TFs and activating cofactors are shown to have negative effects on 

beige/brown fat formation and function including Hes1 (122), Irx3 (123), Irx5 (123), Rip140 

(124–126), Tle3 (127), Zfp423 (128,129), Hoxc8 (130), Hoxc10 (131), Twist1 (132), Foxa3 

(133,134), Foxo1 (135,136), Foxp1 (137), Rb (138), Src2 (Tif2), Smad3 (139), Usf1 (140), Mrtfa 

(141), Lxr (142), and P107 (143–145). Transcriptional repressors such as Ctbp1 and Ctbp2 

(90,146) suppress the WAT gene expression and promote the browning of WAT. 

3.2. Epigenetic Regulation of Brown and Beige Adipocytes 

Epigenetic regulation is a heritable mechanism that includes DNA modifications, 

mainly DNA methylation, and histone modifications altering gene transcription without 

changes in DNA sequence. The chromatin landscape governs brown/beige differentiation 

and commitment, and its activation is regulated by a tight collaboration between TFs and 

epigenetic modifiers.  

Chromatin immunoprecipitation (ChIP) of Pparγ, the master regulator of adipogen-

esis, combined with deep sequencing (ChIP-seq) analysis revealed that up to 55% of Pparγ 

binding sites are similar among the prevalent fat types i.e., BAT, scWAT, and vWAT with 

only 10% of the Pparγ binding sites being specific to BAT. Also, only a 10% difference in 

the Pparγ binding sites was recognized in BAT versus WAT upon rosiglitazone (PPARγ 

agonist) treatment, further confirming that beige and brown AT characteristics are ac-

quired from small specificity of the chromatin landscape (74,112,147). Using transgenic 

Nuclear tagging and Translating Ribosome Affinity Purification, NuTRAP mice, and Nu-

TRAP reporters in adipocytes, the transcriptomic and epigenomic profiles of beige, 

brown, and white adipocytes are defined in vivo. These strategies further confirmed the 

stability of chromatin landscape in BAT and the plasticity of beige adipocytes upon tem-

perature change (148).  

The enrichment of active histone marks such as H3K4me1/2/3 and H3K27ac at DNA 

regulatory regions (promoter and enhancer) promotes the expression of nearby genes. 

Contrarily, the recruitment of repressive histone marks such as H3K27ac, H3K27me3, 

H4K20me3 to DNA regulatory regions suppresses the gene expression. Active histone 

marks such as H3K4me1/2 and H3K27ac are enriched in BAT and not WAT lineage en-

hancers (149). Ucp1 promoters in BAT are enriched in active histone mark H3K4me3, and 
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in WAT are enriched in H3K27me3 repressive mark (150). The expression of repressive 

histone marks is diminished upon cold induction in brown adipocytes (151). Overall, the 

recruitment of active histone marks to the regulatory regions of BAT-selective genes 

seems to play an important role in the expression of these genes.  

Several histone methyltransferases and demethylases have been identified to regu-

late the chromatin landscape in brown fat through alteration of the active and repressive 

histone marks (152,153). For instance, the ubiquitously transcribed tetratricopeptide re-

peat on chromosome X (Utx) through coordinated regulation of H3K27me3 demethyla-

tion and H3K27 acetylation switches the transcriptionally repressive to the active state at 

the promoters of Ucp1 and Pgc1α, thereby, positively modulating BAT thermogenesis 

(150,154). Additionally, demethylation of H3K27me3 by Jmjd3 is also necessary for the 

expression of BAT-selective genes and for the development of beige adipocytes both in 

vitro and in vivo (150). In response to acute cAMP stimuli, jumonji domain-containing 1A 

(Jmjd1a) demethylates the repressive H3K27me3 in brown adipocytes and regulates the 

Ucp1 gene expression (155). Lysine-specific histone demethylase 1 (Lsd1), through inter-

action with Zfp516 (brown fat-enriched and cold-inducible TF), is recruited to Ucp1 and 

other BAT-selective genes such as Pgc1α, to work as a coactivator by demethylating H3K9 

(156). Mll4/Kmt2d co-localizes with lineage-determining TFs on active enhancers and its 

deletion significantly reduces the H3K4me1/2 active histone mark and polymerase II lev-

els on enhancers which consequently impairs brown adipogenesis in mice (157). Euchro-

matic histone-lysine N-methyltransferase 1 (Ehmt1) is a BAT enriched methyltransferase 

that controls brown adipose cell fate and its loss in brown adipocytes in vivo diminishes 

brown fat characteristics and induces muscle differentiation through demethylation of 

histone 3 lysine 9 of the muscle-selective genes (89). Histone deacetylase 3 (Hdac3) acti-

vates estrogen-related receptor α (Errα) in BAT, which itself is governed by deacetylation 

of Pgc1α and is essential for the transcription of Ucp1, Pgc1α, and OXPHOS genes which 

are engaged and necessary for thermogenic programming (158). Kmt5c methyltransferase 

regulates the expression of thermogenic genes by increasing the H4K20me3 repressive 

mark in the vicinity of enhanced transformation-related protein 53 (Trp53) promoters 

(159). 

Brahma homolog related gene 1 (Brg1), a member of the SWI/SNF family plays a 

central role for thermogenesis on β-adrenergic activation by forming a complex with 

Jmjd1a and Pparγ; wherein this complex enhances Ucp1 expression by facilitating the en-

hancer-promoter chromatin looping (155). Additional roles of histone modifiers including 

histone acetyltransferases (Hats), histone deacetylases (Hdacs), histone methyltransfer-

ases (Hmts), and histone demethylases have been comprehensively reviewed by Nanduri 

(160).  

The role of DNA (de)methylation events in beige and brown AT development and 

function are well discussed by others (161). Several genes including members of the Hox 

family genes are identified to be differentially methylated between white and brown fat 

tissue implying the role of methylation in lineage specificity (162). DNA methylation at 

CG sites on the Ucp1 enhancer regions is decreased with cold-induced browning in WAT. 

DNA methylation inhibitor, 5-azacytidine, increases the expression of Hox genes (mainly 

Hoxc10), thereby suppressing the browning of WAT (131,162). In mice, Dnmt1 expression 

leads to the development of brown fat versus muscle by increasing the DNA methylation 

at the MyoD1 promoter and thereby inhibiting the expression of the muscle-specific gene, 

MyoD1 (163). DNA demethylase ten-eleven translocation 1 (Tet1) inhibits the thermo-

genic function of BAT by suppressing the thermogenic gene, Hdac1. The expression of 

Tet1 is decreased with cold-induced browning of scWAT in mice, and the Tet1-KO in 

WAT showed enhanced thermogenic function in adipocytes as measured by the expres-

sion of the thermogenic genes including Ucp1 and Pgc1α (164). 

3.3. Non-Coding RNAs 
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In addition to TFs and epigenetic regulation, non-coding RNAs including mi-

croRNAs (miRNAs) and long-noncoding RNAs (lncRNAs) have been found to play im-

portant roles in beige and brown fat commitment, differentiation, and function either by 

repressing or inducing the expression of genes involved in these processes.  

3.3.1. MicroRNAs (miRNAs) 

MicroRNAs (miRNAs) are small (21 to 25 nucleotides) non-coding RNAs, fundamen-

tal to the regulation of gene expression. They are processed by RNase III enzymes, Drosha 

and Dicer, in the nucleus and cytoplasm respectively. In the cytoplasm, the mature 

miRNA is loaded into the RNA-induced silencing complex (RISC), which contains Argo-

naute 2 (AGO2), the protein responsible for guiding the mature miRNA to its target 

mRNA. Once the miRNA-RISC complex binds to its target mRNA, translation is inhibited 

and, in some cases, mRNA is destabilized and degraded (165). The importance of this 

pathway to adipocyte differentiation and function is evidenced by in vivo studies where 

deletion of AT Dicer or the Drosha’s cofactor, Dgcr8, almost completely ablated the pro-

duction of mature miRNAs in the targeted cell, and altered WAT and BAT distribution, 

morphology and function (166). Additionally, studies have also evaluated the contribu-

tion of individual miRNAs and described their role in beige and brown fat formation and 

function (167). For instance, miR-133 represses the adipogenic lineage commitment of sat-

ellite cells by decreasing the expression of Prdm16. During cold exposure, miR-133 is 

downregulated leading to satellite cell-derived brown adipocytes (168). On the other 

hand, miR-328 and miR-193b induce brown adipogenesis and block muscle progenitor 

commitment, in part, through downregulation of β-secretase Bace1 (169). Moreover, miR-

30 was shown to regulate browning of WAT, and the thermogenic function of beige and 

brown adipocytes by targeting Rip140, a known thermogenic corepressor (170). 

3.3.2. Long Non-Coding RNAs (lncRNAs) 

The molecular regulation by RNAs is not limited to small RNAs and increasing evi-

dence has suggested that long non-coding RNAs (lncRNAs) also play a role in beige and 

brown development and function (171). LncRNAs are RNA molecules with more than 200 

nucleotides in length and their mechanism of action includes chromatin remodeling, chro-

matin interactions, natural antisense transcripts (NATs), as well as interacting with RNA 

binding proteins in the cytosol (172). Studies evaluating the role of lncRNAs in beige and 

brown fat formation and thermogenesis have observed the interaction of the lncRNA-

Blnc1 with the TF of Ebf2 and the zinc finger protein Zbtb7b. Mechanistically, these factors 

form a ribonucleoprotein complex with lncRNA-Blnc1 and stimulate a thermogenic gene 

program in beige and brown adipocytes (173–175). The lncRNA-BATE1 was also shown 

to positively regulate the beige and BAT formation. In the cytosol, lncRNA-BATE1 binds 

to the RNA binding protein Celf1, which is known to bind to the Pgc1α mRNA inducing 

its degeneration and suppressing its translation (176). 

4. Thermogenesis Pathways and Players 

The browning process involves trans-differentiation of mature white adipocytes or 

de novo adipogenesis of beige adipocytes. It can be induced by adrenergic stimuli, HFD 

feeding, and cold exposure (177–180). This de novo adipogenesis process involves prolif-

eration and differentiation of beige adipocytes from its progenitor pool which are present 

in adipose vasculature mural cells as well as smooth muscle cells that express smooth 

muscle actin (Sma), Myh-11, or Pdgfrα (181). Another contribution to the overall beige fat 

content is by activation of dormant beige adipocytes which is also considered a trans-

differentiation process as no intermediate progenitors are involved (21,67,180,182–185). 

While current tracing technologies are unable of distinguishing between white to beige 

adipocyte trans-differentiation and the activation of dormant beige cells, Sebo & 
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Rodeheffer have extensively discussed existing strategies available for lineage segregation 

of adipocytes (186). 

Initiation of various signaling processes in AT may lead to thermogenic activation of 

BAT and browning of WAT. Several receptors on AT play a central role in such pathways 

leading to the increased thermogenic function of adipocytes. The physiological ligands for 

such receptors on adipocytes are either adipokines secreted by AT itself (187–189) or fac-

tors released from the various organs in response to environmental challenges such as 

cold, fasting, feeding, and exercise (190). Here, we summarize the main signaling path-

ways described in WAT browning and thermogenic activation. 

Adrenergic signaling: ADRβ3 is the main receptor on AT involved in adrenergic 

pathways related to adaptive thermogenesis in brown or beige adipocytes. Norepineph-

rine (NE) released from the sympathetic nervous system (SNS) and M2 macrophages 

(188,191,192) is the primary ligand of ADRβ3 that upon binding activates the protein ki-

nase A (PKA) and subsequently activates the p38 MAPK and thyroxine 5’-deiodinase 

leading to the induction of thermogenic gene program (137,193,194). 

Thyroid hormone (TH) signaling: the main TH receptors in adipocytes are TH re-

ceptor α (TRα) that mediates synergistic effects of TH signaling and SNS, TH receptor β 

(TRβ) that modulates the expression of Ucp1. During the thermogenic adaptation, the thy-

roxine (T4) released from the hypothalamic-pituitary-thyroid axis after entering the AT 

will be converted into the triiodothyronine (T3) by type II thyroxine 5’-deiodinase (Dio2), 

an enzyme controlled by NE. Besides, TH affects the hypothalamus and promotes the 

AMP-kinase induction, and enhances the SNS function of NE production, leading to an 

increased thermogenic function (195). 

Bile acid signaling: the main bile acid receptor on AT is the G-protein-coupled bile 

acid receptor, Gpbar1 (TGR5). It has been shown that the bile acids released from the liver 

after a meal and bound to the TGR5 receptors on AT also contribute to the regulation of 

Dio2 expression by increasing the levels of cAMP(196). TGR5 signaling induces the WAT 

browning and thermogenesis by increasing lipolysis, free fatty acids (FFAs) production, 

and β-oxidation. TGR5 signaling also increases the number of mitochondria by inducing 

the mitochondrial fission (separates one into two) through the Erk/Drp1 pathway, further 

improving mitochondrial respiration (197). 

Angiotensin II signaling: the primary angiotensin II (AngII) receptors in AT are an-

giotensin type 1 or type 2 receptors (AT1R and AT2R). AT is a major source of AngII and, 

indicating the autocrine and paracrine role of AngII in regulating adipose functions and 

self-remodeling. The in vitro study conducted in mouse and human primary adipocytes 

showed that activation of AT2R increases the WAT browning and brown adipogenesis by 

increasing the Pparγ expression as well as enhancing the Erk1/2, PI3kinase/Akt, and 

AMPK signaling pathways. In mice also, AngII contributes to the browning of WAT and 

enhanced thermogenesis by increasing the adiponectin release and decreasing the levels 

of TNFα, TGs, and FFAs in blood serum (198). 

Fibroblast growth factors (Fgf) signaling: the Fgf receptor (FgfR)/b-Klotho com-

plexes are also located on the adipocytes cell surface in mice and humans. The main Fgfs 

regulating the BAT activity and WAT browning include Fgf15, Fgf19, and Fgf21 secreted 

from the liver, and Fgf6& Fgf9 released from the BAT. The main action of Fgf21 is con-

ducted by inducing the expression of Pgc1α, Fgf6, and Fgf9 that involve Fgf receptor-3 

(FgfR3), prostaglandin-E2, and interaction between estrogen receptor-related alpha, 

flightless-1 (FlII), and leucine-rich-repeat-(in FlII)-interacting-protein-1 as a regulatory 

complex for Ucp1 transcription. Fgf15 and Fgf19 increase the blood levels of Cxcl14 which 

is a batokine regulating the Ucp1 expression and thermogenesis (199–201). 

BMP signaling: BMP signaling relies on the binding of BMPs to type I and II BMP 

receptors on AT. The main BMPs regulating the thermogenic commitment and activity of 

beige and brown AT include BMP4, BMP7, and BMP-8b. Although BMPs are mainly 

known as adipokines, the precise source of BMP’s secretion remains elusive. BMP-8b is a 

batokine induced by nutritional and thermogenic factors in mature BAT which increases 
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the thermogenic activity of BAT by; I) increasing the p38 MAPK/Creb signaling and sen-

sitizing the BAT to NE, and II) acting on the hypothalamus increasing the AMP-activated 

protein kinase (AMPK) phosphorylation, leading to an anorexigenic state. BMP4 and 

BMP7 increase the Ucp1 expression and mitochondrial biogenesis via a p38 MAPK and 

Pgc1α dependent pathway (202–204). 

Natriuretic peptides (NPs) signaling: NPs are mainly released from the heart and 

bind to the natriuretic peptide receptors (NPRs) on the AT. Activating the cGMP-depend-

ent protein kinase (PKG), the action of NPs is additive to the effects of adrenergic signaling 

leading to BAT activation and browning of WAT (205–207). 

Irisin signaling pathway: in rodents and humans, exercise enhances the release of 

the irisin from the muscle. Although the irisin receptors in fat are still debated, the irisin-

induced thermogenic gene program was shown to be mediated via the integrin αV family 

of receptors. Irisin expression in muscle is regulated by Pgc1α expression. In AT, irisin 

induces the WAT browning and enhances the thermogenic activity of BAT (208,209). 

5. Brown and Beige Adipose Tissue Function 

Due to differences in the makeup and location of the fat itself, both brown and beige 

fat depots differ from white fat in terms of their physiological function, especially in terms 

of energy homeostasis and their secretory role. White fat is known to play a major role in 

FA biosynthesis and store energy in the form of TG whereas brown and beige fat are the 

important players in the process of heat dissipation/energy expenditure (219–221). These 

contradictory roles among different types of fat can be partly attributed to the difference 

in the mitochondrial proteome and lipid composition discussed below.  

5.1. Role of Brown and Beige Fat in Thermoregulation 

Unless exposed to extreme conditions or fluctuating temperatures, mammals can 

keep their body temperature within a narrow range which is critical for the survival of 

these species as the critical biochemical reactions that occur under normal physiological 

conditions are affected when core body temperature is disrupted (213). Brown and beige 

fat are important organs involved in thermoregulation. For instance, when humans are 

exposed to colder temperatures, BAT mass and activity are increased resulting in in-

creased cold tolerance (214–216). On the other hand, removal of BAT and beige AT in mice 

using genetic approaches leads to fatal hypothermia when these mice are exposed to cold 

(217). 

At the cellular level, brown and beige adipocyte mitochondria are rich in proteins 

involved in the tricarboxylic acid cycle (TCA), electron transport chain complexes I-IV, 

and FA oxidation (218). The main characteristic of both brown and beige adipocytes is the 

presence of Ucp1 at the inner membrane of mitochondria (219). Thermogenesis occurs 

when Ucp1 uncouples the proton motive force of the respiratory chain. Under normal 

conditions, the electron transport chain generates a proton gradient in the inner mitochon-

drial membrane which powers ATP production by ATPase. When Ucp1 is active, it trans-

fers the protons generated from the electron transport chain back across this membrane, 

dissipating the electrochemical gradient. Oxidative metabolism that is required to main-

tain the normal function of the cells consumes calories and leads to an increased temper-

ature of the cells (220). Thermogenesis by its nature is an energy-intensive process that 

upon activation increases the whole-body EE. To sustain this process, activated brown 

and beige fat depots require a continuous supply of substrates in the form of glucose, 

FFAs, and intracellular TGs. This directly contributes to reduced blood glucose, improved 

insulin sensitivity, TG serum clearance, loss of body fat, and consequently a general im-

proved metabolic health (221–223). 

Although Ucp1 mediated energy dissipation and its role in metabolism and ther-

moregulation have been most widely discussed in the literature, it is now understood that 

several other thermogenic mechanisms also exist. For example, at thermoneutral 
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temperature, deletion of Ucp1 has no effect on EE or weight gain when mice are submitted 

to HFD (224–228). When exposed to cold, Ucp1-/- gradually adapt to the temperature and 

maintain their normal body temperature (108,229–232).  

Though these Ucp1 independent mechanisms are predominantly studied in beige 

AT, they have also been detected in classic brown AT (233). Some Ucp1 independent ther-

mogenic pathways include; I) the endogenous uncoupler peptidase M20 domain contain-

ing 1 (Pm20d1) which produces N−acyl amino acid and independent from Ucp1 increases 

mitochondrial respiration and brown and beige fat thermogenesis (234), II) Slc25a25 

which transports ATP-Mg2+/P(i) across the mitochondrial inner membrane and produces 

heat independent from Ucp1 (235), III) the ADP/ATP carrier (AAC) in mitochondrial inner 

membrane mediates the proton leak from the intermembrane mitochondrial space to the 

matrix and dissipates the energy in the form of heat (236), IV) the futile creatine cycle also 

is known to dissipate the energy and produce heat in response to cold or β-adrenergic 

activation in mice and humans and inactivation of this cycle reduces the thermogenic po-

tential (237–240), V) the futile cycling of lipolysis/re-esterification in which ATP is used to 

produce the triacylglycerols, diacylglycerols, or monoacylglycerols from acylglycerol is 

Ucp1-independent and is activated in response to adrenergic stimuli in WAT and BAT 

(241,242), VI) the ATP-dependent Ca2+ cycling via Sarco/endoplasmic reticulum Ca2+-

ATPase2b (Serca2b) and ryanodine receptor 2 (Ryr2) is also an Ucp1-independent ther-

mogenic pathway. The activation of α1/β3-adrenergic receptors or the Serca2b-Ryr2 path-

way enhances the Ca2+ cycling thereby, increases the Ucp1 independent thermogenesis 

(243,244), and VII) the increase of adenine nucleotide translocase 2 (Ant2), an inner mito-

chondrial membrane, caused by high-fat diet feeding increases the protons leak and pro-

motes diet-induced thermogenesis independent from Ucp1 (245,246). 

5.2. Glucose and Lipid Metabolism by Brown and Beige Fat 

In addition to endogenous TG breakdown, circulating TG-rich lipoproteins are hy-

drolyzed by lipoprotein lipase (Lpl) and FFAs are taken up through transporters such as 

Fatp1 and Cd36 to meet the high supply of fuel demand for thermogenesis (247,248). 

Moreover, FFAs derived from WAT are also taken up by BAT via insulin-mediated trans-

location of the above-mentioned FA transporters (249). Paradoxically, mild cold exposure 

induces de novo lipogenesis (DNL) and this is required for optimum BAT function. This 

counterintuitive mechanism is believed to be important to restore lipid droplets and may 

contribute to the synthesis of signaling lipids. Furthermore, enhanced DNL is known to 

increase the levels of cellular acetyl-CoA and malonyl-CoA, which can be a source of ace-

tyl groups for protein lysine acetylation. This is turn, may regulate epigenetic signals in 

BAT to sustain thermogenesis (250). 

BAT and beige activation also increase insulin-independent glucose uptake, medi-

ated by AMPK pathway and the glucose transporters Glut1 and Glut 4. This leads to the 

hypothesis that thermogenesis activation may be used as therapy for insulin resistance 

and diabetes, which will be discussed later. In the cell, glucose will be utilized by the DNL 

pathway (251,252), stored as glycogen, or oxidized in the TCA cycle to feed the electric 

transport chain during thermogenesis activation (253). 

5.3. Secretory Role of Brown and Beige Adipose Tissue 

WAT is well known for its endocrine function due to the secretion of signaling mol-

ecules, so-called adipokines. These include leptin and adiponectin, and their impact on 

metabolism and appetite-control have been well studied. However, this secretory activity 

is not limited to white fat and intensive research is being carried out to gain information 

regarding brown and beige secretome (254,255). Brown and beige fat are already known 

to release hormonal factors such as peptides (adipokines), lipids (oxylipokines), and exo-

somal miRNAs collectively termed as “batokines” which have autocrine, paracrine, and 

endocrine functions and are responsible for various processes within the human body 
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such as EE, appetite control, lipid and glucose metabolism, insulin sensitivity, inflamma-

tion and tissue repair (256–258). The secretory activity of brown and beige fat is comple-

mentary to the process of thermogenesis itself leading to further recruitment and activa-

tion of these fats. For most of the paracrine factors released from these thermogenic adi-

pocytes, they act on cells present within the BAT such as preadipocytes, M2 macrophages, 

and endothelial cells consequently leading to differentiation and formation of mature ad-

ipocytes as well as increased vascularity. This intercellular communication is required for 

an efficient thermogenic process. There is still an ongoing debate as to how the secretory 

profile of beige AT differs from BAT as well as its implications. Also, some of the factors 

released by BAT have already been known to be majorly secreted by some other organs, 

causing an extra layer of complexity assigning an autocrine/paracrine/endocrine function 

to beige or brown AT. 

A complete secretory profile of brown and beige fat might potentially play a role in 

designing therapeutic interventions for the maintenance of metabolic health. Some of 

these factors within the categories mentioned above and their known biological functions 

are disclosed in Table 1. 

Table 1. Secretory Profile of Brown and Beige Adipose Tissue. 

Type of secretion 

 

 

Physiological Function 
Secreted by 

BAT/beige in vivo 
Secreted by 

BAT/beige 

in vitro 

Overall  

Thermogenic  

effect 

Target  

organs 
References 

Auto-

crine 

Para-

crine 

Endo-

crine 
Humans Rodents 

(a) Factors released for substrate utilization (Lipids) 

(1) 12,13-dihydroxy-9Z-octade-

cenoic acid (12,13-diHOME) 
YES N/A YES Brown 

 

Brown 

 

YES Positive BAT, SM, H (259–263)  

(2) 12-hydroxyeicosa 

pentaenoic acid (12-HEPA) 
YES YES YES Brown Brown YES Positive SM, BAT (259,264)  

(3) 14-hydroxydocosahexanoic 

acid (14-HDHA) 
YES N/A N/A Brown 

 

Brown 

 

YES Positive BAT (264) 

(4) Prostaglandins (PGs) YES N/A YES Brown 
Brown/ 

beige 
N/A Positive WAT, BAT (265–268) 

(b) Factors released for vascular regulation 

(1) Vascular endothelial growth 

factor A (VEGF-A) 
YES YES N/A N/A 

Brown/ 

beige 
N/A Positive 

BAT,  

WAT 
(269–272) 

(2) Nitric oxide (NO) YES YES N/A N/A 
Brown/ 

beige 
N/A Positive 

BAT,  

WAT 
(273,274) 

(3) Hydrogen peroxide (H2O2) YES YES N/A N/A 
Brown/ 

beige 
N/A Positive 

BAT,  

WAT 
(275) 

(4) Neuregulin-4 YES YES YES Beige 
Brown/ 

beige 
YES Positive L, SNS (276–279) 

(c) Factors released for regulation of thermogenesis and metabolic homeostasis 

(1) Fibroblast growth Factor 21 

(FGF21) 
YES YES YES 

Brown/ 

beige 

Brown/ 

beige 
YES Positive 

H, P,  

SNS, 

WAT, 

BAT  

(280–287) 

(2) Fibroblast growth Factor 6& 

9 (FGF6 & FGF9) 
N/A YES N/S 

Brown/ 

beige 

Brown/ 

beige 
Yes Positive BAT, WAT (201) 

(3) Endothelin-1 (ET-1) YES YES N/A N/A 
Brown/ 

beige 
YES Negative BAT, WAT (288) 

(4) Angiopoietin-like 8 

(ANGPTL8) 
YES YES N/A Brown Brown YES Negative BAT (289–291) 

(5) Angiopoietin-like 4 

(ANGPTL4) 
YES YES N/A Brown Brown  YES Negative BAT (292–294) 

(6) Growth and differentiation 

Factor-8 (GDF-8/myostatin) 
YES YES YES N/A Brown N/A Negative BAT, SM (295–297) 

(7) Triiodothyronine (T3) YES N/A ? Brown Brown YES Positive BAT (298–301) 

(8) Adenosine 

 
YES N/A N/A N/A Brown YES Positive BAT, WAT (302) 
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(9) Ependymin-related protein 1 

(EPDR1) 
YES YES N/A Brown Brown YES Positive 

BAT, 

WAT 
(303) 

(10) Follistatin-like 1 (FSTL-1) YES YES N/A N/A Brown YES Positive BAT (254,304) 

(11) Endocannabinoids YES YES N/A N/A Brown YES Negative BAT (305–307) 

(12) Low-density lipoprotein re-

ceptor relative, soluble form 

(sLR 11)  

YES N/A N/A N/A Brown YES Negative BAT (308) 

(13) SLIT2 and C-terminal frag-

ment of SLIT2 protein (SLIT-

2C) 

YES N/A N/A N/A 

Brown/ 

beige 

 

N/A Positive 
BAT, 

WAT 
(309,310) 

(14) Bone morphogenetic pro-

tein-8b (BMP-8b)  
YES YES YES N/A Brown YES Positive BAT, SNS 

(277,311,312

) 

(15) Insulin-like growth factor-

binding protein 2 (IGFBP-2) 
YES N/A YES YES 

Brown/ 

Beige 
N/A Negative B, BAT (313–317) 

(16) 3-methyl-2-oxovaleric acid YES YES YES Beige Beige YES Positive 
MC, BAT, 

WAT 
(318) 

(17) 5-oxoproline YES YES YES Beige Beige YES Positive 
MC, BAT, 

WAT 
(318) 

(18) β-hydroxyisobutyric acid YES YES YES Beige Beige YES Positive 
MC, BAT, 

WAT 
(318) 

(d) Factors released for regulation of immune cells within brown and/or beige adipose tissue 

(1) Interleukin-6 (IL-6) YES YES YES N/A 
Brown/ 

beige 
YES Positive 

MC, BAT 

WAT, P, H 

(286,319–

322) 

(2) C-X-C motif chemokine lig-

and-14 (CXCL-14) 
YES YES N/A N/A Brown  YES Positive BAT, MC (323) 

(3) Adiponectin YES YES N/A N/A Beige YES Positive WAT, MC (324) 

(4) Meteorin-like (METRNL) YES YES N/A N/A Beige YES Positive WAT, MC (325) 

(5) Growth and differentiation 

Factor-15 (GDF-15) 
YES YES N/A N/A 

Brown/ 

beige 
YES Positive BAT, MC (326,327) 

(6) Insulin-like growth Factor 

(IGF-1) 
YES N/A YES N/A Brown YES Positive BAT, L, MC (328–331) 

(7) Chemerin YES YES N/A N/A Brown YES Negative BAT, MC 
(254,332,333

) 

(e) Exosomal microRNAs 

(1) miRNA-99b N/A N/A YES N/A Brown N/A Negative  L (334) 

(2) miRNA-92a YES N/A N/A Brown Brown YES Negative BAT (335) 

(f) Additional regulatory factors 

(1) s100b and nerve growth fac-

tor (NGF) 
YES YES N/A Brown Brown YES Positive BAT (336–338) 

(2) Wingless-related MMTV in-

tegration site 10b (WNT10b) 
N/A YES N/A N/A Beige NA Negative BM (313) 

(3) Retinol binding protein-4 

(RBP-4) 
? ? ? N/A Brown YES ? - 

(254,339–

341) 

SM: Skeletal Muscle, MC: Recruitment of Macrophages, WAT: White Adipose Tissue (induction of browning/formation of beige phenotype), 

SNS: Sympathetic Nervous System, L: Liver, H: Heart, BAT: Brown Adipose Tissue, P: Pancreas, B: Bone (remodeling), BM: Bone Marrow 

6. Brown and Beige Adipose Tissue in Obesity, Aging and Metabolic Disease 

Obesity is the major contributor to the development of metabolic diseases such as IR, 

T2D, dyslipidemia, and CVD. These metabolic disorders are also observed during aging 

(342) raising the hypothesis that unhealthy excess of body fat may accelerate the aging 

processes. In this regard, diet-induced obese mice are shorter-lived compared to their con-

trols (343). Similarly, in obese humans, the risk of premature death is increased by 1.45 to 

2.76 folds (344). The pathophysiology of obesity and aging-associated diseases are com-

plex and share dysregulations at the cellular level (342,345). Consistent with this, robust 

evidence suggests that changes in AT distribution and metabolic dysfunction are impli-

cated in the development and disease progression during obesity and aging (346–348). 

Here we discuss how obesity changes AT biology and its implication for the development 

of the metabolic syndrome. Some factors altering the AT and contributing to obesity and 

aging are summarized in Figure 1. 
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Figure 1. The leading causes of obesity and aging are driven by adipose tissue distribution, func-

tion, and environment. Contributions of the central nervous system (CNS), sexual dimorphism, 

diet, life style, and adipose tissue distribution to obesity and aging are well known. In addition, 

the composition of adipose tissue itself with increased collagen, extra cellular matrix (ECM), reac-

tive oxygen species (ROS), immune cells, macrophages, and senescent cells is another major con-

tributor to obesity and aging. Furthermore, the functionality of mitochondria and endoplasmic 

reticulum (ER) in adipocytes plays an important role in preventing obesity and aging complica-

tions. Figure created with ©BioRender.io. 

6.1. Adipose Tissue Distribution 

In humans, AT distribution can be influenced by sexual hormones, diet, and aging. 

In general, females exhibit higher scWAT (gynoid fat deposition) and BAT mass, while 

vWAT is more preeminent in men (android fat deposition) (349). During obesity, even 

though AT expansion is observed in all types of fat depots, female subjects very often 

present lower visceral and larger subcutaneous AT compared with males (350). This sex-

ual dimorphism is also observed in BAT, where BAT mass (30), and Ucp1 mRNA expres-

sion are still higher in women (351). Genetics and hormones are the major players in sex-

ual dimorphism (352), however, some evidence suggests that these differences persist 

even after menopause (30). Interestingly, this dimorphism is associated with a lower risk 

to develop metabolic diseases in women and may contribute to a longer lifespan com-

pared to men (353). 

6.2. Metabolic Function  

It is now appreciated that AT function is also regulated in a sex-dependent manner 

that is widely reviewed elsewhere (349,354,355). Here we will give an overall view of some 

biological processes that are impaired in the AT of obese mice and humans. These pro-

cesses are interconnected and mediate the development of obesity-associated diseases. 

6.2.1. Sympathetic Nervous System (SNS)  

Overactivation of the sympathetic nervous system is often observed in obese subjects 

which contributes to the development of high blood pressure and cardiovascular diseases 

(356–360). In AT, hyperactivation of the SNS pathway induces negative feedback, and 

downregulates the abundance of adrenergic receptors, decreasing the lipolytic (357), and 

thermogenic capacity (361). This contributes to an increased WAT expansion, whitening 
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of beige adipocytes (362), and decreased basal EE. Additionally, whitening of beige fat 

induces macrophage infiltration, brown adipocyte death and increased senescent cells, 

crown-like structure (CLS) formation, fibrosis, and local inflammation (362).  

6.2.2. Endoplasmic Reticulum Stress (ER)  

This organelle is composed of a membranous network responsible for the synthesis, 

maturation, and trafficking of proteins. It is also highly sensitive to nutrient availability. 

Upon nutrient overload, the increased protein synthesis followed by their misfolding and 

accumulation in the ER lumen induces ER stress. As a result, proteins from the unfolded 

protein response (UPR) Atf6, Perk, and Ire1 are recruited to reestablish the ER homeosta-

sis (363). In obesity, this process is hyperactivated in multiples tissues including adipose. 

This contributes to AT inflammation and insulin resistance (364,365). Mechanistically, 

Atf6 and Perk acts through activation of NF-kB which translocate to the nucleus and in-

duces the expression of pro-inflammatory cytokines such as IL-1 and TNFα, while Ire1a 

interacts with the tumor necrosis factor-a (TNFα)-receptor-associated factor 2 (Traf2), ac-

tivates Jnk and IkB kinase (IKK) and downstream mediators of inflammation (363,366). 

Adipocyte ER stress also leads to increased basal lipolysis through downregulation of 

perilipin and insulin receptor, decrease adiponectin assembling and secretion as well as, 

decrease in leptin release (366,367). 

6.2.3. Mitochondrial Dysfunction 

As the central contributors to energy metabolism, mitochondria play key roles in the 

production of ATP, oxidative phosphorylation, production of reactive oxygen species 

(ROS), and Ca2⁺ homeostasis. Mitochondria also play an important role in AT homeostasis 

and remodeling (368,369). The rate-limiting steps of oxidative reaction that regulate the 

thermogenesis in the beige adipocytes take place in mitochondria. Brown and beige fat 

depots are packed with mitochondria (the cells’ tiny power plants) with high expression 

of Ucp1 across the mitochondria inner membrane which uncouples the respiratory chain 

from ATP (energy) and thereby, it increases thermogenesis by heat production. The 

browning of the WAT is accompanied by an increase in the number of mitochondria 

caused by de novo biogenesis of mitochondria as well as mitochondrial fission (fission 

separates one into two) (370). Contrarily, a reduced number of mitochondria resulted from 

mitochondrial fusion (fusion joins two mitochondria together), and mitochondrial disap-

pearance (mitophagy) is reported during beige to white fat transition (371,372). Mitochon-

drial dysfunction is present in many organs including WAT and BAT. It is characterized 

by increased mitochondrial DNA (mtDNA) mutations and damage, decreased oxidative 

phosphorylation (OXPHOS), reduced activity of metabolic enzymes, as well as changes in 

mitochondrial morphology, dynamics, and biogenesis (373–375). In line with this, multi-

ple symmetric lipomatosis (MSL), an adipose disorder (AD) characterized by upper body 

lipomatous masses, is frequently linked to multiple mutations in mitochondrial genes 

such as Mttk (gene encoding mitochondrial tRNA lysine involved in the assembly of pro-

teins that carry out oxidative phosphorylation), and Mfn2 (gene encoding mitofusin 2 that 

helps to regulate the morphology of mitochondria by controlling the fusion process) 

(376,377). 

6.2.4. Inflammation and Endocrine Dysfunction 

During obesity, adipocytes increase in size and number to accommodate the excess 

of nutrients in form of lipids. Excessive expansion of WAT followed by capillary rarefac-

tion triggers a cascade of the biological processes including, ER-stress, mitochondrial dys-

function, hypoxia, changes in extracellular matrix mobility, and adipocyte death which 

are thought to contribute to inflammation (378). Activation of the inflammatory response 

leads to the secretion of several pro-inflammatory factors TNFα, Il-1b, Il-6, and monocyte 

chemoattractant protein (Mcp-1) from adipocytes (379,380). This is accompanied by 
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infiltration of immune cells such as M1 macrophages (381), Cd8+ T cells (382), B cells (383), 

and eosinophils (384), thereby enhancing local and systemic inflammation (385). The 

chronic low-grade inflammatory state observed in obesity is an important contributor to 

AT insulin resistance (IR). This is important because impaired insulin signaling in adipo-

cytes leads to uncontrolled basal lipolysis, which can induce cell death, and also increase 

the circulating levels of FFAs. In turn, this leads to lipids accumulation in non-adipose 

organs inducing systemic IR and increasing the risk to develop cardiovascular disease and 

T2D (386–388). 

7. Activation of Thermogenesis as Therapy for Obesity-Associated Metabolic Dis-

eases 

Over the years, the development of drugs to treat obesity was mainly focused on 

weight loss, primarily due to a reduction in food intake. Many of these molecules failed 

to meet the desired efficacy and some of them were even withdrawn from the market 

because of their limited success and harmful side effects (389,390). This, with the observa-

tion that adult humans have BAT with the capability to dissipate energy, activation of 

BAT and thermogenesis began to be envisioned as therapy. Ever since the development 

of interventions that can stimulate browning of WAT as well as BAT mass increase and 

activation have gained greater attention and will be discussed here. A summary of the 

potential therapeutic interventions for obesity and metabolic disorders accompanied by 

aging is shown in Figure 2. 

 

Figure 2. Illustration of the potential therapeutic interventions for the therapy of obesity. In-

ducion of the browning process, the transition from white to brown-like or beige adipocytes, 

holds a promising therapeutic potential to combat obesity and its complications. Several phar-

macological (small molecules, synthetic peptides, hormonal analogs) and non-pharmacological 

(natural products) interventions are known to induce browning. The role of environmental 

challenges such as cold exposure on white adipose tissue browning and thermogenesis is also 

identified. In addition, molecular-based therapies including CRIPR-based genome editing, 

RNA therapy, and 3D bioprinting are evolving approaches to alter the white adipocytes as a 

therapeutic target in obesity. Figure created with ©BioRender.io. 

7.1. Cold-Induced Thermogenesis 

Currently, cold exposure is the most effective intervention to activate BAT in obese 

humans improving whole-body insulin sensitivity and weight loss (391,392). Some candi-

dates have been strongly suggested to mediate the metabolic effect of BAT activation. One 

of the most well-investigated molecules is FGF21. This protein is mainly present in the 

liver, but it is also expressed in, skeletal muscle, pancreas, WAT, and BAT. Upon short-

term cold exposure, FGF21 expression in adipocytes is significantly increased (393,394). 

FGF21 induces browning of WAT in an autocrine manner (395) and enhances insulin 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 May 2021                   doi:10.20944/preprints202105.0008.v1

https://doi.org/10.20944/preprints202105.0008.v1


 17 of 39 
 

 

signaling in the same cell (396). Moreover, cold exposure also increases the circulating 

levels of FGF21 (397,398) which activates the SNS enhancing EE and weight loss (398).  

Most recently, another member from the FGF family, FGF9 was also demonstrated 

to be upregulated in the scWAT and BAT of cold-exposed mice. Exerting an autocrine-

paracrine regulation, FGF9 binds to FGFR3 receptor in adipocytes to regulate Ucp1 ex-

pression (399). In addition to proteins, cold exposure induces the secretion of lipid species 

from BAT including 12,13-diHOME and 12-HEPE, which enhance BAT fatty acids (6) and 

glucose uptake (400) respectively. Altogether, cold exposure triggers an intricate meta-

bolic network between the central nervous system (CNS) and AT which redirects the uti-

lization of circulating glucose and FFAs to support heat production ultimately improving 

WAT and BAT function and whole-body metabolism. 

7.2. Natural Thermogenic Compounds 

7.2.1. Berberine 

Berberine is a plant-based alkaloid compound traditionally used in Chinese medicine 

to treat diarrhea and some infectious diseases (401). Berberine has been extensively stud-

ied due to its potential as a cardioprotective, anti-hyperlipidemic, and antidiabetic com-

pound (402,403). Most recently, berberine was shown to induce Ucp1 gene expression in 

brown and white adipocytes through activation of 5' AMP-activated protein kinase 

(AMPK) leading to an increased BAT activity, improved EE, and decreased weight gain 

in db/db mice (404). More importantly, 1 month of berberine supplementation increased 

BAT volume and activity, reduced body weight, improved insulin sensitivity in patients 

with non-alcoholic fatty liver (405).  

7.2.2. Capsaicin and Capsinoids 

Capsaicin and its analog capsinoids are compounds found in red peppers (406). Sev-

eral studies have shown the anti-obesity, anti-diabetic, and anti-inflammatory effects of 

these compounds. In rodents, capsinoids supplementation improves glucose metabolism, 

hepatic lipid content and enhances cold-induced EE and WAT browning (407). In humans, 

chronic supplementation with capsinoids over 6 weeks decreased body weight and en-

hanced cold-induced thermogenesis in healthy adult men lacking detectable BAT, sug-

gesting that cold exposure in combination with capsinoid ingestion recruits the activation 

of brown and beige adipocytes (392). These adaptations occur through activation of the 

transient receptor potential cation channel subfamily V member 1 TRPV1 receptor (tran-

sient receptor potential cation channel subfamily V member 1) in the gut which sends 

signals to the CNS leading to β2-AR signaling activation in AT (407).  

7.2.3. Curcumin 

Curcumin is a well-known flavonoid found in turmeric root. It has many therapeutic 

properties including, antioxidant, anti-inflammatory, anti-diabetic, and anti-obesity (408). 

This is corroborated by the observation that curcumin supplementation reduces BMI, per-

centage of body fat, lower circulating leptin, and increased adiponectin levels in obese 

humans (409). Part of these effects may be explained by the induction of browning in WAT 

via AMPK activation (410,411) and inhibition of preadipocyte differentiation by downreg-

ulating the Pparγ and C/ebpα (412). In mice, supplementation with curcumin for 50 days 

induces higher expression of mitochondrial and thermogenic genes, higher NE levels, in-

creased β3-AR expression in scWAT, improved cold tolerance, and lower body fat (411). 

7.2.4. Green Tea 

Green tea is made from the leaves of Camellia sinensis and contains several different 

catechins, especially epigallocatechin gallate (EGCG), which accounts for about 50% to 

70% of green tea catechins, and caffeine (413). Green tea extract has several metabolic 
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properties such as antioxidant, anti-hypertensive, anti-carcinogenic, hypocholesterolemia 

and has also been shown to induce weight loss (414,415). This evidence is supported by 

the reduction of body weight, mainly due to loss of vWAT mass, in obese women and 

men subjects submitted to catechins supplementation (414,416). There are several poten-

tial mechanisms proposed to explain the anti-obesity effects of green tea compounds such 

as inhibition of de novo lipogenesis, increased FA oxidation, browning of WAT, and acti-

vation of BAT (415,417). The effect of thermogenesis seems to be dependent on the inter-

action between catechins, caffeine, and NE. At the cellular level, catechins inhibit catechol-

O-methyltransferase, one of several enzymes that degrade catecholamines, and caffeine 

inhibits phosphodiesterase resulting in higher levels of cyclic AMP (cAMP). This results 

in higher levels of NE and cAMP leading to fat oxidation and thermogenic activation 

(418). 

7.2.5. Resveratrol 

3,5,4′-trihydroxy-trans-stilbene (Resveratrol) is a natural compound that belongs to 

polyphenols’ group. It is found in more than 70 different plants including grapes and has 

gained greater attention over the years due to its biological properties including the 

weight loss effect (419). Consistent with this, resveratrol supplementation was shown to 

reduce the weight gain in diet-induced obese mice. This effect was mediated by improved 

oxidative capacity in muscle and AT and increased EE (420). Moreover, resveratrol inhib-

its adipocyte differentiation and lipid accumulation (421) and induces browning of WAT 

(422). The molecular effect of resveratrol is not completely understood, but some evidence 

suggests that interaction between AMPK activation and NAD-dependent protein deacety-

lase sirtuin-1 (Sirt1) leads to increased expression of Pgc1α, thereby inducing mitochon-

drial biogenesis (422). In humans, the effect on weight loss and thermogenesis is not clear 

and differences in dose and duration of resveratrol supplementation across studies have 

yielded inconsistent results. Despite this limitation, some beneficial effects including im-

proved HOMA-index have been observed 30 days after resveratrol supplementation, sug-

gesting positive effects on insulin sensitivity (423). 

 

7.3. Pharmacological Intervention  

7.3.1. Beta 3-Agonist Drugs 

In mice, pharmacological activation of BAT using β3-adrenoreceptor agonist drugs 

increases EE reduces circulating insulin levels and body fat (424–426). However, the trans-

lational potential of this approach is debatable since human β3-adrenoceptor have differ-

ent binding characteristics compared to rodents and drug bioavailability also varies across 

species which limits the capacity to effectively activate BAT (427,428). Despite these limi-

tations, a new FDA-approved drug, referred to as Mirabegron, developed to treat overre-

active bladder, has been shown to improve glucose tolerance and FA oxidation. At its 

maximal concentration (200-mg), a single dose of Mirabegron increased BAT glucose up-

take and WAT lipolysis (429). Also, chronic Mirabegron treatment enhances BAT activity, 

induces WAT loss, increases HDL, and improves insulin sensitivity in lean and obese sub-

jects (13,430). Nevertheless, a recent study performed by Blondin et al. raises some con-

cerns regarding the use of Mirabegron (431). According to the authors, in human adipose 

tissue, Mirabegron seems to work mainly through b2-adrenoceptor, since b3-adrenocep-

tor is quite low expressed. This suggesting that this drug lacks receptor selectivity (431) 

and may explain some of its effects on heart rate and blood pressure (429).  

7.3.2. GLP-1 Receptor Agonist 

Glucagon-like peptide 1 is a molecule secreted in response to the absorption of nutri-

tion by the L-cells in the gastrointestinal tract. Innumerous clinical studies have 
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demonstrated its capacity to reduce food intake, enhance insulin secretion, inhibit gluco-

neogenesis and improve skeletal muscle IR. Besides, recent evidence suggests that GLP-1 

increased browning of WAT and BAT activation via GLP-1 binding to its receptor GLP-

1R in the hypothalamus (432–434). Since GLP-1 has a short half-life, GLP-1 analogs have 

been developed and approved as therapies to treat obesity and T2D (432). In mice, GLP-1 

analogs have the potential to induce WAT browning and BAT activation (435). In obese 

and T2D humans, GLP-1 analogs enhance body weight loss and improve overall metabo-

lism, whether this is dependent on decreased food intake or increased BAT activation yet 

needs to be addressed. 

7.4. Gene Therapy  

7.4.1. Ex Vivo Gene Therapy 

The revolutionary approach of cellular-based therapy combined with gene editing 

has been considered an alternative to treat metabolic diseases and a pre-clinical study per-

formed has shown promising results. Wang et al. used the CRISPR-Cas9 system (CRISPR-

SAM) to overexpress Ucp1 in human white preadipocytes to generate the human 

beige/brown-like adipocytes (HUMBLE). These cells exhibit gene signatures and meta-

bolic function similar to human brown adipocytes. Upon transplantation into mice, the 

HUMBLE cells differentiate into mature and functional adipocytes. Importantly, trans-

plantation of HUMBLE cells into diet-induced obese mice resulted in increased heat pro-

duction, decreased weight gain, improved insulin sensitivity, and glucose tolerance. Most 

strikingly, these metabolic effects were induced by the communication between the HUM-

BLE cells and the endogenous BAT via nitric oxide (14). Looking forward one could envi-

sion the generation of personalized HUMBLE cells, where adipocyte progenitor cells 

would be isolated from the patient’s scWAT, cultivated in vitro, transformed into HUM-

BLE, and placed back into the patient.  

7.4.2. In Vivo Gene Therapy 

A more straightforward alternative to modulating the expression of a gene or a pro-

tein is the delivery of nucleotides (DNA or RNA species) to the cell of interest. Over the 

years a variety of viral and non-viral methods have been developed to deliver DNA, RNA, 

or protein to human cells to treat different types of diseases. Currently, 12 gene therapy-

based drugs are available in the market and many others are being tested in clinal trials 

(436), however, none of them were developed with the intent to treat obesity and its asso-

ciated disease. 

Hopefully, in a near future, with the use of viral vectors, we will be able to target 

specific tissues and overexpress a protein of interest. In line with this, one could envision 

the transfection of white and brown AT with the Ucp1 mRNA. A second approach will be 

to use the same CRISPR-Cas9 system used to generate the HUMBLE cells (14) to induce 

endogenous Ucp1 overexpression. The advantage of this technique compared to the oth-

ers discussed earlier relies on the fact that it can be personalized, it may induce more per-

sistent therapeutic outcomes reducing or eliminating the need for medication and avoid-

ing any complication related to the cell transplantation. 

7.5. 3D Bioprinting 

3D bioprinting technology, allowing the construction of biological tissue in an accu-

rate and reproducible manner is a potential approach for tissue engineering and regener-

ative medicine. AT bioprinting has particular needs including morphology, composition, 

and heterogeneity, as well as the microenvironment, and crosstalk with other cells such 

as immune cells, vascularization, and ECM. 3D bioprinting of brown and beige AT aiming 

to create an optimal size and function and transplanting it to the patients seems like a 

potential strategy in the treatment of obesity and metabolic diseases. This could also be 
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used for testing chemical and pharmaceutical products as well as evaluating the toxicity 

of the new drugs. Kuss et al. used 3D printed gels to test the effects of stiff vs. soft gels on 

immortalized human white and brown AT precursor cells and showed that white progen-

itors prefer soft gels to differentiate as compared to brown progenitors that their differen-

tiation reaches an optimal level interacting with stiffer gels (437). The feasibility of bi-

oprinting the breast structure including the AT and mammary glands has been discussed 

by Chen et al. and despite several challenges including poor vascularization, it is a prom-

ising strategy to count on for the treatment of patients with breast cancer (438). Nonethe-

less, most of the bioprinted tissue and organs are yet at the level of laboratory uses and 

there is a long way till they will be clinically applicable. 

8. Perspectives 

More than just a number on a scale or the body size, obesity is linked to many dis-

eases and complications including diabetes, heart disease, and many types of cancer. It is 

a complex dilemma and a public health concern worldwide. Activating BAT and induc-

tion of WAT browning and thereby increasing the thermogenesis is a promising strategy 

to improve the whole-body energy metabolism and combat obesity and its complications. 

In line with this, the majority of studies are performed in animals or in vitro in 2D cell 

cultures. Hence, the detailed mechanisms underlying the browning of WAT and BAT ac-

tivation needs to be further investigated in humans. Furthermore, considering the great 

heterogeneity of AT, in vitro studies shall highly consider the use of 3D culture models of 

AT in which the native tissue function and its cellular heterogeneity would be resumed. 

Finally, considering the brown and beige AT as therapeutic targets, one must consider the 

variations that might be caused by the differences in gender, ethnicity, age, and body com-

position. 
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