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Abstract: Condition monitoring of industrial robots has the potential to decrease downtimes in1

highly automated production systems. We suggest a new health indicator based on vibration2

data measurements and compare its performance with state-of-the-art health indicators regarding3

different criteria. This evaluation is based on different data sets from robot test rigs. We find4

that the proposed health indicator can detect several faults, has low temperature sensitivity and5

works in instationary velocity regimes. A discussion of the validity of the results concludes our6

contribution.7
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1. Introduction9

Industrial robots are a fundamental part of highly automated production systems,10

which can be found in the automotive or electronics industry [1]. Since they operate in11

complex production cells and as a part of linear production lines, robot malfunctions lead12

to long downtimes for repair or replacement and hence to increased costs. In particular,13

robot gear faults are responsible for the longest downtimes because they often require14

the replacement of the whole robot [2]. The condition monitoring (CM) of these gears15

offers the potential to resolve this issue. CM is the monitoring of an asset’s health using16

sensor data. The health state represents a wear reserve before a failure occurs. This17

health state is quantified with a health indicator (HI). A significant monitored change in18

this health indicator can be used as a decision-making aid in the planning of maintenance19

actions [3]. In recent years, different HIs based on vibration data for several industrial20

robot components such as bearings, gears and motors and their specific faults have been21

investigated.22

[4] developed a fault detection method, which first uses a novel phase-based, time-23

domain averaging method to remove the deterministic part of the vibration signal.24

Subsequently, the root mean square and power spectrum entropy of the remaining25

residual signal are calculated as health indicators. [5] developed a vibration signal based26

CM system for SCARA robots, which in the first step uses statistical HIs of the time27

domain signal to detect the occurrence of a defect and in the second step uses an artificial28

neural network to diagnose the fault type. [6] proposed a three-layer architecture for29

remote fault diagnosis of industrial robot gearboxes using vibration signals. In the30

diagnosis layer, the authors present a performance evaluation approach using a support31

vector machine, a remaining useful life prediction by a Markov model and a fault type32

diagnosis based on a Bayesian network. The degenerative behaviour of an industrial33

robot gear was observed with vibration sensors by [7] as well as [8] in accelerated wear34

tests. After pre-processing the signals using order tracking and spectral auto-correlation,35

the characteristic fault frequencies were calculated and monitored by root mean square36

analysis, which revealed a trend correlating with increasing wear. Besides the installation37
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of accelerometers, other additional data sources were investigated in this context. [9]38

used acoustic emission technology to detect robot gearbox faults based on the ball39

spinning and ball passing frequency of the bearings. [10] investigated the changes of40

the RMS-HI and characteristic frequencies for functional and broken strain gears of41

industrial robots.42

However, none of these publications assesses vibration data based HIs’ ability to43

detect faults in an industry-like industrial robot application setting. It is characterized by44

changing robot axes’ velocities, changing temperatures of the gears due to unbalanced45

robot utilization and unknown robot gear fault types. This is why we present a new HI46

for robot gear condition monitoring, which potentially copes with these characteristics.47

We benchmark the newly designed HI with different state-of-the-art HIs regarding the48

different formulated characteristics above to assess the newly designed HI’s performance49

for CM.50

2. Materials and Methods51

This section is divided in two parts. First, the newly developed HI is presented.52

Afterwards, the methodology to evaluate the HI’s performance and data sets used in53

this context are explained.54

2.1. Time frequency based Z-score55

The concept of the newly designed HI is based on two cornerstones. To deal56

with instationary velocity regimes, which are found in robot applications due to the57

typical movement patterns of a robot, the HI is based on time-frequency-domain data.58

Simultaneously, the HI must take into account a certain variance of this data due to59

environmental changes such as temperature fluctuations. This is realized by the concept60

of Z-scores, a common similarity measure from statistics [11]. In detail, the new HI is61

based on high frequency sampled acceleration sensor data. Data from one measurement62

is transformed to a time-frequency-spectrogram by usage of the Short-Time-Fourier-63

transformation, which is calculated according to Formula 1. Here, τ and ω are time and64

frequency indices, x(n) is the time series signal of the vibration signal at timestep n and65

w is a windowing function with the length R.66

spec(τ, ω) = |
∞

∑
n=−∞

x(n)w(n− τR)e−jωn| (1)

To set up the HI, a certain number of vibration signal spectrograms must be collected67

for the robot to capture its signal signature in a healthy state with its stochastic variations.68

This takes place in an initialisation phase. For this, initially, two measurements must be69

collected. In this context, a measurement is defined as the collection of vibration data70

over one single movement. Based on this data, the two spectrograms are calculated. To71

determine whether this reference quantity of two spectrograms captures the stochastic72

variation of the signal, the overall mean (Formula 2) and standard deviation (Formula 3)73

of the spectrograms are calculated.74

spec(τ, ω)avg =
1
k

k

∑
i=0

spec(τ, ω)i (2)

stdspec, overall =
1

0, 5FT

T

∑
τ=0

0,5F

∑
ω=0

√
∑k

i=0(spec(τ, ω)i − spec(τ, ω)avg)2

k
(3)

In these formulas, k describes the number of measurements in the reference quantity.75

T is the time length of each measurement, F is the sampling frequency and spec(τ, ω)avg76

is the average value of spec(τ, ω) over measurements 0 to k. Afterwards, one measure-77

ment is added to the reference quantity at a time, and again avgspec,overall and stdspec,overall78

are calculated. Plotting these standard deviations over the number of measurements79
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in the reference quantity usually first shows an increase in stdspec,overall and then a sat-80

uration as can be seen in Figure 1. If this saturation is reached, the reference quantity81

can sufficiently represent the stochastic behaviour of the signal signature. In the shown82

example this saturation is reached after 5 measurements.83
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Figure 1. Saturation of the standard deviation in the time-freqency-spectrograms

After the initialisation, a HI can be determined based on a newly collected measure-84

ment. For this, the measurement’s spectrogram overall Z-score is determined according85

to Formula 17.86

HImeas =
1

0, 5FT

T

∑
τ=0

0,5F

∑
ω=0
|
spec(τ, ω)meas − spec(τ, ω)avg,re f

spec(τ, ω)std,re f
| (4)

In this context spec(τ, ω)avg,re f and spec(τ, ω)std,re f are the mean value and the87

standard deviation of spec(τ, ω) for all measurements in the reference quantity.88

2.2. HI evaluation method89

To compare the ability of the newly designed HI to cope with industrial robot appli-90

cation characteristics, we followed a three step approach. First of all, we investigated91

how well the designed HI can detect different kind of faults in comparison to HIs from92

the state-of-the-art. Second, we investigated the temperature sensitivity of HIs from93

the state-of-the-art meeting this criterion and our HI. Third, we investigated the trend94

behaviour of HIs showing a low temperature sensitivity on data from two accelerated95

wear tests. These three steps are now described more precisely.96

We used the FEMTO data set, which is described in detail in [12] to select HIs97

capable of detecting different faults. This data set provides run to failure vibration data98

from 16 identical bearings and for different faults and working conditions defined by the99

applied load and the rotational speed. The acceleration sensor sampled data with 25.6100

kHz, one measurement has a length of 0.1s and measurements were taken in equidistant101

timesteps of 10s for all bearings. The test run for one bearing ended when the signal102

from the acceleration sensor exceeded 20g. We calculated the HIs summarized in Table103

1 for all measurements of each sensor. These HIs were derived from several review104

papers regarding gearbox and bearing CM [13–16] and the publications mentioned105

in section 1. Therefore, the HI calculation was based either on the raw acceleration106
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signal, an enveloped signal as described in [17] or the residual signal as suggested by107

[4]. Additionally, the newly designed HI presented in section 2 was calculated for the108

measurements based on the raw signals.109

Table 1. Calculated HIs

HI name HI abbreviation HI source

Crest Factor CrF [16]
Dominant Frequency DomF [13]
Impulse Factor ImpF [14]
Kurtosis Kurt [15]
Margin Factor MarF [14]
Mean Mean [16]
Median Med [16]
Median Frequency MedF [13]
Peak Peak [15]
Peak to Peak PtP [15]
Root Mean Square RMS [15]
Skewness Skew [16]
Spectral Centroid SpC [13]
Spectral Flux SpF [13]
Spectral Rollover SpRO [13]
Spectral Entropy SpE [4]
Standard Deviation Std [15]
Z-score Z-score -

To detect whether these HIs develop trends we fitted different basic functions on110

the HIs calculated for the last 20 percent of measurements per bearing. These functions111

were first and second degree polynoms, exponential and sigmoid functions. For each of112

the fits, we calculated the R² value. This means that we received four R² values per HI113

and bearing. To evaluate whether a HI can detect several damages, we considered only114

the best R² value per HI and bearing. We plotted the statistics of these 16 remaining R²115

values per HI as a boxplot. Suitable HIs should show high R² values with low variance.116

HIs showing this behaviour were analysed regarding their temperature sensitivity.117

For this purpose, we acquired vibration data from an industrial robot test rig. This test118

rig consists of an KUKA KR510 industrial robot with an attached load of 365 kg. We119

attached acceleration sensors close to the gearboxes as shown in Figure 2 . These sensors120

have a sampling rate of 26 kHz. The acceleration dircetion of the sensors was orthogonal121

to their contact area. For data acquisition, the robot performed a trajectory where each122

joint was moved individually at different speeds in an angle area of 10° as described in123

Figure 3 and for different gear temperatures in the range of 25° Celsius and 60° Celsius124

and 5° Celsius steps. The gear temperature was measured at the gearbox cap with an125

infrared thermometer. For each temperature step, four measurements were made. For126

each measurement at each temperature step, the remaining HIs were calculated. To127

determine the temperature sensitivity, we divided the average HI values calculated128

from measurements at the highest gear temperatures by the values calculated from129

measurements at the lowest temperature. HIs with a high sensitivity were eliminated130

for the last step.131

Here, we calculated the remaining HIs for measurements from two data sets from132

accelerated robot wear tests to see how these HIs perform in a more industry like setting133

and how they cope with instationary velocity behaviour. The first data set was collected134

during a time range of approx. one year with an ABB robot of type RB 6600-255/2.55.135

During the data acquisition, the robot performed an isolated movement of the second136

axis in an angle area of 150° for each measurement. Vibration data was only acquired137

with a sensor attached axially at the robot axis 2 gearbox. In the end of the experiment,138
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the gearbox was dismantled and faults on the bearings and the shafts of the gear were139

found. A total of 2290 measurements, equally distributed over time, were taken for our140

analysis from this data set. One measurement lasted 1.6s and the sampling rate was 10141

kHz. More detailed information about this experiment can be found in [7,8].142

Figure 2. Robot test rig
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Figure 3. Measurement trajectory for the temperature sensitivity analysis
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The second data set was derived from another experiment. Here, the second axis143

of an ABB IRB 7600-340/2.8 was moved in an angle area of 80° continuously over the144

time frame of three months. The vibration sensor attached to the gearbox cap of axis 2145

sampled with 20 kHz and one measurement lasted 2.15s . The experiment ended after a146

roller element of a bearing had cracked and had blocked the gear. In this time range 920147

vibration measurements were taken in total in equidistant time steps.148

3. Results149

This section is divided in three parts. First of all, the results from the FEMTO data150

set analysis are shown. Secondly, the results from the temperature sensitivity analysis151

are presented. Finally, the application of the HIs on the two accelerated wear tests is152

described.153

3.1. FEMTO data set analysis154

From the 16 bearing experiments the HIs presented in table 1 were calculated. We155

used the first 100 measurements per bearing as the reference quantity for the Z-score-HI156

and set R to 128. Figure 4 shows the R² values for a selection of different HIs as a box plot.157

The R² statistics for all HIs can be found in Appendix A. The abbreviations of the HIs are158

explained in Table 1. The PtP-, Peak-, RMS-, Std- and Z-score-HI show the highest R²159

values in average. They also show the lowest variance between the different bearings.160

This means that these HIs detect different faults most reliably. Other HIs show also high161

trend values but only for some of the bearings. HIs derived from the frequency (DomF,162

SpC, SpE, SpF, SpRO) domain perform worse compared to HIs from the time domain.163

The preprocessing steps of enveloping the signal or calculating the residual signal do164

not affect the HIs trend behaviour significantly, which can be seen in Table A1 - A3.165
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Figure 4. R² values for different HIs and bearings from the FEMTO data set based on raw signals

3.2. Temperature sensitivity analysis166

Based on this result, we conducted the temperature sensitivity analysis for the PtP-,167

Peak-, RMS-, Std- and Z-score-HI. Here we used one measurement per temperature step168

as the reference quantity for the Z-score-HI and set R to 128. Figure 5 shows the change of169

the HIs per axis in percent. In general, the data from axis 4 show the highest temperature170

sensitivity for all HIs. The RMS- and Z-score-HI show the lowest temperature sensitivity171

overall. The comparably higher sensitivty of the HI values derived from data at axis 4172
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can be related to the robot trajectory. During the trajectory the robot arm was stretched173

out, which leads to greater elasticitiy at the position of the sensor at axis 4. This can174

cause increased vibrations, which are magnified under changing temperature influences.175
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Figure 5. Temperature sensitivity for different HIs and robot axes

3.3. Accelerated wear tests analysis176

Given this fact, we analysed the data sets from the accelerated wear tests with177

only the RMS- and the Z-score-HI. We used the first 100 measurements as the reference178

quantity for the Z-score-HI and set R to 256. For smoothing, we applied a rolling average179

with a window length of 15 on both HI series. The progress of the HIs in the accelerated180

wear test of the ABB IRB 7600 is shown in Figure 6.181
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Figure 6. Z-score-HI and RMS-HI for the IRB 7600 experiment
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Both HIs show a plateau with increased values at the end of the experiment. It182

can be assumed that at this point in time faults have already been present. Here, the183

increased HI values over a longer time period could have been used as a decision184

criterion for maintenance actions.The measurements at the very end show decreased185

values again. We assume that this decrease is correlated to a part of the bearing roller.186

In the end of the experiment, one of the roller elements showed a large pit. During the187

measurements showing the higher HI values this detached part of the roller element188

could have been still slightly fixed at the roller element and thus could have caused high189

vibration. After full detachment, this noise level decreased again. For the measurements190

before the plateau the RMS-HI shows higher fluctuations compared to the Z-score-HI.191

For instance, the RMS-HI shows a first high peak around measurement 100. Such peaks192

could lead to false alarms in a condition monitoring scenario and should be avoided.193

The progress of the HIs in the other accelerated wear test performed with the ABB194

IRB 6600 is shown in Figure 7.195
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Figure 7. Z-score-HI and RMS-HI for the IRB 6640 experiment

Here, the Z-score-HI shows a trending behaviour, the RMS shows a stationary196

progress. Both HIs show a high increase during the last measurements. In this exper-197

iment, the trending behaviour of the Z-score could have been a criterion to execute198

maintenance actions. This information is not present in the RMS-progress. Based on the199

fact that the Z-score showed a better trend behaviour in the ABB IRB 6600 experiment200

and less noisy behaviour in the ABB IRB 7600 experiment, we suggest the use of the201

Z-score-HI for the condition monitoring of robot gears.202

4. Discussion203

The discussion is divided in four parts. First of all, some remarks regarding our204

designed HI are given. Afterwards, three parts take up one of the Results subsections.205

To derive the spectrograms required for the Z-score-HI, the length of the window206

function must be defined. High values for R result in a high frequency resolution, low207

values in a high time resolution. For the individual experiments, we chose window208

lengths that lead to a good compromise between time and frequency resolution by209

inspecting spectrograms created with different window lengths. We chose window210

lengths that lead to spectrograms appearing the least noisy in a visual inspection. In an211
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industry setting, an automated approach should be developed for this dependent on the212

robot’s trajectory and the used sensor.213

The motivation to use the FEMTO data set to investigate HI performance was to214

assess HIs’ capability to detect multiple faults. Within a robot gearbox, which are mostly215

RV reducers, not only bearings but also the gear teeth can have faults. Such faults are216

not taken into account by our analysis explicitly. However, the bearing faults present in217

the FEMTO data set, e.g. pitting, are similar to typical gear teeth or shaft damage from a218

signal analysis point of view. Damage from all components modulate the acceleration219

signals at a specific frequency and its sidebands. Exactly this capability to track such220

changes in the signal was investigated in our analysis. There also exist HIs that track221

energy changes at the specific component fault frequencies. Such HIs were excluded222

from our analysis because expert knowledge about the geometric characteristics of the223

gears, e.g., the bearing diameters or the number of roller elements, is required to calculate224

these HIs. This expert knowledge is usually not available to industrial robot users. We225

also excluded HIs that could be derived automatically from machine learning models226

such as autoencoders as the physical interpretation of these HIs is difficult and hence a227

transferability between different robot systems is questionable from our point of view.228

Regarding the results of the temperature sensitivity analysis, it must be pointed229

out that the results are valid only for the chosen robot trajectory. As the dynamic be-230

haviour of the robot changes within its working space, this analysis should be performed231

individually for trajectories and robot systems. However, from a theoretical point of232

view the Z-score-HI possesses the ability to cope with these temperature fluctuations233

independently of the trajectory. Temperature variations lead to variance in the time-234

frequency-spectrograms. This variance is taken into account in the spec(τ, ω)avg,re f235

and spec(τ, ω)std,re f during the initialisation phase. Hence, Z-score-HIs derived from236

measurements from functional robot gears and different temperatures will show only237

little differences in the Z-score-HI value.238

Finally, the results from the accelerated wear tests show noisy progress over time.239

This hinders a simple or automated detection of faults in a condition monitoring be-240

haviour. To establish an automated CM system, a suitable trend detection in combination241

with an outlier detection system must be set up. A trend detection system could identify242

HI progress shown as in Figure 7, whereas an outlier detection system could detect243

progress as depicted in Figure 6. The development of such a system also marks the244

outlook of our future work.245

5. Conclusions246

Condition monitoring of robot gears has the potential to decrease production system247

downtimes. The state-of-the-art provides many health indicators to track the health state248

of gears. We analysed these health indicators regarding specific requirements rising249

from typical industrial robot applications. These requirements are the ability to detect250

different faults, low temperature sensitivity and the capability to deal with instationary251

velocity behaviour. Additionally, we suggested a new health indicator based on time252

frequency domain spectrograms and Z-scores that can cope with these requirements.253

Our analysis showed that the RMS health indicator and our suggested health indicator254

meet the defined requirements the best. Data from accelerated wear tests shows that for255

an automatic condition monitoring system a combination of a trend detection and an256

outlier detection system that can deal with a noisy signal is required.257
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Appendix A

Table A1. R² statistics for HIs derived from the normal signal

CrF DomF ImpF Kurt MarF Mean Med MedF Peak PtP RMS Skew SpC SpE SpF SpRO Std Zscore

Mean 0.231 0.354 0.287 0.336 0.296 0.034 0.063 0.467 0.822 0.844 0.887 0.242 0.599 0.488 0.514 0.491 0.887 0.934
Std 0.246 0.351 0.289 0.334 0.298 0.076 0.147 0.311 0.173 0.145 0.215 0.289 0.298 0.281 0.225 0.322 0.215 0.080
Min 0.005 0.013 0.007 0.004 0.006 0.003 0.007 0.024 0.259 0.397 0.082 0.004 0.025 0.067 0.135 0.035 0.082 0.644
Max 0.706 0.998 0.764 0.869 0.773 0.323 0.618 0.941 0.987 0.985 0.990 0.888 0.944 0.971 0.900 0.984 0.990 0.983

Table A2. R² statistics for HIs derived from the enveloped signal

CrF DomF ImpF Kurt MarF Mean Med MedF Peak PtP RMS Skew SpC SpE SpF SpRO Std

Mean 0.215 0.139 0.284 0.299 0.296 0.776 0.819 0.496 0.816 0.816 0.872 0.275 0.605 0.464 0.462 0.514 0.898
Std 0.229 0.248 0.283 0.328 0.291 0.296 0.248 0.318 0.178 0.178 0.227 0.303 0.286 0.298 0.276 0.309 0.131
Min 0.005 0.001 0.006 0.001 0.005 0.010 0.014 0.023 0.246 0.246 0.074 0.008 0.046 0.013 0.012 0.007 0.427
Max 0.635 0.997 0.741 0.919 0.766 0.977 0.983 0.981 0.988 0.988 0.989 0.905 0.939 0.978 0.901 0.987 0.987

Table A3. R² statistics for HIs derived from the residual signal as suggestet by [4]

CrF DomF ImpF Kurt MarF Mean Med MedF Peak PtP RMS Skew SpC SpF SpRO Std SpE

Mean 0.329 0.423 0.348 0.365 0.355 0.032 0.088 0.608 0.847 0.859 0.884 0.237 0.701 0.609 0.605 0.884 0.534
Std 0.270 0.348 0.303 0.337 0.312 0.089 0.187 0.292 0.178 0.153 0.221 0.319 0.196 0.202 0.213 0.221 0.316
Min 0.010 0.021 0.003 0.007 0.018 0.001 0.001 0.016 0.211 0.328 0.082 0.003 0.425 0.147 0.132 0.083 0.023
Max 0.802 0.992 0.828 0.858 0.830 0.374 0.671 0.988 0.987 0.987 0.990 0.943 0.959 0.930 0.977 0.990 0.969
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