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Abstract: Condition monitoring of industrial robots has the potential to decrease downtimes in
highly automated production systems. We suggest a new health indicator based on vibration
data measurements and compare its performance with state-of-the-art health indicators regarding
different criteria. This evaluation is based on different data sets from robot test rigs. We find
that the proposed health indicator can detect several faults, has low temperature sensitivity and
works in instationary velocity regimes. A discussion of the validity of the results concludes our

contribution.
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1. Introduction

Industrial robots are a fundamental part of highly automated production systems,
which can be found in the automotive or electronics industry [1]. Since they operate in
complex production cells and as a part of linear production lines, robot malfunctions lead
to long downtimes for repair or replacement and hence to increased costs. In particular,
robot gear faults are responsible for the longest downtimes because they often require
the replacement of the whole robot [2]. The condition monitoring (CM) of these gears
offers the potential to resolve this issue. CM is the monitoring of an asset’s health using
sensor data. The health state represents a wear reserve before a failure occurs. This
health state is quantified with a health indicator (HI). A significant monitored change in
this health indicator can be used as a decision-making aid in the planning of maintenance
actions [3]. In recent years, different HIs based on vibration data for several industrial
robot components such as bearings, gears and motors and their specific faults have been
investigated.

[4] developed a fault detection method, which first uses a novel phase-based, time-
domain averaging method to remove the deterministic part of the vibration signal.
Subsequently, the root mean square and power spectrum entropy of the remaining
residual signal are calculated as health indicators. [5] developed a vibration signal based
CM system for SCARA robots, which in the first step uses statistical HIs of the time
domain signal to detect the occurrence of a defect and in the second step uses an artificial
neural network to diagnose the fault type. [6] proposed a three-layer architecture for
remote fault diagnosis of industrial robot gearboxes using vibration signals. In the
diagnosis layer, the authors present a performance evaluation approach using a support
vector machine, a remaining useful life prediction by a Markov model and a fault type
diagnosis based on a Bayesian network. The degenerative behaviour of an industrial
robot gear was observed with vibration sensors by [7] as well as [8] in accelerated wear
tests. After pre-processing the signals using order tracking and spectral auto-correlation,
the characteristic fault frequencies were calculated and monitored by root mean square
analysis, which revealed a trend correlating with increasing wear. Besides the installation
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of accelerometers, other additional data sources were investigated in this context. [9]
used acoustic emission technology to detect robot gearbox faults based on the ball
spinning and ball passing frequency of the bearings. [10] investigated the changes of
the RMS-HI and characteristic frequencies for functional and broken strain gears of
industrial robots.

However, none of these publications assesses vibration data based HIs’ ability to
detect faults in an industry-like industrial robot application setting. It is characterized by
changing robot axes’ velocities, changing temperatures of the gears due to unbalanced
robot utilization and unknown robot gear fault types. This is why we present a new HI
for robot gear condition monitoring, which potentially copes with these characteristics.
We benchmark the newly designed HI with different state-of-the-art HIs regarding the
different formulated characteristics above to assess the newly designed HI's performance
for CM.

2. Materials and Methods

This section is divided in two parts. First, the newly developed HI is presented.
Afterwards, the methodology to evaluate the HI's performance and data sets used in
this context are explained.

2.1. Time frequency based Z-score

The concept of the newly designed HI is based on two cornerstones. To deal
with instationary velocity regimes, which are found in robot applications due to the
typical movement patterns of a robot, the HI is based on time-frequency-domain data.
Simultaneously, the HI must take into account a certain variance of this data due to
environmental changes such as temperature fluctuations. This is realized by the concept
of Z-scores, a common similarity measure from statistics [11]. In detail, the new Hl is
based on high frequency sampled acceleration sensor data. Data from one measurement
is transformed to a time-frequency-spectrogram by usage of the Short-Time-Fourier-
transformation, which is calculated according to Formula 1. Here, T and w are time and
frequency indices, x(n) is the time series signal of the vibration signal at timestep n and
w is a windowing function with the length R.

spec(T,w) = | i x(n)w(n — TR)e 1«"| (1)

n e}

To set up the HI, a certain number of vibration signal spectrograms must be collected
for the robot to capture its signal signature in a healthy state with its stochastic variations.
This takes place in an initialisation phase. For this, initially, two measurements must be
collected. In this context, a measurement is defined as the collection of vibration data
over one single movement. Based on this data, the two spectrograms are calculated. To
determine whether this reference quantity of two spectrograms captures the stochastic
variation of the signal, the overall mean (Formula 2) and standard deviation (Formula 3)
of the spectrograms are calculated.

k

1
spec(T, @)ag = 1 1 spec(t,w); o
i=0
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In these formulas, k describes the number of measurements in the reference quantity.
T is the time length of each measurement, F is the sampling frequency and spec(T, w)avg
is the average value of spec(T, w) over measurements 0 to k. Afterwards, one measure-
ment is added to the reference quantity at a time, and again avgspec,overalr and tdspec overall
are calculated. Plotting these standard deviations over the number of measurements
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in the reference quantity usually first shows an increase in stdspec oeranr and then a sat-
uration as can be seen in Figure 1. If this saturation is reached, the reference quantity
can sufficiently represent the stochastic behaviour of the signal signature. In the shown
example this saturation is reached after 5 measurements.
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Figure 1. Saturation of the standard deviation in the time-freqency-spectrograms

After the initialisation, a HI can be determined based on a newly collected measure-
ment. For this, the measurement’s spectrogram overall Z-score is determined according
to Formula 17.

il T 05F spec T, CU meas SPeC(T w)avg,ref
meas — 0 SFT Z Z | Spé’C(T Cl))std ref |

=0 w=

4)

In this context spec(T, )aoq,ref and spec(T, w)s rer are the mean value and the
standard deviation of spec(T, w) for all measurements in the reference quantity.

2.2. HI evaluation method

To compare the ability of the newly designed HI to cope with industrial robot appli-
cation characteristics, we followed a three step approach. First of all, we investigated
how well the designed HI can detect different kind of faults in comparison to HIs from
the state-of-the-art. Second, we investigated the temperature sensitivity of HIs from
the state-of-the-art meeting this criterion and our HI. Third, we investigated the trend
behaviour of HIs showing a low temperature sensitivity on data from two accelerated
wear tests. These three steps are now described more precisely.

We used the FEMTO data set, which is described in detail in [12] to select HIs
capable of detecting different faults. This data set provides run to failure vibration data
from 16 identical bearings and for different faults and working conditions defined by the
applied load and the rotational speed. The acceleration sensor sampled data with 25.6
kHz, one measurement has a length of 0.1s and measurements were taken in equidistant
timesteps of 10s for all bearings. The test run for one bearing ended when the signal
from the acceleration sensor exceeded 20g. We calculated the HIs summarized in Table
1 for all measurements of each sensor. These HIs were derived from several review
papers regarding gearbox and bearing CM [13-16] and the publications mentioned
in section 1. Therefore, the HI calculation was based either on the raw acceleration
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signal, an enveloped signal as described in [17] or the residual signal as suggested by
[4]. Additionally, the newly designed HI presented in section 2 was calculated for the
measurements based on the raw signals.

Table 1. Calculated HIs

HI name HI abbreviation HI source
Crest Factor CrF [16]
Dominant Frequency DomF [13]
Impulse Factor ImpF [14]
Kurtosis Kurt [15]
Margin Factor MarF [14]
Mean Mean [16]
Median Med [16]
Median Frequency MedF [13]
Peak Peak [15]
Peak to Peak PtP [15]
Root Mean Square RMS [15]
Skewness Skew [16]
Spectral Centroid SpC [13]
Spectral Flux SpF [13]
Spectral Rollover SpRO [13]
Spectral Entropy SpE [4]
Standard Deviation Std [15]
Z-score Z-score -

) To detect whether these Hls develop trends we fitted different basic functions on
the HIs calculated for the last 20 percent of measurements per bearing. These functions
were first and second degree polynoms, exponential and sigmoid functions. For each of
the fits, we calculated the R? value. This means that we received four R? values per HI

+ and bearing. To evaluate whether a HI can detect several damages, we considered only
the best R? value per HI and bearing. We plotted the statistics of these 16 remaining R?

» values per HI as a boxplot. Suitable HIs should show high R? values with low variance.

HIs showing this behaviour were analysed regarding their temperature sensitivity.

+ For this purpose, we acquired vibration data from an industrial robot test rig. This test

» rig consists of an KUKA KR510 industrial robot with an attached load of 365 kg. We

» attached acceleration sensors close to the gearboxes as shown in Figure 2 . These sensors
have a sampling rate of 26 kHz. The acceleration dircetion of the sensors was orthogonal
to their contact area. For data acquisition, the robot performed a trajectory where each
joint was moved individually at different speeds in an angle area of 10° as described in

+  Figure 3 and for different gear temperatures in the range of 25° Celsius and 60° Celsius
and 5° Celsius steps. The gear temperature was measured at the gearbox cap with an

» infrared thermometer. For each temperature step, four measurements were made. For
each measurement at each temperature step, the remaining Hls were calculated. To
determine the temperature sensitivity, we divided the average HI values calculated

» from measurements at the highest gear temperatures by the values calculated from

' measurements at the lowest temperature. HIs with a high sensitivity were eliminated
for the last step.

Here, we calculated the remaining HIs for measurements from two data sets from
accelerated robot wear tests to see how these Hls perform in a more industry like setting

+ and how they cope with instationary velocity behaviour. The first data set was collected
during a time range of approx. one year with an ABB robot of type RB 6600-255/2.55.

»  During the data acquisition, the robot performed an isolated movement of the second
axis in an angle area of 150° for each measurement. Vibration data was only acquired
with a sensor attached axially at the robot axis 2 gearbox. In the end of the experiment,
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the gearbox was dismantled and faults on the bearings and the shafts of the gear were
found. A total of 2290 measurements, equally distributed over time, were taken for our
analysis from this data set. One measurement lasted 1.6s and the sampling rate was 10
kHz. More detailed information about this experiment can be found in [7,8].

Figure 2. Robot test rig
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Figure 3. Measurement trajectory for the temperature sensitivity analysis
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The second data set was derived from another experiment. Here, the second axis
of an ABB IRB 7600-340/2.8 was moved in an angle area of 80° continuously over the
time frame of three months. The vibration sensor attached to the gearbox cap of axis 2
sampled with 20 kHz and one measurement lasted 2.15s . The experiment ended after a
roller element of a bearing had cracked and had blocked the gear. In this time range 920
vibration measurements were taken in total in equidistant time steps.

3. Results

This section is divided in three parts. First of all, the results from the FEMTO data
set analysis are shown. Secondly, the results from the temperature sensitivity analysis
are presented. Finally, the application of the Hls on the two accelerated wear tests is
described.

3.1. FEMTO data set analysis

From the 16 bearing experiments the Hls presented in table 1 were calculated. We
used the first 100 measurements per bearing as the reference quantity for the Z-score-HI
and set R to 128. Figure 4 shows the R? values for a selection of different HIs as a box plot.
The R? statistics for all HIs can be found in Appendix A. The abbreviations of the Hls are
explained in Table 1. The PtP-, Peak-, RMS-, Std- and Z-score-HI show the highest R?
values in average. They also show the lowest variance between the different bearings.
This means that these Hls detect different faults most reliably. Other Hls show also high
trend values but only for some of the bearings. Hls derived from the frequency (DomkF,
SpC, SpE, SpE, SpRO) domain perform worse compared to HIs from the time domain.
The preprocessing steps of enveloping the signal or calculating the residual signal do
not affect the HIs trend behaviour significantly, which can be seen in Table A1 - A3.
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Figure 4. R? values for different Hls and bearings from the FEMTO data set based on raw signals

3.2. Temperature sensitivity analysis

Based on this result, we conducted the temperature sensitivity analysis for the PtP-,
Peak-, RMS-, Std- and Z-score-HI. Here we used one measurement per temperature step
as the reference quantity for the Z-score-HI and set R to 128. Figure 5 shows the change of
the HIs per axis in percent. In general, the data from axis 4 show the highest temperature
sensitivity for all HIs. The RMS- and Z-score-HI show the lowest temperature sensitivity
overall. The comparably higher sensitivty of the HI values derived from data at axis 4
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can be related to the robot trajectory. During the trajectory the robot arm was stretched
out, which leads to greater elasticitiy at the position of the sensor at axis 4. This can
cause increased vibrations, which are magnified under changing temperature influences.
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Figure 5. Temperature sensitivity for different HIs and robot axes

3.3. Accelerated wear tests analysis

Given this fact, we analysed the data sets from the accelerated wear tests with
only the RMS- and the Z-score-HI. We used the first 100 measurements as the reference
quantity for the Z-score-HI and set R to 256. For smoothing, we applied a rolling average
with a window length of 15 on both HI series. The progress of the Hls in the accelerated
wear test of the ABB IRB 7600 is shown in Figure 6.
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Figure 6. Z-score-HI and RMS-HI for the IRB 7600 experiment
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Both HIs show a plateau with increased values at the end of the experiment. It
can be assumed that at this point in time faults have already been present. Here, the
increased HI values over a longer time period could have been used as a decision
criterion for maintenance actions.The measurements at the very end show decreased
values again. We assume that this decrease is correlated to a part of the bearing roller.
In the end of the experiment, one of the roller elements showed a large pit. During the
measurements showing the higher HI values this detached part of the roller element
could have been still slightly fixed at the roller element and thus could have caused high
vibration. After full detachment, this noise level decreased again. For the measurements
before the plateau the RMS-HI shows higher fluctuations compared to the Z-score-HI.
For instance, the RMS-HI shows a first high peak around measurement 100. Such peaks
could lead to false alarms in a condition monitoring scenario and should be avoided.

The progress of the HIs in the other accelerated wear test performed with the ABB
IRB 6600 is shown in Figure 7.
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Figure 7. Z-score-HI and RMS-HI for the IRB 6640 experiment

Here, the Z-score-HI shows a trending behaviour, the RMS shows a stationary
progress. Both HIs show a high increase during the last measurements. In this exper-
iment, the trending behaviour of the Z-score could have been a criterion to execute
maintenance actions. This information is not present in the RMS-progress. Based on the
fact that the Z-score showed a better trend behaviour in the ABB IRB 6600 experiment
and less noisy behaviour in the ABB IRB 7600 experiment, we suggest the use of the
Z-score-HI for the condition monitoring of robot gears.

4. Discussion

The discussion is divided in four parts. First of all, some remarks regarding our
designed HI are given. Afterwards, three parts take up one of the Results subsections.

To derive the spectrograms required for the Z-score-HI, the length of the window
function must be defined. High values for R result in a high frequency resolution, low
values in a high time resolution. For the individual experiments, we chose window
lengths that lead to a good compromise between time and frequency resolution by
inspecting spectrograms created with different window lengths. We chose window
lengths that lead to spectrograms appearing the least noisy in a visual inspection. In an
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industry setting, an automated approach should be developed for this dependent on the
robot’s trajectory and the used sensor.

The motivation to use the FEMTO data set to investigate HI performance was to
assess HIs’ capability to detect multiple faults. Within a robot gearbox, which are mostly
RV reducers, not only bearings but also the gear teeth can have faults. Such faults are
not taken into account by our analysis explicitly. However, the bearing faults present in
the FEMTO data set, e.g. pitting, are similar to typical gear teeth or shaft damage from a
signal analysis point of view. Damage from all components modulate the acceleration
signals at a specific frequency and its sidebands. Exactly this capability to track such
changes in the signal was investigated in our analysis. There also exist HIs that track
energy changes at the specific component fault frequencies. Such Hls were excluded
from our analysis because expert knowledge about the geometric characteristics of the
gears, e.g., the bearing diameters or the number of roller elements, is required to calculate
these HIs. This expert knowledge is usually not available to industrial robot users. We
also excluded Hls that could be derived automatically from machine learning models
such as autoencoders as the physical interpretation of these Hls is difficult and hence a
transferability between different robot systems is questionable from our point of view.

Regarding the results of the temperature sensitivity analysis, it must be pointed
out that the results are valid only for the chosen robot trajectory. As the dynamic be-
haviour of the robot changes within its working space, this analysis should be performed
individually for trajectories and robot systems. However, from a theoretical point of
view the Z-score-HI possesses the ability to cope with these temperature fluctuations
independently of the trajectory. Temperature variations lead to variance in the time-
frequency-spectrograms. This variance is taken into account in the spec(T, w)aog,ref
and spec(T, W )std re ¢ during the initialisation phase. Hence, Z-score-Hls derived from
measurements from functional robot gears and different temperatures will show only
little differences in the Z-score-HI value.

Finally, the results from the accelerated wear tests show noisy progress over time.
This hinders a simple or automated detection of faults in a condition monitoring be-
haviour. To establish an automated CM system, a suitable trend detection in combination
with an outlier detection system must be set up. A trend detection system could identify
HI progress shown as in Figure 7, whereas an outlier detection system could detect
progress as depicted in Figure 6. The development of such a system also marks the
outlook of our future work.

5. Conclusions

Condition monitoring of robot gears has the potential to decrease production system
downtimes. The state-of-the-art provides many health indicators to track the health state
of gears. We analysed these health indicators regarding specific requirements rising
from typical industrial robot applications. These requirements are the ability to detect
different faults, low temperature sensitivity and the capability to deal with instationary
velocity behaviour. Additionally, we suggested a new health indicator based on time
frequency domain spectrograms and Z-scores that can cope with these requirements.
Our analysis showed that the RMS health indicator and our suggested health indicator
meet the defined requirements the best. Data from accelerated wear tests shows that for
an automatic condition monitoring system a combination of a trend detection and an
outlier detection system that can deal with a noisy signal is required.

Author Contributions: Conceptualization, C.N. and G.R.; methodology, C.N.; software, C.N.;
validation, C.N.; formal analysis,C.N.; investigation,C.N.; resources, G.R.; data curation, C.N.;
writing—original draft preparation, C.N.; writing—review and editing, G.R.; visualization, C.N.;
supervision, G.R.; project administration, C.N.; funding acquisition, G.R. All authors have read
and agreed to the published version of the manuscript.


https://doi.org/10.20944/preprints202104.0797.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 April 2021 d0i:10.20944/preprints202104.0797.v1

Funding: We express our gratitude to the Bavarian Ministry of Economic Affairs, Regional Devel-
opment and Energy for the funding of our research. The formulated outlook will be investigated
as part of the research project “KIVI” (grant number IUK-1809-0008 TUK597/003) and will be
further developed and implemented.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, or in the decision to publish the results.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to confidentiality reasons.


https://doi.org/10.20944/preprints202104.0797.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 April 2021

d0i:10.20944/preprints202104.0797.v1

Appendix A
Table Al. R? statistics for HIs derived from the normal signal
CrF DomF ImpF Kurt MarF Mean Med MedF Peak PtP RMS Skew SpC SpE SpF SpRO  Std Zscore
Mean 0231 0354 0287 0336 029 0.034 0.063 0467 0.822 0.844 0.887 0.242 0599 0488 0514 0491 0.887 0934
Std 0246 0351 0.289 0334 0298 0076 0147 0311 0.173 0145 0215 0289 0298 0.281 0225 0322 0215 0.080
Min 0.005 0.013 0.007 0.004 0.006 0.003 0.007 0.024 0259 0397 0.082 0.004 0.025 0.067 0.135 0.035 0.082 0.644
Max 0706 0998 0764 0.869 0773 0323 0.618 0941 0987 0985 0.990 0.888 0944 0971 0900 0.984 0.990 0.983
Table A2. R? statistics for Hls derived from the enveloped signal
CrF DomF ImpF Kurt MarF Mean Med MedF Peak PtP RMS Skew SpC SpE SpF SpRO  Std
Mean 0215 0139 0284 0299 029 0776 0819 0496 0816 0.816 0.872 0275 0.605 0464 0462 0514 0.898
Std 0229 0248 0283 0328 0.291 029 0248 0318 0.178 0178 0.227 0303 0.286 0.298 0276 0.309 0.131
Min 0.005 0.001 0.006 0.001 0.006 0.010 0.014 0.023 0246 0246 0.074 0.008 0.046 0.013 0.012 0.007 0.427
Max 0.635 0997 0741 0919 0766 0977 0983 0.981 0988 0988 0989 0905 0939 0978 0901 0987 0.987
Table A3. R? statistics for HIs derived from the residual signal as suggestet by [4]
CrF DomF ImpF Kurt MarF Mean Med MedF Peak PtP RMS Skew SpC  SpF SpRO  Std  SpE
Mean 0329 0423 0348 0365 0355 0.032 0.088 0.608 0.847 0.859 0.884 0.237 0.701 0.609 0.605 0.884 0.534
Std 0270 0348 0303 0337 0312 0.089 0187 0292 0.178 0153 0.221 0319 0196 0202 0213 0221 0.316
Min 0.010 0.021 0.003 0.007 0.018 0.001 0.001 0.016 0.211 0328 0.082 0.003 0425 0.147 0132 0.083 0.023
Max 0802 0992 0.828 0.858 0.830 0374 0.671 0988 0.987 0.987 0.990 0943 0959 0930 0977 0.990 0.969
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