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Abstract: Passive acoustic monitoring (PAM) is a non-invasive technique to supervise the wildlife.1

Acoustic surveillance is preferable in some situation such as in the case of marine mammals, when2

the animals spend most of their time underwater, making it hard to obtain their images. Machine3

learning is very useful for PAM, for example, to identify species based on audio recordings. But4

some care should be taken to evaluate the capability of a system. We define PAM-filters as the5

creation of the experimental protocols according to the dates and locations of the recordings,6

aiming to avoid the use of the same individuals, noise and recording devices in both training7

and test sets. A random division of a database present accuracies much higher than accuracies8

obtained with protocols generated with PAM-filter. Although we use the animal vocalizations,9

in our method we convert the audio into spectrogram images, after that, we describe the images10

using the texture. Those are well-known techniques for audio classification, and they have already11

been used for species classification. Also, we perform statistical tests to demonstrate the significant12

difference between accuracies generated with and without PAM-filters with several well-known13

classifiers. The configuration of our experimental protocols and the database were made available14

online1.15

Keywords: PAM; Passive acoustic monitoring; audio classification; texture classification; PAM-16

filter; experimental protocols for audio classification; statistical tests.17

1. Introduction18

Techniques of Passive acoustic monitoring (PAM) are tools to automatic detect,19

localize and monitor animals [1]. Passive refers to the fact that the system is non-invasive,20

as it does not interfere with the environment. It is an acoustic system because the21

surveillance is done through audio signals. For example, a recording device connected22

to the internet could acquire data from an environment and send captured data to a23

classification system that identifies which species are nearby.24

In the case of marine animals, the use of audio data might be preferred over image25

data [2]. The reasoning for that is because visual survey methods for some marine26

animals, such as whales, may detect only a fraction of the animals present in the area.27

This happens because visual observers can only see them during the very short period28

when they are on the surface, and also because visual surveys can be undertaken only29

during daylight hours and in relatively good weather.30

Global warming, industrial fishing, oil spilling and other factors cause a lot of31

damage and changes in environment of marine mammals. In virtue of that, it is really32

important to keep marine mammals under supervision. A practical use of species33

identification is applied into the North Atlantic Right Whales, focusing in environmental34

conservation. Collisions between ships and these animals are one of the main threats35

1 https://figshare.com/articles/dataset/Database_of_spectrograms_of_marine_mammals/14068106
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to this species2. In order to avoid these collisions, in 2013 there was an international36

challenge3 to automatically identify if a given audio contains or not vocalizations of37

such species. The data from the challenge was collected by floating buoys. This kind of38

recognition can help ships to change their route to avoid a possible collision. Beyond the39

challenge, there are other researches about North Atlantic Right Whales identification in40

the scientific literature [3–5]. In fact, the situation of this species is so critical that another41

challenge was proposed in 20154. In this one, the database was composed of aerial images42

from these animals and the classification task was to identify each individual, to help43

researchers track health and general status of the individuals, focusing in conservation44

efforts.45

Although PAM techniques and machine learning are useful in marine researches,46

there are two potential hazards concerning to machine learning we may note in systems47

related to species classification. The first one is the risk of using vocalizations of the48

same individuals both on training and test sets simultaneously, this may lead the system49

to be able to recognize the individuals instead of the species. Not only the vocalization50

of the same individual can bias the system, but even a characteristic noise presented in51

several samples of a class can be distinguishing from noises of other classes, which is52

the second hazard. That can happen when samples of the same class are recorded in the53

same location with the same devices, either the environment and the devices can create54

noise. Based on these issues and aiming on more reliable results for PAM systems, we55

propose the PAM-filter, which means trying to use the same individual always in the56

same set, whether training or test. In the database we use, it was possible to separate57

the individuals from the same class by location and date of record, trying our best to58

avoid the recognition of individuals and noise. Experiments were also conducted with a59

randomized version of the database, and the results are fairly disparate.60

2. Materials and Methods61

In this section, we describe the database used for experimentation and the protocols62

developed aiming to properly explore it. In addition, the theoretical framework is also63

described.64

2.1. Watkins Marine Mammal Sound Database - WMMSD65

Marine mammals are an informal group of animals that relies on a marine ecosystem66

for existence. According to taxonomy committee from The Society for Marine Mammal-67

ogy5, marine mammals are classified in three orders and several families, genus, species68

and subspecies, some of them maybe are already extinct. In this work we use the Watkins69

Marine Mammal Sound Database6 (WMMSD). The audio files were recorded from the70

1940’s to the 2000’s, and the species in the audio files were identified by professional71

biologists.72

The database is composed of almost 1,600 entire tapes. Each tape is composed of73

several minutes of recording, and they may contain vocalizations of several species.74

Smaller cuts of these long-length audio files are available in the website, usually with75

vocalizations of only one species. They are divided into two sections in the website, “all76

cuts” and “best cuts”. “Best cuts” represents high-quality and low-noise cuts. “All cuts”77

contains all the audio files from the “best cuts” plus other ones, which are lower-quality78

and noisier.79

We choose to use the “best cuts” for the classification task, as noise reduction and80

segmentation is not the focus of this work. “Best cuts” contains 1,694 audio files from81

2 https://ocean.si.edu/ocean-life/marine-mammals/north-atlantic-right-whale
3 https://www.kaggle.com/c/the-icml-2013-whale-challenge-right-whale-redux
4 https://www.kaggle.com/c/noaa-right-whale-recognition
5 https://marinemammalscience.org/
6 https://cis.whoi.edu/science/B/whalesounds/index.cfm
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32 species of marine mammals. There were 25 samples that contains vocalizations of82

more than one species, those were removed as we do not intend to handle multi-label83

classification neither audio segmentation.84

The website also provides a meta-data file for each audio cut. The data contains85

additional information, such as the date and the location of the record. However, most86

meta-data files do not present information for all their fields. Several classes have must87

of their samples records in just a few locations and dates. It led us to suspect that they88

may contain samples of the same individual. Also, the noise pattern in such samples are89

homogeneous, using the metadata files it is possible to see that the cuts are extracted90

from the same long-length tapes.91

2.2. PAM-filter92

In another audio classification task, music genre classification, Flexer [6] defines the93

concept of “artist-filter”, which means to have all samples of the same artist either in the94

training or test. The author noticed that experiments with samples from the same artists95

in training and test sets present higher accuracies and lower standard deviations, that96

suggests the music genre classification systems were learning the artist instead of the97

genre.98

We consider that experiments with randomized sets of training and test may pro-99

duce overestimated results of species classification, because the classifiers may be taking100

decisions based on underlying patterns. This is based on the information presented in101

the metadata files of the WMMSD, which indicates there are a lot of samples of the same102

individuals and, also, the same pattern of noise is presented in several samples of the103

same class. The concept of “artist-filter” led us to conceive the “PAM-filter”, where we104

try to use the same individual’s vocalization either in the training or test set, never in105

both them.106

Figure 1 presents four different vocalizations of the species Eubalaena glacialis, all107

the spectrograms were generated with the same parameters. According to the metadata108

files, Figures 1a and 1b were extracted from the same long-length tape, recorded in the109

same day, with the same devices. It is discernible vertical lines that represents the same110

noise in the lower area of the Figures 1a and 1b. The vocalization in the Figure 1a is111

described as “grunt” and in the Figure 1b is described as “one long groan”.112

Figures 1c and 1d also share the same tape, date and devices. Both vocalizations are113

described as “moan”. Although noise is not visible in vertical lines and neither reported114

in the metadata, a texture pattern resembling to “salt and pepper” is present all over the115

spectrogram, probably generated by the sound of the ocean.116

2.3. Watkins experimental protocols117

To investigate the impact of PAM-filter, we create three different protocols of the118

same database, with and without PAM-filter. They are called Watkins Experimental Pro-119

tocols, WEP#1, WEP#2 and WEP#3, they are described as follow and their specifications120

are available online7.121

2.3.1. Watkins Experimental Protocol #1 (WEP#1): ten-fold cross-validation122

The first protocol is defined without any concerns about PAM-filter. We use the123

database randomly divided into ten-fold cross-validation, classes with fewer than ten124

samples were removed. Table 1 presents the species, number of samples used in WEP#1,125

number of locations were the samples were recorded and the number of samples pre-126

sented in each location.127

7 https://figshare.com/articles/dataset/Database_of_spectrograms_of_marine_mammals/14068106

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2021                   doi:10.20944/preprints202104.0766.v1

https://figshare.com/articles/dataset/Database_of_spectrograms_of_marine_mammals/14068106
https://doi.org/10.20944/preprints202104.0766.v1


Version April 28, 2021 submitted to J. Mar. Sci. Eng. 4 of 13

(a) Recorded in 1956. (b) Recorded in 1956. (c) Recorded in 1981. (d) Recorded in 1981.
Figure 1. Different vocalizations of Eubalaena glacialis.

2.3.2. Watkins Experimental Protocol #2 (WEP#2): training/test protocol128

As it is listed in Table 1, some species, like Balaenoptera acutorostrata, hold all its129

records in the same place. It indicates the samples might contain the vocalizations of130

the same individual and, also, the noise pattern generated by the environment and the131

devices are usually similar. Such species were removed.132

To create a experimental protocol using the PAM-filter, we scan the metadata files133

to separate the database according to locations, each location of each class is allocated134

exclusively in the training or the test set.135

Also, in other cases, all samples from the same class were recorded in just a few136

different locations. In species where the samples belong to only two locations, the137

location with more sample goes to the training set and the second location goes to the138

test set. Classes with three or more locations were distributed trying to achieve 70% for139

training and 30% for test.140

Table 2 presents the data used in WEP#2 and WEP#3. Classes with unfilled number141

of samples were not in the protocol. WEP#2 is composed of 24 classes, 908 samples for142

training and 412 for test.143

2.3.3. Watkins Experimental Protocol #3 (WEP#3): two-fold cross-validation144

Third and last protocol is two-fold cross-validation, it was created to use all the145

samples either for training and test, improving the reliability of the results. We could146

not increase the number of folds due to the number of locations, since eight classes have147
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Table 1. Composition of WEP#1: 31 species. Columns also present the number of locations were
the samples were recorded, number of samples recorded in each location and number of samples
per class.

Species Number of
locations

Samples by
location

Number of samples
in WEP#1

Balaena mysticetus 2 1; 49 50
Balaenoptera acutorostrata 1 17 17
Balaenoptera physalus 2 5; 45 50
Delphinapterus leucas 4 1; 6; 16; 27 50
Delphinus delphis 3 2; 15; 35 52
Erignathus barbatus 3 3; 9; 15 27
Eubalaena australis 2 7; 18 25
Eubalaena glacialis 4 3; 12; 19; 20 54
Globicephala macrorhynchus 4 5; 16; 18; 26 65
Globicephala melas 4 11; 12; 14; 28 65
Grampus griseus 3 1; 21; 45 67
Hydrurga leptonyx 1 10 10
Lagenodelphis hosei 1 87 87
Lagenorhynchus acutus 3 12; 12; 31 55
Lagenorhynchus albirostris 2 20; 37 57
Megaptera novaeangliae 3 1; 17; 46 64
Monodon monoceros 3 4; 10; 36 50
Odobenus rosmarus 3 1; 16; 21 38
Ommatophoca rossi 3 11; 19; 20 50
Orcinus orca 5 1; 2; 5; 8; 19 35
Pagophilus groenlandicus 1 47 47
Peponocephala electra 1 56 56
Physeter macrocephalus 6 2; 2; 2; 9; 12; 33 60
Pseudorca crassidens 2 11; 48 59
Stenella attenuata 2 11; 54 65
Stenella clymene 2 14; 49 63
Stenella coeruleoalba 4 8; 12; 27; 34 81
Stenella frontalis 1 58 58
Stenella longirostris 2 1; 113 114
Steno bredanensis 1 50 50
Tursiops truncatus 3 1; 10; 13 24

Number of samples 1,645

all their samples recorded in only two locations (see Table 1), increasing the number of148

fold to three would result in a major cut of classes.149

However, a minor cut of classes was still necessary. For example, the class Stenella150

longirostris has recordings taken from two locations, one of them with one sample and151

the other one with 113. If it was used in cross-validation, 113 samples of a class would152

be tested in a model trained with just one sample of the class, an unfair task. Empirically,153

we decided to remove classes which hold fewer than ten samples in either one of the154

folds. Table 2 presents details of WEP#3. It uses 20 class. These two folds holds 542 and155

539 samples each.156

2.4. Theoretical Framework157

In this section we present theoretical information about the experimental protocol158

used in our experiments. First, we describe how the audio signal was manipulated159

and the spectrograms generated. Than, we detail the feature extraction and, lastly, the160

classifiers trialed.161
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Table 2. Data used in the WEPs#2 and #3. Classes and number of samples of the training and
test set of the WEP#2 and the two folds of WEP#3. Unfilled cells mean the class was not used, 24
classes were used in WEP#2 and 20 in WEP#3.

Species
Number of Samples

WEP#2 WEP#3
Train Test Fold 1 Fold 2

Balaena mysticetus 49 1 - -
Balaenoptera acutorostrata - - - -
Balaenoptera physalus 45 5 - -
Delphinapterus leucas 27 23 23 27
Delphinus delphis 35 17 35 17
Erignathus barbatus 15 12 15 12
Eubalaena australis 18 7 - -
Eubalaena glacialis 31 23 31 23
Globicephala macrorhynchus 34 31 31 34
Globicephala melas 37 28 28 37
Grampus griseus 45 22 45 22
Hydrurga leptonyx - - - -
Lagenodelphis hosei - - - -
Lagenorhynchus acutus 31 24 31 24
Lagenorhynchus albirostris 37 20 37 20
Megaptera novaeangliae 46 18 46 18
Monodon monoceros 36 14 36 14
Odobenus rosmarus 21 17 21 17
Ommatophoca rossi 30 20 20 30
Orcinus orca 19 16 19 16
Pagophilus groenlandicus - - - -
Peponocephala electra - - - -
Physeter macrocephalus 33 27 33 27
Pseudorca crassidens 48 11 11 48
Stenella attenuata 54 11 11 54
Stenella clymene 49 14 14 49
Stenella coeruleoalba 42 39 42 39
Stenella frontalis - - - -
Stenella longirostris 113 1 - -
Steno bredanensis - - - -
Tursiops truncatus 13 11 13 11

Sums 908 412 542 539

2.4.1. Signal162

Several researches that address audio classification perform the feature extraction in163

the visual domain, typically using spectrogram images. Investigations have already been164

developed to handle tasks such as infant cry motivation [7], music genre classification165

[8] and music mood classification [9]. The visual domain has also been used with animal166

vocalizations, in tasks as species identification and detection [4,10].167

Spectrograms are time-frequency representations of a signal and they can be plotted168

into an image. From a digital audio, a spectrogram can be generated using the Discrete169

Fourier Transform (DFT). It shows the intensity of the frequency values as time varies.170

An example of a spectrogram image of a vocalization of a marine mammal is presented171

in Figure 2. The X-axis represents time, the Y-axis represents information about the172

frequency and the Z-axis (i.e. color intensity of the image pixels) displays the intensity173

of the signal.174
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(a) Delphinapterus Leucas. (b) Eubalaena glacialis.
Figure 2. Examples of spectrograms of the WMMSD.

The spectrogram of the Figure 2a represents a vocalization of a Delphinapterus175

Leucas, the audio is a little bit more than one second long. Its metadata file describe it as a176

“moan”, it was recorded at 1965, in the Coudres Island, Canada. The Figure 2b represents177

a vocalization of a Eubalaena glacialis, the audio is a bit longer than two seconds. The178

metadata also describes the vocalizations as “moan”. It was recorded in the coast of179

Massachusetts, USA, in 1959.180

2.4.2. Features181

Texture is an important visual attribute in digital images. In case of spectrograms182

in particular, texture is a very prominent visual property. In this vein, the textural183

content of spectrograms has been used in several audio classification tasks, such as184

music genre classification [11], voice classification [12], birds species classification and185

whales recognition [4].186

In [13], the authors propose the Local Binary Pattern (LBP). The texture of an187

image is described with a histogram. Each cell of the histogram holds the number of188
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occurrences of a binary pattern. One binary pattern is calculated for each pixel and is189

based in its neighbourhood. Equation 1 is computed for each pixel for the extraction of190

the LBP histogram.191

LBPP,R =
p−1

∑
p=0

s(gp − gc)2p, (1)

the parameter P represents the number of neighbour pixels to be taken into account,192

and R stands for radius, the distance between the pixel and its neighbours. gc and gp193

stand for the gray level of the central pixel (i.e. the pixel for which the LPB is been194

calculated) and the gray level of one neighbour respectively. The function s is defined in195

the Equation 2.196

s(x) =

{
1, x ≥ 0
0, x < 0

(2)

An example of the computation of LBP in one pixel of an image is illustrated in197

Figure 3, considering the parameters P = 8 and R = 1.198

Figure 3. Example of computation of LBP in a gray scale image. Adapted from [14].

The binary pattern begins in the top left and goes clockwise. The pattern of the199

central pixel of the Figure 3 is defined as the sequence of bits200

(01011011)2.

It is possible to conceptualize the binary pattern as a decimal number, it is computed201

applying the sum of binary digits times their power of two (2n)202

(0× 128) + (1× 64) + (0× 32) + (1× 16) + (1× 8) + (0× 4) + (1× 2) + (1× 1) = 9110,

therefore, the decimal number of the pattern from the Figure 3 is 91.203

Changes in the parameter P imply in changes in the number of features, eight204

neighbours binary described generate 256 possible patterns (28). LBP with P = 8 presents205

several non-uniform patterns, which are binary sequences that present more than two206

bitwise changes, for example, the binary pattern in Figure 3 is non-uniform, it presents207

six bitwise changes. Usually, LBP is used with P = 8, R = 2 and gathering together all208

the non-uniform patterns into just one feature, it results in 59 features. However, Ojala209

et al. [15] observed that non-uniform patterns do not contain fundamental properties of210

texture, and they suggest to sum up all the non-uniform patterns in the same feature.211

2.4.3. Classifiers212

To analyze the impact of the PAM-filter we tried several classifiers to observe their213

performances. The first classifier considered to this work is the well-known K-Nearest214
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Neighbours (KNN). It is an instance-based algorithm, which means it does not produce215

a model, it only stores the instances of training. During test, the algorithm computes216

the distance between each test sample to each training sample. The prediction of a test217

sample is based on the classes of the nearest neighbours. Parameters of KNN are the218

distance metric and K, the number of neighbours. Other simpler classifiers used in219

our experiments are the Naïve Bayes (NB), a probabilistic classifier that is known for220

assuming independence between the features, and Decision Trees (DT), a tree composed221

of conditional statements created using information gain or impurity metrics.222

Another classifier selected for research is the Support Vector Machine (SVM), a223

binary classifier proposed by Cortes and Vapnik [16]. It can be easily applied for multi-224

class problems using one of the following strategies: one-vs-one or one-vs-all. Three225

considerable benefits of SVM are the kernel method, maximum-margin hyperplane226

and soft margin. Kernel method consists in mapping the feature space into another227

feature space, dimensionally higher, where the data can be linearly separable. The228

maximum-margin hyperplane divides the data taking into account that the nearest229

points on each side is equally distant from the hyperplane. Soft margin is a technique230

to reduce overfitting, it treats the C samples nearest the margin as outliers and, with231

that, increases the distance between the classes. Parameters of SVM are the C and kernel232

function (which may have its own parameters).233

Ensembles of classifiers based in decision trees are also used here. They are Bagging,234

Random Forest (RF), Extremely Randomized Trees (ERT), AdaBoost (AB) and Gradient235

Boosting (GB). The classifier Bagging builds several instances of classifiers from random236

subsets of the training database. RF combines the concept of Bagging but with the237

idea of random subsets of features per classifier. ERT is similar to Random Forest, the238

differences are in the choice of attributes and in the definition of cut-points, they are239

fully random. AB generates new classifiers by increasing the weight of samples that240

were wrongly classified by the previous models. Then, the outcome is obtained by the241

weighted predictions of all created models. GB is similar to AB, but the new classifiers242

are created using only the residual error from the previous classifier.243

2.4.4. Deep Learning244

To diversify the experiments of this work, we also executed deep learning tests.245

We use a pre-trained ResNet-50 (Residual Networks - 50 layers) [17] fine-tuned with246

the training samples. As it is common in convolutional neural networks, we use the247

spectrograms as input. The deep learning model was used here such a way that it248

provided features, in a non-handcrafted fashion, and it also performed the classification.249

So, in the deep learning experiments, the classifiers described in Section 2.4.3 and the250

features described in Section 2.4.2 are not applicable.251

2.5. Experimental Methodology252

The methodology of the non deep learning experiments of this work is illustrated253

in Figure 4. The first step is to acquire the database. WMMSD is available online, but the254

download is exclusively sample by sample. A crawler script was developed to download255

all the samples of the database and the metadata files. After that, as a pre-processing256

task, all the samples were converted to the same sample rate, 22050Hz. To accomplish257

this task we used LibRosa8
258

The audio files are converted to spectrogram images using the software SoX9.259

Features of LBP was extracted with the software library Scikit-Image10. The features from260

8 https://librosa.org/doc/latest/index.html
9 http://sox.sourceforge.net/

10 https://scikit-image.org/
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Figure 4. Illustration of the general methodology of this work.

the training sets were used to create a model with the library Scikit-Learn11. Features of261

the testing samples were, then, predicted by the model.262

The experiments with deep learning are slightly different. A specific representa-263

tion of it is presented in Figure 5. A pre-trained ResNet-50 were fine-tuned with the264

spectrograms of the training samples (the same generated in Figure 4). After that, the265

spectrograms of the testing samples are predicted with the neural network. The deep266

learning experiments were carried out using Matlab12.267

Figure 5. Illustration of the methodology of the deep learning experiments.

All the experiments were conducted in the three Watkins experimental protocols.268

WEP#1, the protocol composed of 31 classes, samples are randomly divided into ten-fold269

cross-validation, without concerns about using the same individuals or same noise270

pattern in training and test sets. WEP#2 and WEP#3, both with PAM-filter, WEP#2 has271

24 classes and is a training and test protocol, WEP#3 holds 20 classes and it is a two-fold272

cross-validation protocol.273

3. Results274

Table 3 presents the results obtained with the three protocols presented in Section275

2.3, WEP#1 without PAM-filter, and WEP#2 and #3 with PAM-filter. The best results of276

each experimental protocol were all found with deep learning.277

The best results found using the WEP#1 was with deep learning and the classifier278

SVM, 78.10%σ2.73 and 64.62%σ3.49, respectively. The protocol holds 1,645 samples from279

31 classes. It was randomly divided in ten folds for cross-validation, it does not apply280

PAM-filter.281

11 https://scikit-learn.org/stable/
12 https://www.mathworks.com/products/matlab.html
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Table 3. Experimental results in WMMSD. Features extracted with LBP and several different classifiers. Also, experiments with a deep
learning architecture.

Classifiers Parameters Acc. and standard deviation (when applicable)

WEP#1 (31 classes) WEP#2 (24 classes) WEP#3 (20 classes)

NB Gaussian Naive Bayes 38.78%σ3.76 18.45% 16.56%σ2.29

DT
Splitting with entropy 39.89%σ3.82 11.65% 12.39%σ0.47
Splitting with Gini Impurity 43.25%σ2.80 10.44% 10.36%σ0.74

KNN

Manhattan distance, K=1 59.53%σ4.51 18.45% 17.02%σ1.76
Manhattan distance, K=3 61.03%σ3.64 16.02% 17.29%σ3.46
Manhattan distance, K=5 61.08%σ3.13 17.48% 17.38%σ4.38
Manhattan distance, K=7 59.54%σ3.36 16.50% 17.38%σ4.90
Manhattan distance, K=11 59.13%σ4.06 17.48% 16.09%σ4.12
Euclidean distance, K=1 57.16%σ4.32 19.17% 17.20%σ2.03
Euclidean distance, K=3 57.83%σ3.56 17.72% 17.20%σ3.33
Euclidean distance, K=5 58.20%σ3.60 18.20% 18.86%σ5.16
Euclidean distance, K=7 57.53%σ3.46 17.96% 17.94%σ5.42
Euclidean distance, K=11 56.29%σ3.22 17.72% 17.38%σ4.39

SVM Grid search 64.62%σ3.49 13.35% 13.69%σ1.36

Ensembles

AdaBoost 12.09%σ3.55 01.46% 09.62%σ0.22
Bagging 50.75%σ3.72 13.11% 13.13%σ1.26
Extremely Randomized Trees 46.91%σ4.66 16.02% 14.24%σ1.51
Gradient Boosting 54.54%σ3.78 12.38% 11.84%σ0.31
Random Forest 47.29%σ4.51 13.11% 15.07%σ2.43

Deep Learning ResNet-50 78.10%σ2.73 24.27% 21.38%σ1.82

On the other hand, the protocols with PAM-filter present much lower results, with282

or without deep learning. The best results with WEP#2 was 24.27% and 19.17%, it is a283

train/test protocol. Although it has fewer samples than WEP#1, 1,320, it also hold fewer284

classes, 24. These results was achieved with deep learning and the KNN classifier.285

The two-fold cross-validation protocol with PAM-filter, WEP#3, also got its best286

results with deep learning and KNN (but with a different number of neighbours). The287

best accuracies were 21.38%σ1.82 and 18.86%σ5.16. Whereas WEP#3 contains fewer288

samples than WEP#1, 1081, it also deals with fewer classes, 20.289

4. Discussion290

First, it is important to reiterate the potential of ResNet-50. One deep learning291

architecture outperformed all the other classifiers, and this architecture were not trained292

from scratch. The initial weights were generated with a general propose image database293

13 and only the fine-tuning was carried out with vocalizations of marine mammals in the294

spectrogram format.295

In general, the results indicate that it is more likely to achieve better accuracies296

without PAM-filter, since WEP#1 present accuracies much higher than the other two pro-297

tocols, WEP#2 and WEP#3, which apply PAM-filter. Therefore, the outcome corroborates298

with the hypothesis that PAM based in machine learning can be biased by individuals,299

noise and/or devices used in the recording.300

Further, we performed the Friedman statistical test [18,19] in the accuracies obtained301

with each combination of protocol and classifiers. The test compares the means of at302

least three samples, it is similar to ANOVA (Analysis of variance), but non-parametric.303

In our case, the samples are the protocols of the database, 2 with PAM-filter and the304

other one without it. The null hypothesis of the Friedman test stands that there is no305

13 http://www.image-net.org/
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difference between the samples. The result of the Friedman test indicated that at least306

one of the samples (protocols) are significantly different from another, with α < 0.05.307

At this point, to find which one is different from the others, we execute the Wilcoxon308

signed rank test, in pairs of protocols. Since there are three samples, we also apply309

Bonferroni correction to avoid the statistical error Type 1. So, now, αb < 0.167. The null310

hypothesis of the Wilcoxon test argues that there is no significant difference between311

the pairs. The hypothesis was retained only with the pair WEP#2 and WEP#3, in both312

comparisons with WEP#1 it was rejected.313

5. Conclusions314

PAM systems based in machine learning can be used to support several different315

application tasks. However, the evaluation protocol is a critical point, that must be316

carefully crafted, not to perpetrate wrong assumptions that could compromise the317

system as a whole.318

Unfortunately, wildlife databases with information such as dates, locations, indi-319

viduals and devices used in the recordings are not easily found. But our results suggest320

that they must be used to create appropriated experimental protocols.321
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Abbreviations338

The following abbreviations are used in this manuscript:339

AB AdaBoost
ANOVA Analysis of Variance
DT Decition Trees
DTF Discrete Fourier Transform
ERT Extreme Random Forest
GB Gradient Boosting
KNN K-Nearest Neighbours
LBP Local Binary Pattern
NB Naïve Bayes
PAM Passive Acoustic Monitoring
ResNet-50 Residual Network - 50 layers
RF Random Forest
SoX SOund eXchange
SVM Support Vector Machine
WEP Watkins Experimental Protocol
WMMSD Watkins Marine Mammal Sound Database
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