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Abstract: Passive acoustic monitoring (PAM) is a non-invasive technique to supervise the wildlife.
Acoustic surveillance is preferable in some situation such as in the case of marine mammals, when
the animals spend most of their time underwater, making it hard to obtain their images. Machine
learning is very useful for PAM, for example, to identify species based on audio recordings. But
some care should be taken to evaluate the capability of a system. We define PAM-filters as the
creation of the experimental protocols according to the dates and locations of the recordings,
aiming to avoid the use of the same individuals, noise and recording devices in both training
and test sets. A random division of a database present accuracies much higher than accuracies
obtained with protocols generated with PAM-filter. Although we use the animal vocalizations,
in our method we convert the audio into spectrogram images, after that, we describe the images
using the texture. Those are well-known techniques for audio classification, and they have already
been used for species classification. Also, we perform statistical tests to demonstrate the significant
difference between accuracies generated with and without PAM-filters with several well-known
classifiers. The configuration of our experimental protocols and the database were made available
online!.

Keywords: PAM; Passive acoustic monitoring; audio classification; texture classification; PAM-
filter; experimental protocols for audio classification; statistical tests.

1. Introduction

Techniques of Passive acoustic monitoring (PAM) are tools to automatic detect,
localize and monitor animals [1]. Passive refers to the fact that the system is non-invasive,
as it does not interfere with the environment. It is an acoustic system because the
surveillance is done through audio signals. For example, a recording device connected
to the internet could acquire data from an environment and send captured data to a
classification system that identifies which species are nearby.

In the case of marine animals, the use of audio data might be preferred over image
data [2]. The reasoning for that is because visual survey methods for some marine
animals, such as whales, may detect only a fraction of the animals present in the area.
This happens because visual observers can only see them during the very short period
when they are on the surface, and also because visual surveys can be undertaken only
during daylight hours and in relatively good weather.

Global warming, industrial fishing, oil spilling and other factors cause a lot of
damage and changes in environment of marine mammals. In virtue of that, it is really
important to keep marine mammals under supervision. A practical use of species
identification is applied into the North Atlantic Right Whales, focusing in environmental
conservation. Collisions between ships and these animals are one of the main threats

1 https:/ /figshare.com/articles/dataset/Database_of_spectrograms_of_marine_mammals /14068106
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to this species?. In order to avoid these collisions, in 2013 there was an international
challenge® to automatically identify if a given audio contains or not vocalizations of
such species. The data from the challenge was collected by floating buoys. This kind of
recognition can help ships to change their route to avoid a possible collision. Beyond the
challenge, there are other researches about North Atlantic Right Whales identification in
the scientific literature [3-5]. In fact, the situation of this species is so critical that another
challenge was proposed in 2015%. In this one, the database was composed of aerial images
from these animals and the classification task was to identify each individual, to help
researchers track health and general status of the individuals, focusing in conservation
efforts.

Although PAM techniques and machine learning are useful in marine researches,
there are two potential hazards concerning to machine learning we may note in systems
related to species classification. The first one is the risk of using vocalizations of the
same individuals both on training and test sets simultaneously, this may lead the system
to be able to recognize the individuals instead of the species. Not only the vocalization
of the same individual can bias the system, but even a characteristic noise presented in
several samples of a class can be distinguishing from noises of other classes, which is
the second hazard. That can happen when samples of the same class are recorded in the
same location with the same devices, either the environment and the devices can create
noise. Based on these issues and aiming on more reliable results for PAM systems, we
propose the PAM-filter, which means trying to use the same individual always in the
same set, whether training or test. In the database we use, it was possible to separate
the individuals from the same class by location and date of record, trying our best to
avoid the recognition of individuals and noise. Experiments were also conducted with a
randomized version of the database, and the results are fairly disparate.

2. Materials and Methods

In this section, we describe the database used for experimentation and the protocols
developed aiming to properly explore it. In addition, the theoretical framework is also
described.

2.1. Watkins Marine Mammal Sound Database - WMMSD

Marine mammals are an informal group of animals that relies on a marine ecosystem
for existence. According to taxonomy committee from The Society for Marine Mammal-
ogy®, marine mammals are classified in three orders and several families, genus, species
and subspecies, some of them maybe are already extinct. In this work we use the Watkins
Marine Mammal Sound Database® (WMMSD). The audio files were recorded from the
1940’s to the 2000’s, and the species in the audio files were identified by professional
biologists.

The database is composed of almost 1,600 entire tapes. Each tape is composed of
several minutes of recording, and they may contain vocalizations of several species.
Smaller cuts of these long-length audio files are available in the website, usually with
vocalizations of only one species. They are divided into two sections in the website, “all
cuts” and “best cuts”. “Best cuts” represents high-quality and low-noise cuts. “All cuts”
contains all the audio files from the “best cuts” plus other ones, which are lower-quality
and noisier.

We choose to use the “best cuts” for the classification task, as noise reduction and
segmentation is not the focus of this work. “Best cuts” contains 1,694 audio files from
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32 species of marine mammals. There were 25 samples that contains vocalizations of
more than one species, those were removed as we do not intend to handle multi-label
classification neither audio segmentation.

The website also provides a meta-data file for each audio cut. The data contains
additional information, such as the date and the location of the record. However, most
meta-data files do not present information for all their fields. Several classes have must
of their samples records in just a few locations and dates. It led us to suspect that they
may contain samples of the same individual. Also, the noise pattern in such samples are
homogeneous, using the metadata files it is possible to see that the cuts are extracted
from the same long-length tapes.

2.2. PAM-filter

In another audio classification task, music genre classification, Flexer [6] defines the
concept of “artist-filter”, which means to have all samples of the same artist either in the
training or test. The author noticed that experiments with samples from the same artists
in training and test sets present higher accuracies and lower standard deviations, that
suggests the music genre classification systems were learning the artist instead of the
genre.

We consider that experiments with randomized sets of training and test may pro-
duce overestimated results of species classification, because the classifiers may be taking
decisions based on underlying patterns. This is based on the information presented in
the metadata files of the WMMSD, which indicates there are a lot of samples of the same
individuals and, also, the same pattern of noise is presented in several samples of the
same class. The concept of “artist-filter” led us to conceive the “PAM-filter”, where we
try to use the same individual’s vocalization either in the training or test set, never in
both them.

Figure 1 presents four different vocalizations of the species Eubalaena glacialis, all
the spectrograms were generated with the same parameters. According to the metadata
files, Figures 1a and 1b were extracted from the same long-length tape, recorded in the
same day, with the same devices. It is discernible vertical lines that represents the same
noise in the lower area of the Figures 1a and 1b. The vocalization in the Figure 1a is
described as “grunt” and in the Figure 1b is described as “one long groan”.

Figures 1c and 1d also share the same tape, date and devices. Both vocalizations are
described as “moan”. Although noise is not visible in vertical lines and neither reported
in the metadata, a texture pattern resembling to “salt and pepper” is present all over the
spectrogram, probably generated by the sound of the ocean.

2.3. Watkins experimental protocols

To investigate the impact of PAM-filter, we create three different protocols of the
same database, with and without PAM-filter. They are called Watkins Experimental Pro-
tocols, WEP#1, WEP#2 and WEP#3, they are described as follow and their specifications
are available online’.

2.3.1. Watkins Experimental Protocol #1 (WEP#1): ten-fold cross-validation

The first protocol is defined without any concerns about PAM-filter. We use the
database randomly divided into ten-fold cross-validation, classes with fewer than ten
samples were removed. Table 1 presents the species, number of samples used in WEP#1,
number of locations were the samples were recorded and the number of samples pre-
sented in each location.

7 https:/ /figshare.com/articles/dataset/Database_of_spectrograms_of_marine_mammals /14068106


https://figshare.com/articles/dataset/Database_of_spectrograms_of_marine_mammals/14068106
https://doi.org/10.20944/preprints202104.0766.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 April 2021 d0i:10.20944/preprints202104.0766.v1

40f13

(a) Recorded in 1956. (b) Recorded in 1956. (c) Recorded in 1981. (d) Recorded in 1981.
Figure 1. Different vocalizations of Eubalaena glacialis.

2.3.2. Watkins Experimental Protocol #2 (WEP#2): training/test protocol

As it is listed in Table 1, some species, like Balaenoptera acutorostrata, hold all its
records in the same place. It indicates the samples might contain the vocalizations of
the same individual and, also, the noise pattern generated by the environment and the
devices are usually similar. Such species were removed.

To create a experimental protocol using the PAM-filter, we scan the metadata files
to separate the database according to locations, each location of each class is allocated
exclusively in the training or the test set.

Also, in other cases, all samples from the same class were recorded in just a few
different locations. In species where the samples belong to only two locations, the
location with more sample goes to the training set and the second location goes to the
test set. Classes with three or more locations were distributed trying to achieve 70% for
training and 30% for test.

Table 2 presents the data used in WEP#2 and WEP#3. Classes with unfilled number
of samples were not in the protocol. WEP#2 is composed of 24 classes, 908 samples for
training and 412 for test.

2.3.3. Watkins Experimental Protocol #3 (WEP#3): two-fold cross-validation

Third and last protocol is two-fold cross-validation, it was created to use all the
samples either for training and test, improving the reliability of the results. We could
not increase the number of folds due to the number of locations, since eight classes have
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Table 1. Composition of WEP#1: 31 species. Columns also present the number of locations were
the samples were recorded, number of samples recorded in each location and number of samples

per class.
Species Numberof  Samplesby  Number of samples
locations location in WEP#1

Balaena mysticetus 2 1; 49 50
Balaenoptera acutorostrata 1 17 17
Balaenoptera physalus 2 5;45 50
Delphinapterus leucas 4 1; 6;16; 27 50
Delphinus delphis 3 2;15;35 52
Erignathus barbatus 3 3;9;15 27
Eubalaena australis 2 7:18 25
Eubalaena glacialis 4 3;12;19; 20 54
Globicephala macrorhynchus 4 5;16; 18; 26 65
Globicephala melas 4 11;12; 14; 28 65
Grampus griseus 3 1;21; 45 67
Hydrurga leptonyx 1 10 10
Lagenodelphis hosei 1 87 87
Lagenorhynchus acutus 3 12;12; 31 55
Lagenorhynchus albirostris 2 20; 37 57
Megaptera novaeangliae 3 1;17; 46 64
Monodon monoceros 3 4;10; 36 50
Odobenus rosmarus 3 1;16; 21 38
Ommatophoca rossi 3 11;19; 20 50
Orcinus orca 5 1;2;5;8;19 35
Pagophilus groenlandicus 1 47 47
Peponocephala electra 1 56 56
Physeter macrocephalus 6 2;2;2;9;,12;33 60
Pseudorca crassidens 2 11; 48 59
Stenella attenuata 2 11;54 65
Stenella clymene 2 14; 49 63
Stenella coeruleoalba 4 8;12;27; 34 81
Stenella frontalis 1 58 58
Stenella longirostris 2 1,113 114
Steno bredanensis 1 50 50
Tursiops truncatus 3 1;10;13 24
Number of samples 1,645

all their samples recorded in only two locations (see Table 1), increasing the number of
fold to three would result in a major cut of classes.

However, a minor cut of classes was still necessary. For example, the class Stenella
longirostris has recordings taken from two locations, one of them with one sample and
the other one with 113. If it was used in cross-validation, 113 samples of a class would
be tested in a model trained with just one sample of the class, an unfair task. Empirically,
we decided to remove classes which hold fewer than ten samples in either one of the
folds. Table 2 presents details of WEP#3. It uses 20 class. These two folds holds 542 and
539 samples each.

2.4. Theoretical Framework

In this section we present theoretical information about the experimental protocol
used in our experiments. First, we describe how the audio signal was manipulated
and the spectrograms generated. Than, we detail the feature extraction and, lastly, the
classifiers trialed.
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Table 2. Data used in the WEPs#2 and #3. Classes and number of samples of the training and
test set of the WEP#2 and the two folds of WEP#3. Unfilled cells mean the class was not used, 24
classes were used in WEP#2 and 20 in WEP#3.

Number of Samples
Species WEP#2 WEP#3
Train | Test | Fold 1 | Fold 2

Balaena mysticetus 49 1 - -
Balaenoptera acutorostrata - - - -
Balaenoptera physalus 45 5 - -
Delphinapterus leucas 27 23 23 27
Delphinus delphis 35 17 35 17
Erignathus barbatus 15 12 15 12
Eubalaena australis 18 7 - -
Eubalaena glacialis 31 23 31 23
Globicephala macrorhynchus 34 31 31 34
Globicephala melas 37 28 28 37
Grampus griseus 45 22 45 22
Hydrurga leptonyx - - - -
Lagenodelphis hosei - - - -
Lagenorhynchus acutus 31 24 31 24
Lagenorhynchus albirostris 37 20 37 20
Megaptera novaeangliae 46 18 46 18
Monodon monoceros 36 14 36 14
Odobenus rosmarus 21 17 21 17
Ommatophoca rossi 30 20 20 30
Orcinus orca 19 16 19 16

Pagophilus groenlandicus - - - -
Peponocephala electra - - - -

Physeter macrocephalus 33 27 33 27
Pseudorca crassidens 48 11 11 48
Stenella attenuata 54 11 11 54
Stenella clymene 49 14 14 49
Stenella coeruleoalba 42 39 42 39
Stenella frontalis - - - -
Stenella longirostris 113 1 - -
Steno bredanensis - - - -
Tursiops truncatus 13 11 13 11
Sums 908 412 542 539

2.4.1. Signal

Several researches that address audio classification perform the feature extraction in
the visual domain, typically using spectrogram images. Investigations have already been
developed to handle tasks such as infant cry motivation [7], music genre classification
[8] and music mood classification [9]. The visual domain has also been used with animal
vocalizations, in tasks as species identification and detection [4,10].

Spectrograms are time-frequency representations of a signal and they can be plotted
into an image. From a digital audio, a spectrogram can be generated using the Discrete
Fourier Transform (DFT). It shows the intensity of the frequency values as time varies.
An example of a spectrogram image of a vocalization of a marine mammal is presented
in Figure 2. The X-axis represents time, the Y-axis represents information about the
frequency and the Z-axis (i.e. color intensity of the image pixels) displays the intensity
of the signal.
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(a) Delphinapterus Leucas. (b) Eubalaena glacialis.
Figure 2. Examples of spectrograms of the WMMSD.

The spectrogram of the Figure 2a represents a vocalization of a Delphinapterus
Leucas, the audio is a little bit more than one second long. Its metadata file describe it as a
“moan”, it was recorded at 1965, in the Coudres Island, Canada. The Figure 2b represents
a vocalization of a Eubalaena glacialis, the audio is a bit longer than two seconds. The
metadata also describes the vocalizations as “moan”. It was recorded in the coast of
Massachusetts, USA, in 1959.

2.4.2. Features

Texture is an important visual attribute in digital images. In case of spectrograms
in particular, texture is a very prominent visual property. In this vein, the textural
content of spectrograms has been used in several audio classification tasks, such as
music genre classification [11], voice classification [12], birds species classification and
whales recognition [4].

In [13], the authors propose the Local Binary Pattern (LBP). The texture of an
image is described with a histogram. Each cell of the histogram holds the number of
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occurrences of a binary pattern. One binary pattern is calculated for each pixel and is
based in its neighbourhood. Equation 1 is computed for each pixel for the extraction of

the LBP histogram.
p—1
LBPpr =Y s(gp —8c)2", (1)
p=0

the parameter P represents the number of neighbour pixels to be taken into account,
and R stands for radius, the distance between the pixel and its neighbours. g and g,
stand for the gray level of the central pixel (i.e. the pixel for which the LPB is been
calculated) and the gray level of one neighbour respectively. The function s is defined in
the Equation 2.

1,x>0
s(x) = {0 ;C Z 0 @

An example of the computation of LBP in one pixel of an image is illustrated in
Figure 3, considering the parameters P = 8 and R = 1.

|—>13-70=-8—;

13 | 95 | 55 0 1 0
75 | 70 | 80 1 1
99 | 45 | 70 1 0 1

L 99-70=029 -4

Figure 3. Example of computation of LBP in a gray scale image. Adapted from [14].

The binary pattern begins in the top left and goes clockwise. The pattern of the
central pixel of the Figure 3 is defined as the sequence of bits

(01011011),.

It is possible to conceptualize the binary pattern as a decimal number, it is computed
applying the sum of binary digits times their power of two (2")

(0% 128) + (1 x 64) + (0 x 32) + (1 x 16) + (1 x 8) + (0 x 4) + (1 x 2) + (1 x 1) = 914,

therefore, the decimal number of the pattern from the Figure 3 is 91.

Changes in the parameter P imply in changes in the number of features, eight
neighbours binary described generate 256 possible patterns (28). LBP with P = 8 presents
several non-uniform patterns, which are binary sequences that present more than two
bitwise changes, for example, the binary pattern in Figure 3 is non-uniform, it presents
six bitwise changes. Usually, LBP is used with P = 8, R = 2 and gathering together all
the non-uniform patterns into just one feature, it results in 59 features. However, Ojala
et al. [15] observed that non-uniform patterns do not contain fundamental properties of
texture, and they suggest to sum up all the non-uniform patterns in the same feature.

2.4.3. Classifiers

To analyze the impact of the PAM-filter we tried several classifiers to observe their
performances. The first classifier considered to this work is the well-known K-Nearest
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Neighbours (KNN). It is an instance-based algorithm, which means it does not produce
a model, it only stores the instances of training. During test, the algorithm computes
the distance between each test sample to each training sample. The prediction of a test
sample is based on the classes of the nearest neighbours. Parameters of KNN are the
distance metric and K, the number of neighbours. Other simpler classifiers used in
our experiments are the Naive Bayes (NB), a probabilistic classifier that is known for
assuming independence between the features, and Decision Trees (DT), a tree composed
of conditional statements created using information gain or impurity metrics.

Another classifier selected for research is the Support Vector Machine (SVM), a
binary classifier proposed by Cortes and Vapnik [16]. It can be easily applied for multi-
class problems using one of the following strategies: one-vs-one or one-vs-all. Three
considerable benefits of SVM are the kernel method, maximum-margin hyperplane
and soft margin. Kernel method consists in mapping the feature space into another
feature space, dimensionally higher, where the data can be linearly separable. The
maximum-margin hyperplane divides the data taking into account that the nearest
points on each side is equally distant from the hyperplane. Soft margin is a technique
to reduce overfitting, it treats the C samples nearest the margin as outliers and, with
that, increases the distance between the classes. Parameters of SVM are the C and kernel
function (which may have its own parameters).

Ensembles of classifiers based in decision trees are also used here. They are Bagging,
Random Forest (RF), Extremely Randomized Trees (ERT), AdaBoost (AB) and Gradient
Boosting (GB). The classifier Bagging builds several instances of classifiers from random
subsets of the training database. RF combines the concept of Bagging but with the
idea of random subsets of features per classifier. ERT is similar to Random Forest, the
differences are in the choice of attributes and in the definition of cut-points, they are
fully random. AB generates new classifiers by increasing the weight of samples that
were wrongly classified by the previous models. Then, the outcome is obtained by the
weighted predictions of all created models. GB is similar to AB, but the new classifiers
are created using only the residual error from the previous classifier.

2.4.4. Deep Learning

To diversify the experiments of this work, we also executed deep learning tests.
We use a pre-trained ResNet-50 (Residual Networks - 50 layers) [17] fine-tuned with
the training samples. As it is common in convolutional neural networks, we use the
spectrograms as input. The deep learning model was used here such a way that it
provided features, in a non-handcrafted fashion, and it also performed the classification.
So, in the deep learning experiments, the classifiers described in Section 2.4.3 and the
features described in Section 2.4.2 are not applicable.

2.5. Experimental Methodology

The methodology of the non deep learning experiments of this work is illustrated
in Figure 4. The first step is to acquire the database. WMMSD is available online, but the
download is exclusively sample by sample. A crawler script was developed to download
all the samples of the database and the metadata files. After that, as a pre-processing
task, all the samples were converted to the same sample rate, 22050Hz. To accomplish
this task we used LibRosa®

The audio files are converted to spectrogram images using the software SoX”.
Features of LBP was extracted with the software library Scikit-Tmage!?. The features from

8
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Figure 4. Illustration of the general methodology of this work.

Evaluation ‘

the training sets were used to create a model with the library Scikit-Learn!!. Features of
the testing samples were, then, predicted by the model.

The experiments with deep learning are slightly different. A specific representa-
tion of it is presented in Figure 5. A pre-trained ResNet-50 were fine-tuned with the
spectrograms of the training samples (the same generated in Figure 4). After that, the
spectrograms of the testing samples are predicted with the neural network. The deep
learning experiments were carried out using Matlab!?.

X

Test samples W Evaluation
A

——

Spectrogram

A

Pre-trained
ResNet-50

Fine-tunning
ResNet-50

Figure 5. Illustration of the methodology of the deep learning experiments.

All the experiments were conducted in the three Watkins experimental protocols.
WEP#1, the protocol composed of 31 classes, samples are randomly divided into ten-fold
cross-validation, without concerns about using the same individuals or same noise
pattern in training and test sets. WEP#2 and WEP#3, both with PAM-filter, WEP#2 has
24 classes and is a training and test protocol, WEP#3 holds 20 classes and it is a two-fold
cross-validation protocol.

3. Results

Table 3 presents the results obtained with the three protocols presented in Section
2.3, WEP#1 without PAM-filter, and WEP#2 and #3 with PAM-filter. The best results of
each experimental protocol were all found with deep learning.

The best results found using the WEP#1 was with deep learning and the classifier
SVM, 78.10%02.73 and 64.62%03.49, respectively. The protocol holds 1,645 samples from
31 classes. It was randomly divided in ten folds for cross-validation, it does not apply
PAM-filter.

1 https:/ /scikit-learn.org/stable/

12 https:/ /www.mathworks.com/products/matlab.html
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Table 3. Experimental results in WMMSD. Features extracted with LBP and several different classifiers. Also, experiments with a deep
learning architecture.

Acc. and standard deviation (when applicable)

Classifiers Parameters
WEP#1 (31 classes) WEP#2 (24 classes) WEP#3 (20 classes)
NB Gaussian Naive Bayes 38.78%03.76 18.45% 16.56%02.29
DT Splitting with entropy 39.89%073.82 11.65% 12.39%00.47
Splitting with Gini Impurity 43.25%02.80 10.44% 10.36%00.74
Manhattan distance, K=1 59.53%04.51 18.45% 17.02%01.76
Manhattan distance, K=3 61.03%03.64 16.02% 17.29%03.46
Manhattan distance, K=5 61.08%03.13 17.48% 17.38%04.38
Manhattan distance, K=7 59.54%03.36 16.50% 17.38%04.90
KNN Manhattan distance, K=11 59.13%04.06 17.48% 16.09%04.12
Euclidean distance, K=1 57.16%04.32 19.17% 17.20%02.03
Euclidean distance, K=3 57.83%03.56 17.72% 17.20%03.33
Euclidean distance, K=5 58.20%03.60 18.20% 18.86%05.16
Euclidean distance, K=7 57.53%03.46 17.96% 17.94%05.42
Euclidean distance, K=11 56.29%03.22 17.72% 17.38%04.39
SVM Grid search 64.62%03.49 13.35% 13.69%01.36
AdaBoost 12.09%03.55 01.46% 09.62%00.22
Bagging 50.75%03.72 13.11% 13.13%01.26
Ensembles Extremely Randomized Trees 46.91%04.66 16.02% 14.24%01.51
Gradient Boosting 54.54%03.78 12.38% 11.84%00.31
Random Forest 47.29%04.51 13.11% 15.07%02.43
Deep Learning  ResNet-50 78.10%02.73 24.27% 21.38%01.82

On the other hand, the protocols with PAM-filter present much lower results, with
or without deep learning. The best results with WEP#2 was 24.27% and 19.17%, it is a
train/test protocol. Although it has fewer samples than WEP#1, 1,320, it also hold fewer
classes, 24. These results was achieved with deep learning and the KNN classifier.

The two-fold cross-validation protocol with PAM-filter, WEP#3, also got its best
results with deep learning and KNN (but with a different number of neighbours). The
best accuracies were 21.38%¢1.82 and 18.86%0¢5.16. Whereas WEP#3 contains fewer
samples than WEP#1, 1081, it also deals with fewer classes, 20.

4. Discussion

First, it is important to reiterate the potential of ResNet-50. One deep learning
architecture outperformed all the other classifiers, and this architecture were not trained
from scratch. The initial weights were generated with a general propose image database
13 and only the fine-tuning was carried out with vocalizations of marine mammals in the
spectrogram format.

In general, the results indicate that it is more likely to achieve better accuracies
without PAM-filter, since WEP#1 present accuracies much higher than the other two pro-
tocols, WEP#2 and WEP#3, which apply PAM-filter. Therefore, the outcome corroborates
with the hypothesis that PAM based in machine learning can be biased by individuals,
noise and/or devices used in the recording.

Further, we performed the Friedman statistical test [18,19] in the accuracies obtained
with each combination of protocol and classifiers. The test compares the means of at
least three samples, it is similar to ANOVA (Analysis of variance), but non-parametric.
In our case, the samples are the protocols of the database, 2 with PAM-filter and the
other one without it. The null hypothesis of the Friedman test stands that there is no

13 http:/ /www.image-net.org/
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difference between the samples. The result of the Friedman test indicated that at least
one of the samples (protocols) are significantly different from another, with « < 0.05.

At this point, to find which one is different from the others, we execute the Wilcoxon
signed rank test, in pairs of protocols. Since there are three samples, we also apply
Bonferroni correction to avoid the statistical error Type 1. So, now, aj, < 0.167. The null
hypothesis of the Wilcoxon test argues that there is no significant difference between
the pairs. The hypothesis was retained only with the pair WEP#2 and WEP#3, in both
comparisons with WEP#1 it was rejected.

5. Conclusions

PAM systems based in machine learning can be used to support several different
application tasks. However, the evaluation protocol is a critical point, that must be
carefully crafted, not to perpetrate wrong assumptions that could compromise the
system as a whole.

Unfortunately, wildlife databases with information such as dates, locations, indi-
viduals and devices used in the recordings are not easily found. But our results suggest
that they must be used to create appropriated experimental protocols.
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Abbreviations

The following abbreviations are used in this manuscript:
AB AdaBoost

ANOVA Analysis of Variance

DT Decition Trees

DTF Discrete Fourier Transform
ERT Extreme Random Forest

GB Gradient Boosting

KNN K-Nearest Neighbours

LBP Local Binary Pattern

NB Naive Bayes

PAM Passive Acoustic Monitoring
ResNet-50 Residual Network - 50 layers
RF Random Forest

SoX SOund eXchange

SVM Support Vector Machine

WEP Watkins Experimental Protocol

WMMSD  Watkins Marine Mammal Sound Database
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