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Abstract: Extensive, but remote oil and gas fields of the United States, Canada, and Russia require
the construction and operation of extremely long pipelines. Global warming and local heating ef-
fects lead to rising soil temperatures and thus a reduction in the sub-grade capacity of the soils; this
causes changes in the spatial positions and forms of the pipelines, consequently increasing the num-
ber of accidents. Oil operators are compelled to monitor the soil temperature along the routes of the
remoted pipelines to be able to perform remedial measures in time. They are therefore seeking meth-
ods for the analysis of volumetric diagnostic information. To forecast soil temperatures at the dif-
ferent depths we propose compiling a multidimensional dataset, defining descriptive statistics; se-
lecting uncorrelated time series; generating synthetic features; robust scaling temperature series,
tuning the additive regression model to forecast soil temperatures.
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1. Introduction

Constructing and operating the extended pipelines, crossing remote permafrost ar-
eas, leads to thawing and, thereby, a reduction in the subgrade capacity of frozen soil.
Minor soil temperature changes in the range of 2-5°C contribute to significant changes in
spatial positioning and may cause damage to the objects. To prevent the development of
hazardous processes in permafrost during the operation stage, the thermal regime of the
soil is controlled by a geotechnical monitoring system. At the local level of this system,
there are strings of sensors (thermistors) loaded at various depths in specially equipped
thermowells for the simultaneous measurement of temperature at multiple points. Meas-
urements, converted to digital format, are transmitted to the reading, storage, and display
devices (controllers). Controllers periodically poll the sensors in the string and read the
numbers for the connection lines to sort measurements by the depth and obtain them in
local storage devices. Fiber or wireless networks are used at the regional level for access-
ing local archives [1]. The global level of a geotechnical monitoring system for an extended
pipeline includes web servers for the synchronization, integration, processing, and
maintenance of measures as well as the saving of prepared information in a specialized
global data warehouse. A longer operating time increases the number of exogenous pro-
cesses, makes it necessary to install additional thermowells, and leads to the accumulation
of a large quantity of information that is difficult to analyze with existing engineering
methods. Therefore, implementing data analysis methods in a geotechnical monitoring
system, controlling a pipeline, increases its efficiency in permafrost areas.

According to the Dimensions platform (www.dimensions.ai) provides access to
grants, publications, patents, and other sources, the number of research fields where re-
mote control of geotechnical features is applicable is significant (Figure 1).
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Figure 1. Fields of research where remote control of geotechnical features is applica-
ble

Geotechnical monitoring systems tend to be comprised of groups of sensors in ther-
mometric wells along the routes of the pipelines; the sensors are linked with wired or
wireless technologies, and measurements are obtained using web-based software. Mod-
ern approaches to the design of distributed systems are listed in [2—4]. In [5] is noted that
the quality of an open atmospheric optical channel is affected by the frequency of weather
changes, fluctuations of supports, scintillation. The duration of the operation of a channel
of an arbitrary length was estimated by the formula:

l
V? = Y?(To)b/ (1)

where ! — parameters of a hyper-exponential distribution of the duration of the
model channel of a length 1,;

b — a regional coefficient;

I, 1 — the model and arbitrary channel length, km;

i — the number of channels (basic and backup).

An analysis of the relationship between air temperature and geological processes is
described in [6]. Evaluations of the thermal influence of pipelines on permafrost are cov-
ered in the articles: [7,8]. The influence of geological processes on pipeline parameters is
reflected in the following articles [9,10]. Methods of designing geotechnical systems and
related issues are discussed in the following articles and patents: [11,12].

As we know from [13-15], numerical algorithms for solving thermal conductivity
problems are based primarily on different versions of the finite element method and finite
difference method. The application of these techniques to a small-scale grid spacing for
spatially extensive objects leads to high overhead costs and complex algorithms due to
the parallelization of computations. Alternative methods of soil data analysis represent
streams of temperature measurements as time series [16-18] or group them according to
some set of features [19]. A growing number of articles and patents [20] on monitoring
sites in permafrost areas over the last two decades has enabled a discussion regarding the
topical significance of the issue. The objective of this study is to develop a method for
simplifying the process of analyzing and forecasting soil temperatures along the route of
the pipeline. To achieve this objective, we studied a wide variety of papers, examined the
areas and features of the pipelines crossing permafrost areas, selecting uncorrelated fea-
tures and defined additional features for the time series analysis, and developed regres-
sion models of the soil temperature dynamics over time.
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2. Materials and Methods

To manipulate, visualize and learn the geotechnical data we have used 14 open-
source Python libraries. Primary analysis is made with a library named Numpy. It facili-
tates advanced mathematical and other types of operations on large numbers of data and
pandas-profiling which is a tool to preview, explore and summarize the dataset. Our Py-
thon packages for data manipulation and handling include SciPy, Sklearn, and Stats-
models. All data visualization was made with Matplotlib, Pandas.plotting, Prophet.plot,
and Seaborn. We performed extended data analysis with libraries, named Associa-
tion_metrics, which is a Python module for measure the degree of nonlinear association
between features and Pandas that provides flexible data structures designed to make
working with structured (tabular, multidimensional, potentially heterogeneous) and time
series data. Our feature engineering is based on the Calendar package. Facebook prophet
and SciPy.Interpolate packages helped with the time series forecast. Code was created in
the Google Research product, named Colaboratory, which allows developers to write and
execute Python code through a browser.

2.1. Two-step approach of forecasting temperatures based upon a geotechnical dataset

A two-step approach exploits the idea that the machine learning model itself is a ap-
method to creating a new feature, solving the task [21]. Features are defined as a mapping

f1: X = F; of a space of the objects X to the area of values of the feature F;. Then object
space is the Cartesian product of d areas of feature values: X = Fyx..xF,. Figure 2 shows
the two stages method for analyzing the dynamics of the soil temperature regime; these
include creating a multidimensional dataset and forecasting the selected time series of
temperature measurements.

1.1 Collecting geotechnical data from a
sensor network

1. Creating a

¢1.2 Correlation analysis
multidimensional dataset y

1.3 Genering synthetic features
1.4 Transforming the dataset

o % /
4 N N

2.1 Selecting method of forecasting

¢2.2 Choosing the metric of model accuracy

2. Forecasting temperature 2.3 Splitting a dataset on training and
testing

*2.4 Designing temperature dynamic models
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Figure 2. Two-step approach for the temperature forecasting based upon geotechnical data

3. Results

3.1. Primary study of the geotechnical data getting from the network

Within the geotechnical monitoring system, there are triples of thermowells installed
along the route of the pipeline at the step from 1 to 77 km mostly in the area where exog-
enous processes are developing. Each thermowell contains 8-12 thermistors installed at
different depths of soil (Figure 3).
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Figure 3. Location of the triple of thermowells at schematic drawing: 1: topographic contour lines,
m; 2: a road; 3: a pipeline; 4: a line along which three thermowells are located

Then we have three 3d arrays of temperature measurements collecting from ther-
mowell triples. These arrays share distance along the route and time of measurements and
differ by the number of sensors and temperature values. To present all measurements at
2d plot we need to transform data, unpivoting it from a ‘wide format’ into a ‘long format’,
where selected columns are identifier variables, while all other columns, considered meas-
ured variables. Figure 4 compares the temperatures along the pipeline route measured
with triples of thermowells. Temperature intervals are chosen based on the classification
of permafrost (high-temperature (-2; -0.5] °C; high-temperature with the predominance of
the interval (-0.5; 1.5] °C; the stable temperature interval (-3; -2] °C; low-temperature with
the predominance of the interval (-5; -3] °C; low-temperature (-; -5] °C). The interval
distribution of temperatures at different depths is obtained for the period from November
of the previous year to October of the next year. In the further analysis based on these five
categories of soil temperature, we will create new synthetic categorical features.
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Figure 4. Comparative temperature analysis
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Comparative analysis tells us that soil layers are in a high-temperature condition
with the predominance of the intervals (-2; -0.5] °C and (-0.5; 1.5] °C. A basic statistic of
data divided by two categories is given in Table 1.

Table 1. Statistics of measurements by two categories

Distance Distance
from the pipe, m from the pipe, m
Statistics, C° 2 4 10 2 4 10

Mean -0.24 -0.28 -0.47 5.57 5.56 5.37
Median -0.13 -0.16 -0.39 4.27 446 4.44

Standard 1.56 1.162 0.86 3.98 3.65 3.37
deviation

Min -28.72 -17.95 -11.17 1.51 151 1.51
Max 1.50 1.50 1.50 30.98 24.45 18.39

Count 49016 44562 50132 16349 9462 5560
Low-temperature soil | High-temperature soil
(-30.0, 1.5] C° (1.5, 31.0] C°

3.2. Extended data analysis
3.2.1. Distribution of temperature measurements

Analysis of the density of temperature measurements at different soil layers defines
the transition from a two-top distribution (surface temperatures) to a single-top distribu-
tion (medium-depth temperature) with a shift in the mathematical expectation towards
negative temperatures and a significant decrease in the standard deviation (Fig. 5). Fur-
ther increase of depth leads to a multi-top distribution. The greatest kurtosis values are at
a depth from 3 to 4 meters for medium thermowells (Fig. 5a) and from 2 to 3 meters for
distant thermowells (Fig. 5b). At the same depths, the least symmetrical distributions are
observed. At the same time, the mathematical expectation from layer to layer varies to a
lesser extent and tends to zero.
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Figure 5. Changing parameters of temperature distributions at different depths: (a) measurements at a distance of 4 meters
from the pipeline(medium thermowells); (b) measurements at a distance of 10 meters from the pipeline (distant thermow-
ells).

The analysis shows that temperature distributions at different depths do not obey the
normal law.

3.2.2. Linear correlation
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Most methods of incorporating the explaining features into a model are based on two
opposing principles: their weak mutual correlation or a strong correlation of each feature
with a dependent variable [22]. To assess the linear correlation, we calculated Pearson's
correlation coefficients for temperature measurements at the different depths and dis-
tances of the route. Figure 6 shows the values of Pearson's linear correlation with a thresh-
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Figure 6. Correlation of temperature and distance (where for each hi,j the first digit i={1, 2, 3} is the
number of a thermowell triple and the second digit j={1,.., 17} is the number of a sensor at a differ-
ent depth)

According to the correlation map above, we defined a strong correlation between the
distance of the route and temperature measurements of:

- 13-18 thermistors of the first line of thermowells (closest to the pipeline),

- 12-13 thermistors of the second line of thermowells (at the medium distance to the
pipeline),

- 10-13 thermistors of the third line of thermowells (distant from the pipeline).

Because these thermistors are located at the depth [5; 13] m, they capture the man-
made effect of the pipe. At the same time, we defined a significant number of highly cor-
related pairs of layered temperature measurements, such as h1.13-h1.17; h1.2-h1.6, and
h2.1-h2.6. This may indicate the existence of a solid geological layer with similar charac-
teristics. Thus, as a result of correlation analysis, the measurements on five thermistors of
the first line thermowells were taken into account. They were added to noncorrelated
measurements of thermistors h2.7 and h3.10 of the thermowells from the second and third
lines {h1.1, h1.10, h1.14, h1.6, h1.8, h2.7, h3.10}.

3.2.3. Nonlinear correlation

To identify a non-linear correlation [23] Spearman-Kramer correlation coefficients
are used. Spearman's rank correlation coefficient is a nonparametric measure of rank cor-

relation p,g, g, ( :
cov(rgx,rgy
Prgxrgy =
IXTIY — orgyorgy )

where cov(rgy,rgy) is the covariance of the rank variables,

Orgy and o4, are the standard deviations of the rank variables.

The Cramer’s [24] correlation coefficient ¢c based on Pearson’s 2 test statistic, and
is used for ordinal and binned interval variables:
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X2 3
= INminr—1,k-1 )

where N is the number of observations;

r (k) is the number of rows (columns) in a contingency table.

To apply non-linear correlation at the first stage, we convert the existing time feature
‘Time’ of the geotechnical dataset to a set of categorical features that sharps the time dif-
ference: a period of a day, a month, a day of a week, a season of a year (Table 2).

Table 2. A sample of the first group of synthetic features.

Index  Time Period Month  Day_name Season

1518 2016-04-17  Noon April Saturday  Spring
15:20:00

1626 2016-08-04  Noon August Wednesday Summer
15:20:00

3713 2016-10-01  Noon October Friday = Autumn
14:15:00

And at the second stage, we convert the values of linearly uncorrelated features (sec-
tion 3.1.2) into categorical values using the temperature intervals given in section 3.1. The
resulting categorical data are assessed in terms of a non-linear relationship between tem-
perature and measurement time (fig.7). Colored correlation maps indicate a relationship
between layered temperature measurements. The color map of Cramer’s correlation coef-
ficients (fig.7a) shows that the thermistors h1.14 m h3.10 malfunctioned, and their
measurements depended on the day of the week, month, and season. Therefore, these
features, together with the feature, named Day_name are excluded from further analysis.
Additionally, with Spearman’s matrix of correlations (fig. 5b) we established the non-lin-
ear inverse relation between measurements of thermistors h1.8 and h1.10, and correlation
between months and temperature fluctuations at the ground surface (the thermistors

h1.1).
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Figure 7. Correlation matrices of temperatures measured in the thermowells closest to the pipeline: (a) Spearman’s; (b) Cramer’s

Thus, the resulting set of features looks as follows {h1.1, h1.6, h1.8, h1.10, h2.7, Period,
Season}.

3.2.4. Scaling temperature series
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To compare temperature measurements at different depths, we applied the robust
scaling method because it uses statistics that are robust to outliers:

1 _Yi—Q2(®)
Y T am-a0y @
where y, y’ are unscaled and scaled temperatures;

Q;(y) is the 1%42d, or 3d quartile of the temperatures.

Fig. 8 reflects scaled temperatures at different depths.
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Figure 8. Changing of scaled temperatures along the pipeline route

Figure 8 shows that in the area of thermistors h2.7 at 2900 km and h1.8, h1.10 at 2908
km there are strong temperature changes.

3.3. Forecast time series

There are several approaches to forecast time series, such as smoothing, adaptive,
autoregression models, neural networks [25]. One of the modern approaches is imple-
mented in the library of 2017 named Facebook Prophet. It contains the additive regression
model with customizable components [26]:

y' (t)=g(t)+s(t)+h(t)+E (5)

where t is time, measured in days;

y’(t) is the regress function;

g(t) is the trend component, modeled with piecewise linear, piecewise logistic
growth, or flat function;

s(t) is the seasonal component responsible for modeling the periodic changes related
to seasonality. Seasonalities are estimated using a partial Fourier sum;

h(t) is the component responsible for the user's abnormal days;

€; — an error that contains information not considered by the model.

3.3.1. Machine learning

We split our geotechnical dataset into training and testing samples. The testing sam-
ple includes the last 90 days of the dataset. Then we apply the training sample for training
our model and then treat the testing sample as a collection of data points that will help us
evaluate whether the model can generalize well to unknown data.
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Figure 6. Forecast: a) trend; b) seasonality

Figure 6a forecasts a weak increase in temperature for each of the selected sensors,
except for the h1.1 sensor, measuring temperatures at the ground surface. Figure 6b un-
derlines seasonality that impacts more at measurements of h1.6 (increasing temperatures)
and measurements of h1.8 (decreasing temperatures).

3.3.2. Model accuracy

The forecasting accuracy is assessed using a metric named mean absolute percentage
error (MAPE) for the temperature measurements of the last 90 days. For calculation MAPE
real temperature measurements and their forecast are used. As a result, we received the
quality of the forecast about 70%.

4. Discussion

The most effective way to improve the accuracy of machine learning models is to
increase the training sample by creating synthetic features based on the available dataset
[27].

We suppose to create the second group of synthetic features to get away from the
time-bound, taking into account statistical characteristics for two dimensions of the da-
taset: minimum, maximum, medium, median, variance of every time series (after smooth-
ing); a number of peaks and troughs; an area under the curve (before scaling); a number
of squares of derivative; trend indicator; number of intersections in the 25t%, 50%, and 75t
percentile, etc.

The third group consists of two interconnected synthetic features called subsurface
and deep measurement temperature gradients. The temperature gradient of a subsurface
(deep) measurements, Vsm), is defined as the mean value of temperature measurements
tsn, taken with sensors, located at the depth of seasonal frost penetration (located below
the depth of seasonal frost penetration) per unit of depth Ahse:

Lsq)
Vsay = Bhgr (6)

This group of two temperature gradients accounts for seasonal fluctuations in sub-
surface temperatures and facilitates the stripping of the seasonal component from meas-
urements taken at permafrost depth.

The following can be assumed to be additional features: the climatic zones at the lo-
cations of the thermowells; the rate of soil erosion; the distance from rivers, roads, and
settlements; a detailed characteristic of the terrain (flat with inclinations of up to 2°, hilly
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with inclinations of up to 4°, variable with inclinations of up to 6°, mountains and foothills
with inclinations of more than 6°), a wind rose, ravine networks, etc.

When the oil pipeline is launched, additional features, such as the distance of the
thermowells locations from the pipeline profile and the temperature curve along the route
of the pipeline as determined by the locations of points for oil heating, could be used.

5. Conclusions

The geotechnical monitoring system collecting soil temperature measurements along
an extended oil pipeline includes a significant number of thermowells, fiber or wireless
networks for accessing local archives and web servers for processing the data.

The thermal influence of a pipeline on frozen soils and the influence of geological
processes on a pipeline are increasing in time of the pipeline’s operation.

The proposed steps for the analysis of multi-temporal measurements along the route
of the crude oil pipeline help to forecast changes in the trends of temperature:

- linear and nonlinear correlation analysis selects uncorrelated timeseries;

- new synthetic features allow to increase the model’s accuracy;

- robust scaling helps to compare temperature series at different seasons and depths;

- customizable components allow to tune the additive regression model and improve
the accuracy of forecasting.
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