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Abstract

The construction of a heterostructured nanowire array allows the manipulation of the
interfacial, surface, charge transport, and transfer properties simultaneously, offering new
opportunities to achieve multi-functionality for various applications. Herein, we developed a facile
thermal evaporation and post-annealing method to synthesize ternary-ZnSnOgs/binary-ZnO radially
heterostructured nanowire arrays (HNA). Vertically aligned ZnO nanowire arrays (3.5 um in length)
were grown on a ZnO-nanoparticle-seeded fluorine-doped tin oxide substrate by a hydrothermal
method. Subsequently, the amorphous layer consisting of Zn-Sn-O complex was uniformly deposited
on the surface of the ZnO nanowires via the thermal evaporation of the Zn and Sn powder mixture in
vacuum, followed by post-annealing at 550 °C in air to oxidize and crystallize the ZnoSnOs shell layer.
The use of a powder mixture composed of elemental Zn and Sn (rather than oxides and carbon mixture)
as an evaporation source ensures high vapor pressure at a low temperature (e.g., 700 °C) during
thermal evaporation. The morphology, microstructure, and charge-transport properties of the
Zn2Sn04/ZnO HNA were investigated by scanning electron microscopy, X-ray diffraction, Raman
spectroscopy, transmission electron microscopy, and electrochemical impedance spectroscopy.
Notably, the optimally synthesized ZnoSnO4+/ZnO HNA shows an intimate interface, high surface
roughness, and superior charge-separation and -transport properties compared with the pristine ZnO

nanowire array.
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Introduction

Semiconductor metal oxide nanowires composed of earth-abundant elements are
technologically essential materials for energy conversion/storage devices, optoelectronics, and
sensors [1-6]. Nanowires often outperform the commonly utilized isotropic polycrystalline or
particulate films in applications that require more complex and multifunctional materials [7-9]. This
is because nanowires have two different length scales (small diameter and significant length) that can
be independently tailored to match the characteristic lengths of disparate physical processes. In
addition, nanowires can also serve as building blocks for constructing heterostructured nanowires
with designed materials that manipulate the surface, interface, and charge-transport/transfer
properties, enabling multi-functionality [10,11]. For example, core/shell nanowires with type-II band
alignment (staggered band edge alignment) spatially improve charge separation, leading to increased

charge carrier lifetime, advantages in photocatalytic and photovoltaic performances [12,13].

Binary metal oxides, such as ZnO [8,14], TiO2 [7,15], and SnO; [9,16], are the most widely
used materials for electron transport in energy conversion applications and optoelectronic devices
(e.g., photodiodes, dye-sensitized, and perovskite solar cells). Ternary metal oxides, such as Zn,SnO4
[17,18], BaSnOs3 [19], and BaTiOs [20], have also been investigated as alternatives, demonstrating
improved performance and functionality for binary oxides. Recently, n-type semiconductor Zn2SnO4
(ZSO, zinc stannate) has attracted attention for its potential as a transparent conducting electrode, gas
sensor, and perovskite solar cell owing to its bandgap energy of 3.6 eV, high mobility and conductivity,
and low refractive index [21,22]. Thus far, diverse synthesis methods, including RF sputtering [23],
pulsed laser deposition [24], hydrothermal method [25-28], vapor transport [22,23], and sol-gel spin-
coating [29], have been explored to synthesize ZSO nanowires and their heterostructures with various
morphologies. For example, Wang et al. synthesized ribbon-like ZSO nanowires through the vapor
transport method at 800 °C without catalysts [30]. The synthesized nanowires exhibited an average
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width of 100-200 nm and ultra-long length of up to 1 mm. Mali et al. synthesized porous ZSO
nanofibers by an electrospinning method, which is used for perovskite solar cells [31]. Additionally,
Bora et al. [32] and Siwatch et al. [33] reported a hydrothermal method to synthesize a ZSO/ZnO
heterostructured nanowire array that exhibited improved functionality and photovoltaic performance.
However, most previous studies have reported randomly aligned nanowires with often less

controllability and uniformity in the nanowire or heterostructure morphology.

In this study, we report a thermal evaporation method to synthesize vertically aligned
Zn>Sn04/Zn0 heterostructured nanowire arrays (HNA), demonstrating a highly aligned and uniform
morphology. Single-crystalline ZnO nanowire arrays were first grown on the fluorine-doped tin oxide
(FTO) substrate. Subsequently, the Zn,SnO4 shell layer was formed by the thermal evaporation of the
Zn and Sn metal mixture, followed by post-annealing at 550 °C. The thermal evaporation of the
elemental metal mixture allows the control of the amount of Zn and Sn independently and ensures a
high vapor pressure at a low temperature (700 °C). Notably, a highly crystalline Zn>SnOj4 shell layer
with an average thickness of ~15 nm was successfully formed on the ZnO nanowire array. The
resulting ZSO/ZnO HNA exhibited a higher surface roughness, intimate interface, and superior

charge-transport properties than the pristine ZnO nanowire array.
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Experimental

Deposition of ZnO seed layer

A ZnO nanoparticle seed layer was deposited by a sol-gel spin-coating method. The coating
solution was prepared by dissolving zinc acetate dihydrate (0.263 g, ZnAc-2H>0, 99.9%, Sigma
Aldrich Chemicals) in anhydrous ethanol (20 mL, 99.9%, Daejung Chemicals). Acetylacetone (0.2
mL, 99.5%, Sigma-Aldrich Chemicals) was added as a stabilizer. After aging at 25°C for 24 h, the
resulting solution was spin-coated on pre-cleaned FTO substrates (at 2500 rpm for 1 min).
Subsequently, the samples were annealed at 350 °C for 1 h in air to form the ZnO nanoparticle seed

layer and remove organic residues.

Hydrothermal growth of ZnO nanowires array

ZnO nanowire arrays were grown on ZnO nanoparticle-seeded FTO substrates through a
hydrothermal route. The growth solution was prepared by dissolving zinc nitrate hexahydrate (1.487 g,
> 99%, Sigma-Aldrich Chemicals) and hexamethylenetetramine (0.701 g, > 99%, Sigma-Aldrich
Chemicals) in deionized water (100 mL). After stirring for 10 min, polyethyleneimine (1.0 g, PEI,
branched, My ~25,000, Sigma-Aldrich Chemicals) and ammonia (3.0 cc, 25-30%, Ducksan
Chemicals) were added and stirred for an additional 10 min. The growth solution was poured into a
glass bottle (Schott bottle, 125 mL capacity). Then, the ZnO-seeded FTO substrates were vertically
suspended in the solution. Finally, the growth solution was heated to 100 °C in an oven and held for
2—6 h. The obtained samples were washed with deionized water, followed by absolute ethanol, and

dried with Ny in air.

Synthesis of Zn2SnO4/ZnO heterostructure nanowires array

The Zn2SnOyq shell layer was synthesized by the thermal evaporation of an elemental Zn and
Sn powder mixture in a tube furnace, followed by post-annealing in a muftle furnace. First, a Zn-Sn-
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O amorphous shell layer was deposited on the ZnO nanowire array (sample size: 2 cm X 2 cm) by the
thermal evaporation of Zn/Sn (molar ratio of Zn/Sn =2, 2 g) in a vacuum (1 mTorr, 700 °C for 0.5—
2 h). The substrate was positioned 10 cm away from the precursor crucible on the downstream side.
Next, the samples were annealed at 550 °C for 1 h in an air atmosphere to form a crystalline Zn,SnO4

shell layer on the surface of the ZnO nanowire array.
Characterization and measurement of materials

The crystal structures of the synthesized materials were determined using X-ray diffraction
(XRD, Mac-Science, M18XHF-SRA). The morphologies and film thicknesses were observed
through field-emission scanning electron microscopy (JEOL, JSM-6330F). Transmission electron
microscopy (TEM) images and selected area diffraction (SAD) patterns were recorded on a JEM-
3000F (JEOL) microscope at an accelerating voltage of 300 kV. Raman spectra were recorded using
a Raman spectrometer (Horiaba Jobin Yvon, T64000). Electrochemical impedance spectroscopy (EIS)
measurements were conducted in sandwich-type cells with N719 dye, AN-50 electrolyte, Pt counter
electrode, and working electrode under simulated sunlight illumination (AM 1.5G, 100 mW/cm?).
The amplitude of the sinusoidal voltage was 10 mV, and the examined frequency range was 7 MHz
to 1 Hz. Mott-Schottky plots were measured using a three-electrode system (a Pt wire counter

electrode and saturated calomel reference electrode) in the frequency range of 300-3000 Hz.

Results and Discussion

Figure 1 shows the synthesis process of ZnoSnO4 (ZSO)/ZnO radial HNA on the FTO
substrates. First, the ZnO nanoparticle film was deposited by sol-gel spin-coating (2500 rpm, 1 cycle)
of the ZnO precursor solution (0.06 M), followed by annealing at 350 °C for 30 min to form a ZnO
seed layer on the FTO substrate. The ZnO nanowire array (NW) was then grown on the ZnO-seeded

FTO substrate using a hydrothermal method at 100 °C for 2 h. Subsequently, the ZnO NW were
6
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treated with vapors of the Zn and Sn mixture evaporated thermally at 700 °C in a vacuum (1 mTorr).
Finally, they were annealed at 550 °C in air to form a crystalline ZSO shell layer on the ZnO NW.
Notably, the thickness and morphology of the ZSO shell layer can be controlled by adjusting the

thermal evaporation time.

Figure 2 shows the SEM images of the synthesized ZnO NW and ZSO/ZnO HNA. The
growth conditions of the hydrothermal process (e.g., NH4OH amount, growth time, and cycle) were
optimized to obtain dense and vertical ZnO NW on the FTO substrate (see Figures S1-S3). The
resulting ZnO NW exhibited a high-density and vertically aligned nanowire morphology, with an
average length of approximately 3.5 um (Figure 2a). In addition, the nanowires exhibit intimate
contact with the FTO substrate without voids. Notably, the nanowire had a smooth surface and tapered
morphology near the tip (Figure 2b). As shown in Figure 2¢, the ZSO/ZnO HNA also exhibits a
comparable length of 3.6 pum. However, the ZSO/ZnO HNA exhibits a slightly larger nanowire
diameter than the ZnO NW. Interestingly, their surface was much rougher than the ZnO NW because

of the formation of nanoparticles at the surface (Figure 2d).

XRD and Raman spectroscopy were performed to confirm the formation of the ZSO shell
layer on the ZnO NW (Figure 3). Figure 3a shows the XRD patterns of the ZnO NW and ZSO/ZnO
HNA. The ZnO NW exhibits a strong (002) peak intensity, indicating a preferred growth orientation
along the [001] direction. The ZSO/ZnO HNA also exhibits a high (002) peak intensity, retaining the
[001] preferred orientation of the ZnO NW. In addition, three additional weak peaks are observed at
17.6, 29.2, and 34.3°, which are indexed to the (111), (220), and (311) planes of the cubic Zn,SnO4
phase, respectively [32]. Figure 3b shows the Raman spectra of both ZnO NW and ZSO/ZnO HNA.
The ZnO NW exhibits a broad peak centered at 443 cm™', which corresponds to the E» mode for ZnO
[34]. After deposition of the ZSO shell layer, that is, for the ZSO/ZnO HNA, two peaks, at 443 and

673 cm’!, are observed, corresponding to the E2 mode for the ZnO and Ai; modes (stretching


https://doi.org/10.20944/preprints202104.0718.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 April 2021 d0i:10.20944/preprints202104.0718.v1

vibration mode of SnOs octahedra) of spinel-type Zn,SnO4 [35]. Consequently, a Zn,SnOg4 shell layer
with nanoparticle morphology was successfully formed on the ZnO NWs via thermal evaporation,

followed by post-annealing.

TEM analyses were conducted to investigate the microstructure and interface of both ZnO
NW and ZSO/ZnO HNA (Figure 4). Figures 4a and 4b show the TEM and high-resolution TEM
images of the ZnO NW, respectively. The ZnO NW exhibits tapered tips and a smooth surface. The
lattice fringes of 0.521 and 0.281 nm correspond to the (001) and (100) planes of hexagonal ZnO,
respectively. In addition, the fast Fourier transform and selected area diffraction (SAED) patterns

(Figure 4c) indicate that the ZnO NW has high crystallinity and a preferred growth direction of [001].

Figures 4d and 4e show the TEM images of the ZSO/ZnO HNA. A thin nanoparticle layer
covers the surface of the ZnO NW, consistent with the SEM observation (see inset of Figure 2d).
They have an average thickness of ~15 nm (inset of Figure 4e). A high-resolution TEM image of the
ZS0/ZnO HNA at the interface region is shown in Figure 4f. Notably, a highly crystalline layer with
intimate contact with the ZnO NWs was formed. The lattice fringes of 0.433 and 0.310 nm were
indexed to the (002) and (220) planes of cubic Zn2SnOs. TEM energy dispersive spectroscopy
indicated that the shell layer consisted of both Zn and Sn (Figure S4). Therefore, it is concluded that
a crystalline ZSO/ZnO HNA with a high surface roughness and intimate interface was successfully

synthesized on the FTO substrate by thermal evaporation and subsequent post-annealing.

We tested different synthesis conditions, that is, (1) 30 min evaporation without post-
annealing, (2) 30 min evaporation with post-annealing at 550 °C/1 h, (c) 2 h evaporation with post-
annealing at 550 °C/1 h. As shown in Figure S5, an amorphous layer was formed without post-
annealing. For the sample prepared with an evaporation time of 30 min and post-annealing at
550 °C/1 h, a much thinner crystalline layer (~6 nm) with less surface roughness was formed. When

the evaporation time was increased to 2 h after post-annealing at 550 °C/1 h, a much thicker
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nanoparticle shell layer (~40 nm) was synthesized. Accordingly, the thickness of the ZSO shell layer

can be controlled by adjusting the thermal evaporation time.

The conduction type, carrier concentration, and flat-band potential (V) values of ZnO NW
and ZSO/ZnO HNA were determined from the Mott—Schottky measurements. The following equation
describes the straight line in the Mott—Schottky curves,

(s’ = = (V_Vfb —k—T>
qegoNp q

where Cg. is the space charge capacitance, g is the elementary charge (1.602 x 10" C), Np is the
carrier density, &, isthe vacuum permittivity, &, is the dielectric constant, V'is the applied potential,
Vep is the flat-band potential, k is the Boltzmann constant, and T is the temperature. The Mott—
Schottky plots and corresponding linear fits of the ZnO NW and ZSO/ZnO HNA are shown in Figure
5a. Both exhibit positive slopes, indicating that both electrodes are n-type semiconductors with
electrons as the majority carriers. The calculated donor concentration (Np), which is inversely
proportional to the straight-line slope of the ZnO NW and ZSO/ZnO HNA was 5.6 x 10" and
2.6 x 10" em?, respectively. The ZSO/ZnO HNA exhibited Np two times smaller than the ZnO NW,
ascribed to the ZSO shell layer. Notably, the Vi, of the ZnO NW and ZSO/ZnO HNA were —0.24 and
—0.02 V vs. RHE, respectively. The ZSO/ZnO HNA exhibited a significantly negative Vg, value,
indicating that its conduction band edge is higher than that of the ZnO NW. Figure Sb shows the
estimated energy band edge positions of the ZnO NW and ZSO/ZnO HNA. According to the results,
both the conduction and valence band edges of ZSO are positioned above those of the ZnO NW.
Accordingly, the ZnO and ZSO heterostructures have a staggered band edge; that is, they form a type-

IT heterojunction, which improves the spatial charge separation [32,36].

The charge-transport properties of both electrodes (ZnO NW and ZSO/ZnO HNA) were

evaluated by EIS measurements. As shown in Figure Se¢, the ZSO/ZnO HNA exhibited a smaller
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semicircle than the ZnO NW, indicating reduced charge transport and transfer resistance values. In
addition, the relative surface area was estimated using a dye-adsorption method (Figure S6),
suggesting that the ZSO/ZnO HNA has a 130% larger surface area than the ZnO NW. Therefore, the
construction of the ZSO/ZnO HNA improved charge separation, transport, and transfer (injection)
properties (Figure 5d), which is attributed to the formation of type-II heterojunctions, intimate

interfaces, and superior surface roughness.

Conclusion

We successfully synthesized a Zn2SnO4/ZnO heterostructured nanowire array (HNA) via a
facile thermal evaporation and post-annealing method. First, the ZnO nanowire array was grown on
a ZnO nanoparticle-seeded FTO substrate through a hydrothermal method. Then, an amorphous shell
layer composed of Zn-Sn-O was uniformly formed on the ZnO nanowire surface by the thermal
evaporation of the Zn and Sn mixture at 700 °C in vacuum, followed by post-annealing at 550 °C in
air to synthesize the crystalline Zn>SnO4 shell layer. XRD and Raman analyses confirmed the
formation of the Zn2SnO4 shell layer on the ZnO nanowire array. Interestingly, the SEM and TEM
analyses revealed that the deposited Zn2SnO4 exhibits a highly crystalline nanoparticle morphology
and is intimately in contact with the surface of the ZnO nanowires without any voids. The optimally
synthesized Zn2SnO4/ZnO HNA showed a higher surface roughness and superior charge-
separation/transport properties as compared with the ZnO nanowire array. With further optimization
of length, diameter, and morphology, our ZnoSnO4/ZnO HNA can be applied as an electron-
transporting layer to various energy-conversion devices, such as dye/quantum-dot sensitized devices,

perovskite solar cells, and photoelectrochemical cells.
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Figure 1. Synthesis of the Zn2Sn04/Zn0O heterostructured nanowire array (NW). Step 1. Sol-gel
spin-coating of ZnO seed layer on the FTO substrate. Step 2. Hydrothermal growth of ZnO NWs at
100 °C for 2 h. Step 3. Thermal evaporation of Zn and Sn mixture at 700 °C for 1 h in vacuum (1
mTorr), followed by post-annealing at 550 °C for 1 h.
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Figure 2. Morphological characterization. Cross- and top-view SEM images of (a, b) ZnO NW
and (c, d) ZSO/ZnO HNA. The ZSO/ZnO HNA exhibited rough and lumpy surface.
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Figure 3. X-ray diffraction (XRD) and Raman spectroscopy of ZnO and ZSO/ZnO HNA. (a)

XRD patterns. (b) Raman spectra. A: E> mode for ZnO. B: Stretching vibration mode of SnOs¢
octahedra in Zn>SnOs.
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Figure 4. Transmission electron microscopy (TEM). (a) TEM, (b) high-resolution TEM images
and (c) selected area diffraction pattern of ZnO NW. (d, e) TEM and (e) high-resolution TEM
images of ZSO/ZnO HNA.
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Figure 5. (a) Mott—Schottky analysis. (b) Energy band position of ZnO NW and ZSO/ZnO HNA.
(c) Electrochemical impedance spectroscopy. (d) Scheme of the enhanced charge separation and
transport in the ZSO/ZnO HNA.
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