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Abstract— Congestion pricing has received lots of attention in 

the scientific discussion. Congestion pricing means that the 

operator increases prices at the time of congestion and the traffic 

demand is expected to decrease. In a certain sense, shadow prices 

are an optimal way of congestion pricing: users are charged 

shadow prices, i.e., the expectations of future losses because of 

blocked connections. The shadow prices can be calculated exactly 

from Howard’s equation, but this method is difficult. The paper 

presents simple approximations to the solution of Howard’s 

equation and a way to derive more exact approximations. If users 

do not react by lowering their demand, they will receive higher 

bills to pay. Many users do not react to increased prices but 

would want to know how the congestion pricing mechanism 

affects the bills. The distribution of the price of a connection 

follows from knowing the shadow prices and the probability of a 

congestion state. There is another interesting distribution. The 

network produces profit to the operator, or equivalently, blocked 

connections produce a cost to the operator.  The average cost rate 

can be calculated from Howard’s equation, but the costs have 

some distribution. The distribution gives the risk that the actual 

costs exceed the average costs, and the operator should include 

this risk to the prices. The main result of this paper shows how to 

calculate the distribution of the costs in the future for congestion 

pricing by shadow prices and for congestion pricing with a more 

simple pricing scheme that produces the same average costs.  
 
Index Terms— Pricing, loss networks, Markov decision processes, 

blocking probability. 

 

 

I. INTRODUCTION 

ONGESTION pricing is a state-dependent pricing 

strategy where the prices are higher when the network is 

congested. Congestion pricing has been studied 

extensively as a congestion control mechanism for elastic 

traffic demand: if users react to increased prices by lowering 

their demand, then the operator can use prices as a congestion 

control mechanism. Most authors consider congestion pricing 

of elastic traffic using the Game Theory [1], [2], [3], [4], and 

[5]. Shadow prices turn out to be the congestion prices that 

optimize the utility functions of the operator and the users.  

The main focus in this paper is in distributions of costs 

when congestion pricing is applied. For a business user the 

interesting question is the cost of a connection. The bills of the 

 
  

business users are followed up and the company tries to notice 

errors in billing by the operator, abuse of the connections in 

some way, and malfunctioning of equipment, all of which can 

be the reason for exceptionally high bills. If a user comes to 

the network at a random time without knowing the congestion 

stage of the network and if the operator uses congestion 

pricing, then he will receive variable bills for the same service. 

Thus, congestion pricing is one cause to variability of the bill 

and both the company and the operator should know the effect 

of this mechanism. The expected distribution of the cost of a 

connection is obtained from the average relative costs and the 

state probability. Average relative costs have been calculated 

by many authors, the closest to this work are the calculations 

in [7], [10], [11] and [12]. The presented paper gives a simple 

approximate solution that does not require matching of 

parameters and shows the shape of the cost function better. A 

series form solution for deriving better approximation is also 

given. 

It is important for an operator using shadow prices to 

know how much variability there can be in the costs over a 

longer time period. This is not the same as variability of the 

shadow prices. It is a question of the limit cost distribution. 

The main contribution of the paper is calculation of the cost 

distribution. Cost distributions have not been calculated before 

in the literature to Author’s knowledge. Calculating the cost 

distribution for shadow prices turns out to be difficult, but a 

simpler pricing scheme can be created. For a user and the 

operator this simpler scheme gives practically the same prices 

and costs as shadow prices, but the cost distribution can be 

expressed by a closed formula.  

We will not assume that the majority of users respond to 

congestion prices by lowering their traffic demand. There are 

reasons for dropping this assumption. Firstly, the users must 

notice that prices have been increased. Many users are a bit 

lazy in reacting to information of this type, so probably there 

should be an automatic agent in the user’s terminal but that is 

unlikely to happen in the near future. Secondly, the user 

should want to reduce his demand. If there is an alternative 

network available the user may try to switch to the alternative 

connection. Often the user is connected to one operator’s 

network only and cannot easily respond to price increases by 

shifting traffic to another network. In such a situation he 

should reduce his traffic demand. The need for congestion 

control is mainly from real-time services, today voice calls 

and in the future multimedia calls. The peak traffic of these 
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services has traditionally been in the business days in the busy 

periods. There is no reason to expect that this situation would 

essentially change in the future. Bills of business users are 

paid by the company and both the users and the company are 

in the opinion that business time is so valuable that operator 

bills should not interfere with the ability to communicate when 

needed. It is unlikely that business users will respond to 

increased prices by lowering their demand. Some other users 

may indeed lower their demand and call blocking may be 

reduced or quality of service is improved by this method – 

therefore an operator may want to use congestion pricing. For 

a business user the main visible effect of congestion pricing is 

the variability of the cost of a connection.   

Following [6] we treat the system as a multiservice loss 

system since the future applications where congestion pricing 

could be appropriate are most probably multimedia calls or 

similar services. While packet networks are queuing systems, 

many services still require sufficient effective bandwidth and 

treating the network as a loss system often gives a fairly good 

approximation also for packet networks. Thus, we will not 

study congestion pricing as a congestion control mechanism of 

elastic traffic in a packet network. The setting is more similar 

to that in [6], where possibly state-dependent prices are used 

in a multiservice loss network, or [7] presenting a method to 

calculate shadow prices a multiservice loss network.  

The paper is organized as follows. In Section II 

multiservice loss system is described. Section III A. shows 

how to calculate average costs using shadow prices. This 

calculation also gives the distribution of costs of connections 

in a user’s bill. Section III B. presents cost distributions to an 

operator over a longer time if shadow prices are strictly 

followed. The results are complicated and solution can be 

given only to one simple blocking policy. Section IV has the 

main result of the paper: an exact solution to the cost 

distribution for a charging policy, which gives the same 

average costs as shadow prices and for a user is practically 

identical.    

 

II. MULTISERVICE LOSS SYSTEM 

 

A multiservice loss system (see e.g [8]) has a number of 

different connection types indexed by  Kj ,...,1 . Each has 

own bandwidth demand: a call of type j  needs jb  units of 

capacity. Each call type has a Poisson arrival process with an 

arrival rate j . The call holding time for each call type is 

negatively exponentially distributed with the service rate j . 

Let the set   be the set of admitted state vectors q . The 

policy sets  += jq eqjR  define whether a call is 

accepted. Here ),...1,...( 1 Kjj qqqeq +=+  where je  has 1 in 

the index j , i.e. ),1,,0( =je . The policy “a new call of 

type j  is accepted in the state q ” is expressed using policy 

sets with the condition qRj  .  

 

Example 1.  A call of type k  takes kd  capacity units and the 

maximum number of capacity units is C . If the total number 

of used capacity units 
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 is larger than kdC − ,  (1) 

a call of type k  is blocked. Otherwise it is accepted. Thus  

 j
T

q dCdqjR −= .  

 

Example 2: A call of type k  takes kd  capacity units. If the 

number of used capacity units by calls of type k  exceeds a 

threshold kC  then a call of type k  is blocked.  

 

The policy in Example 2 is less efficient than the policy in 

Example 1 because not all capacity is available to all call 

types. 

The instantaneous transition matrix for the multi-service 

loss system can be written down by looking at the system at 

the state  ),...,( 1 Kqqq =  on a moment of time n. Let the total 

time be T and let there be N discrete time steps in time T. (We 

let →N .) Then we have the following transitions: 

- a connection of type j  is accepted ),1(),( jeqnqn ++→
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qRjj
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1 ,

 - the state does not change ),1(),( qnqn +→

 

with probability  


=

−−

K

j

jj

Rj

j q
N

T

N

T

q 1

1 
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- a connection of type j  finishes ),1(),( jeqnqn −+→

 

with 

probability jjq
N

T
 . 

These probabilities give the instantaneous transition 

matrix Q  which we express in the component form. Let 

Kqqns ,...,, 1
 be the probability of the state ),,( 1 Kqq   at the time 

n . The transition equations of a multiservice loss system have 

the following form: 
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Remark 1. For the policies in Examples 1 and 2 the recursion 

equations (2) satisfy for every j  the condition 

0,...1,...,, 1
=+ Kj qqqns        if qRj   .  (3) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2021                   doi:10.20944/preprints202104.0712.v1

https://doi.org/10.20944/preprints202104.0712.v1


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

This is so because if qRj  , then + jeq . It might appear 

that (3) is always true, but even though the transition from 

q to jeq +  is blocked by the policy, there could be some 

other path to get to the state jeq + . Therefore, (3) is a 

property of the policy.  

 

If the condition in Remark 1 holds, the stationary state 

solution to the equation set (2) is (see e.g. [8, p. 160] or [9]) 
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where   
 =
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 =  . 

 

Let us assume that blocking a call of type j  creates j  

units of cost, and that calls are blocked if there are not enough 

capacity units. In the stationary state the process (2) generates 

the average cost R  where 

g
N

T
R =  , 



=

q

qqrg  , 


=

qRj

jjqr  . (5) 

The number g  is the average cost rate and qr  is the average 

cost rate in the state q .  

 

III. CHARGING BY SHADOW PRICES IN A MULTISERVICE 

LOSS SYSTEM 

 

A. Average costs 

 

The optimal pricing policy in congestion pricing is that 

the operator charges shadow prices – the expectations of 

future losses from blocked traffic. The shadow prices can be 

computed in the following way.   

The multiservice loss system approaches a steady state 

and in the steady state it generates constant cost in each time 

step. The initial state determines how much cost the process 

generates before reaching the steady state and in most cases 

rather few steps from the beginning of the process determine 

quite well how much costs differ when the process is started in 

a given initial state. This cost difference can be calculated 

using Howard's equation (see [7]) 

r1QV −= g  (6) 

where Q  is the instantaneous transition matrix of a Markov 

chain, V is the vector of relative costs, g  is the average cost, 

and r  is the vector of state cost rates. One method of solving 

Howard’s equation is inverting Q :  

)( r1QV
1 −= − g . (7) 

Howard’s equation for future relative cost expectations for a 

multi-service loss system in component form is: 
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jjg  . (8) 

The variable )(qv is called relative cost. The exact solution to 

Howard’s equation is not unique: it is possible to add a 

constant to )(qv . The state-dependent link shadow price for 

traffic class k is qeqk vvqp
j

−= +)( , see [7] formula (7).  

If the dimension of the multiservice loss system is small, 

we can simply invert matrix Q  and solve Howard's equation. 

If the dimension is very large this method becomes impractical 

and approximate methods are often proposed. One such 

method is in [7]. The authors select a small-dimensional basis, 

compute a projection to the basis, and obtain very good 

numerical results compared to earlier methods [10], [11], and 

[12]. We will here denote the capacity jd in Example 1 by 

jb . In the special case bb j = ,  =j  and the policy of 

Example 1 the exact solution to Howard’s equation is (see 

Appendix I): 
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In more general cases we can start with an approximation 

and complete it into an exact solution in a way described in 

Appendix I. This way produces a series form solution.  

In the case bb j =  but kj    for some j  and k , the 

following closed form approximation seems fairly good  
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In the general case where kj bb   for some j  and k  and 

kj    for some j  and k , a rather natural approximation to 

start from is  
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where [x] means the largest integer smaller than x 
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These approximations are derived in Appendix I. They 

are simple to calculate and do not involve any matching of 

parameters. They are not expected to be as good as in [7] 

where a large number of free parameters are adjusted to 

specific numeric values of the loss system. If the shadow 

prices are used in pricing, we do not need high precision: the 

input parameters are not known precisely and the price will be 

rounded to a less precise figure.  

In case better accuracy is needed we can calculate more 

terms in the following way. Any first order approximation 

)(qu  of )(qv  can be completed to an exact solution of (8) 

by the following procedure. Let us define recursively 
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satisfies Howard’s equation (8). An example of (14) is 

calculated in Appendix I starting from the approximation (10). 

If the operator charges the user with the shadow prices 

and the network is in the steady state, the distribution of the 

cost to the user are calculated by multiplying the steady-state 

probabilities with the shadow prices.  

 

B. Cost Distribution using Shadow Prices 

 

The relative costs, and consequently the shadow prices, 

are transient phenomena. After a short time the system will be 

close to the steady state and producing the average cost rate in 

(5) regardless of what was the original state. More important 

parameter than the shadow price is the distribution of the cost 

in the future. It is not a transient phenomenon and it reflects 

the differences of using different prices on the services. As the 

average cost rate depends on the arrival rates i and the costs 

i , we may expect the cost distribution also to depend on 

these parameters. It is interesting to see if offering more 

services gives smaller variance in the cost distribution than 

offering fewer services. We can calculate the cost distribution 

by solving a set of recursion equations with the initial state of 

an empty system. If the system is not empty, there comes the 

transient distribution giving the average costs that are 

calculated with Howard’s equation. These transient costs stay 

constant and become ignorable in the limit, thus starting from 

an empty system gives the same limit distribution.      

In order to calculate the expected cost distribution up to a 

finite time horizon T  we describe the process using a state 

vector ),,( rqn  and its probability rqns ,, . Then cost is treated 

as a state variable and cost distributions can be obtained.  

Let rqns ,,  be the probability that the state is ),,,( 1 Kqqn   

and that the cost vector has the value r . Let r  be here a 

nonnegative integer and let us require that each j  is also an 

integer. Naturally we also require  
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We can derive a recursion equation set for the cost distribution 

by adding the parameter r  to (2):  
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When (16) is summed over r , the process (2) is obtained. 

 

The exact solution to (16) is calculated in Appendix II for 

the policy of Example 2.  

 

Theorem 1. Assume that the policy is as in Example 2. 

Equation set (16) has a limit solution of the form 
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1−G  is from (4). The functions ),,( trqf iii  and 

),( trg ii are complicated and given in Appendix II.  

For the policy in Example 1 we may use an 

approximation  
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in Theorem 1.  

  

The formula (20) describes how the cost distribution 

depends on the arrival rates i  and service costs i . The 

solution (17) has an exact form given in Appendix II but it is 

very complicated. This raises the question whether a simpler 

pricing scheme could be used instead of shadow prices.  

 

IV. A SIMPLER PRICING SCHEME 

 

As was seen in Section III, it is difficult to calculate the 

shadow prices from (8) and the cost distribution from (16). 

This section presents a simpler pricing scheme that overcomes 

these difficulties while producing the same average costs.    

 

A.  Different cost distributions of a multiservice loss 

system 

 

One way is to use a product: 
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The operator   is shorthand to the infinitesimal transition 

matrix of a multiservice loss system: 
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When (23) is summed over r , it gives (2). This is seen as 

follows: 
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The corresponding recursion equation  
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also gives (2) when summed over r . To see this, let us notice 

that the last two terms of (28) cancel when summed over r  

and that  
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Lemma 1. The set of equations  (16), (23) and (28) all generate 

the cost rate R  in (5). 

 

The proposed simpler pricing scheme is pricing the 

connections with the future expectations of the process (23) 

instead of by the future expectations of the process (16). In 
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shadow prices (16) all states q  are associated with a positive 

shadow price because there is some future expectation that the 

system starting from q  will be blocking traffic in the future, 

and consequently future expectations of costs are positive. In 

(23) only such states that block give any charge. We will show 

this after Theorems 2 and 3 below. While shadow prices are 

optimal in a certain sense, the differences between shadow 

prices and pricing by future expectations of (23) are small. 

User’s bills are in any case rounded, user traffic is measured, 

network congestion state is estimated and in reality shadow 

prices cannot be very exact.   

 

 

B. Cost distribution for the simpler pricing scheme 

 

The recursion equations (23) can be solved exactly 

because they are created to satisfy the product form solution 

(22). The limit distribution to the recursion equations (28) can 

be solved similarly. The part rqnv ,, disappears in the limit.  

 

Theorem 2. Assume that the process (23) satisfies 0,,0 =rqs  if 

0r .  The solution to (23) has the form  

qn

n

Arr

rr

rqqn

qrK

K

rKqqnK
Cs ,

),...,(

0...

,,...,,

,1

1

,,...,1,1




















= 


===

 (30)

 

where 




−


























−







=


=

q

i

K

i
i

q

K

Ri

r

i

rn

Ri

i
K

rqqn
N

T

N

T

rr

n
C 

1

1
1

...1
,,...,,

 














=== 

=

K

i

qiiiKqr RirrrrrA

1

1, if0,),...,(   

and qqn  →,  when →n , q  is given by (4).  

 

 

It is also possible to derive the continuous limit: 

 

Theorem 3. The continuous time limit function for (30) when 

→N , xNn = , xTt =  is 

( ) q

t

Arr

rr Ri

r
i

i
rqqt

qRi
i

qrK

K q

i

K
et

r
s 




−



=== 


















=  
,1

1

1

),...,(

0...

,,...,,
!

1
.  (31) 

 

Let us note that (30) is not a solution to (16). The formula (30) 

has the form of a product 

qrnrqqn qss
K

)(,,,....,, 1
= . (32)

  

Then the detailed balance conditions for each j and r  in the 

limit →n   

rqqni
n

rqqqnii
n KKj

ssq ,,...,,,,...,1,...,, 11
lim)1(lim 

→
+

→
=+

 (33)
  

and    

rqqqni
n

rqqnii
n KiK

ssq ,,...,1,...,,,,...,, 11
limlim −

→→
=   

do not hold in (16), since q  satisfies them, but if for some q  

holds
ieqq RR + , then )()( ,, qseqs rnirn + . 

 

Let us check that (31) produces the correct cost. 

 

Lemma 2. The solution (31) satisfies 




=

=

0

,,

r

qqrqt trrs  . (34) 

 

Remark 2. Let us calculate directly two easy examples: 

a) If  2,1=qR  and 121 ==  , then 




=0

,,...,, 1

r

rqqt K
rs       

 


= =

+−−

−
=

0 0

)(
21

11
1

2111 )()(
)!(

1

!

1

r

r

r

q
xTrrr

exTxT
rrr

r  




=

+−
+

−
=

0

)(
21

21)()(
)!1(

1

r

q
xTrr exT

r
    

qqq trxT  =+= )( 21 . (35) 

b) If }1{=qR , then the multinomial recurrence formula 

















−=







 −


= m

m

k

k

m ii

n
i

nii

n

...

1
1

...

1

111  

for the binomial term gives for 1n : 

 


= =

−

















−








=

0 0

11,,...,,

11

1
1

r

n

i

q

iin

i
iirqqn

i

K N

T

N

T

i

n
irs 

q
N

T
n  11=  (36) 

  

Let us verfy that in Theorems 2 and 3 only such states that 

block give any charge: If the system is in a state that does not 

block, there is only the point )0,...,0(),...,( 1 =Krr  in qrA , . 

Thus, 0,, =rqns if 0r .  

Let us notice that the part corresponding to the arrival 

rates i  and service costs i is similar in (17) and (31), only 

in (17) there is the scaling factor A . 

 

V. CONCLUSIONS 

 

The user and the operator are interested in the variability 

of the cost of a connection caused by congestion pricing. The 

distribution of the cost of a connection to a user can be 

calculated in the ways given in Section III.  
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An operator should know the cost distribution because it 

may have to add a price component to account for the risk of 

the actual costs exceeding the average costs. An exact solution 

for the distribution of costs to an operator over a longer time 

period can be obtained for a particular way of distributing 

costs to users, described by the recursion equation set (23). It 

is a slightly different pricing strategy than using shadow 

prices, but it gives the same incentives for users to lower their 

traffic demands. For shadow prices an exact expression could 

only be obtained for the simple blocking policy in Example 2. 

However, the structure of the cost distribution is very similar 

in (17) and (32), and (32) can be used as an approximation.  

The pricing scheme in Theorems 2 and 3 does not much 

differ from the shadow pricing scheme. Pricing schemes that 

approximate shadow prices but are more simple have earlier 

been suggested by other authors, for instance [6] proposes a 

static pricing scheme. Exact shadow prices are found too 

complicated and simpler approximations are acceptable 

substitutes.  

Theorems 1, 2 and 3 use the product form solution (4), 

which gives an exact solution to blocking probabilities for a 

certain class of routing policies in a circuit-switched network. 

The normalization constant G  is difficult to calculate but 

effective approximations do exist, or instance [14] and [15]. 

The expressions in Theorems 2 and 3 are rather similar to that 

of G  and similar effective calculation methods apply. As the 

cost distribution is only used for risk estimation and not for 

satisfying Quality of Service requirements, less precise 

methods are sufficient. Calculation of G  precisely is a NP-

complete problem and similar complexity is expected to the r  

dependent part in (17) and (31), but as only the general shape 

of the distribution is needed, Monte Carlo simulation can give 

sufficient approximations for practical purposes in a 

reasonable time.   

Theorems 1, 2 and 3 deal with the risk the operator is 

taking with congestion pricing. There is a general feeling that 

some price component to cover the risks is needed, but the 

case of risk in congestion pricing has not been much analyzed 

in the literature.  The general aspect of risk is much wider than 

is treated in this paper. Many issues, such as growing demand 

and various aspects of uncertainty [16], [17] and [18] must be 

omitted in this paper.      

 

APPENDIX  I:  PROOFS OF SECTION II A. 

 

Proof of (9): Let )(qv  be as in (9), then 

m
q

m

j
mq

qg
eqvqv −

−

=


−−

−
=−− 



1

0
)!1(

)!1(
)()( . (37) 

In the policy of Example 1 holds 
qRjCc  = 11 , thus  

))()(())()((1
11

j

K

j

jj

K

j

jCc eqvqvqqveqv −−−−+ 
==

 

m
q

m

K

i

i
m

q

m

i

K

i

Cc
mq

qg
q

mq

qg −

==

−

==

 
−

−
−

−
= 




 1101 )!(

)!1(

)!(

!
1     





=


=

CcA

Ccg

if

if
 (38) 

where  

m
bC

m mbC

bC
gA −

=


−

−= 
/

1 )!/(

)!/(
. (39) 

There is only one nonzero value for 
 qRj

jj  in this case and 

the value of g in (5) sets A  to the value satisfying (8): 




−=

qRj

jjgA  .  (40) 

 

Motivation of (10) and (11): We show why the heuristic 

approximations (10) and (11) are natural and can give rather 

good results. Let us assume that at the axis jqeq = the 

shadow price has the approximation 

m

q

m j

j

kkk

j

mq

qg
aqveqvqp −

=


−

−+= 
 0 )!(

!
)()()( .  (41) 

This is a generalization of the relative cost given by (9) and 

1=ka  if every  =j . In the area when every call is 

accepted the recursion (8) gives for jqeq =  

geqpqqp jjjj

K

k

kk =−−
=

)()(
1

  . (42) 

For the approximation (11) we get 

 

m

q

m j

j

jjj

m

q

m j

j
K

k

kk

jj

mq

qg
aq

mq

qg
a −

−

=

−

==


−−

−
−

−








1

001 )!1(

)!1(

)!(

!
 

g
mq

qg
a

g
a

g
a m

q

m j

j

jj

K

k

kk

K

k

kk

j

=
−








−+= −

===

 









011 )!(

!
 . 

This is satisfied if  


=

=

K

k

k
k

a

1


    and  



1

1 jja=  ,   

i.e., 

j

ja



=  , 

=

=

K

k k

k

1



   where 

=

=
K

j

j

1

 .  (43) 

 

Proof of (14):  

The following lemma holds. 

 

Lemma 3: 

)(),),((
1

qfqqfh jj
j

j = 


   for jjj  /= . 

Proof : 

)),),((),1),((( jjjjjj qqfhqeqfh  −++

)),1),((),),((( jjjjjj qeqfhqqfhq  −−−−  
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m
j

q

i

iq

m j

j
j

j j

miq

iq
emiqf

−

=

−
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−
+−= 

0 0
)!(

)!(
))((

m
j

q

i

iq

m j

j
j

j j

miq

iq
emiqf

−

=

−

=


−−

−
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1 0
)!(

)!(
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−

=
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=

 m
j

q

i

iq
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j
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j
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j j
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iq
emiqfq 
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−
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−

=
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=
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q

i

iq

m j

j

j

j

j

j j

miq

iq
emiqfq 


2 0

)!(

)!(
))((

1

 


=
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−
−=
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m

m
j

j

j
j

mq

q
meqf

0
)!(

)!(
)( 


−

=

−

−−

−
+−−

1

0
)!1(

)!1(
))1((

1
jq

m

m
j

j

j
j

j

j
mq

q
emqfq 


 


=

−

−
−=

jq

m

m
j

j

j
j

mq

q
meqf

0
)!(

)!(
)(   

)(
)!(

)!(
)(

1

qf
mq

q
meqf

jq

m

m
j

j

j
j =

−
−− 

=

−
  .  (44) 

 

By Lemma 3, qV  satisfies 

),),((
1

)( ,

1 1 11

jjjn

K

j n j

K

k

k

K

j

jq qqfhgqugV 



=



= ==

+=  

( ) ( )
=



=

+

=

−+−=

K

j n

jnjn

K

j

j qfqfgqfg

1 1

,1,

1

,1 )()()(1

 (45)

 

( ) gqfgqfg

K

j

j

K

j

j =+−= 
== 1

,1

1

,1 )()(1 . 

The value of )(qv  at the points when some class is blocked is 

already determined by the values of )(qv  at the points when 

no class is blocked. This means that we do not need to modify 

qV  so that it satisfies (8). Changing the operator   to  


=

=
K

j

j

1

, (46) 

))()(())()((1)( jjjjjRjj eqfqfqqfeqfqf
q

−−−−+=  

the solution qV  necessarily satisfies (8): 




−=
qRj

jjq gV  . (47) 

This is so because before states block, the recursion equation 

is the same as in (13) and therefore the solution agrees with 

qV  for those values. At the border when states block, qV  is 

already determined by the values at unblocking states. 

Therefore Howard’s equation must be satisfied at the blocking 

states.    

As an example of (14) let us complete the approximation 

)(~ qv in (10) to an exact solution of (8). Let us select 

),,1(
1

)( 


qhqu =     (48) 

where  
=

=

K

j

jqq

1

,  
=

=

K

j

j

1

 , 
=

=

K

j j

j

1
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m
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i

iq

m miq

iq
miqfqqfh −

=

−

=


−−

−
−−= 




1 0 )!(

)!(
)(

1
),),(( . 

Let   be as in (46). A similar calculation as in the proof of 

Lemma 3 shows that 

 

m
q

m
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j
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q
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),,1(
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m
q

m

j

K

j

j
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q
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−

−
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)!1(
.  (49) 

 

Then  

m
q

m

j

j

j

j
mq

q
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=
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0

,1
)!(

!1
)(

 m
q

m

j

j

mq

q
q −

=
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−− 





1 )!(

)!1(
1 . (50) 

At any coordinate axis jqeq =  holds )()(~ qguqv = . The 

complete solution to (8) is  

),),((
1

),,1(
1

,

1 1

jjjn

K

j n j

q qqfhgqhgV 






=



=

+= . 

APPENDIX  II:  PROOF OF THEOREM 1  

For notational simplicity, we write q simply as q . We 

only intend to prove that (16) has a solution of the form (17) 

and do this by constructing such a solution. The solution turns 

out to be very complicated and not of practical usage. 

However, Lemma 4 below is interesting in its own right. The 

equation is reoccurring often in Markov chains with a cost 

parameter and the solution is not that easy to derive.  

 

Lemma 4. Let us assume that RN →:f  satisfies the 

recursion equation  

0)()1()1()()2( =++++−+ qfqqfaqqf  , 

0)( =qf  if  0q , (51) 

where Zq , Ra, , N− a  and .0  

Then the function f  is 

 
 


−+

=

−−+=



aq

j

j jaqqf
1

)()(   

 
 


−+

=

−−++



aq

j

j jaqC
1

)(  (52) 
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where  

)2(11 a−+=  , )2(1 ia
i

ii +−+=+ 


 , 

1i , and 
i

i
i


 =+1

, 1i  and C  is a real number. 

 

Proof: Let us define 

)()(
1

jaqqf
i

j

ji −−+= 
=

   

where  
 


=

−+=+

x

j

xxjx

1

)()1( . (53) 

Write 

)()1()1()()2( qfqqfaqqfA iiii ++++−+=  . 

Then 

 (54) 

)11()( 1 −−−+++− + iaqaq i   

)1()1( 1 −−−+++ + iaqq i  . 

From )1()( 11 −−+=  aqqf  we get the initial step to 

the induction: 

)()2( 111 qfaA −+=  )1(1 −−+=  aq   

when we define )2(11 a−+=  . Let the induction 

assumption be that for ij ,...,1=  and for some numbers j  

holds 

)( jaqA jj −−+=  . (55) 

Then for 1+= ij  we get  

ii AA −+1

)1)()((1(1 −−−+−−+−−−+= + iaqiaqiaqi   

))1)((  ++−−−++− qiaqaq  (56) 

)))(1()(1(1  ++−−−−−−−−+= + iiaiqiaqi . 

By the induction assumption 

 )1()1( −−−+−−−+= iaqiaqA ii  . 

Then  

qiiaqA iii ))((1( 11 ++ −−−−+=   

)))(1()1( 11  ++ ++−−−−−−−+ iii iiaia  

)1(1 −−−+= + iaqi   (57) 

when we choose 

i

i
i


 =+1   and )2(1 ia

i
ii +−+=+ 


 . (58) 

By induction we can continue so long that q  is removed from 

the Gamma function and we have a scalar. The scalar is 

unfortunately not usually the correct initial value. Let us 

define  

     ( )  −−−= +−+− aaA qaqa  and 

     ( )  −−−= +−+− aaA qaqa . (59) 

These are scalars, i.e., not functions of q . If N− a , we 

get two different scalars that can be weighted to that their 

linear combination is the desired initial value (zero). Thus  

 (60) 

   


−+

=

−+

=

−−++−−+=




aq

j

j

aq

j

j jaqCjaqqf
11

)()()(  

satisfies (51) if 
    −+−+−= aqaq AAC / . The parameter 

1  is a free parameter and we can set 11 = .  

 

Proof of Theorem 1: Let us use the trial 

K

K

i
ii

K

rrqn

rr

rr
rqn ss ,...,,,

0...
,, 1

1

1




=

===

=

=



 (61) 

and require that each term of the sum satisfies (16). Using the 

property (3), we can change the position of 
qRj1 and rewrite 

(16) in the following form: 

KK rrqnrrqn ss ,,,,,,,,1 11  =+  (62) 

KK rrqn

K

i
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i

i s
N

T
sq

N

T
,,,,
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1
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==

−−    

 
qKi Rirreqni
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i
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T
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K

i
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T
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1
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+ 
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K

i
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N

T
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=

+ 1,,...,1,,,

1
1  . 

Let us look for a solution of the type 



=
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=
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ij
j j
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j
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q

Gssss

j

iiKKK
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 (63) 

where  

KiKKK rrrni

K
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i
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N

T
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T
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,,,,,,1 1111 −

==

+  +−=    

0...,...,,0 11 ====
KK rrrrs  . (64) 

Summing over ir  gives 
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.

  

) 1 2 ( 1 1 − − − + +   = − + + i a q A A i i i   
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Taking the continuous limit of this expression gives (20). Let 

us modify (62) by adding and removing terms: 

KKKK rrqrrnrrqrrn ssss ,...,,,,,,...,,,,,1 1111  =+  (65) 

KKiKK rrqrrrni

K

i

irrqrrni

K

i

i ssa
N

T
ssa

N

T
,...,,,...,1,,,

1

,...,,,,,

1
1111 −

==

 +−  

KKiKK rrqrrrni
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i ssa
N
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N

T
,...,,,...,1,,,

1

,...,,,,,
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1111 −
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 −+  

KK rrqn
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KiqKi rreqn
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N

T
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1
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qKi Rirrrqn

K

i

i s
N

T
−

=

+ 1,,...,1,,,

1
1  . 

The first four terms give zero because of (64), thus the other 

terms also sum to zero. Let us take the continuous limit 

TtNn // →  and define 

ii

i

rrn

rrrn

tn
ii

ta

r

s

s
trh

K

Ki


==

−

→
,...,,

,...,1,...,,

1

1lim),(  , (66) 

where t  is the continuous time parameter. Dividing (65) by 

Krrns ,...,, 1
and inserting ),( trh ii and  

),(),,(
!

1
,, trgtrqf

q
s iiiii

i

rqt ii
=  (67) 

gives 


=


=

=
K

i

ii

j

q

j
K

ij
j q

j

1 1 !
0 


 

where 

),(),,(
!

1
)),(1( trgtrqf

q
trhaa iiiii

i

iiiii −−=

 ),(),,(
)!1(

11 trgtrqf
q

iiiii

i

i
−

− −  (68) 

 
qRiiiiii

i

i trgtrqf
q



− ++ 1),(),,1(
!

11  

 ),(),,1(
)!1(

1
trgtrqf

q
iiiii

i

−
−

+  

qRiiiiii

i

ii trgtrqf
q

trh −−+ 1),1(),1,(
!

1
),( . 

Let us satisfy (68) by setting the i  to zero for every i , thus 

qRiiiiii trgtrqf += 1),(),,1(0  (69) 

),(),,())),(1(( trgtrqftrhaaq iiiiiiiiiii +−+− 
 

  
),(),,1( trgtrqfq iiiiiii −+   

qRiiiiiiiii trgtrqftrh −−+ 1),1(),1,(),( . 

If qRi   we get 

),,())),(1((),,1( trqftrhaaqtrqf iiiiiiiiiiii +−+−+ 

0),,1( =−+ trqfq iiiii . (70) 

This is a recursion only for iq , while ir  and t  are only 

parameters. Lemma 4 gives the solution to (70). For qRi   in 

the policy of Example 2 we can satisfy (70) by assigning 

ii Cq = . Here 0),( trh ii  and thus (69) gives a recursion 

equation from which )( ii rg  is solved by the form 


=

−=
i

i

r

j

riiiii Dtrgtrg

1

,),1(),( , 
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,
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iiii
ji
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−
=





where iC  is the maximum value for iq .  

 Let us look at the special case 0),( =trh ii . Then 

)(),,( iiiii rftrqf = . Instead of (67) we will select 

i

ii

r

iiii

i

rqt trgqf
q

s
−

= )()(
!

1
,,   (72) 

and in (68)-(69) 

0)(
)1(

=
−

−−

ii

i

r

r

ii
a

r

t

t
rh

i

i


. (73) 

We get an equation similar to (69) and can solve )( ii rg . 

Scaling by selecting the parameter A  lets us satisfy 

 =
qr

rqns
,

,, 1  and 01 ,,  rqns .  (74) 

There is still the requirement that the sum over r  of values 

rqns ,, must be finite. The part rns , in rqns ,,  satisfies it.  

 

APPENDIX  III:  PROOFS OF SECTION IV 

For notational simplicity, we write q simply as q . 

 

Proof of Lemma 1: Since (23) is a special case of (28), it 

suffices to show the claim for (28) and (16). In (28) holds  
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To prove the claim to (16), it is only needed to multiply (16) 

by r and sum over r  
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Proof of Theorem 2:  It is sufficient to show that the equations  
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are satisfied. Let us write 
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and re-index 
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The basic multinomial recurrence relation (see e.g. [13]) 
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shows that 
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Summing over qrA ,  shows that the recursion equation is 

satisfied also for 
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Let us sum over all values of r   
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s . This completes the proof.  

 

Proof of Theorem 3:  Write 
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 == . The limit of 

the multinomial term 
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is calculated by Stirling’s formula using Poisson’s limit 

procedure: 
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Thus  
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as claimed.  

 

Proof of Lemma 2: Directly summing from (31) is 

difficult, but as (31) is the limit of (30), it can be calculated as 
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