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Abstract— Congestion pricing has received lots of attention in
the scientific discussion. Congestion pricing means that the
operator increases prices at the time of congestion and the traffic
demand is expected to decrease. In a certain sense, shadow prices
are an optimal way of congestion pricing: users are charged
shadow prices, i.e., the expectations of future losses because of
blocked connections. The shadow prices can be calculated exactly
from Howard’s equation, but this method is difficult. The paper
presents simple approximations to the solution of Howard’s
equation and a way to derive more exact approximations. If users
do not react by lowering their demand, they will receive higher
bills to pay. Many users do not react to increased prices but
would want to know how the congestion pricing mechanism
affects the bills. The distribution of the price of a connection
follows from knowing the shadow prices and the probability of a
congestion state. There is another interesting distribution. The
network produces profit to the operator, or equivalently, blocked
connections produce a cost to the operator. The average cost rate
can be calculated from Howard’s equation, but the costs have
some distribution. The distribution gives the risk that the actual
costs exceed the average costs, and the operator should include
this risk to the prices. The main result of this paper shows how to
calculate the distribution of the costs in the future for congestion
pricing by shadow prices and for congestion pricing with a more
simple pricing scheme that produces the same average costs.

Index Terms— Pricing, loss networks, Markov decision processes,
blocking probability.

. INTRODUCTION

ONGESTION pricing is a state-dependent pricing
strategy where the prices are higher when the network is
congested. Congestion pricing has been studied
extensively as a congestion control mechanism for elastic
traffic demand: if users react to increased prices by lowering
their demand, then the operator can use prices as a congestion
control mechanism. Most authors consider congestion pricing
of elastic traffic using the Game Theory [1], [2], [3], [4], and
[5]. Shadow prices turn out to be the congestion prices that
optimize the utility functions of the operator and the users.
The main focus in this paper is in distributions of costs
when congestion pricing is applied. For a business user the
interesting question is the cost of a connection. The bills of the

business users are followed up and the company tries to notice
errors in billing by the operator, abuse of the connections in
some way, and malfunctioning of equipment, all of which can
be the reason for exceptionally high bills. If a user comes to
the network at a random time without knowing the congestion
stage of the network and if the operator uses congestion
pricing, then he will receive variable bills for the same service.
Thus, congestion pricing is one cause to variability of the bill
and both the company and the operator should know the effect
of this mechanism. The expected distribution of the cost of a
connection is obtained from the average relative costs and the
state probability. Average relative costs have been calculated
by many authors, the closest to this work are the calculations
in [7], [10], [11] and [12]. The presented paper gives a simple
approximate solution that does not require matching of
parameters and shows the shape of the cost function better. A
series form solution for deriving better approximation is also
given.

It is important for an operator using shadow prices to
know how much variability there can be in the costs over a
longer time period. This is not the same as variability of the
shadow prices. It is a question of the limit cost distribution.
The main contribution of the paper is calculation of the cost
distribution. Cost distributions have not been calculated before
in the literature to Author’s knowledge. Calculating the cost
distribution for shadow prices turns out to be difficult, but a
simpler pricing scheme can be created. For a user and the
operator this simpler scheme gives practically the same prices
and costs as shadow prices, but the cost distribution can be
expressed by a closed formula.

We will not assume that the majority of users respond to
congestion prices by lowering their traffic demand. There are
reasons for dropping this assumption. Firstly, the users must
notice that prices have been increased. Many users are a bit
lazy in reacting to information of this type, so probably there
should be an automatic agent in the user’s terminal but that is
unlikely to happen in the near future. Secondly, the user
should want to reduce his demand. If there is an alternative
network available the user may try to switch to the alternative
connection. Often the user is connected to one operator’s
network only and cannot easily respond to price increases by
shifting traffic to another network. In such a situation he
should reduce his traffic demand. The need for congestion
control is mainly from real-time services, today voice calls
and in the future multimedia calls. The peak traffic of these
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services has traditionally been in the business days in the busy
periods. There is no reason to expect that this situation would
essentially change in the future. Bills of business users are
paid by the company and both the users and the company are
in the opinion that business time is so valuable that operator
bills should not interfere with the ability to communicate when
needed. It is unlikely that business users will respond to
increased prices by lowering their demand. Some other users
may indeed lower their demand and call blocking may be
reduced or quality of service is improved by this method —
therefore an operator may want to use congestion pricing. For
a business user the main visible effect of congestion pricing is
the variability of the cost of a connection.

Following [6] we treat the system as a multiservice loss
system since the future applications where congestion pricing
could be appropriate are most probably multimedia calls or
similar services. While packet networks are queuing systems,
many services still require sufficient effective bandwidth and
treating the network as a loss system often gives a fairly good
approximation also for packet networks. Thus, we will not
study congestion pricing as a congestion control mechanism of
elastic traffic in a packet network. The setting is more similar
to that in [6], where possibly state-dependent prices are used
in a multiservice loss network, or [7] presenting a method to
calculate shadow prices a multiservice loss network.

The paper is organized as follows. In Section Il
multiservice loss system is described. Section Il A. shows
how to calculate average costs using shadow prices. This
calculation also gives the distribution of costs of connections
in a user’s bill. Section III B. presents cost distributions to an
operator over a longer time if shadow prices are strictly
followed. The results are complicated and solution can be
given only to one simple blocking policy. Section 1V has the
main result of the paper: an exact solution to the cost
distribution for a charging policy, which gives the same
average costs as shadow prices and for a user is practically
identical.

Il. MULTISERVICE LOSS SYSTEM

A multiservice loss system (see e.g [8]) has a number of
different connection types indexed by jefl..K}. Each has

own bandwidth demand: a call of type j needs b; units of

capacity. Each call type has a Poisson arrival process with an
arrival rate ;. The call holding time for each call type is

negatively exponentially distributed with the service rate u; .
Let the set O be the set of admitted state vectors g . The
policy sets Rg= {j|q+e,- eQ} define whether a call is
accepted. Here g +ej =(qy,...q; +1..0x) where €; has 1 in
the index ], i.e. ;=(0,...1..)). The policy “a new call of

type ] is accepted in the state @ ” is expressed using policy
sets with the condition j € Ry .
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Example 1. A call of type k takes d, capacity units and the

maximum number of capacity units is C . If the total number
of used capacity units

K
C:Z:quk =q'd islargerthan C —d,, (1)
k=1

a call of type k is blocked. Otherwise it is accepted. Thus

Ry ={j‘ﬁTJSC—dj}.
Example 2: A call of type k takes d, capacity units. If the
number of used capacity units by calls of type k exceeds a
threshold C, then a call of type k is blocked.

The policy in Example 2 is less efficient than the policy in
Example 1 because not all capacity is available to all call

types.
The instantaneous transition matrix for the multi-service

loss system can be written down by looking at the system at
the state @ =(q;,.., dx) on a moment of time n. Let the total

time be T and let there be N discrete time steps in time T. (We
let N — o0.) Then we have the following transitions:

- a connection of type ] isaccepted (n,q) — (n+1,q+ ej)
. A
with probability W)lejeRa ;
- the state does not change (n,q) — (n+1,q) with probability
T T <
1——23«1' ——Zﬂjqj' )
N N &
JeRy j=1
- a connection of type | finishes (n,d) > (n+1,q—e;) with
T
probability Wﬂjqj'

These probabilities give the instantaneous transition
matrix Q which we express in the component form. Let

Sh.q,...q. D€ the probability of the state (q;,...,qx) at the time

N . The transition equations of a multiservice loss system have
the following form:

AT
sn+1,q1,...,qK :sn,ql,...,qK _Z N sn,ql,...,qujeRq
= )
K
uiT KAT
_ ——q:S J )
Z N 17N,Gy,- -0k +Z N sn,ql,.,.,qj—l,...,qK:I-JeRa,ej
= j=1
D Snga =1, 08, o <1

qeQ

Remark 1. For the policies in Examples 1 and 2 the recursion
equations (2) satisfy for every | the condition

=0 if jeRy. ©)


https://doi.org/10.20944/preprints202104.0712.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 April 2021

This is so because if j ¢ Ry, then g +e; ¢ Q. It might appear

that (3) is always true, but even though the transition from
gto g+e; is blocked by the policy, there could be some

other path to get to the state g+e;. Therefore, (3) is a
property of the policy.

If the condition in Remark 1 holds, the stationary state
solution to the equation set (2) is (see e.g. [8, p. 160] or [9])

_Giln_pj qeQ (4)

where G = ZH_'DJ pj:%

qeQ 1_1 J

Let us assume that blocking a call of type j creates w;

units of cost, and that calls are blocked if there are not enough
capacity units. In the stationary state the process (2) generates

the average cost R where
T3, =) 0. @)

=—g 9= f7
j#Ryg

qeQ2

The number g is the average cost rate and ry
cost rate in the state q .

is the average

I1l. CHARGING BY SHADOW PRICES IN A MULTISERVICE
LOSS SYSTEM

A. Average costs

The optimal pricing policy in congestion pricing is that
the operator charges shadow prices — the expectations of
future losses from blocked traffic. The shadow prices can be
computed in the following way.

The multiservice loss system approaches a steady state
and in the steady state it generates constant cost in each time
step. The initial state determines how much cost the process
generates before reaching the steady state and in most cases
rather few steps from the beginning of the process determine
quite well how much costs differ when the process is started in
a given initial state. This cost difference can be calculated
using Howard's equation (see [7])

QV=gl-r ©)

where Q is the instantaneous transition matrix of a Markov
chain, V is the vector of relative costs, g is the average cost,

and r is the vector of state cost rates. One method of solving
Howard’s equation is inverting Q :

V=Q7(gl-r). (7
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Howard’s equation for future relative cost expectations for a
multi-service loss system in component form is:

D A (v(@+e;) V(@) - Zu,q V(@) -v(T@—e;))
JjeRy j
=g- Z/I |0, - (8)
j#Rg
The variable v(q) is called relative cost. The exact solution to
Howard’s equation is not unique: it is possible to add a
constant to v(g) . The state-dependent link shadow price for

traffic class kis p () =Vg.e, — Vg, see [7] formula (7).

If the dimension of the multiservice loss system is small,
we can simply invert matrix Q and solve Howard's equation.
If the dimension is very large this method becomes impractical
and approximate methods are often proposed. One such
method is in [7]. The authors select a small-dimensional basis,
compute a projection to the basis, and obtain very good
numerical results compared to earlier methods [10], [11], and
[12]. We will here denote the capacity d;in Example 1 by

b;. In the special case b;j=b, u;=u and the policy of

Example 1 the exact solution to Howard’s equation is (See
Appendix I):

q — |
o _ 9 (q-i)!
V = =
(@ ,Up;;(q_l_m)' 9)
K, K
where p = Z—k and q = qu .
k=1 Mk k=L

In more general cases we can start with an approximation
and complete it into an exact solution in a way described in
Appendix I. This way produces a series form solution.

In the case bj=b but u; # g for some J and k, the

following closed form approximation seems fairly good

7(@) = Z 9 3% @

(10)
q uype=(q-i-my”
In the general case where b; = b, for some j and k and

uj # wy forsome j and k, a rather natural approximation to
start from is

(@) =12b‘%(b—’j L@b}m 3

where [x] means the largest integer smaller than x

K b 2
bZZbJ v Pj :[b—J P
=1 i


https://doi.org/10.20944/preprints202104.0712.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 April 2021

(11)

K
(—"j and ¢ =) byq -
k=1

These approximations are derived in Appendix I. They
are simple to calculate and do not involve any matching of
parameters. They are not expected to be as good as in [7]
where a large number of free parameters are adjusted to
specific numeric values of the loss system. If the shadow
prices are used in pricing, we do not need high precision: the
input parameters are not known precisely and the price will be
rounded to a less precise figure.

In case better accuracy is needed we can calculate more
terms in the following way. Any first order approximation
u(g) of v(Q) can be completed to an exact solution of (8)

by the following procedure. Let us define recursively

flj(q)=1—A.u(q) and for n>1, (12)
n+1](q)_ ZA nj(q) qu)
k;tj ]
where p; =4;/u; and
heE (T . 1 q; g;-i ¢ ( |)| .
( (q),qj’p)_pgmzo (@— (i +me; )m
K
A=ZAJ-, (13)
j=1

A @) =4;(F@+e))— (@) —u;q;(F@ - f(@-e)))

The function

K o
= gu(@) + 9> h(f, (@.4;.0;)

j=1n=1""]

(14)

satisfies Howard’s equation (8). An example of (14) is
calculated in Appendix | starting from the approximation (10).

If the operator charges the user with the shadow prices
and the network is in the steady state, the distribution of the
cost to the user are calculated by multiplying the steady-state
probabilities with the shadow prices.

B. Cost Distribution using Shadow Prices

The relative costs, and consequently the shadow prices,
are transient phenomena. After a short time the system will be
close to the steady state and producing the average cost rate in
(5) regardless of what was the original state. More important
parameter than the shadow price is the distribution of the cost
in the future. It is not a transient phenomenon and it reflects
the differences of using different prices on the services. As the
average cost rate depends on the arrival rates 4; and the costs

@; , we may expect the cost distribution also to depend on

these parameters. It is interesting to see if offering more
services gives smaller variance in the cost distribution than
offering fewer services. We can calculate the cost distribution
by solving a set of recursion equations with the initial state of

do0i:10.20944/preprints202104.0712.v1

an empty system. If the system is not empty, there comes the
transient distribution giving the average costs that are
calculated with Howard’s equation. These transient costs stay
constant and become ignorable in the limit, thus starting from
an empty system gives the same limit distribution.

In order to calculate the expected cost distribution up to a
finite time horizon T we describe the process using a state

vector (n,q,r) and its probability S, ; .. Then cost is treated

as a state variable and cost distributions can be obtained.
Let s, g, be the probability that the state is (n,q,...,qx)

and that the cost vector has the value r. Let I be here a

nonnegative integer and let us require that each o; is also an
integer. Naturally we also require
K :anv% ----- A.r - (15)
r=0

We can derive a recursion equation set for the cost distribution
by adding the parameter r to (2):

K
AT

SNHLGy, o OaT SN,y G T _Z S G T
= N

(16)

K AT

]
+Z N Sn,ql 2Ok F—@; 1JeR—

j=L
K AT

J
r +Z N Sn,ql,...,qJ

i1

—1,...,qK,r1jeRa,e]

_Z N qjSngp....a
j=1

K

+ZT(qJ +1)s, .

=1
znql ----- qu'anq1 o =1

qeQ

+1,..,0k.r 7

S0t T

0<s <1.

NG O P =

When (16) is summed over I, the process (2) is obtained.

The exact solution to (16) is calculated in Appendix Il for
the policy of Example 2.

Theorem 1. Assume that the policy is as in Example 2.
Equation set (16) has a limit solution of the form

o0
Stag,r = Z St v T ST o Ty (17)
n=.=r=0
K
r=Y
i-1
where
K K pf_lj
— -1 J
St _Zstvﬁi,nG H_| (19)
i=1 = qJ'
J#
K
1 —tZﬂq
St :AHF e = (20)
i=1 1"
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i (6.1,

St,Qi W

1
Zq—i!fi(CIi:ri

G™* fi(ch, 5,1 and
g; (1;, t) are complicated and given in Appendix II.

is from (4). The functions

For the policy
approximation

in Example 1 we may use an

K

C

Ci =C; ma <=-» g
(@) = maxq, < Zb

m¢|

(21)

in Theorem 1.

The formula (20) describes how the cost distribution
depends on the arrival rates 4; and service costs ;. The

solution (17) has an exact form given in Appendix Il but it is
very complicated. This raises the question whether a simpler
pricing scheme could be used instead of shadow prices.

IV. A SIMPLER PRICING SCHEME

As was seen in Section I, it is difficult to calculate the
shadow prices from (8) and the cost distribution from (16).
This section presents a simpler pricing scheme that overcomes
these difficulties while producing the same average costs.

A. Different cost distributions of a multiservice loss
system

One way is to use a product:

sn,ﬁ,r = Sn,oa,..., ak.r — Sn,r(q)sn,oa ..... ak (22)

Sn.r (@) =0 if r<o,
which satisfies the recursion equation

Snstgr =Snar + Snr (@A g —— Z’llanr

z/l Sng.r— o,

jzR— jeR—
= anvqlv"'quvr 'zsn,ql ----- dk :1'
r=0 geQ
0<S,q o <1 (23)

The operator A is shorthand to the infinitesimal transition
matrix of a multiservice loss system:

AT
JeZR: %3N
AT
+ z JTfn,ql,...,qj—l,.”,qK

jeRq,eJ

+Z

When (23) is summed over I,
follows:

(q +1) fn Oyt Ok (24)

it gives (2). This is seen as
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(25)

Sn,q1,...,qK = zsn,ql,...,qK,r =Shg z n, r(q)

r=0 r=0

thus anyr(q)zl.

Z}mw(M—jS%dm ZEMM)

r =-oj

o0

ie., Z —lesmﬁ Z/Ijsn’qf’r,wj =0 and we obtain

r=0 jeRq ngq
(2) in the form:

Sn+l,ﬁ = zsnﬂ,a,r = Sn!a + Asn,ﬁ ' (26)

Another way is to take a slightly more general form:

S :asn,r(q)sn,oﬂ ..... Ok +(1_a)vn,0a,...,qK,r

n,g.r

(27)
where ae[O,l] and

nqr) Ozvnqr: ng

=0,

lim (Vn+1,q,r -
n—oo

V —
lim —9.C
N—% Spr @

The corresponding recursion equation

Snsrgr = Sn,g,r +8@Snr (q)ASn g7t (- a)Avn,ﬁ,r

_%Zﬂ anr 2/1 anrw

jeRg jéR*

(28)

also gives (2) when summed over I . To see this, let us notice
that the last two terms of (28) cancel when summed over r
and that

ZAVW, = AZ:vn]q]r =ASyg = 0.

r=0 r=0

(29)

Then aan'r(q) =1 because the term
r=0

Z(l—a)vn’q’, disappears in the limit N — oo,
r=0

Lemma 1. The set of equations (16), (23) and (28) all generate
the cost rate R in (5).

The proposed simpler pricing scheme is pricing the
connections with the future expectations of the process (23)
instead of by the future expectations of the process (16). In
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shadow prices (16) all states g are associated with a positive

shadow price because there is some future expectation that the
system starting from g will be blocking traffic in the future,

and consequently future expectations of costs are positive. In
(23) only such states that block give any charge. We will show
this after Theorems 2 and 3 below. While shadow prices are
optimal in a certain sense, the differences between shadow
prices and pricing by future expectations of (23) are small.
User’s bills are in any case rounded, user traffic is measured,
network congestion state is estimated and in reality shadow
prices cannot be very exact.

B. Cost distribution for the simpler pricing scheme

The recursion equations (23) can be solved exactly
because they are created to satisfy the product form solution
(22). The limit distribution to the recursion equations (28) can
be solved similarly. The part v, 5 . disappears in the limit.

Theorem 2. Assume that the process (23) satisfies sy g, =0 if
r=0. The solution to (23) has the form

Snv(h ----- G r = ch,qu--qk r ng
n=.=n=0
(Frma T )EA 5 (30)
where

warly "oz )

igRy5 IéRa
K

. L=0 if ieRq}
i=1

and 7, g — 7g When n—o0, 7y is given by (4).

Ag = {(rl""' k)

It is also possible to derive the continuous limit:

Theorem 3. The continuous time limit function for (30) when
N—>w, N=XN, t=xT is

0 1 tZﬂ

Stxch ----- P g.(31)

Let us note that (30) is not a solution to (16). The formula (30)
has the form of a product

S, Gy QT — Sn,r(q)ﬂ'q- (32)

Then the detailed balance conditions for each jand r in the
limit n— o0
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Ilm ,u (ql "_:I')an1 2G5+ i T _rl]lm /’tlsn e O o1

(33)

and
Llinw :uiqisn,ql,...,q

do not hold in (16), since =

=lm As

Neoo 1M 0gpen =Ly Qs T
q satisfies them, but if for some q
holds Ry # Ry, , then s, . (q+e;) #s, (q).

Let us check that (31) produces the correct cost.

Lemma 2. The solution (31) satisfies
Z:rst@r =trgzg -
r=0

Remark 2. Let us calculate directly two easy examples:
a) If R, =1{L,2} and @ = @, =1, then

o0

Z rstv(h ----- Ok T

r=0

0 r
1 1
=)y = XT/y)" (XTA,) The T at) 7
>y o (r—rl)'( A4)* (XT4z)

(34)

:Z(r fl)! (XT) (A + 4,) e T ) 7

=XT(4 + ﬂbz)yrq =ty 7y (35)

b) If R, ={1}, then the multinomial recurrence formula

PR S )

for the binomial term gives for n>>1:
£ n—i; T iy
N SO
r=0
T

Let us verfy that in Theorems 2 and 3 only such states that
block give any charge: If the system is in a state that does not
block, there is only the point (r,.., ) =(0,..,0) in A 4
=0if r=0.

Let us notice that the part corresponding to the arrival
rates A; and service costs «; is similar in (17) and (31), only
in (17) there is the scaling factor A.

Thus, s, or

V. CONCLUSIONS

The user and the operator are interested in the variability
of the cost of a connection caused by congestion pricing. The
distribution of the cost of a connection to a user can be
calculated in the ways given in Section IlI.
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An operator should know the cost distribution because it
may have to add a price component to account for the risk of
the actual costs exceeding the average costs. An exact solution
for the distribution of costs to an operator over a longer time
period can be obtained for a particular way of distributing
costs to users, described by the recursion equation set (23). It
is a slightly different pricing strategy than using shadow
prices, but it gives the same incentives for users to lower their
traffic demands. For shadow prices an exact expression could
only be obtained for the simple blocking policy in Example 2.
However, the structure of the cost distribution is very similar
in (17) and (32), and (32) can be used as an approximation.

The pricing scheme in Theorems 2 and 3 does not much
differ from the shadow pricing scheme. Pricing schemes that
approximate shadow prices but are more simple have earlier
been suggested by other authors, for instance [6] proposes a
static pricing scheme. Exact shadow prices are found too
complicated and simpler approximations are acceptable
substitutes.

Theorems 1, 2 and 3 use the product form solution (4),
which gives an exact solution to blocking probabilities for a
certain class of routing policies in a circuit-switched network.
The normalization constant G is difficult to calculate but
effective approximations do exist, or instance [14] and [15].
The expressions in Theorems 2 and 3 are rather similar to that
of G and similar effective calculation methods apply. As the
cost distribution is only used for risk estimation and not for
satisfying Quality of Service requirements, less precise
methods are sufficient. Calculation of G precisely is a NP-
complete problem and similar complexity is expected to the r
dependent part in (17) and (31), but as only the general shape
of the distribution is needed, Monte Carlo simulation can give
sufficient approximations for practical purposes in a
reasonable time.

Theorems 1, 2 and 3 deal with the risk the operator is
taking with congestion pricing. There is a general feeling that
some price component to cover the risks is needed, but the
case of risk in congestion pricing has not been much analyzed
in the literature. The general aspect of risk is much wider than
is treated in this paper. Many issues, such as growing demand
and various aspects of uncertainty [16], [17] and [18] must be
omitted in this paper.

APPENDIX |: PROOFS OF SECTION Il A.

Proof of (9): Let v(q) be asin (9), then
—)!

5(Q-1- m)'

In the policy of Example 1 holds 1, - =1

V(@) V(G —e;) = Z (37)

jeR, thus

K K
Zlc<c/1,- (v(a+e;)-v(q)) —Zqu(v(ﬁ) -Vv(d-¢e;)

~S S 1ch Y, "-3q 2,500,

'=1 m=l O(q m)l i= (q m)'
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_J9 if c<C (38)
A if c=C
where
& (C/b)!
A=—gy IO, (39)
“~(C/b-m)!
There is only one nonzero value for Z/lj w; in this case and

i#Rg
the value of g in (5) sets A to the value satisfying (8):

A=g- Z/lja)j .

i#Rg

(40)

Motivation of (10) and (11): We show why the heuristic
approximations (10) and (11) are natural and can give rather

good results. Let us assume that at the axis { = Qe;the
shadow price has the approximation
g i q;!

/O m= O(qj _m)l

This is a generalization of the relative cost given by (9) and
a =1 if every u;=u. In the area when every call is

P (@) =Vv(T +e,)—Vv(Tq) » ak p M. (41)

accepted the recursion (8) gives for 0 = e i
K
Zﬂ’kpk(q)_ﬂjquj(q_ej)zg : (42)
k=1

For the approximation (11) we get

91 =)
Saa Ay B g 8% BT

k=1 /’lpmﬂ(qj_m)| /meo(qj_l m)l
_Zﬂa [zﬂa gJ“z'qj!pm:g.
“up ‘ 2 (q; —m)!

This is satisfied if

K
a
pP= Zﬂk 7"
k=1

1
and 1:,Uj i
)7

K
. A K
e, a; = , P = Z— where ﬂzzluj . (43)
Ui k1 M i
Proof of (14):
The following lemma holds.
Lemma 3:
1 _ _
Ajﬂ—h(f(Q),qj,Pj)Z f(@) for pj =25/ u;.
i
Proof :

pi(h(f(@+e;).q; +1 p;)—h(f (@), qj,p;)
—q;(h(f (). aj, p;)—h(f(@—ej)a; -1 pj))
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< - (q; —i)!
_ZZf(q (|+m)e)( e

i=0 m=0
q; 9j—
J j ( ) 7m
- f(q- (|+m)e)
ZZ @
1 [ ( —i)!
+q i qzjqu:f(q (i+m)e; )i -m
pj i=2 m=0 ( —1- m)l
|
—Zf(q me;) (q)) i
qjzlf(q (M +De; )—( P
+
p,mo (q; -1-m)!
a)! .
—Zf(q— | m),p
—Zf(q me;) (‘”) "o t@) . (44)
By Lemma 3, V; satisfies
K K o K 1
AV, = gZAju(q)+gZZZAk /Th(fn,(q) .05, 05)
j j=1 n=1 k=1 i
K K o
=D - £, @)+ 0D (Fo ;@ ~ for ;@)
j=1 j=1n=1 (45)
K K
=QZ( fl,j(q))+ng1,j(q)=g
j=1 j=1

The value of v(q) at the points when some class is blocked is
already determined by the values of v(q) at the points when

no class is blocked. This means that we do not need to modify
Vg so that it satisfies (8). Changing the operator A to

A=A,
j=1

(46)

do0i:10.20944/preprints202104.0712.v1

As an example of (14) let us complete the approximation
V (@) in (10) to an exact solution of (8). Let us select

U@ =2h(g.p)

7]

K K K A
where q:qu, y:z,uj , p:Z—J and

i1 j=1 =1 Hi
184 . -
L3S fg-i-m 9,

(q-i-

P =1 m=0 m)l

(48)

h(f(a).q.p) =

Let A be as in (46). A similar calculation as in the proof of
Lemma 3 shows that

A%h(l,q,p)—zl 1y e m)l
DN
Then
A0 2 1L gl
fl,,-(ﬁ)=(ﬂj—_'k;)ﬁ .
(-3 2

At any coordinate axis 0 = ge; holds V(q) = gu(Q). The
complete solution to (8) is

-g- h(lq p)+gZZ—h(fn,(q) q;.0;)-

=1 n=1 M

APPENDIX Il: PROOF OF THEOREM 1
For notational simplicity, we write @ simply as q. We

only intend to prove that (16) has a solution of the form (17)
and do this by constructing such a solution. The solution turns
out to be very complicated and not of practical usage.
However, Lemma 4 below is interesting in its own right. The
equation is reoccurring often in Markov chains with a cost
parameter and the solution is not that easy to derive.

AF@) =1 4 (F@+e) - £(@) —2;0;(F@ - F@@—€)emma 4. Let us assume that f:N— R satisfies the

the solution Va necessarily satisfies (8):

AV; =g- leja)j :

izRg
This is so because before states block, the recursion equation
is the same as in (13) and therefore the solution agrees with

Vq for those values. At the border when states block, Vq is

(47)

already determined by the values at unblocking states.
Therefore Howard’s equation must be satisfied at the blocking
states.

recursion equation

f(a+2)-(g+a)f(q+D)+p(q+1)f(a)=0,

f(q)=0if g<0, (51)
where ge Z, p,acR,a—p &N and p =0.
Then the function f is
a+la-p] )
f(@= Y riT(a+a-p-j)
=1
a+{a-p]
+C Y yT(q+a—p—j) (52)

j=1
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where

o =np(p+2-a). =§ai(2+p—a+i),

. o . )

1>21,and y,,, =—, 121 and C isareal number.
|

Proof: Let us define

fi(@=>rr@+a-p-j
=1
| x]
where T'(x+1) :H(j +x—=[x]).

=

(53)

Write

A =f@+2)-(a+a)fi(a+D)+ p(q+D)f(q).
Then

Aa—A=rul (@+2+a-p-i-1)
-(q+a)yif(@+1+a-p-i-1)
+p(Q+yI(q+a-p-i-1).

(54)

From f,(q) =, '(q+a—p—1) we get the initial step to
the induction:
A =rnplp+2-a)fi(d) =al(q+a-p-1)

when we define o =y;0(p+2—a). Let the induction
assumption be that for j =1,...,1 and for some numbers a;
holds

Then for j=1i+1 we get

Aa—A
=7l (@+a-p-i-h(q+a-p-i)(q+a-p-i-1)
—(q+a)q+a—-p—-i-1)+pq+p) (56)
= yal(@+a—-p—i-1)(-ig—(a- p—i-1)(p+i)+p).
By the induction assumption
A=o(Q+a-p—-i-DI'(q+a-p—-i-1).
Then
Ag=T(q+a-p-i-)((a —7iai)
+o(@—p-i-D -y (@-p-i-D(p+i)+7i.p)

=a I(q+a-p-i-1) (57)
when we choose
Vin=—r ad o =22+ p-a+i). ()
| |

By induction we can continue so long that q is removed from
the Gamma function and we have a scalar. The scalar is

do0i:10.20944/preprints202104.0712.v1

unfortunately not usually the correct initial value. Let us
define

Aspha =Aapel@-p—la=p))  and
Afa—p—|+q = a[a—p]+qr(a —pP~ [a —,0]) . (59)

These are scalars, i.e., not functionsof . 1f a—p & N, we

get two different scalars that can be weighted to that their
linear combination is the desired initial value (zero). Thus

(60)
q+La—pJ ] q+"a—p—‘ -
f(q)= Z}/,F(q+a—p—1)+c Z}/Jr(q+a_p_1)
i=1 i=1

satisfies (51) if C = _Atq+a—pJ/qu+a—p1- The parameter

¥, is a free parameter and we can set y; =1. [

Proof of Theorem 1: Let us use the trial

o0
S’n,q,r = z Sn,q,rl,...,rK (61)

and require that each term of the sum satisfies (16). Using the

property (3), we can change the position of 1 jeR, and rewrite
(16) in the following form:
S =S (62)

n+1,q,1,...Ik n,g,n,. ..k

T K T K
- W Z,Ui UiSn,q,p,...rc — W zﬂ'isn,q,q,.‘.,rK
i=1 i=1

K
T
+ Wzﬂi (Qi +1)Sn,q+ei Tl 1ieRq
i=1

T K T K
+Wzﬂ'isn,q—ei,rl,...,r,< +Wzﬂ’isn,q,r1,,..ri—l ..... T 1i¢Rq :
i=1 i=1

Let us look for a solution of the type

K . K p?J
Sn,rl,...,rK St,q,rl,...,rK :Sn,rl,...,rKZSt,qi,riG H ) (63)

i = 05
J#i
where
T K T K
Sn+l,r1,4..,rK =sn,rl,.“,rK _ﬁzllaiﬂ‘isn,rl,u.,r,( +ﬁ;aiﬂ’isn,rl,“.,ri—1 ..... [
i= i—
SO,rl,..., 1% = 5r1:...:rK =0 (64)

Summing over I; gives
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Taking the continuous limit of this expression gives (20). Let
us modify (62) by adding and removing terms:

S =S

Tk Sq Iy e T nr,

_7Zal i9n,n,.. Zal ionn,...5 1,...,rKSq,r1 ..... [
+7Zal 90,0,k qu ..... [ Zal ionn,...5 1,...,rKSq,r1 ..... [

- __Z:Uiqisn,q,rl,.“,rK - _z/ll Sn,q,rl,...,rK

+ﬁ2/~‘|(q| +1)an+e ol |eR += zﬂ'an —€,,1;,..
=1

+—Zl,anrl

The first four terms give zero because of (64), thus the other
terms also sum to zero. Let us take the continuous limit
n/N —t/T and define

(65)

n+l1, I’l i 4 Sq My T

Tk q My 'k

Tk 1lezR

.S . r
hi (ri ,t) — ||m N e =10, T _ i '
n—t S tal ﬂ“i

N0 e T

(66)

where t is the continuous time parameter.
S and inserting h; (r;,t) and
K

Dividing (65) by

1
St.qp.r :a fi(g.r,1)g;(r,t) (67)
gives
K P
0= ZH ’w
i=1 j=1 "
j#i
where
6, = (a; —1-ah;(r; t)) f(q“ )i (r;,1)
4 1
- p. —— f.(q,,r,t)g;(r;,t 68
o 10108 () )
+pi_1a fi(g +1r,0)9(r; ’t)liqu
1
+( _ —l)' f.(q -1 r,t)g;(r,1)
+h; (15, ) f(qu i —L00;(F -1 1) .

Let us satisfy (68) by setting the &; to zero for every i, thus
0=fi(q +1 1,09 (5, e, (69)
—(9; +p; A—a; +a;h (r;, 1)) fi (a;, 1, )9 (1, 1)

+p0,0; f, (0, -1 1, 1)g; (r;, 1)

do0i:10.20944/preprints202104.0712.v1

+p.h (r, ) (g r;
If i € R, we get

fi(d +15,1) — (0 + o (1—a; +ahy (,1)) fi (a5, 5. 1)

+0G; fi(g -1, =0. (70)
This is a recursion only for g;, while r, and t are only

parameters. Lemma 4 gives the solution to (70). For i g R, in

the policy of Example 2 we can satisfy (70) by assigning
g =C;. Here h,(r,t)=0 and thus (69) gives a recursion

equation from which g;(r;) is solved by the form

-1 t)gi (r| -1 t)liezRq '

gi(r, ) =0;(r; —1’t)H Di

j=1
D = pih (j,1) f,(C,, j-11)
YOG p-a rah (L)) Fi(CL D - o fi(C

where C, is the maximum value for ¢, .

-1,j,t)

Let us look at the special case h;(r,t)=0. Then

f. (g, r,t) = f;(r) . Instead of (67) we will select
1 -t
St = a f(q;)g; (r)t™ (72)
and in (68)-(69)
D L T
=1 , 73
()= 73)

177
We get an equation similar to (69) and can solve g;(r).

Scaling by selecting the parameter A lets us satisfy

an,q’rzl and1l>s, . 20.

ng,r =
rq

(74)

There is still the requirement that the sum over r of values
Sn.q,r Must be finite. The part s, . in s, , . satisfies it. [/

APPENDIX Ill: PROOFS OF SECTION IV
For notational simplicity, we write @ simply as .

Proof of Lemma 1: Since (23) is a special case of (28), it
suffices to show the claim for (28) and (16). In (28) holds

My Zr(asn'r (@)AS, 4 +(1—a)Av, o) = 0 because

r=0
lim As, , =Azy =0and lim Av,, . =0.
Nn—oo ' n—o0 ”
Thus
Z I‘-(Sm—l,q,r =Sy ., r) zﬂ’ W (75)
r=0 ng

To prove the claim to (16), it is only needed to multiply (16)
by r and sum over r
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ir(snu,q,r - nqr) Z/I W - (76)

r=0 jeER

Proof of Theorem 2: It is sufficient to show that the equations

ﬂ-‘h ----- Ok = rI]ILnOOZS”»Qb---vQer ! O < s”rle---qurr Sl’ (77)
Sn+1 ql ----- QKrr = Snvql """ qK r
_72’1anq1 vty Z’%an1 S M=
JéR j&R
are satisfied. Let us write
Snpr (0) =

(rl o ][1__”;1}“ 1;[(%4) (78)

and re-index
. . . . . T
{2 Ry =i b} i =1 A= 2,

Then

Sn,rl,..., e (q) =

K
n m n—g:lik m .
- I
. . (1— ZﬂkJ 18 @9
by k=1 k=1
The basic multinomial recurrence relation (see e.g. [13])

[_ n+1 | j (80)
. . N

B (n+1)! o on+l n

Sl 1D n+1-D

:(il B _}zl(h i imJ

shows that
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JGER JzR

Summing over Ar,q shows that the recursion equation is
satisfied also for

n
SNl Gy G T = zsn+1,rl ..... e (q)”n,q (82)
n=.=r.=0
(T rK)equ
T T "
= 1_72}“ Sn,(h ..... [Pl +7Zli an,rl,...ri—l ..... Tk (q)ﬂn,q
N izR N iR, n=.=r=0
(R rK)eAf‘q

T T
= 1_Nzli\JSn'q1 _____ QK~F+NZ% anr1 E (Q)ﬂ'n,q

h=. ==l =

- 1__22“ Sn, ,r+%zlisn,ql,...,q,<,rwi'

|¢R igR,

Let us sum over all values of r

k=1 k=1
:”n,q .
Clearly 0 < Sh, - < 1. This completes the proof. [

- Ak

Proof of Theorem 3: Write :lﬂk =4 . The limit of
N k

the multinomial term

><N—i:i,< i
n m o '
—jim| 131 IﬂT%
N —o0l Il . . . |m k=1 N k=1 N

is calculated by Stirling’s formula using Poisson’s limit
procedure:

L=]]"—

I%R

N

XT Y 4
(XT/l ) ieRq ) (84)

Thus
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n (XTA)" T 2A
I [f _ 1 i#Rq
St,ql,...,qK,r - '!IITwSxN,qI ...... qg.r Z H r' ﬂ-q
n=.=rc=0 igR, it
(R rK)EAr‘q
as claimed. ]

Proof of Lemma 2: Directly summing from (31) is
difficult, but as (31) is the limit of (30), it can be calculated as

o(%) limit from (30). To get 0(%) limit, we only can take

the terms r, =1, r; =0 for i # ], and r, =..=rc =0 since
T

there is the term (Wj in (30). The term R =..=rc =0

disappears as r=0 and for the other terms r=q.

Consequently, from (30)

IS ar = > o,An 1—%221.

i2R, jRy

n-1

T )
7 10N 2)

1M

T
=S o An— A7z, +O(N?). (85)
igRy N

Thus

z rstvch ----- [Pl = ,!IITOO Z rsXNrle---:Qer

r=0 r=0

=lim > oA xTr, = tY o Ar, " (86)

N —>w© iERq iERq
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