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RELATED TO THEORY OF THE RIEMANN ZETA FUNCTION
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Abstract. It is due to Littlewood that the truth of the Riemann theorem implies
that of the Lindelöf conjecture. This paper aims to use the idea of Littlewood
to prove the Lindelöf conjecture for the Riemann zeta function. The Lindelöf µ
function at the critical line is zero, with use of the Riemann theorem for the entire
Riemann zeta function, proved based on the work of Heath-Brown. Our result is
given to show that the Lindelöf conjecture, connected with the proof of the moment
conjecture, is true.
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1. Introduction

The Lindelöf conjecture via Riemann zeta function, proposed in 1908 by Finnish
mathematician Ernst Leonard Lindelöf, has been one of most important open prob-
lems in the history of mathematics [1]. More important, the Lindelöf conjecture is
not only linked with the consequence of the Riemann conjecture [2] but also used
to investigate the higher movement for the Riemann zeta function [3]. The Lin-
delöf conjecture has played the important role in the field of the analytic number
theory [4].
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LINDELÖF CONJECTURE 2

Suppose that C, R and N are the sets of the complex numbers, real numbers and
natural numbers, respectively. Let s = σ+it ∈ C such that Re (s) = σ ∈ R and
Im (s) = t ∈ R are the real and imaginary parts of the complex variable s, where
i =

√
−1. Let As is well known, the Riemann zeta function ζ (s) of the complex

variable s = σ+it is defined by the sum [5]

(1) ζ (s) =
∞∑
k=1

k−s,

where k ∈ N and Re (s) > 1. As is stated in [5] that this allows Eq. (1) to be a
meromorphic continuation to the entire complex plane s, with pole of residue 1 at
s = 1. The trivial zeros for Eq. (1) reads s = −2ν with ν ∈ N . The nontrivial
zeros for Eq. (1) are located on the critical line Re (s) = 1/2 and in the critical trip
0 < Re (s) < 1 [6, 7]. The entire Riemann zeta function ξ (s) is expressed by the
product of the Riemann zeta function ζ (s) or the series [5, 8]:

(2) ξ (s) = ζ (s)Π (s) =
∞∑
h=1

ϑ (h)

(
s− 1

2

)2h

,

where Γ is the gamma function [9],

(3) Π (s) = (s− 1) π−s/2Γ (s/2 + 1) ,

and [8]

(4) ϑ (h) =
4

(2h)!

∞∫
1

d
(
z

3
2ψ(1) (x)

)
dx

x−
1
4

(
log x

2

)2h

dx

with h ∈ R ∪ {0} and ψ (x) =
∞∑
υ=1

e−υ2πx.

Based on the above-mentioned results, it is stated in 2005 by Heath-Brown [7]
that an equivalent statement for the Riemann theorem [5] is given as follows:

Theorem 1. Riemann theorem (Heath-Brown statement) The Heath-Brown
statem states the real part of all zeros of ξ (s) is 1/2.

It is equivalent to the Riemann statement [5] that the real part of the nontrivial
zeros of ζ (s) is 1/2. It is known that Eq. (2) is the entire function of order 1 [10].
Although the Riemann statement has been achieved in [11], we would like to give
the proof of the Heath-Brown statement for the Riemann theorem. For more details
for the zeros, number of zeros and imaginary parts of zeros for ξ (s), see [8, 10].

Based on the above, the Lindelöf conjecture [1] claims that for every positive ε > 0,

(5) ζ (σ+it) ≪ tε,
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LINDELÖF CONJECTURE 3

where t→ ∞.
This easily yields that the equivalent statement for the Lindelöf conjecture as

follows [8, 10, 12]:

Conjecture 1. Lindelöf conjecture
There exists

(6) ζ

(
1

2
+it

)
≪ tε

for every positive ε > 0, and t→ ∞.

There are a number of the equivalent statements for the Lindelöf conjecture. The
equivalences of these various assertions were proposed in 1915 by Hardy and Riesz [12]
and reported in 2015 by Conrey [13]. It is shown in 1912 by Littlewood that Conjec-
ture 1 is the consequences of Theorem 1 implies [2]. In 1923, Hardy and Littlewood
give two equivalences for Conjecture 1 states that [3]

(7)
1

T

T∫
1

∣∣∣∣ζ (1

2
+it

)∣∣∣∣2mdt≪ T ε

for ε > 0, m ∈ N and T → ∞, and

(8)
1

T

T∫
1

|ζ (σ+it)|2mdt≪ T ε

for ε > 0, m ∈ N , σ ≥ 1
2
and T → ∞.

It is stated in 2006 by Laurincikas and Steuding that the equivalence for the
Lindelöf conjecture becomes [14]

(9)

T∫
0

∣∣∣∣ζ (1

2
+it

)∣∣∣∣2mdt≪ T ε+1,

for ε > 0, m ∈ N and T → ∞.
Eq. (9) implies that the moment conjecture states [15]

(10)
1

T

T∫
0

∣∣∣∣ζ (1

2
+it

)∣∣∣∣2mdt≪ T ε,

for ε > 0, m ∈ N and T → ∞.
There exist the advances for the Lindelöf conjecture, reported in 2006 by Conrey

and Ghosh [16] and made in 2019 by Fokas [17] based on the estimation of relevant
exponential sums.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2021                   doi:10.20944/preprints202104.0698.v1

https://doi.org/10.20944/preprints202104.0698.v1


LINDELÖF CONJECTURE 4

Note that µ (σ) is the Lindelöf µ function, expressed in Eq. (5) [1]. It was proved
that (see [2, 18]; [12],p.18)

(11) µ (σ) =

{
0, for σ ≥ 1/2,
1/2− σ, for σ ≤ 1/2.

Due to the idea of Littlewood [2], which is the only way of proving the Lindelöf
conjecture, the target of the paper is to give the proof of the Lindelöf conjecture
by the study of the Lindelöf µ function (see [12], p.18; [18], p.338), with the aid of
Theorem 1, which is proved based on the work of Heath-Brown [7]. The structure of
the paper is given as follows. In Section 2 we introduce the results for the Riemann
zeta function. In Section 3 we present the proof of Conjecture 1. In Section 4 we
prove the moment conjecture. Finally, we suggest the new results on the moment
for the Riemann zeta function in Section 5.

2. Preliminaries

In this section we give the recent results on the Riemann Ξ and entire Riemann
zeta functions.

Let sn, φn and ϕn run the nontrivial zeros of the Riemann zeta function ζ (s), the
imaginary part of the Riemann zeta function ζ (s), and the positive imaginary part
of the Riemann zeta function ζ (s), respectively.

Lemma 1. Let s ∈ C and ℘ = log 2 + 1
2
log π − 1 − 1

2
ϖ, where ϖ is the Euler’s

constant. Suppose that s̃n = Re (sn) + ϕn, then the following representations are
equivalent:

(12) ξ (s) = ξ (0)
∞∏
n=1

(
1− s

sn

)
,

(13) ξ (s) = ξ (1/2)
∞∏
n=1

(
1 +

i (s− 1/2)

φn

)
,

(14) ξ (s) = ξ (0) es℘
∞∏
n=1

(
1− s

sn

)
es/sn ,

(15) ξ (s) = ξ (1/2) es℘
∞∏
l=1

(
1 +

i (s− 1/2)

φn

)
es/(1/2+iφn),

(16) ξ (s) = ξ (1/2)
∞∏
n=1

(
1− (s− 1/2)2

ϕ2
n

)
,
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LINDELÖF CONJECTURE 5

(17) ξ (s) = ξ

(
1

2

) ∞∏
n=1

[
1−

(
s− 1

2

)2(
s̃n − 1

2

)2
]
,

(18) ξ (s) = ξ (0)
∞∏
n=1

(
1− s

s̃n

)(
1− s

1− s̃n

)
,

(19) ξ (s) = ξ (0)
∞∏
n=1

[
1− s (1− s)

s̃n (1− s̃n)

]
,

and

(20) ξ (s) =
∞∑
h=1

ϑ (h)

(
s− 1

2

)2h

,

where

(21) ϑ (h) =
4

(2h)!

∞∫
1

d
(
z

3
2ψ(1) (x)

)
dx

x−
1
4

(
log x

2

)2h

dx.

Proof. See the details for the proof of Lemma 1 [11]. �
Remark. The Hadamard product (12) was discovered by Hadamard in 1893 [19].
Eq. (13) was discovered by Edwards [8] and proved by author in three ways [11].
Eq. (14) was discovered by Hadamard in 1893 [19], discussed by Landau in 1909 [20]
and by Titchmarsh in 1930 [21], and proved in 1964 by Ingham [4]. Eq. (15), discov-
ered in [11], was derived from Eq. (14). Eq. (16) was obtained by Eq. (17) based on
the Riemann theorem [11]. Eq. (98), derived from the Patterson product (see [22],
p.34), e.g.,

2ζ (s)Π (s) =
∞∏
n=1

(
1− s

s̃n

)(
1− s

1− s̃n

)
,

where s ∈ C, leads to the equivalences of Eqs. (98) and (99) by author [11]. Both (98)
and (99) can be connected, as shown by Edwards in 1974 [8]. Eq. (100) was discovered
by Edwards in 1974 [8]. From Eq. (14) we see that ξ (s) is the entire function of order
1 [7].

Lemma 2. (Turán inequalities [11, 13, 23, 24])
Let h ≥ 0. Then the Turán inequalities

(22) (ϑ (h))2 −
(
2h− 1

2h+ 1

)
ϑ (h− 1)ϑ (h+ 1) > 0

hold for any h ∈ N ∪ {0}.
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LINDELÖF CONJECTURE 6

Proof. See the proof of Lemma 2 [11, 13, 23, 24]. �
Lemma 3. (Hardy theorem [10, 25])

The Hardy theorem states that the entire Riemann zeta function ξ (s) has infinitely
many zeros.

Proof. For the details of the proof of Lemma 3, see [10, 25]. �
Lemma 4. The entire Riemann zeta function ξ (s) has infinitely many zeros sn ∈ C.

Proof. For the proof of Lemma 4, see [11]. �
Remark. Lemma 4 can be derived from Lemmas 2 and 3.

Let s = 1
2
+ it such that [20]

(23) ξ

(
1

2
+ it

)
= Ξ (t) ,

where t ∈ C.

Lemma 5. Let s ∈ C and ℘ = log 2 + 1
2
log π − 1 − 1

2
ϖ, where ϖ is the Euler’s

constant. Suppose that s̃n = Re (sn) + ϕn, then the following representations are
equivalent:

(24) Ξ (t) = ξ (0)
∞∏
n=1

(
1−

1
2
+ it

sn

)
,

(25) Ξ (t) = ξ (1/2)
∞∏
n=1

(
1− t

φn

)
,

(26) Ξ (t) = ξ (0) e℘(
1
2
+it)

∞∏
n=1

(
1−

1
2
+ it

sn

)
e(1/2+it)/sn ,

(27) Ξ (t) = ξ (1/2) e℘(
1
2
+it)

∞∏
l=1

(
1− t

φn

)
e(1/2+it)/(1/2+iφn),

(28) Ξ (t) = ξ (1/2)
∞∏
n=1

(
1− t2

ϕ2
n

)
,

(29) Ξ (t) = ξ

(
1

2

) ∞∏
n=1

[
1 +

t2(
s̃n − 1

2

)2
]
,
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LINDELÖF CONJECTURE 7

(30) Ξ (t) = ξ (0)
∞∏
n=1

(
1−

1
2
+ it

s̃n

)(
1−

1
2
+ it

1− s̃n

)
,

(31) Ξ (t) = ξ (0)
∞∏
n=1

[
1−

1
4
+ t2

s̃n (1− s̃n)

]
,

and

(32) Ξ (t) =
∞∑
h=1

ϑ (h) (−1)h t2h,

where

(33) ϑ (h) =
4

(2h)!

∞∫
1

d
(
z

3
2ψ(1) (x)

)
dx

x−
1
4

(
log x

2

)2h

dx.

Proof. For the details for the proof of Lemma 5, see [11]. �
Lemma 6. The Riemann Ξ function Ξ (t) with t ∈ C has infinitely many real zeros
φn ∈ R.

Proof. For the proof of Lemma 6, see [11]. �
Remark. It is well known that if ϑ (h) is given, then

(34)
∞∑
h=1

ϑ (h) (−1)h t2h = ξ (1/2) e~0(
1
2
+it)

∞∏
l=1

(
1− t

φn

)
e(1/2+it)/(1/2+iφn)

is in the Laguerre-Pólya class [26, 27].
Eq. (24) was derived from the Hadamard product by author [11]. Eq. (25), dis-

covered in [11], was derived from Eq. (24) based on the Riemann theorem. As
shown in [11], Eq. (26) was derived from the Hadamard product (14) when one takes
s = 1/2+ it in Eq. (14). Eq. (27), discovered in [11], was derived from Eq. (26) with
the aid of Eqs. (24) and (25). Eq. (28), reported in 1894 by Cahen [28] and further
discussed in 1927 by Titchmarsh [29], was deduced by the formula (here take the
principal value)

log Ξ (t) = log ξ (1/2) +
∞∑
n=1

(
1− t2

ϕ2
n

)
,

which implies that [5]

(35) log Ξ (t) = log ξ (1/2) +
∞∑
n=1

(
1− t2

ϕ2
n

)
,
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LINDELÖF CONJECTURE 8

where

(36) ξ (1/2) = Ξ (0) > 0.

Eq. (28) is in the case of Eq. (29) when the Riemann theorem is valid. Eq. (29) was
derived by Eq. (17), which was deduced by the Patterson product [22]. Eqs. (30)
and (31), discovered in [11], were equivalent to Eq. (29) since Lemma 1 is valid
fors = 1/2+ it. Eq. (32) was proposed by Hadamard [19], further studied by Jensen
in 1913 [30], and discussed by Pólya and Schur in 1914 [27] and by Pólya in 1927 [31].
It is easily seen that Ξ (t) is the even entire function of order 1 [10], and that both
φn and ϕn are imaginary parts, obtained by the Riemann-Siegel formula [32]. Here,
the imaginary parts φn and ϕn are called as the Riemann-Siegel zeros.

Lemma 7. (Montgomery and Vaughan [18])
Let ℵ > 0 be fixed. Then

(37) ℑ1t
1
2
−σ |ζ (1− s)| ≤ |ζ (s)| ≤ ℑ2t

1
2
−σ |ζ (1− s)|

uniformly for |σ| ≤ ℵ, some positive absolute constants ℑ1 > 0 and ℑ2 > 0, and
|t| ≥ 1.

Proof. See the result of Montgomery and Vaughan (see [18], p.330). �
Lemma 8. Suppose that µ (σ) is the Lindelöf µ function. Then,

(38) µ (σ) =

{
0, for σ ≥ 1/2,
1/2− σ, for σ ≤ 1/2.

Proof. According to Hardy and Riesz (see [12], p.18) and Montgomery and Vaughan
(see [18], p.338), we set

(39) ℜ (T ) = max
0≤t≤T

|ζ (1/2 + it)| .

If ℜ (T ) ≪ T ε, then (see [18], p.338)

(40) µ (σ) = 0

for σ ≥ 1/2.
By Lemma 7 it is shown that if ℜ (T ) ≪ T ε, then (see [18], p.338)

(41) µ (σ) =
1

2
− σ

for σ ≤ 1/2. �

3. The Lindelöf conjecture is true

In this section we prove the Lindelöf conjecture by using the Heath-Brown state-
ment of the Riemann theorem.
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LINDELÖF CONJECTURE 9

3.1. The new proof of the Riemann theorem. We now consider the new proof
of Theorem 1.

From the Hadamard product [19]

(42) ξ (s) = ξ (0)
∞∏
n=1

(
1− s

sn

)
,

and the Patterson product (see [22], p.34)

(43) 2ξ (s) =
∞∏
n=1

(
1− s

s̃n

)(
1− s

1− s̃n

)
,

we have [11]

(44)

ξ (s)

= ξ (0)
∞∏
n=1

(
1− s

sn

)
= ξ (0)

∞∏
n=1

(
1− s

s̃n

)(
1− s

1−s̃n

)
= ξ

(
1
2

) ∞∏
n=1

[
1− (s− 1

2)
2

(s̃n− 1
2)

2

]
,

where ξ (0) = 1/2, and for s = 1/2 + it we suggest [11]

(45)

Ξ (t)

= ξ (0)
∞∏
n=1

(
1−

1
2
+it

sn

)
= ξ (0)

∞∏
n=1

(
1−

1
2
+it

s̃n

)(
1−

1
2
+it

1−s̃n

)
= ξ

(
1
2

) ∞∏
n=1

[
1 + t2

(s̃n− 1
2)

2

]
= Ξ (0)

∞∏
n=1

[
1 + t2

(s̃n− 1
2)

2

]
,

,

where t ∈ C and

Ξ (0) = ξ

(
1

2

)
> 0.

By using Lemma 5 we have from Eq. (45) that

(46) Ξ (t) = Ξ (0)
∞∏
n=1

[
1 +

t2(
s̃n − 1

2

)2
]
=

∞∑
h=1

ϑ (h) (−1)h t2h,
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LINDELÖF CONJECTURE 10

where

(47) ϑ (h) =
4

(2h)!

∞∫
1

d
(
z

3
2ψ(1) (x)

)
dx

x−
1
4

(
log x

2

)2h

dx.

By Lemma 6 and the fact ϕn run the Riemann-Siegel zeros, we have

(48) Ξ (ϕn) = 0

such that

(49) Ξ (t) = Ξ (0)
∞∏
n=1

[
1 +

ϕ2
n(

s̃n − 1
2

)2
]
= 0

since by Lemma 2, the Turán inequalities

(50) (ϑ (h))2 −
(
2h− 1

2h+ 1

)
ϑ (h− 1)ϑ (h+ 1) > 0

hold for any h ∈ N ∪ {0}, and by Lemma 3, the Hardy theorem is valid.
From Eq. (49) we find that

(51) 1 +
ϕ2
n(

s̃n − 1
2

)2 ̸= 0

in which Ξ (0) > 0.
Thus, from Eq. (51) we have

(52) s̃n =
1

2
± iϕn

and we rewrite Eq. (44) as

(53) ξ (s) = ξ

(
1

2

) ∞∏
n=1

[
1 +

(
s− 1

2

)2
ϕ2
n

]
where ξ

(
1
2

)
> 0 and t ∈ C.

In view of Lemma 4 we show that there exist s̃n = Re (s̃n) + iϕn such that

(54) ξ (s̃n) = ξ (Re (s̃n) + iϕn) = 0.

Combining Eqs. (53) and (54) we have

(55) 1 +

(
Re (s̃n) + iϕn − 1

2

)2
ϕ2
n

= 0,

such that

(56)

[(
Re (s̃n) + iϕn −

1

2

)
− iϕn

] [(
Re (sn) + iφn −

1

2

)
+ iϕn

]
= 0.
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LINDELÖF CONJECTURE 11

Figure 1. All zeros for the entire Riemann zeta function ξ (s) lie on
the critical line Re (s) = 1/2 and in the critical strip 0 < Re (s) < 1.

Because for ϕn ̸= 0 there exist

(57)

(
Re (sn) + iφn −

1

2

)
+ iϕn ̸= 0,

we have

(58)

(
Re (s̃n) + iϕn −

1

2

)
− iϕn = 0.

Thus,

(59) Re (s̃n) =
1

2
,

which is the same as Eq. (52).
This implies that we prove the Heath-Brown statement [7] and that the zeros for

ξ (s) are sample [7].
Hence,

(60) ζ (1/2 + it) = ζ (1/2 + iϕn) = 0,
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LINDELÖF CONJECTURE 12

in other worlds that the Riemann theorem follows.
All zeros for the entire Riemann zeta function ξ (s) in the whole complex plane s

are demonstrated in Fig. 1.

3.2. The proof of the Lindelöf conjecture. In order to prove the Lindelöf con-
jecture, from Eq. (38) we have (see [18], p.338)

(61) ℜ (T ) = max
0≤t≤T

|ζ (1/2 + it)| .

Suppose that ℜ (T ) ≪ T ε for any positive ε > 0 and T → ∞ (see [18], p.338). By
Lemma 8 we arrive at

(62) µ (σ) = 0

for σ ≥ 1/2, and we give

(63) µ (σ) =
1

2
− σ

for σ ≤ 1/2.
Since Eq. (60) is valid, we have

(64) µ

(
1

2

)
=

1

2
− 1

2
= 0

such that

(65) ℜ (T ) ≪ T ε,

for T → ∞ and any positive ε > 0.
Combining Eqs. (61) and (65) we show that

(66) ζ (1/2 + iT ) ≤ max
0≤t≤T

|ζ (1/2 + it)| ≪ T ε

for T → ∞ and any positive ε > 0.
For T → ∞ and any positive ε > 0 we obtain

(67) ζ (1/2 + iT ) ≪ T ε.

Thus, we finish the proof of the Lindelöf conjecture.

Remark. It has been pointed that the Riemann theorem implies that Lindelöf con-
jecture [2, 12, 22, 33].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2021                   doi:10.20944/preprints202104.0698.v1

https://doi.org/10.20944/preprints202104.0698.v1


LINDELÖF CONJECTURE 13

4. The moment conjecture is true

In this section we give the proof of the moment conjecture based on the Lindelöf
conjecture.

According to Montgomery and Vaughan [18] the alternative representation for the
Lindelöf conjecture states that there is

(68) |ζ (1/2 + it)| < ℓtε,

in which ℓ > 0 is an absolute constant, t→ ∞ and any positive ε > 0
By Eq. (68) and m ∈ N we have

(69) |ζ (1/2 + it)|m = |ζm (1/2 + it)| < ℓmtmε,

where ℓ > 0 is an absolute constant, t→ ∞ and any positive ε > 0
Making use of Eq. (69) there exist for every positive ε1 = mε > 0 and t→ ∞,

(70) ζm
(
1

2
+it

)
≪ tε1 ,

which is in accordance with the result of Landau [34].
With Eq. (69) we present

(71)

T∫
0

|ζ (1/2 + it)|m dt =
T∫

0

|ζm (1/2 + it)| dt <
T∫

0

ℓmtmεdt =
ℓm

mε
Tmε+1,

and

(72)
1

T

T∫
0

|ζ (1/2 + it)|m dt = 1

T

T∫
0

|ζm (1/2 + it)| dt < 1

T

T∫
0

ℓmtmεdt =
ℓm

mε
Tmε+1,

where ℓ > 0 is an absolute constant, T → ∞ and any positive ε > 0.
From Eq. (71) we get

(73)

T∫
0

|ζ (1/2 + it)|m dt≪ tε1+1,

and from Eq. (72) we have

(74)
1

T

T∫
0

|ζ (1/2 + it)|m dt≪ T ε1 ,

if T → ∞ and ε1 = mε > 0.
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Similarly, with Eq. (68) we deduce

(75) |ζ (1/2 + it)|2m =
∣∣ζ2m (1/2 + it)

∣∣ < ℓ2mt2mε,

in which ℓ > 0 is an absolute constant, m ∈ N , t→ ∞ and any positive ε > 0.
With use of Eq. (75) there exist

(76) ζ2m
(
1

2
+it

)
≪ tε3

for every positive ε3 = 2ε1 > 0, m ∈ N and t→ ∞.
By Eq. (75) we give

(77)

T∫
0

|ζ (1/2 + it)|2m dt =
T∫

0

∣∣ζ2m (1/2 + it)
∣∣ dt < T∫

0

ℓ2mt2mεdt =
ℓ2m

2mε
T 2mε+1,

and
(78)

1

T

T∫
0

|ζ (1/2 + it)|2m dt = 1

T

T∫
0

∣∣ζ2m (1/2 + it)
∣∣ dt < 1

T

T∫
0

ℓ2mt2mεdt =
ℓ2m

2mε
T 2mε.

From Eq. (77) we have for any positive ε4 = 2mε > 0 and T → ∞,

(79)

T∫
0

|ζ (1/2 + it)|2m dt≪ T ε4+1,

which is in agreement with the result of Laurincikas and Steuding [14].
By virtue of Eq. (78) we present

(80)
1

T

T∫
0

|ζ (1/2 + it)|2m dt≪ T ε4 ,

which is in accord with the result [15].
Thus, we prove the moment conjecture.

5. New results on the moment for the Riemann zeta function

In this section we propose the new results related to the moment conjecture for
the Riemann zeta function.
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Theorem 2. Let s = σ + it ∈ C with σ, t ∈ R, and m ∈ N . Then

(81)
1

T

T∫
0

|ζ (σ + it)|m dt≪ T ε1 ,

or, alternatively,

(82)

T∫
0

|ζ (σ + it)|m dt≪ T ε1+1,

where T → ∞ and any positive ε1 > 0.

Proof. Since Eq. (5) is valid, there exist an absolute constant β > 0, t→ ∞ and any
positive ε > 0 such that

(83) |ζ (σ + it)| < βtε,

where σ, t ∈ R.
For m ∈ N we have from Eq. (83) that

(84) |ζ (σ + it)|m = |ζm (σ + it)| < βmtmε = βmtε1 ,

where t→ ∞.
This implies that

(85) ζm (σ + it) ≪ tε1 ,

in which ε1 = mε > 0.
In view of Eq. (84) we have

(86)

T∫
0

|ζ (σ + it)|m dt =
T∫

0

|ζm (σ + it)| dt <
T∫

0

βmtmεdt =
βmTmε+1

mε
=
βm

ε1
T ε1+1,

which leads to

(87)

T∫
0

|ζ (σ + it)|m dt≪ T ε1+1,

where ε1 = mε > 0 and T → ∞.
From Eq. (86) we get

(88)

1

T

T∫
0

|ζ (σ + it)|m dt = 1

T

T∫
0

|ζm (σ + it)| dt≪ 1

T

T∫
0

βmtmεdt =
1

T

βmTmε+1

mε
=
βm

ε1
T ε1 ,
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which yields that

(89)
1

T

T∫
0

|ζ (σ + it)|m dt≪ T ε1 ,

where ε1 = mε > 0 and T → ∞. �

Theorem 3. Let s = σ + it ∈ C with σ, t ∈ R, and m ∈ N . Then

(90)
1

T

T∫
0

|ζ (σ + it)|2m dt≪ T ε3 ,

or, alternatively,

(91)

T∫
0

|ζ (σ + it)|2m dt≪ T ε3+1,

where T → ∞.

Proof. For m ∈ N we deduce from Eq. (83) that

(92) |ζ (σ + it)|2m =
∣∣ζ2m (σ + it)

∣∣ < β2mt2mε = β2mtε3 ,

where t→ ∞.
From Eq. (92) we arrive at

(93) ζ2m (σ + it) ≪ tε3 ,

where ε3 = 2mε > 0 and t→ ∞.
With use of Eq. (93) we have

(94)
T∫

0

|ζ (σ + it)|2m dt =
T∫

0

∣∣ζ2m (σ + it)
∣∣ dt < T∫

0

βmt2mεdt =
βmT 2mε+1

2mε
=
βm

ε3
T ε3+1,

which implies that

(95)

T∫
0

|ζ (σ + it)|2m dt≪ T ε3+1,

where ε3 = 2mε > 0 and T → ∞.
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By Eq. (92) we show
(96)

1

T

T∫
0

|ζ (σ + it)|2m dt = 1

T

T∫
0

∣∣ζ2m (σ + it)
∣∣ dt≪ 1

T

T∫
0

βmt2mεdt =
1

T

βmT 2mε+1

2mε
=
βm

ε3
T ε3 ,

which yields that

(97)
1

T

T∫
0

|ζ (σ + it)|2m dt≪ T ε3 ,

where ε3 = 2mε > 0 and T → ∞. �
Remark. For m ∈ N the following representations for the inequalities are equiva-
lent:

(98)
1

T

T∫
0

|ζ (σ + it)|m dt≪ T ε1 ,

(99)

T∫
0

|ζ (σ + it)|m dt≪ T ε1+1,

where ε1 = mε > 0 and T → ∞, and

(100) ζm (σ + it) ≪ tε1 ,

where t→ ∞.
For m ∈ N the following representations for the inequalities are equivalent:

(101)
1

T

T∫
0

|ζ (σ + it)|2m dt≪ T ε3 ,

(102)

T∫
0

|ζ (σ + it)|2m dt≪ T ε3+1,

where ε3 = 2mε > 0 and T → ∞, and

(103) ζm (σ + it) ≪ tε3 ,

where t→ ∞.
It is easily seen that the equivalences for Conjecture 1 are true, as shown in [3, 14,

17].
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