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Abstract: Slope failures pose a substantial threat to mining activity due to their destructive potential 

and high probability of occurrence on steep slopes close to limit equilibrium conditions, often found 

both in open pits and in waste and tailing disposal facilities. The development of slope monitoring 

and modeling programs usually entails the exploitation of in situ and remote sensing data together 

with the application of numerical modeling, and it plays an important role in the definition of pre-

vention and mitigation measures aimed at minimizing the impact of slope failures in mining areas. 

Here we present a new methodology combining satellite radar interferometry and 2D finite element 

modeling for slope stability analysis at a regional scale, applied within slope unit polygons. We 

studied a former mining area in southeast Spain, and the method proved useful in detecting and 

characterizing a considerably large number of unstable slopes. Out of 1,959 slope units used for the 

spatial analysis of the radar interferometry data, 43 were unstable, with varying values of safety 

factor and landslide size. Out of the 43 active slope units, 21 exhibited line of sight velocities greater 

than the maximum error obtained through the validation analysis (2.5 cm/year). Eventually, this 

work discusses the possibility of using the results of the proposed approach to devise a proxy for 

landslide hazard. The proposed methodology can help to provide non-expert final users with intel-

ligible, clear and easily comparable information to analyze slope instabilities in different settings, 

not limited to mining areas. 

Keywords: Satellite radar interferometry (InSAR); Slope units; Active deformation slope units; Fi-

nite element method (FEM); Shear strength reduction (SSR); Slope stability; Abandoned mining ar-

eas. 

 

1. Introduction 

Mining activities frequently induce ground movements for different reasons. In un-

derground mining, instability normally develops as a consequence of adverse structural 
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geology, substantial stress, weathering and/or softening of rocks, and excessive ground-

water pressure or flow [1]. Such conditions may lead to the collapse of underground open-

ings. All of these factors can give rise, in turn, to ground subsidence. In surface mining, 

instability is generally the result of exposure of dominant weakness planes, although fail-

ure through intact rock is also possible in very weak rocks and formations. It mainly af-

fects excavated slopes and may result in catastrophic events if appropriate measures to 

prevent slope failure are not undertaken. Slope instability often affects waste and tailing 

disposal facilities as well, essential in both surface and underground mining operations. 

These facilities consist of unconsolidated debris material arranged in waste dumps and 

tailing dams. 

Slope failures and subsidence can cause serious problems such as environmental im-

pacts, damage to property, harm to the health and safety of both employees and residents 

of nearby communities, and economic outcomes that can either result in a premature clo-

sure of the mine [2], or compromise the reclamation and decommissioning of the mining 

operation. Both phenomena may occur long after the mine workings have been aban-

doned [3]. Moreover, unlike civil engineering projects where the useful and expected life 

of the structures is very long—more than 10 years, mining projects only require certain 

facilities to have long lives (e.g. shafts, main haulage drifts, etc.). 

For this reason, the safety factor (SF) used in the design of mining structures is much 

lower than that used in civil structures and, in many situations, a SF ≈ 1 is used [2]. Low 

SFs do not imply, however, that safety is less important in mining. Rather, profit margins 

are narrow and the total costs must be kept to a minimum. In all mining operations, it is 

always a major challenge for the designers to ensure the integrity and stability of all open-

ings and excavations while keeping the costs low. Yet in most mining projects, investing 

in specific ground monitoring programs early can produce major cost savings in the fu-

ture. A clear example would be the case of large open-pit mines where the slopes are de-

signed and allowed to move in order to reduce the amount of waste to be mined while 

monitoring the movements very carefully. 

In order to ensure a safe and stable condition, ground monitoring in mining has been 

traditionally undertaken through the application of surface and subsurface techniques [4]. 

Recently, the development of modern monitoring systems such as time domain reflec-

tometers (TDR) [5], terrestrial laser scanners (TLS) [6], radars (e.g. GB-SAR, SSR and MSR) 

[7–9], and unmanned aerial vehicles (UAV) [10,11], motivated a rise in the use of remote 

sensing technologies. All of the mentioned methods require, however, in situ measure-

ments for calibration and validation, and in some cases represent a costly solution. 

Application of satellite Synthetic Aperture Radar Interferometry (InSAR) [12] has 

been used as a supplementary technique to study mining-induced ground movements. 

As in the case of other remote sensing techniques, InSAR results require validation of the 

measured ground movements, typically carried out using in situ monitoring data. In ad-

dition, they can be used in conjunction with numerical models reproducing the measured 

movements after ground truth verification [13–15]. 

In particular, case studies on the use of satellite InSAR to analyze mining-induced 

slope instabilities are scarce, as most of them focus on ground subsidence [e.g. 16–18]. Alt-

hough such application has been documented in a few mining sites at Australia [19,20], 

Brazil [21,22], Spain [23,24], South Africa [15], Turkey [7] and U.S.A. [14,25]. Most of the 

cases either present analyses of the InSAR data at slope scale or include no complementary 

stability analyses taking into account geotechnical data through geo-mechanical model-

ing. 

Here, we propose a topography-driven methodology to analyze slope instabilities at 

a regional scale using satellite InSAR in conjunction with 2D finite element (FE) modeling. 

The method is topography-driven because it makes use of slope units (SUs) as mapping 

units, instead of the widely used grid cells. SUs are portions of geomorphologically ho-

mogeneous terrain. The proposed approach aims to simplify the InSAR- and FE-model-

ing-derived results in order to provide non-expert final users with intelligible, clear and 

easily comparable information. 
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The methodology has been implemented for the region of Sierra de Cartagena-La 

Unión (Murcia), hereinafter referred to as Sierra Minera, a former mining area in southeast 

Spain (Figure 1). The literature contains a few case studies conducted in Sierra Minera 

through satellite InSAR. However, most of them focus on mapping and monitoring 

ground subsidence within the urban area of La Unión [26,27]—no longer occurring in the 

area according to our InSAR data.  

One of the existing studies mapped ground movements in Sierra Minera using satel-

lite InSAR [23]. Yet the data used in that study were obtained by processing ERS and EN-

VISAT satellite data. Hence, the spatial resolution of the results (80 by 80 m) and the den-

sity of measuring points (MPs) were rather low. 

 

Figure 1. Study area and geological map of Sierra de Cartagena-La Unión (adapted from [28]). 

In contrast, our results have been obtained by processing Sentinel-1 satellite data. 

Thus, we derived line-of-sight (LOS) ground velocity maps over Sierra Minera at a higher 

resolution (30 by 30 m) and with a much higher density of MPs. This improvement is not 

only due to higher spatial resolution of the Sentinel-1 constellation, but to its short revisit 

time (6 days). In addition, we performed stability analyses through 2D FE modeling to 

cross-reference the InSAR data. 

The proposed approach builds upon previously published works aimed at detecting 

active deformation areas [29–32]. In these studies, however, the topography is only taken 

into account to discern flat areas from hill slopes—the concept of SU is not considered, 

and no stability analyses are performed. Moreover, whereas these studies are conceived 

to analyze ground deformation phenomena in general, our approach focuses exclusively 

on analyzing slope instability. 

The paper is organized as follows. Section 2 provides an overview of the geograph-

ical, geological and geotechnical characteristics of Sierra Minera, as well as a summary of 

the data used for this study, some of which were collected through fieldwork. Section 3 

includes a detailed explanation of the different steps of the proposed approach. Section 4 

describes and discusses the obtained results. Eventually, Section 5 summarizes the main 

findings, and draws conclusions of this study. 
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2. Study area and data 

2.1. Geological, lithological and geotechnical setting 

The study area is located in Sierra Minera, at a distance of approximately 50 km 

south-southeast from the city of Murcia, at the south-easternmost part of Spain (Figure 1). 

The region extends over an area of 50 km2, with a maximum elevation of 389 m a.s.l. at 

Peña del Águila. It is limited by the Mediterranean Sea to the south, and by the Campo de 

Cartagena basin to the north. 

Sierra Minera contains one of the largest Pb and Zn ore deposits in the south of Eu-

rope [33], which has been exploited from the Iberian period until 1991 [34]. It is a coastal 

mountain range with an approximate east-west trend, that belongs to the Internal Zones 

of the Betic Cordillera. 

The Betic Cordillera, an Alpine chain that acquired its present configuration during 

the Neogene, was developed from late Mesozoic to Cenozoic with the convergence be-

tween the African and Iberian plates [35]. The Internal Zones comprise three complex 

nappes with decreasing metamorphism grade from the lower complex to the upper. These 

are, from bottom to top, the Nevado Filábride, the Alpujárride and the Maláguide com-

plexes [35]. 

The Nevado-Filábride is mainly constituted by graphite schists, quartzitic schists, mi-

caschists, marbles and quartzites of Paleozoic to Permo-Triassic age. Its thickness exceeds 

500 m. Discordantly overlaying this complex is the Alpujárride complex, constituted by a 

detritic formation (epimetamorphic rocks, quartzites and phyllites) of Permian age, and 

by a Triassic carbonate series containing intrusive bodies of diabases and dolerites [33]. 

Its thickness is approximately 400 m. After a significant erosive phase, these formations 

were covered by the Maláguide complex, made up of a post-orogenic, Neogene series of 

sedimentary rocks (sandstone, quartzite, silt, limestone and conglomerate) [36]. An im-

portant fracturation phase followed, during which uplift due to intrusive magmatism 

from Miocene—evidenced by sub-volcanic and volcanic outcrops, gave rise to the present-

day relief. Finally, a thin level of quaternary alluvial deposits, formed by sand, silt and 

clays, overlies the complex nappes. 

Two important fault systems, north-70 and north-130, developed between the Eocene 

and Middle Miocene period. These systems control the magmatic outcrops and formed 

the present horst and graben geologic setting of Sierra Minera bedrock [33]. Pumping tests 

carried out in well points over the study area revealed that most of the lithologies are 

fairly impermeable (e.g. those formed by schists, phyllites and marls) [28]. Yet quaternary 

formations, Miocene sedimentary rocks and some Alpujárride detritic units are permea-

ble. 

The mineralization is mainly constituted by two sulphide deposits on the carbonated 

sequences in the Nevado-Filábride and Alpujárride complexes. It is characterized by a 

strict stratigraphic control, although many faults are also mineralized and sometimes con-

tain thick seams. In addition, the mineralization can also be found disseminated in Mio-

cenic materials, gossans, stockworks and veins [33]. 

The deposits were mainly exploited through underground mining using the room-

and-pillar method until the decade of the 1960s, when large open-pit exploitations were 

developed. One third of the total reserves was extracted between 1940 and 1990, thanks 

to the application of differential flotation processes and open-pit mining [33]. 

Over the years, 12 open pits were excavated, 3,000 wells were drilled, and hundreds 

of galleries and waste dumps were developed [36]. The waste dump debris material was 

dumped on existing hillsides without any particular safety measures, remaining in a limit 

equilibrium situation (SF ≈ 1). 

The first ecological restoration in Sierra Minera was conducted in 1982 by Peñarroya 

SA, the mining company. It was carried out by sealing the mining tailings with a soil layer 

in order to allow the colonization by the vegetation and avoid mobilization of heavy met-

als [37]. Thereafter, in 1996, the Spanish Geological Survey conducted an environmental 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 April 2021                   doi:10.20944/preprints202104.0696.v1

https://doi.org/10.20944/preprints202104.0696.v1


 

 

restoration project aimed at characterizing the geo-mechanical properties of dominant li-

thologies in the area (Table 1) [28]. For this purpose, geotechnical boreholes, as well as in 

situ and laboratory tests, were carried out. The study concluded that the presence of 

schists, phyllites and, most importantly, waste dump debris material, favored the occur-

rence of slope instabilities. Moreover, it was found that these instabilities were induced 

by intense and short periods of rainfall triggering torrential events. In Sierra Minera, these 

type of events are concentrated in a few days along the year—20 or 30, mainly in autumn. 

In this paper we provide insight into the analysis of such slope instabilities. 

Table 1. Geo-mechanical properties of dominant lithologies [28]. 

Lithology 
Density 

[kgm-3] 

Saturated 

density [kgm-3] 

Young 

modulus [kNm-2] 

Poisson 

ratio 

Friction 

angle [°] 

Cohesion 

[kNm-2] 

Graphite schists 2.60·103 2.63·103 3.0·105 0.3 31 160 

Mica-schists 2.40·103 2.43·103 3.0·105 0.3 30 100 

Phyllites 2.20·103 2.21·103 3.0·105 0.3 25 86 

Waste dump debris 2.00·103 2.00·103 4.5·104 0.3 20 100 

2.2. In situ and satellite data 

For the purpose of landslide mapping and monitoring, in situ investigations were 

conducted over the study area through geomorphic analysis and topographic surveying. 

A landslide inventory (Figure 1) was elaborated through fieldwork and aerial-photo in-

terpretation, updating previously published data [23]. Most of the inventoried landslides 

affect waste dump areas and open-pit slopes. Yet some landslides, associated with the 

presence of phyllites and schists, seem to affect both cut and fill slopes from haul roads. 

Most of the mapped slope instabilities can be classified as complex movements, frequently 

consisting of debris roto-translational landslides, debris flows, and translational land-

slides together with rockfalls and toppling [38]. 

In addition, in situ topographic surveying activities were performed using Differen-

tial Global Positioning System (DGPS) instrumentation. Thus, ground monitoring data 

were obtained for validation purposes from two campaigns performed in 11 July 2017 and 

15 November 2018 over one of the inventoried landslides. 

In view of the conducted in situ monitoring campaigns, two stacks with 64 and 83 

Sentinel-1 Single Look Complex (SLC) images (spatial resolution of 3 by 14 m), respec-

tively acquired under ascending and descending passes, were considered for the investi-

gation, covering the period from 10 July 2017 to 15 November 2018. Finally, we used a 

Digital Elevation Model (DEM) of the study area with spatial resolution of 5 by 5 m, cor-

responding to December 2009 acquisitions, downloaded from the National Geographic 

Institute of Spain [39]. 

3. Methodology 

The methodology presented herein relies on the joint exploitation of remote sensing, 

in situ and additional available data, to quantify mean LOS ground velocity, 2D safety 

factor SF and 2D landslide size LS, for a set of automatically-mapped slope instabilities. It 

essentially comprises three successive steps. First, we derived LOS ground velocity maps 

using a web-based unsupervised satellite InSAR processing chain, which we validate with 

DGPS data. Then, we performed a spatial analysis of the InSAR-retrieved velocities ex-

ploiting an optimized SU map, from which we obtained an active deformation slope unit 

(ADSU) map. Finally, we use 2D FE modeling to perform stability analyses on each ADSU 

from the optimal map. As a result, we estimate for each ADSU, its LOS ground velocity 

(VLOS), its safety factor SF and its (landslide) size LS (Figure 2). The results can be updated, 

for a continuous assessment, by repeating the analysis on a regular basis. 
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Figure 2. Flowchart of the proposed methodology. 

The input data needed to apply the proposed methodology include a stack of SAR 

images, a DEM, a landslide inventory map, a geotechnical map, and in situ ground mon-

itoring data for validation. 

The automatic mapping procedure is based on the aggregation of the active MPs 

within the boundaries of different sets of morphological SUs, with varying sizes. In fact, 

SUs can be delineated requiring different degrees of aspect homogeneity, resulting in dif-

ferent maps containing a varying number of polygons. 

An ADSU map is obtained for each SU delineation. The different ADSU maps are 

evaluated to find the map best matching the landslides observed in the study area. We 

refer to the best matching map as the optimal ADSU map. ADSUs are used to derive 2D 

cross-sections also following an automatic procedure. Finally, stability analyses are per-

formed for each cross-section taking into account their geo-mechanical properties. 

The different steps of the methodology, as well as the results obtained at each step, 

are described in detail in the next sections. 

3.1. Advanced differential satellite InSAR processing and comparison with in situ DGPS 

measurements 

LOS ground velocity maps in the study area were derived by processing the afore-

mentioned Sentinel-1 images stacks using FASTVEL [12,40], an on-demand, unsupervised 

processing service available on the Geohazards Exploitation Platform (GEP) [41]. GEP is 

part of the Thematic Exploitation Platforms (TEP) initiative set up by the European Space 

Agency (ESA), aiming to support the exploitation of satellite Earth Observation (EO) for 

geohazards assessment (https://geohazards-tep.eu/) [42,43]. 

FASTVEL offers two different processing modes, namely interferogram generation 

(IFG) and multi-temporal analysis (MTA), aimed respectively at generating differential 

interferograms or Persistent Scatterrer Interferometry (PSI)-based mean ground velocity 

maps. EO sources supported by FASTVEL include ERS, Envisat-ASAR and Sentinel-1. 
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In MTA mode, the service provides the following output results: (i) a LOS ground 

velocity map, (ii) the updated topography, including a reference DEM with height uncer-

tainty, and (iii) a CSV file with the main LOS PSI products. Once the SAR images over the 

area of interest are selected, few processing parameters are requested to the user, provid-

ing some default values if preferred. These account for the maximum temporal and spatial 

baseline, the maximum Doppler centroid difference, the maximum image Doppler cen-

troid value, and the Goldstein phase filter exponential factor. In addition, the user must 

select a mean coherence threshold to set the initial grid of points, and a maximum Atmos-

pheric Phase Screen (APS) correlation distance for linking the initially selected points to 

minimize APS propagation. For a detailed description of the FASTVEL service, please re-

fer to its user guide [44]. 

In this study, default values were adopted for most of the parameters. Thus, LOS 

ground velocity maps could be calculated in the study area both in ascending and de-

scending geometry for the period monitored by DGPS. 

Then, the DGPS ground velocities were projected onto the LOS for comparison, con-

sidering both geometries (ascending and descending), using the following equations: 

𝑉𝐿𝑂𝑆
𝐺𝑃𝑆 = 𝑉3𝐷

𝐺𝑃𝑆 ∙ cos 𝜃, (1) 

cos 𝜃 = 𝑐𝑜𝑠𝐸3𝐷
𝐺𝑃𝑆 ∙ cos 𝛼𝐿𝑂𝑆

𝑆𝐴𝑅 ∙ cos 𝛽𝐿𝑂𝑆
𝑆𝐴𝑅 + 𝑐𝑜𝑠𝑁3𝐷

𝐺𝑃𝑆 ∙ sin 𝛼𝐿𝑂𝑆
𝑆𝐴𝑅 ∙ cos 𝛽𝐿𝑂𝑆

𝑆𝐴𝑅 + 𝑐𝑜𝑠𝑈3𝐷
𝐺𝑃𝑆 ∙ sin 𝛽𝐿𝑂𝑆

𝑆𝐴𝑅, (2) 

𝛼𝐿𝑂𝑆
𝑆𝐴𝑅 = tan−1

𝑐𝑜𝑠𝑁𝐿𝑂𝑆
𝑆𝐴𝑅

𝑐𝑜𝑠𝐸𝐿𝑂𝑆
𝑆𝐴𝑅, (3) 

𝛽𝐿𝑂𝑆
𝑆𝐴𝑅 = tan−1

𝑐𝑜𝑠𝑈𝐿𝑂𝑆
𝑆𝐴𝑅

√(𝑐𝑜𝑠𝐸𝐿𝑂𝑆
𝑆𝐴𝑅)2+𝑐𝑜𝑠𝑁𝐿𝑂𝑆

𝑆𝐴𝑅)2
. (4) 

In Eqs. (1)-(4), 𝑉𝐿𝑂𝑆
𝐺𝑃𝑆 and 𝑉3𝐷

𝐺𝑃𝑆 are respectively the projected and the raw ground veloci-

ties measured by DGPS, 𝜃 is the angle formed by the two velocity vectors, 𝑐𝑜𝑠𝑁3𝐷
𝐺𝑃𝑆 , 

𝑐𝑜𝑠𝐸3𝐷
𝐺𝑃𝑆 and 𝑐𝑜𝑠𝑈3𝐷

𝐺𝑃𝑆 are respectively the north, east and up unitary vector components 

of the raw DGPS vector, 𝛼𝐿𝑂𝑆
𝑆𝐴𝑅 is the azimuth angle of the LOS vector measured on the 

horizontal plane from the east axis to the north axis in the counterclockwise direction, 

𝛽𝐿𝑂𝑆
𝑆𝐴𝑅 is the incidence angle of the LOS vector measured on the vertical plane from the 

horizontal plane to the up axis in the counterclockwise direction, and 𝑐𝑜𝑠𝑁𝐿𝑂𝑆
𝑆𝐴𝑅 , 𝑐𝑜𝑠𝐸𝐿𝑂𝑆

𝑆𝐴𝑅 

and 𝑐𝑜𝑠𝑈𝐿𝑂𝑆
𝑆𝐴𝑅 are respectively the north, east and up unitary vector components of the 

LOS vector. 

3.2. Parametric delineation of slope units 

Slope units are morphological terrain units (TUs), alternative to square grid cells, 

bounded by drainage and divide lines [45,46] and delineated in such a way that terrain 

homogeneity is maximized within the units, and inhomogeneity is maximized across 

neighboring units [47,48]. TUs are portions of terrain with similar geological and geomor-

phological features which divide a region in portions that have a set of common proper-

ties, different from the adjacent ones, across definable boundaries [49]. Thus, SUs are a 

particular type of TUs causally related to the hydro-geomorphological conditions [47] and 

represent a formalization of what geomorphologists describe as slopes. 

Slope units are well suited for hydrological and geomorphological studies, and for 

landslide susceptibility modeling and zonation [46,50–53]. SUs are therefore particularly 

suited also in the context of InSAR and FE modeling, since they encompass areas with 

similar slope-facing direction (aspect). SUs have been used in the literature in conjunction 

with optical satellite imagery for landslide mapping [54]. However, the use of SUs either 

to aggregate InSAR data or to derive 2D FE modeling geometries has never been reported, 

to our knowledge. 
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In this work, we used the software r.slopeunits of [47] for SU delineation, freely avail-

able from http://geomorphology.irpi.cnr.it/tools/slope-units. The software is adaptive be-

cause, as outlined in [47], no unique SU delineation exists, since there is an inherent de-

pendence on the scale and nature of the process under investigation. Given this non-uni-

vocity, the software allows SUs to be delineated with varying sizes and different degrees 

of homogeneity of aspect. Then, optimized SUs can be obtained by selecting the values of 

the software’s input parameters that maximize fitness of the output SU set for a particular 

purpose. The input parameters required by the algorithm, their role more related to tech-

nical constraints, are described in detail in [47]. 

Here, the r.slopeunits software was first run multiple times with different combina-

tions of the input parameters a (minimum area) and c (circular variance of aspect), namely 

a = (5,000, 10,000, 50,000, 100,000, 150,000, 250,000, 350,000, 450,000) m2 and c = (0.01, 0.05, 

0.1, 0.15, 0.25, 0.35, 0.45). Thus, we calculated 56 SU maps, corresponding to the possible 

(a, c) combinations. The values selected are similar to the ones used in previous works 

[47,55]. Flat areas were excluded from the delineation process by computing a plains map 

including all areas of the DEM with slope gradient lower than 5⁰. 

3.3. Determination of active deformation slope units 

Once the 56 SU sets were obtained, the two InSAR datasets (ascending and descend-

ing) were filtered according to their standard deviations selecting only the points with 

|VLOS| > 2σ (i.e. the moving or active MPs). Then, the active MPs were superimposed to 

the SUs by performing the intersection of the two InSAR datasets and the 56 SU maps, 

amounting to 112 intersections. 

We applied two different criteria to determine which SUs were active (ADSUs). 

Those SUs (i) containing at least five active MPs either from the ascending or descending 

dataset, and (ii) yielding a density of active MPs greater than or equal to 500 MPs/km2 

(around half of the maximum MPs density of FASTVEL)—from the corresponding da-

taset, were considered ADSUs. The two ADSU sets obtained in ascending and descending 

geometry for each combination of the input parameters a and c, were combined in a single 

set. 

To select the best combination of the input parameters a and c of the r.slopeunits 

software, we used the error index EI introduced by [45], also used in [54], defined as fol-

lows: 

𝐹(𝑎, 𝑐) = 𝐸𝐼(𝑎, 𝑐) =
𝐴∪(𝑎,∙𝑐)−𝐴∩(𝑎,∙𝑐)

𝐴∪(𝑎,∙𝑐)
, (5) 

where 𝐴∪(𝑎,∙ 𝑐) is the area of the region where either the automatically mapped ADSUs 

or the inventoried landslides exist (union) with the specified values of (a, c), and 𝐴∩(𝑎,∙ 𝑐) 

is the area of the region where both exist (intersection). The optimal values of the input 

parameters a and c—i.e., the ones corresponding to the optimal ADSU set, were obtained 

minimizing Eq. (5) to find the best agreement between the mapped ADSUs and the land-

slide inventory. 

Although the optimal ADSU set was selected on the basis of the results obtained 

from Eq. (5), we also investigated the use of the custom metric developed in [55,56] for 

comparison. This metric analyzes the differences between the inventoried landslides and 

the predicted ones—the mapped ADSUs in this case, in terms of their cumulated fre-

quency size distributions, and is defined as follows: 

𝐹(𝑎, 𝑐) = √∑ (𝐷𝑖 − 𝑃𝑖(𝑎, 𝑐))
2𝑖=39

𝑖=1 , (6) 

where 39 is the number of inventoried landslides, 𝐷𝑖  is the i-th point of the distribution 

of the inventoried landslides and 𝑃𝑖(𝑎, 𝑐) is the corresponding i-th point of the distribu-

tion of the mapped ADSUs obtained with the specified values of (a, c), among the 56 dif-

ferent ADSU sets. 
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Eventually, we discuss the results in terms of confusion matrices. The values of the 

confusion matrices for the two sets of ADSUs corresponding to the minimum of Eqs. (5) 

and (6) were further compared with the values obtained for the active deformation areas 

(ADAs) mapped by means of the so-called ADAFinder software package [29]. This com-

parison was carried out to evaluate the improvement achieved through the introduction 

of topographic data, since ADAFinder is an algorithm for active deformation mapping in 

which topography is neglected—the only input data required by the software are the In-

SAR-derived LOS ground velocity maps. In order to allow for a meaningful comparison, 

the two ADA sets obtained with ADAFinder, corresponding to ascending and descending 

geometry, were likewise combined in a single set. 

3.4. 2D finite element modeling 

Stability analyses were performed through 2D FE modeling using the shear strength 

reduction (SSR) technique [57,58] implemented in the GeHoMadrid code [59,60]. SSR 

simply reduces the soil shear strength, in terms of friction angle Φ and cohesion c, until 

collapse occurs. The resulting SF is the ratio of the soil actual shear strength to the reduced 

shear strength at failure. 

In this work, the analyzed geometries were automatically derived from the optimal 

ADSU set using the centroid and the aspect values of each ADSU. Initially, three 400-m 

long cross-sections were derived for each ADSU considering three different aspect values 

that were obtained using the three most common measures of central tendency (i.e., the 

mean, the median and the mode, the latter calculated using integer aspect values). In ad-

dition, the middle points of the profile traces of all cross-sections were fixed on the ADSUs 

centroids. 

Then, 2D stability analyses (plane-strain conditions) were performed over the three 

cross-sections obtained for each ADSU, considering a single, homogeneous material and 

prescribing zero pore pressure on the surface, corresponding to fully saturated conditions. 

Different materials were assigned for each of the ADSUs, depending on the predominant 

lithology within their boundaries. The geo-mechanical properties of the four materials 

considered were taken from [28] and are listed in Table 1. For the other boundary condi-

tions, all displacements were fixed in the bottom plane; perpendicular displacements were 

fixed in the lateral planes. For the applied external load, only gravity force was contem-

plated. 

The cases in which the plastic strain contours resulting from the stability analyses 

did not properly fit the geometry obtained considering a length of 400 m, were repeated 

considering a length of 800 m. Even though most of the analyses were satisfactorily per-

formed using either 400- or 800-m long cross-sections, a small number of cases needed to 

be repeated considering a length of 1,200 m. Fine meshes made up of quadratic triangular 

elements were used for each geometry in order to get well-defined failure mechanisms 

and precise SFs. 

Once all the ADSUs were satisfactorily modeled, final results were derived from the 

models yielding the lowest safety factors SFs. In addition to the SFs resulting from such 

models, landslide sizes LSs were determined for each of the models by computing the 

surface area enclosed by the displacement contours at failure in each case. Thus, SFs and 

LSs could be calculated for each of the ADSUs within the optimal set. 

4. Results 

4.1. Ground velocity maps and validation 

LOS ground velocity maps (Figure 3) revealed maximum positive LOS velocities 

(movement towards the satellite) of 5.8 and 8.7 cm/year respectively in ascending and 

descending geometry over the area of the southernmost group of inventoried landslides 

(Figure 1). This area also exhibited the maximum negative LOS velocity (movement away 

from the satellite) in descending geometry, with a value of -12.9 cm/year. The ascending 
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results revealed, however, a maximum negative LOS velocity of -9.9 cm/year over the area 

of the south-westernmost cluster of active MPs in Figure 3. 

 

Figure 3. LOS ground velocity maps for the period from 10 July 2017 to 15 November 2018. (A) Ascending velocities. (B) Descend-

ing velocities. The black squares show the location of the slope instability monitored by DGPS and used for the validation analysis. 

The results in ascending geometry (Figure 3A) contain 72,610 MPs with a MPs den-

sity of 712 MPs/km2, whereas the map in descending geometry (Figure 3B) contains 66,293 

MPs with a MPs density of 626 MPs/km2. Standard deviations of the LOS velocities of all 

the MPs from the ascending and descending datasets resulted respectively in 0.45 and 0.61 

cm/year.  

The validation analysis was performed by comparing the InSAR-retrieved LOS ve-

locities with in situ DGPS measurements projected onto the LOS both in ascending and 

descending geometry (Figure 4). Root mean square error (RMSE) values resulted in 1.06 

cm/year and 2.46 cm/year, respectively, for the ascending and descending results (Figure 

4F). The difference between both RMSEs is most likely related to the different levels of 

noise affecting the InSAR data, higher for the descending results according to their stand-

ard deviation. 
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Figure 4. Results of the validation analysis. 3D view of the (A) InSAR ascending and (B) descending LOS ground velocities over the 

points monitored by DGPS, (C) raw DGPS ground velocities for the period from 11 July 2017 to 15 November 2018, and DGPS 

ground velocities projected onto the (D) ascending and (E) descending LOS. (F) Scatter plot of the LOS ground velocities VLOS meas-

ured by DGPS and retrieved by InSAR. The grey solid line indicates the cases where the retrieved and the measured LOS ground 

velocities VLOS are exactly equal. The blue (red) dashed lines denote the 95% confidence band for the ascending (descending) data 

(i.e. two times the RMSE). 

4.2. Slope unit maps and active deformation slope unit maps 

The SUs and ADSUs obtained over the study area showed a high degree of variability 

for the different combinations of the software r.slopeunits input parameters a and c. These 

differences can be observed in detail in Figure 5, for nine of the 56 SU (Figure 5A) and 

ADSU (Figure 5B) maps obtained over the central part of the study area using different 

(a, c) combinations. 

 

Figure 5. (A) Detail of the slope unit (SU) maps obtained with the software r.slopeunits [47] for several combinations of the input 

parameters a and c. (B) Detail of the active deformation slope unit (ADSU) maps, obtained from the SU maps as described in Sec-

tion 3.3. 

The maximum and minimum number of SUs obtained considering the 56 SU sets 

resulted in 4,623 and 116 respectively for SU maps 1 (lower left corner in Figure 5A) and 

56, for which the mean SU area resulted in 10,000 and 370,000 m2, respectively. 

The number of ADSUs corresponding to the ADSU sets 1 (lower left corner in Figure 

5B) and 56 resulted in 94 and 2, respectively, with a mean ADSU area of 10,000 and 20,000 

m2, respectively. 

Note that when using the finest SU partition, obtained with the smallest values of a 

and c, the number of ADSUs more than doubles the number of inventoried landslides. On 

the other hand, for the coarsest SU partition, a negligible number of ADSUs is obtained. 

Moreover, in most of the cases using a values greater than 150,000 m2, no ADSUs were 

obtained due to the MPs density threshold considered (500 MPs/km2). 

In the next section we evaluate the different ADSU sets to find the (a, c) combination 

that provides the ADSU set best matching the landslide inventory, i.e., the optimal ADSU 

set. 

4.3. Optimal active deformation slope unit map 

The values of the two metrics F(a, c) considered in this work for optimization of the 

software r.slopeunits input parameters a and c, Eqs. (5) and (6), are shown in Figure 6. 

Note that the figure shows the values obtained for the 56 ADSU sets resulting from all the 

possible (a, c) combinations. In addition, Figure 7 shows the cumulated frequency size 
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distributions used to calculate Eq. (6), also for the 56 ADSU sets. For clarity, a few ADSU 

sets covering the whole range of frequency size distributions are highlighted (Figure 7A). 

These ADSU sets, denoted by “set 1”, “set 3”, “set 5”, “set 25”, “set 27”, “set 29”, “set 49”, 

“set 51” and “set 53”, were obtained with the (a, c) combinations shown in Figure 5 (from 

the lower left to the upper right corner). Note that the leftmost point of all distributions is 

normalized to 100% by definition. The distribution of the inventoried landslides is also 

depicted (Figure 7B). 

 

Figure 6. Active deformation slope units (ADSUs) optimization metrics, calculated as a function of the software r.slopeunits [47] 

input parameters a and c, for all the possible (a, c) combinations. (A) Values of the metric F(a, c) defined by Eq. (5): the optimal val-

ues are found in correspondence with the minimum value of Eq. (5), indicated with a red dot. (B) Values of the metric F(a, c) de-

fined by Eq. (6): the minimum value of Eq. (6) is indicated with a green dot. 

 

Figure 7. (A) Cumulated frequency size distributions of the active deformation slope unit (ADSU) maps for all the possible combi-

nations of the software r.slopeunits [47] input parameters a and c. The highlighted results are listed and described in the text. (B) 

Cumulated frequency size distributions of the inventoried landslides, the ADSU set corresponding to the minimum value of the 

metric F(a, c) defined by Eq. (6) (ADSU set 26), and the optimal ADSU set (ADSU set 18), corresponding to the minimum value of 

the metric F(a, c) defined by Eq. (5). 

The results reveal that the higher the value of a, the higher the difference between the 

inventoried landslides and the mapped ADSUs (Figure 6). However, it can be noted that 

Eq. (5) (Figure 6A) captures a greater variety of results than Eq. (6) (Figure 6B), and in-

creases gradually with increasing values of a until reaching a = 250,000 m2. Starting from 

that value, the overlap between the mapped ADSUs and the landslide inventory becomes 

zero, and the error results in a 100%. The set of ADSUs corresponding to the minimum of 

Eq. (5) (ADSU set 18), shown with a red dot in Figure 6A, was derived from the SU map 

obtained by (a, c) = (10,000 m2, 0.10). The distribution corresponding to the ADSU set 18 is 

shown with a grey solid curve in Figure 7B. 

On the other hand, if we analyze the results of Eq. (6), we can observe that the values 

of this metric vary strongly until reaching a = 150,000 m2. For values above, the results 

become constant. The reason for this is that several ADSU maps are not comparable with 

our landslide inventory by using cumulated frequency size distribution plots (Figure 7). 
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These ADSU maps include few very large ADSUs that do not match the inventoried land-

slides (e.g., ADSU sets 3, 5, 27, 29, 51 and 53 in Figure 7A). The set of ADSUs corresponding 

to the minimum of Eq. (6) (ADSU set 26), shown with a green dot in Figure 6B, was de-

rived from the SU map obtained by (a, c) = (10,000 m2, 0.10). The distribution correspond-

ing to the ADSU set 26 is shown with a black solid curve in Figure 7B. 

This means that the metric in Eq. (5) allows a more accurate comparison between the 

inventory and the ADSU maps, even for maps containing a limited number of ADSUs. 

For this reason, the optimal ADSU set (ADSU set 18) was selected on the basis of the re-

sults obtained from Eq. (5). Note that the (a, c) combination corresponding to the optimal 

set of ADSUs according to the metric of Eq. (6) (ADSU set 26) is fairly similar to that cor-

responding to the selected optimal ADSU set (ADSU set 18). In fact, the ADSU set 18 cor-

responds to the second-best result obtained from Eq. (6) (Figure 7B). 

Yet the accuracy, defined as the sum of true positives (TP) and true negatives (TN), 

is slightly higher for set 18 than for set 26 (99.39% compared to 99.37%) (Table 2). The total 

false statements are also lower for set 18 (0.62% compared to 0.63%). 

Table 2. Confusion matrices and values of the metrics defined by Eq. (5) and (6) for three different outputs: the active deformation 

areas (ADAs) mapped by means of the so-called ADAFinder software package [29], the active deformation slope unit (ADSU) set 

26, corresponding to the minimum value of the metric F(a, c) defined by Eq. (5), and the ADSU set 18 (optimal ADSU set), corre-

sponding to the minimum value of the metric F(a, c) defined by Eq. (5). TN: true negatives. FN: false negatives. FP: false positives. 

TP: true positives. 

 ADA set ADSU set 26 ADSU set 18 

TN 98.55% 99.11%  99.10% 

FN 0.20% 0.24% 0.21% 

FP 0.96% 0.39% 0.41% 

TP 0.30% 0.26% 0.29% 

F(a, c) - Eq. (5) 0.794 0.707 0.679 

F(a, c) - Eq. (6) 301.96 291.55 294.55 

These results suggest that the metric of Eq. (5) is more appropriate than that in Eq. 

(6), for the optimization procedure devised in this work. The ADSU maps obtained with 

both metrics increase the accuracy of the ADAs mapped by ADAFinder (Table 2), which 

is unable to distinguish slope instabilities from vertical ground movements, by 0.5%. This 

improvement is also reflected in the values obtained from Eqs. (5) and (6) for the ADSU 

maps 18 and 26 and for the ADA set (Table 2). 

The total number of ADSUs conforming the optimal set (ADSU set 18), resulted in 43 

(opaque polygons in Figure 8). In turn, the set of SUs obtained by (a, c) = (10,000 m2, 0.10), 

used to derive the optimal ADSU set, was formed by a total of 1,959 SUs. From these 1,959 

SUs, 151 were characterized as unknown SUs. This was determined by intersecting the 

non-active deformation SUs with the two InSAR datasets separately. Those SUs contain-

ing less than five MPs both from the ascending and descending datasets, and yielding a 

density of active MPs (also from the ascending and descending datasets) lower than 500 

MPs/km2, were characterized as unknown SUs (transparent pink polygons in Figure 8). 

These SUs were mainly located over densely vegetated hillslopes where only few MPs 

were obtained (SE quadrants in Figures 3A and 3B). No landslides were, however, inven-

toried over those areas. The remaining 1,756 SUs were characterized as stable SUs (trans-

parent green polygons in Figure 8). 
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Figure 8. Mean LOS ground velocities obtained for the 43 active deformation slope units (ADSUs) from the optimal set (ADSU set 

18). All ADSUs are represented in opaque colors. (A) Ascending velocities. (B) Descending velocities. ADSUs not detected in each 

geometry are represented in opaque white. Unknown and stable SUs are also depicted in transparent pink and transparent green 

respectively. 

Mean LOS velocities for the 43 ADSUs from the optimal set both in ascending and 

descending geometry are respectively presented in Figures 8A and 8B. Note that the 43 

ADSUs conforming the optimal set were obtained through the combination of the ascend-

ing and descending results. Positive mean LOS velocities in Figure 8 correspond to move-

ment towards the satellite, whereas negative values represent movement away from the 

satellite. ADSUs not detected in ascending but in descending are represented in opaque 

white in Figure 8A (and vice versa in Figure 8B). 

The number of ADSUs derived using ascending and descending data was 31 and 20, 

respectively. From among these ADSUs, 10 and 15 presented absolute mean LOS veloci-

ties greater than 2.5 cm/year respectively in ascending and descending geometry. These 

ADSUs can be assimilated to slope instabilities with an absolute degree of confidence, 

since the maximum RMSE obtained through the validation analysis resulted in 2.46 

cm/year. 

Positive mean LOS velocities were only obtained in ascending geometry (Figure 8A), 

for a total of 4 ADSUs. A total of 8 ADSUs were detected in both geometries (ascending 

and descending). From among them, 3 ADSUs showed opposite direction of movement 

in ascending and descending, a behavior typically attributed to slope movements having 

a strong horizontal component. Considering the 43 ADSUs conforming the optimal set—

taking maximum absolute values in those ADSUs detected in both geometries, a total of 

21 ADSUs presented absolute mean LOS velocities greater than 2.5 cm/year. These 21 AD-

SUs can therefore be most certainly associated with slope instabilities. 

4.4. 2D stability analyses 

Out of the 43 ADSUs in the optimal set (ADSU set 18), 14 revealed 2D safety factors 

SFs lower than 1.2, 13 SFs between 1.2 and 1.5, and 16 SFs greater than 1.5. Only 3 and 5 

ADSUs revealed SFs lower than 1 and greater than 2, respectively. Most of the ADSUs 

with SFs greater than 2, characterized by very low slope gradients, coincide the south-

westernmost cluster of active MPs in Figure 3. 2D landslide sizes LSs for the 43 ADSUs 

ranged from 1,900 to 27,000 m2. 

The median of the aspect was found to offer the best performance for the purpose of 

obtaining cross-sections. In many cases, however, the differences were not significant—

similar results were obtained using the three different aspect values considered (mean, 

median and mode), indicating a proper delineation result in terms of aspect homogeneity. 
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Thus, 32.56%, 53.49% and 34.88% of the ADSUs were satisfactorily modeled using 

the mean, the median and the mode of the aspect, respectively. Concerning the length of 

the cross-sections, 44.19%, 46.51% and 9.30% of the ADSUs were modeled using 400-, 800- 

and 1200-m long cross-sections, respectively. 

Figure 9 shows detailed results of the 2D stability analyses corresponding to three 

cross-sections obtained for three particular ADSUs. The cross-sections corresponding to 

Figures 9A and 9B were obtained using mean aspect values, whereas the cross-section 

corresponding to Figure 9C was obtained using the median. For convenience, the exam-

ples integrate 2D stability analyses performed using 400-, 800- and 1200-m long cross-

sections. Note that the slope in Figure 9B corresponds to the slope instability monitored 

by DGPS (Figure 4). 

 

Figure 9. Results of three 2D stability analyses performed using (A) 400-, (B) 800- and (C) 1,200-m long cross-sections derived from 

three particular active deformation slope units (ADSUs) from the optimal set (ADSU set 18). Fist row: 3D view of the three ADSUs. 

The blue solid lines represent each profile trace, the 1,200-m long profile trace clipped to the hillshade extent. Second row: finite 

element meshes corresponding to each profile trace. Third row: equivalent plastic strain contours at failure corresponding to each 

profile trace. Fourth row: displacement contours (in m) corresponding to each profile trace. The resulting 2D safety factors SFs and 

2D landslide sizes LSs are also presented. The legends for rows third and four are shown at the bottom of the figure. 

Eventually, we elaborated two ADSU maps summarizing the results of the 2D stabil-

ity analyses for the 43 ADSUs from the optimal set (ADSU set 18) (Figure 10). The map in 

Figure 10A shows the resulting safety factors SFs, whereas the map in Figure 10B shows 

the resulting landslide sizes LSs. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 April 2021                   doi:10.20944/preprints202104.0696.v1

https://doi.org/10.20944/preprints202104.0696.v1


 

 

 

Figure 10. Results of the 2D stability analyses for the 43 active deformation slope units (ADSUs) from the optimal set (ADSU set 

18). (A) 2D safety factors SFs and (B) 2D landslide sizes LSs. 

4. Discussion 

This work proposes a new approach for detecting and characterizing slope instabili-

ties at a regional scale, aimed at providing non-expert final users—such as Civil Protection 

authorities or risk management decision-makers, with easily intelligible products that can 

thus be exploited for geohazard management purposes. Although the proposed method-

ology has been applied here to analyze mining-induced slope instabilities, it can likewise 

be applied to analyze all types of slope instabilities. 

Existing approaches for detecting ADAs from InSAR data [29–32] focus on the delin-

eation of the more reliable deforming areas through the aggregation of subsets of points 

obtained by filtering the raw LOS ground velocity map. Firstly, in order to filter the LOS 

ground velocity map, these approaches usually select the moving points using an absolute 

velocity threshold equal to 2σ (two times the standard deviation of the raw LOS ground 

velocity map). Then, groups of moving points sharing their influence area are aggregated 

in polygons representing the ADAs. 

Given the inability of these approaches to discern between different types of ground 

movement, sometimes overlapping within a single ADA, it is desirable to develop new 

approaches that provide further partitioning of the active areas to better analyze ground 

movements in complex areas with large deformation footprints. In that sense, the ADSU 

map represents an interesting product that allows a comprehensive analysis of ground 

movements—in particular, of slope instabilities. Through the aggregation of the moving 

points within the boundaries of slopes defined by polygons with similar slope-facing di-

rection (aspect), different mean LOS ground velocities can be determined for adjacent par-

titions. Using the traditional active deformation mapping approaches, such partitions 

would be integrated into a single polygon, with the consequent loss of information. 

Furthermore, in addition to help determining the mean LOS ground velocity of each 

polygon, SUs can be used to derive numerical modeling geometries, given their high as-

pect homogeneity. In this work, we devised an automatic procedure to obtain 2D cross-

sections for each ADSU and performed simplified stability analyses determining their SFs 

and LSs. 

The comparison of the computed SFs with the maximum absolute mean LOS veloci-

ties resulting from the InSAR data (Figure 11) provided interesting results. In principle, 

these two variables are correlated, assuming that the most unstable slopes should also be 

the ones showing the highest slope movement rates. 
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Figure 11. Scatter plot of the maximum absolute mean LOS ground velocities VLOS and the 2D 

safety factors SFs for 15 active deformation slope units (ADSUs) from the optimal set (ADSU set 

18). The black curve is a fit of the subset of points outlined in black. 

At first glance, if we analyze the scatter plot in Figure 11, we can observe there is no 

relationship between the two variables in general terms. However, the points are not ran-

domly distributed either. In fact, if we analyze the points exhibiting SFs lower than 2, two 

distinct clusters are found. For one, the group of 21 points with mean LOS velocities of up 

to 2.5 cm/year, for which there is no relationship between SF and mean LOS velocity. Sec-

ondly, the group of 17 points with mean LOS velocities greater than 2.5 cm/year, for which 

a potential relationship between the two variables is observed when excluding the two 

ADSUs with mean LOS velocities of 2.63 cm/year. Note that the best-fit exponential curve 

corresponding to those 15 points (black curve in Figure 11) yields a reasonably fair coeffi-

cient of determination (R2 = 0.55). Points exhibiting SFs greater than 2, which correspond 

to ADSUs characterized by very low slope gradients, are interpreted as outliers. 

This finding is in line with the fact that the maximum RMSE obtained through the 

validation analysis resulted in 2.46 cm/year. For this reason, the relationship between SF 

and mean LOS velocity is only observed for the ADSUs exhibiting mean LOS velocities 

greater than 2.5 cm/year—as long as the two ADSUs with mean LOS velocities of 2.63 

cm/year, close to 2.5 cm/year, are excluded. ADSUs exhibiting lower velocities cannot be 

assimilated to slope instabilities with absolute certainty, since they are most likely sub-

jected to errors associated to noisy InSAR data. 

These results indicate that significant further efforts are needed in order to improve 

the relationship between SF and mean LOS velocity. Possible solutions for this purpose 

could include the use of more sophisticated InSAR processing chains providing higher 

resolution and time series of movement. In the slope stability assessment step, improve-

ment can be the adoption of accurate lithostratigraphic geometry description (considering 

different materials instead of a single material) and hydrogeological data (instead of as-

suming fully saturated conditions), possibly with the application of 3D FE modeling. 

Although the proposed methodology could be improved by modifying these aspects, 

it is still useful to generate easy-to-interpret products that can be integrated in the geohaz-

ard management chain. In opposition to pixel-based approaches, our methodology pro-

vides discrete, easily intelligible results by relying on the assumption that failures cannot 

be bigger than the physical boundaries of the slopes. By defining the physical boundaries 

of the slope where the potential failure can occur, the main restriction of pixel-based ap-

proaches—related to the lack of correspondence between the landslide size and the pixel 

size, is overcome.  

A further step towards an integrated analysis of slope stability based on these prod-

ucts could be the combination of mean LOS velocities, SFs and LSs into a hazard proxy. 

According to probabilistic models for landslide hazard assessment, landslide hazard is 

the probability of occurrence within a specified period and within a given area of a land-

slide of a given magnitude [61]. Assuming independence among the three probabilities, 

the landslide hazard can be defined as follows [62]: 

R² = 0.5459
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𝐻𝐿 = 𝑃(𝐴𝐿) ∙ 𝑃(𝑁𝐿) ∙ 𝑆, (7) 

where P(AL), P(NL) and S are respectively the probability of landslide size (magnitude), of 

landslide occurrence in an established period (frequency), and of landslide spatial occur-

rence (susceptibility), given the local environmental setting. 

Here, rather than opting for a quantitative probabilistic analysis of the landslide haz-

ard, we adopted a qualitative approach to derive a hazard proxy taking into account the 

results of the methodology (i.e., mean LOS velocities, SFs and LSs), obtained however on 

a deterministic basis. The slope instability hazard proxy was evaluated by combining the 

LS as a proxy for magnitude, the mean LOS velocity as a proxy for frequency, and the SF 

as a proxy for susceptibility (Figure 12). For each combination, the degree of hazard was 

established and expressed in qualitative terms. Figure 12A shows the maximum absolute 

mean LOS velocities resulting from the InSAR data. The measuring direction, indicating 

whether the values correspond to ascending or descending data, is also depicted. The ma-

trix defined to evaluate the slope instability hazard proxy is shown in Figure 12C. 

 

Figure 12. (A) Maximum absolute mean LOS ground velocities for the 43 active deformation slope units (ADSUs) from the optimal 

set (ADSU set 18). Directions of movement are also indicated. (B) Slope instability hazard proxy obtained through the combination 

of the 2D landslide size LS (as a proxy for magnitude of failure), the LOS ground velocity VLOS (as a proxy for frequency of failure) 

and the 2D safety factor SF (as a proxy for susceptibility of failure) for each ADSU. (C) Matrix defined to evaluate the slope instabil-

ity hazard proxy. 

The main drawback of this analysis is the oversimplification of both the geotechnical 

setting and the groundwater pore-water pressure distribution, as well as the introduction 

of a time frame based on the mean LOS velocity. The resulting hazard proxy should there-

fore only be used to act as a trigger for more detailed geotechnical assessment of the iden-

tified priority areas. In contrast, this simplicity allows the approach to be fully scalable. 
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This last point is particularly interesting when considering that massive InSAR data 

will shortly be available thanks to upcoming projects such as the Copernicus European 

Ground Motion Service. Once the open-access InSAR data to be provided by this project 

all over Europe will be available, it will be possible to perform slope stability analysis over 

all mining waste disposal areas at a European scale using the proposed methodology. 

To illustrate this point, we elaborated an SU map over the Region of Murcia focusing 

exclusively on mining and waste disposal areas (Figure 13). For this purpose, we extracted 

the mineral extraction areas and dump sites from the Corine Land Cover 2018 [63]. Note 

that the map only contains SUs that overlap these two land cover classes (Figure 13B). The 

SUs were delineated with the software r.slopeunits [47] excluding all areas with slope 

gradient lower than 5⁰ and using the optimal values of the input parameters a and c we 

obtained for Sierra Minera—i.e. (a, c) = (10,000 m2, 0.10). 

 

Figure 13. (A) Mineral extraction areas and dump sites extracted from the Corine Land Cover 2018 [63] over the Region of Murcia, 

and slope units (SUs) overlapping both classes, obtained with the software r.slopeunits [47] using the optimal values of the input 

parameters a and c, i.e. (a, c) = (10,000 m2, 0.10). The black square shows the location of the study area. (B) Detail of the mineral ex-

traction areas and dump sites over the study area, and slope units (SUs) intersecting both classes. 

5. Conclusions 

This paper introduces a novel methodology for regional slope stability analysis in 

mining waste disposal areas. The methodology combines satellite InSAR, SUs and 2D FE 

modeling to quantify mean LOS velocities, SFs and LSs for a set of slope instabilities de-

rived following a semi-automatic procedure. 

The first step of the methodology is to generate LOS ground velocity maps through 

InSAR processing, which must be properly validated. The second step consists in the ag-

gregation of the moving points within the boundaries of morphological SUs, which allows 

to obtain an ADSU map optimized with respect to the landslide inventory. The last step 

is to perform stability analyses on each of the ADSUs within the optimal map. 

In this work, InSAR processing was carried out by using the unsupervised FASTVEL 

processing chain [12,40], its results validated using in situ DGPS data. For SU delineation 

and 2D FE modeling, we used the software r.slopeunits [47] and the GeHoMadrid code 

[59,60], respectively. 

The methodology, has been set up for Sierra Minera (Murcia), a former mining area 

in southeast Spain, where it has proven effective to detect and characterize a considerably 

large number of slope instabilities. Out of the 1,959 SUs used to derive the optimal ADSU 

set, a total of 43 were found to be active according to the InSAR data, whereas 1,756 were 

found to be stable. Only 151 SUs, located in areas poorly covered by the InSAR data, were 

characterized as unknown. A total of 21 out of the 43 ADSUs conforming the optimal 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 April 2021                   doi:10.20944/preprints202104.0696.v1

https://doi.org/10.20944/preprints202104.0696.v1


 

 

ADSU set presented absolute mean LOS velocities greater than 2.5 cm/year. These 21 AD-

SUs can be assimilated to slope instabilities with absolute certainty considering that the 

maximum RMSE obtained through the validation analysis resulted in 2.46 cm/year. The 

set of SUs used to derive the optimal ADSU set was obtained by (a, c) = (10,000 m2, 0.10). 

From among the 43 ADSUs conforming the optimal ADSU set, 14 of them revealed 

SFs lower than 1.2, 13 of them SFs between 1.2 and 1.5, and 16 of them SFs greater than 

1.5. Only 5 ADSUs characterized by very low slope gradients, revealed SFs greater than 

2. LSs for the 43 ADSUs ranged from 1,900 to 27,000 m2. 

The comparison of the computed SFs with the maximum absolute mean LOS veloci-

ties resulting from the InSAR data led to noteworthy observations. The best-fit exponen-

tial curve obtained for 15 ADSUs presenting SFs lower than 2 and mean LOS velocities 

greater than 2.5 cm/year, yielded a reasonably fair coefficient of determination (R2 = 0.55), 

indicating a potential relationship between SF and mean LOS velocity. These finding is 

consistent with the maximum RMSE obtained through the validation analysis (2.46 

cm/year). However, the relationship between SF and mean LOS velocity, was not ob-

served for two ADSUs with mean LOS velocities of 2.63 cm/year, still close to 2.46 cm/year. 

Possible improvements to further refine these results could include the use of more 

sophisticated InSAR processing chains providing LOS ground velocity maps at full reso-

lution and time series of movement, the adoption of precise lithostratigraphic and hydro-

geological data in the stability analyses, and the application of 3D FE modeling. 

This paper presents the first study using FASTVEL for slope stability mapping, and 

providing validation results for FASTVEL. It also provides a new systematic, automatic 

procedure based on SUs delineation to aggregate InSAR data, and reports for the first time 

the use of SUs to automatically derive 2D FE modeling geometries. Furthermore, this 

work discusses the possibility of evaluating the slope instability hazard through a quali-

tative approach combining the results of the methodology (i.e. mean LOS velocities, SFs 

and LSs) to derive a hazard proxy. 

It should be noted that the results of the proposed methodology can be periodically 

updated for continuous evaluation by performing the analyses on a regular basis. The 

application of the methodology allows to generate products that provide non-expert end 

users with intelligible, clear and easily comparable information that can be integrated in 

the geohazard management chain. These products can thus be exploited by Civil Protec-

tion or risk management authorities for geohazard management purposes. Moreover, 

since the methodology is fully scalable, its application for slope stability analysis in all 

European mining waste disposal areas will soon be possible, once the oncoming massive 

InSAR data to be provided by ongoing projects such as the Copernicus European Ground 

Motion Service will be available. Although the methodology was applied here to analyze 

mining-related slope instabilities, it can likewise be used to analyze slope instabilities af-

fecting natural and man-made slopes in general. 
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