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The present paper investigates numerically the resistance at full-scale of a zero-emission, high-speed
catamaran in both deep and shallow water, with the Froude number ranging from 0.2 to 0.8. The numerical
methods are validated by two means: a) comparison with available model tests; b) a blind validation using
two different flow solvers. The resistance, sinkage and trim of the catamaran, as well as the wave pattern,
longitudinal wave cuts and cross-flow fields, are examined. The total resistance curve in deep water shows
a continuous increase with the Froude number while in shallow water, a hump is witnessed near the critical
speed. This difference is mainly caused by the pressure component of total resistance, which is
significantly affected by the interaction between the wave systems created by the demihulls. The pressure
resistance in deep water is maximised at a Froude number around 0.58, whereas the peak in shallow water
is achieved near the critical speed (Froude number = 0.3). Insight into the underlying physics is obtained
by analysing the wave creation between the demihulls. Profoundly different wave patterns within the inner
region are observed in deep and shallow water. Specifically, in deep water, both crests and troughs are
generated and moved astern as the increase of the Froude number. The maximum pressure resistance is
accomplished when the secondary trough is created at the stern, leading to the largest trim angle. In

contrast, the catamaran generates a critical wave normal to the advance direction in shallow water, which
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significantly elevates the bow and creates the highest trim angle as well as pressure resistance. Moreover,
significant wave elevations are observed between the demihulls at supercritical speeds in shallow water

which may affect the decision for the location of the wet deck.
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1 Introduction

Low-carbon, environmentally-friendly maritime transport is playing an important role in reducing the
emission of greenhouse gases and building a sustainable future. The need for technological innovations in
the design of zero-emission ships is posing challenges for the maritime industry in the coming decades.
The research presented herein was conducted in the European Commission (EC) funded research project

TrAM (Transport: Advanced and Modular, https://tramproject.eu/), which aims at designing and

manufacturing battery-powered fast catamarans operating in coastal areas and inland waterways by
implementing modular design and production methods. Given the significant lower specific energy
content of batteries compared to conventional fuels [1], the design of zero-emission high-speed marine
vehicles poses unique challenges and limitations which are tackled within the TrAM project. These include
the selection of the appropriate battery technology and specification, safety considerations and of course,
multi-objective hull form optimisation in the presence of shallow water effects [1-4]. The present study
is focused on the battery-driven, zero-emission ‘TrAM London Demonstrator’, designed for The Thames
River. It examines the hydrodynamic performance of the preliminary design of this high-speed catamaran
in shallow water as it affects directly the rate by which the vessel consumes the stored energy. Therefore,
it verifies and validates the computational methods employed in the hydrodynamic optimisation of the

hull form.

Catamarans, due to their favourable performance in efficiency and stability at high speeds, have been
widely studied experimentally, theoretically and numerically over the past decades [5—7]. A series of
model tests were carried out by Insel and Molland [8] and Molland et al. [9] investigating the calm water
resistance of fast catamarans with symmetrical demihulls, whereas Zaraphonitis et al. [10] have studied
asymmetrical demihulls. Their studies emphasised the effects of demihull dimensions and separation
distance on the resistances and motions of the catamarans over a wide range of Froude numbers (0.2 < Fn
< 1.0). van’t Veer [11] also experimentally investigated the resistance and dynamic motion characteristics
using Delft 372 catamaran, which has been used as a benchmark for numerical simulations. Later
experimental studies with Delft 372 catamaran were concentrated on the hydrodynamic interference
between demihulls [12,13] and seakeeping [14—16]. Broglia et al. [13] carried out experimental work
examining the interference effects between the demihulls of a catamaran. It was found that positive

inference only occurred within a narrow range of testing conditions and the interaction between demihulls
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could increase the total resistance by up to 30%. The interference effects were less strong at very low and
very high Froude numbers (Fn < 0.3 or Fn > 0.7). Zaraphonitis et.al. [17] studied the optimisation of the
hull shape with regards to powering and wash for a high speed catamaran. Souto-Iglesias et al. [18] also
investigated experimentally the interference phenomenon of a catamaran and compared the wave systems
created by the catamaran and the corresponding monohull. They concluded that the non-centred inner
wave cuts are also important evidence for the analysis of wave interference. Later, Souto-Iglesias et al.
[19] further studied the influence of demihull separation and testing condition on the interference
resistance of a Series 60 catamaran and found that the free sinkage-trim condition enhanced both the
favourable and unfavourable interference effects compared with fixed condition cases. Danisman [20]
found that the wave interference resistance between the demihulls could be considerably reduced by

placing an optimised Centrebulb, which led to a favourable secondary wave interaction.

With the fast development of computer science and numerical methods, computational fluid dynamics
(CFD) has become a feasible approach with sufficient accuracy to investigate ship hydrodynamics [21].
Various CFD solvers have been applied to examine the calm water resistance and seakeeping of both
monohulls [22-24] and multihulls [25-29]. A combined experimental and numerical study was carried
out by Zaghi et al. [30] to analyse the interference effects between the demihulls and the dependency on
the separation of a high-speed catamaran. Two humps were found in the total resistance coefficient curves
and the second one was much higher, corresponding to a stronger interference. Besides, a smaller
separation distance led to a stronger interaction and a larger speed where the peak occurred. Broglia et al.
[31] conducted a numerical analysis on the interference phenomena between the demihulls of the
catamaran with emphasis on the validation of the CFD code and the Reynolds number effect. It was found
that the numerical results agreed very well with the experiment in terms of resistance and wave cuts and
the dependency on the scale effect was rather weak. He et al. [32] computationally investigated the effects
of Froude number and demihull separation distance on the resistance and motion of the catamaran. They
found that the resistance coefficient became higher at smaller separation distances, indicating stronger
interference between the demihulls. Besides, the strongest demihull interaction occurred when Froude
number is between 0.45 and 0.65 (0.45 < Fn < 0.65). When the Froude number is below 0.45 or above
0.65, the variation of the separation distance had a negligible effect on the resistance as well as the sinkage
and trim of the catamaran. Haase et al. [33] proposed a novel CFD-based method for the prediction of

full-scale ship resistance, which relied on the results of the model test experiment and CFD simulation at


https://doi.org/10.20944/preprints202104.0674.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 April 2021 d0i:10.20944/preprints202104.0674.v1

both model-scale and full-scale Reynold number. Farkas et al. [34] carried out a numerical study on the
interference of resistance components for a Series 60 catamaran at medium Froude numbers, where the
interference factor was decomposed into viscous interference and wave interference. They found that the
form factor of the catamaran was independent of the Froude number, but decreased to the value of the
monohull when the separation distance became larger. It was also observed that the viscous interference

factor was independent of the Froude number but relied on the separation ratio of the catamaran.

The shallow water effects must be considered when designing ships for restricted waterways (e.g., inland
rivers, canals). Previous studies regarding shallow water effects for monohulls [35-39] revealed that the
depth Froude number (Fny = U/ \/g_H , where U is the ship speed, g is gravity acceleration and His the
water depth) is playing a key role in determining the performance of the vessel. A ship moving near the
critical depth Froude number (Fny = 1.0) will experience a surge in total resistance coefficient and drastic
changes in motions and wave patterns, which should be taken into account when passing through shallow
water areas. In terms of catamarans operating in shallow water, several experimental and numerical studies
are also available [40-43]. Molland et al. [44,45] experimentally investigated the resistance of a series of
fast displacement catamarans in shallow water. Similar to monohulls, the catamarans experienced large
increases in total resistance and wave elevation, and significant changes in sinkage and trim near the
critical depth Froude number. The resistance increase was higher for the smaller water depth. Gourlay [46]
theoretically predicted the sinkage and trim of various catamaran configurations in shallow water. It was
found that the maximum sinkage and trim occurred at the trans-critical speed range. Lee et al. [47]
designed and tested the shallow water behaviours of a small catamaran and further investigated the
influence of the separation ratio between the demihulls on the resistance characteristics. The residual
resistance coefficient surged near the critical depth Froude number and the sinkage and trim also varied
significantly in the critical region. Castiglione et al. [48] studied the interference effects between the
demihulls of a high-speed catamaran in shallow water using a CFD method. They concluded that for all
separation ratios, the total resistance coefficients were significantly increased due to shallow water effects,
with peaks achieved near the critical depth Froude number. However, at extreme subcritical and
supercritical speeds, the total resistance coefficients in shallow water became smaller than the values of
corresponding deepwater cases. It was also found that the interference factor reached its peak values
around the critical speed and increased for smaller separation distances. Moreover, the sinkage and trim

were also increased compared with deep water values and maximised at the critical speed.
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Despite the extensive studies on the calm water resistance and interference of high-speed catamarans,
CFD simulations on full-scale fast catamarans in shallow water are still rare. As aforementioned, the work

in the present paper is part of the ongoing TrAM Project (https://tramproject.eu/) and the objectives of the

current study are twofold: 1) validate the numerical methods and setups that will be employed in the hull
optimisation stage, 2) investigate the shallow water effect on the calm water resistance, sinkage, trim and
wave creation of the full-scale London Demonstrator catamaran using a CFD method. The rest of this
paper is organized as follows: In Section 2, the geometry of the London Demonstrator and parameters
used for analysis are presented. The computational methods are introduced in Section 3 and they are
validated in Section 3.4. In the next section, the numerical results are given. The conclusions are drawn in

the final section.

2 Geometry and Parameters

2.1 Catamaran geometry and dimensions

The London Demonstrator catamaran investigated in the present work is designed by the Maritime Safety

Research Centre (MSRC) at the University of Strathclyde, which is a partner at the ongoing EU funded

project TrAM (https://tramproject.eu/). The London Demonstrator is designed for The Thames River as a
battery-driven, zero-emission passenger ferry. As the catamaran is still at the initial design stage, the
geometry illustrated in Figure 1 is selected as a showcase validating the numerical methods and examining
the shallow water effect. Some main dimensions of the London Demonstrator are summarised in Table 1,

where Ly, is the length between perpendiculars.

————

Figure 1 Geometry of London demonstrator.
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Table 1 Main dimensions of the TrAM London Demonstrator catamaran.

Dimension Symbol Value®
Overall breadth B/Lyy 0.255
Demihull breadth b/Lyy 0.068
Separation /Ly 0.187
Draught T/Lpy 0.033
Water depth H/T 2.0

*All values are dimensionless

2.2 Parameters for analysis

In ship hydrodynamics, Froude number is an important non-dimensional parameter measuring the speed
of the vessel, which is defined as:
Fn=—0 (1
ILpp

where U is the ship speed, g is gravity acceleration. For ships advancing in shallow waterways, the Froude

number defined based on the water depth is playing a significant role in determining the ship
hydrodynamics:
U
Fny = — (2)

ol
The hydrodynamic performance of the TrAM London Demonstrator is analysed by examining its total
resistance (Ry), sinkage (o) and trim (8). The total resistance is decomposed into the frictional component
(RFp) and pressure component (Rp), i.e., R = Rp + Rp. The sinkage and trim are measured based on the
centre of mass of the catamaran and they defined as positive when the catamaran goes down and the bow
moves up respectively. Moreover, the resistance coefficients are also used for analysis. The total resistance
coefficient is defined as
Rr

Cr = 05075

(3)

Similarly, the frictional and pressure resistance coefficients can be formulated as
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Rp
CF = 2
0.5pU%S ()
Rp
CP == 2
0.5pU%S

where p is the water density, U is the moving speed of the catamaran and S € (S,,,, Sz, ) is the wetted
surface area, where S, and S, are the static and dynamic wetted surface areas respectively. The

frictional resistance coefficient can also be estimated by the ITTC 1957 correlation line formula

A 0.075
PITTC ™ log, o (Re) — 2]2

(5)

3 Methodology
3.1 Computational methods

3.1.1 Flow simulation

The unsteady incompressible turbulent flow in the present study is simulated by solving the unsteady
Reynolds-Averaged Navier-Stokes (URANS) equations. The corresponding continuity and momentum

equations can be formulated as

AT (6)
axi B
om0 __ 105 o7
R Sy €7 S v b L 7
TR GBI T Rt et e )

where p is the fluid density, x; and x; are the components of the position vector in Cartesian coordinate,
u, and w, are the components of the mean velocity vector, u;u; is the Reynolds stresses and p is the mean

pressure. T,; are the components of the mean viscous stress tensor, which can be written as

T, =V o, + @ (8)
Y axj axi

where v is the fluid kinematic viscosity.

The k — w SST turbulence model, which has been widely used for marine hydrodynamics [21,29,32], is
employed as the closure for Eq. (6) and (7). Here, the flow governing equations including the turbulent

model are solved using a finite volume method implemented in the commercial code Star CCM+ 14.06.
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The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) was used as the solution procedure,
where the continuity and momentum equations are solved sequentially and then coupled via a predictor-
corrector approach. The spatial discretisation was achieved using a second-order scheme while a first-
order scheme was employed for temporal discretisation since we are only focused on the final converged

equilibrium state.

3.1.2 Free surface capturing

For marine hydrodynamics, the appropriate capture of the free surface is of great importance in order to
accurately predict the wave height. In the present work, the volume of fluid (VOF) method in combination
with the High-Resolution Interface Capturing (HRIC) scheme was adopted to calculate the wave elevation
induced by the motion of the catamaran. To avoid the wave’s reflection at the boundaries of the
computational domain, a wave forcing method was used at relevant boundaries to guarantee that the wave
is completely damped out when it reaches the domain boundary. The wave forcing length and relevant

boundaries are illustrated in Figure 3.

3.1.3 Dynamic trim and sinkage

As the catamaran is advancing in the water, the surface of the hull will interact with the surrounding water,
leading to a fluid-body interaction problem. In the present study, only the heave and pitch motions were
allowed while the rest degrees of freedom were fixed. The Dynamic Fluid-Body Interaction (DFBI)
method provided in Star CCM+ 14.06 package was employed to calculate the sinkage and trim of the
catamaran according to the fluid forces and moments acting on the hull surface. As the overset grid strategy
was used in the present study, the DFBI method was only applied to the demi-hull and its associated region

(see section 3.2).

3.1.4 Coordinate system

In the present simulation, two different coordinate systems are used: an earth-fixed (global) system and a
ship-fixed (local) system. The flow simulation was carried out within the earth-fixed coordinate system
and the computed forces and moments were then transformed to the ship-fixed coordinate system whose
origin was located at the centre of mass of the catamaran. The equations of the motion were solved based
on the latest forces and moments using the DFBI method. The new position and velocity of the hull were

then converted back to the earth-fixed system as the boundary condition for the flow simulation. After
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updating the position of the hull, the connectivity between the two sub-domains in the overset grid method

was re-calculated accordingly.

3.2 Computational domain and boundary conditions

As the catamaran is geometrically symmetrical about its mid-plane, only one demi-hull was used for CFD
simulation in order to reduce computational cost. Besides, the overset grid method was employed in the
present study, i.e., the entire computational domain was decomposed into two regions: an inner region
around the demi-hull (Hull Region) and an outer region forming the virtual tank (Tank Region). Figure 2
shows the two regions and corresponding boundary conditions. The flow variables between the two flow
regions were exchanged at the overlapping boundary via linear interpolation. For deep water scenarios, as
demonstrated in Figure 3 (a-b), the Tank Region was extended 1.5L;; in front of the hull and 5L, behind
it. The lower and upper boundaries were 2.5L,, and 1.5L,, away from the undisturbed water level
respectively. The side boundary of the Tank Region was 2.5L,, away from the symmetry plane of the
catamaran. The velocity inlet condition was applied at the inlet, top, bottom and side boundaries. The
pressure outlet condition was used for the outlet boundary. The demi-hull surface was considered as the
no-slip wall. To avoid wave refection, a wave forcing method was applied to the regions near the inlet,
outlet and side boundaries, as shown in Figure 3 (a-b). For shallow water scenarios, the size of the Tank
Region remained the same as the one used for deep water cases except that the bottom surface was 2.15

metres below the water level (water depth =2.15 m), where the slip wall boundary condition was applied.

Velocity Inlet Velocity Inlet

Pressure Outlet

Overset Boundary

No-slip Wall

Symmetry Slip Wall

Figure 2 Computational domains (left: Tank Region; right: Hull Region) and boundary conditions.

3.3 Mesh generation

The CFD mesh used in the present study was generated using the automated meshing functionality in Star
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CCM+ 14.06, which was comprised of prism cells around the hull and the hexahedral cells in the rest
region. The meshes for the Tank Region and Hull Region were generated separately and an overset grid
interface was created between the two regions. Anisotropic mesh refinements were performed in various
areas in order to appropriately capture the flow features. Specifically, three volumetric mesh controls in
three different levels were created around the hull. Similarly, such volumetric mesh controls were also
generated to capture the Kelvin waves, the flow wakes behind the hull and the free surface, as
demonstrated in Figure 3. All mesh refinements were done by setting a target mesh size relative to a base
size specified by the user in the automated meshing tool of Star CCM+ 14.06. The mesh density can also
be controlled by varying the value of this base size. Additionally, special attention was given to the
overlapping area of the Tank Region and Hull Region when generating the volume mesh. First, the mesh
cells within the overlapping region were of similar size. Besides, the overlapping zone was comprised of

at least five cell layers in both regions to ensure an accurate and conservative interpolation.
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Figure 3 Computational meshes and domain dimensions used for deep water (a, ¢) and shallow water cases (b, d).

To properly resolve the flow boundary layer, prism mesh layers should be used in the vicinity of the hull.
Here, the thickness of the turbulent boundary layer was estimated by
8 = 0.37L,,/Re®? (9)

where Re is the Reynolds number based on L,,,. Ten layers of prism cells were placed within the boundary
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layer. As the wall function was used in the turbulent model, the distance of the first prism layer to the hull
surface was targeted at y+ =100. Figure 4 demonstrates the computed y+ distribution on the hull surface
and it can be observed that for both Froude numbers the y+ values are within the range (30 < y+ < 300)

that the wall function can be appropriately applied.

VI/alI Y+
30.00 72.50 115.00 157.50 200.00
[ . | |

30.00 72.50 115.00 157:50 200.00
| | -

Figure 4 Computed y+ distribution on the demihull surface at Fn = 0.287 (upper) and 0.805 (below) in shallow water.

3.4 Numerical validation
3.4.1 NPL 4a02 catamaran

The first case used to validate the computational methods used in the present study was the NPL 4a02
catamaran from a series of model tests carried out by Molland et al. [9]. The same computational methods
and mesh generation strategies presented in Section 3 were also applied here. The total number of mesh
cells used for this validation case was around 4.7 million. Figure 5 demonstrates the total resistance
coefficients, sinkage-to-draught ratios and trim angles as functions of the Froude number, from which it

is observed that the computed results are in good agreement with the experimental data.
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Figure 5 Total resistance coefficients (a), sinkage and trim (b) of NPL 4a02 model.

3.4.2 Stavanger demonstrator

The computational methods presented in Section 3 were further validated against the experimental data of
the Stavanger demonstrator [2,3] measured in the Hamburg Ship Model Basin (HSVA). The geometry of
the Stavanger demonstrator is illustrated in Figure 6 (a) and the mesh used for simulation is demonstrated
in Figure 6 (b), which was consisted of about 11.4 million cells. The computational domain, boundary
conditions and mesh system were generated in similar manners to those presented in Section 3. Table 2
compares the total resistance coefficients of the Stavanger demonstrator obtained from CFD simulations
with that from physical model tests. It is seen that for the four speeds considered here, the difference

between the present numerical result and the experimental data is within 1.5%.

Figure 6 Geometry of Stavanger demonstrator (a) and CFD mesh used for simulation (b).
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Table 2 Total resistance coefficient of Stavanger demonstrator obtained from model tests and CFD simulation.

Fn Crcrp X10° CrExp X10° Error
0.57 5.476 5.520 -0.79%
0.63 4.844 4.899 -1.11%
0.69 4.404 4.437 -0.74%
0.75 4.098 4.157 -1.42%

4  Results and Discussion

4.1 Resistance, sinkage and trim

As the present paper aims to validate the numerical methods adopted for simulation, a blind validation
study was carried out by MSRC and HSVA, where the commercial solver Star CCM+ 14.06 was used by
MSRC whereas an in-house code FreSCo+ [49] was employed by HSVA. The number of mesh cells for
both simulations was approximately 6 million. Figure 7 shows the resistances and motions of the full-
scale London Demonstrator in deep water, from which we can observe that very good agreement is
accomplished between the present results (Strath) and those from HSVA. It is seen from Figure 7 (a) that
the total resistance (R) rises monotonously as the speed of the catamaran increases. The relation between
Ry and Fn is almost linear when Fn < 0.4. A continuous change in the slope of the total resistance curve
can be observed when 0.4 < Fn < 0.6, which is also reported by Zaghi et al. [30] in the same Froude
number range and indicates the experience of unfavourable interferences. The frictional component (Rf)
also rises monotonously with the increase of the speed while the pressure component (Rp) experiences a
peak at Fn = 0.575. Besides, Rp is the larger component at lower speeds whilst it becomes smaller when

Fn is greater than 0.65.

The sinkage and trim are demonstrated in Figure 7 (b) and it is observed that the trim angle of the
catamaran is always positive, i.e., the stern goes down for all speeds considered here. At lower speeds (Fn
< 0.4), the trim angle of the London Demonstrator remains almost zero. When Fn becomes higher than
0.4, it rises significantly and reaches its peak at Fn = 0.575 where Rp also achieves its maximum value.
In terms of the sinkage of the catamaran, it keeps positive (the hull moves downwards) until the Fn is
higher than 0.7. The largest sinkage is experienced at Fn =0.517, which is slightly smaller than the Froude

number where the trim maximum is accomplished. It should also be noted that the significant changes in
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trim and sinkage occur when 0.4 < Fn < 0.6, corresponding to the range where the total resistance curve
varies. It will be shown in the following sections that these behaviours of resistance and motion are closely

associated with the position and strength of the crests and troughs at the central plane of the catamaran.
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Figure 7 Resistances (a) and motions (b) of the London Demonstrator in deep water.

Figure 8 compares the resistances and motions of the London Demonstrator in shallow water obtained
from the present calculation with those computed by HSVA using FreSCo+. It can be seen that the results
from both solvers also agree very well with each other for shallow water scenarios. It is interesting to
observe from Figure 8 (a) that Ry experiences a hump at Fn = 0.287, corresponding to a depth Froude
number (Fny = 1.12) around the critical value. It has been widely acknowledged that fast catamarans will
experience a dramatic surge in total resistance coefficient near the critical speed in shallow water [45,48].
However, the existence of such a hump in total resistance rather than the coefficient near the critical depth
Froude number is rarely reported in previous studies. Ry rises monotonously after the hump (when Fn >
0.35) as the continuous increase of the frictional resistance. An inspection of Rp and Ry curves reveal that
the hump comes from the pressure component of the resistance, indicating it is the consequence of wave
interference between the demihulls. Different from the total resistance, Rp declines after the hump and the
frictional resistance exceeds Rp and becomes the larger part of the total resistance when Fn > 0.55. The
existence of such a hump in the Ry curve should be carefully considered in the design of the catamaran to
guarantee that the installed power is sufficient to overcome the hump resistance in the process of
accelerating the vessel to the designed speed. It is observed from Figure 8 (b) that the sinkage and motion

of the catamaran change significantly near the critical speed, which agrees with previous studies on high
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speed catamarans [45,48].
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Figure 8 Resistances (a) and motions (b) of the London Demonstrator in shallow water (H =2.15 m).

Figure 9 compares the resistances and motions of the London Demonstrator in deep and shallow water.
Hereafter, only the results computed using Star CCM+ 14.06 are used for further analysis. The total
resistance in shallow water is higher than that in deep water at smaller Froude numbers (Fn < 0.45)
because of the hump near the critical speed. When Fn further increases, Ry in shallow water becomes
lower due to the reduction of pressure resistance Rp. The frictional resistances in deep and shallow water
are almost the same, i.e., the difference between the total resistance in deep and shallow water results from
significantly different wave patterns and interferences, which will be demonstrated in the following
sections. By comparing the motions of deep and shallow water cases, it is found that the maximum trim
angles accomplished in deep and shallow water are close to each other (= 1.0 degree). However, the
maximum of trim in shallow water is reached near the critical speed (Fn = 0.287) whereas the peak in
deep water is achieved at Fn = 0.575. Similar to deep water cases, the maximum value of shallow water
trim 1is also achieved at the Froude number where the pressure resistance peaks (Fn = 0.287). The sinkage
of the catamaran in shallow water is larger in sub- and trans-critical ranges (Fn < 0.3) whilst in
supercritical region, the sinkage in shallow water becomes smaller than that in deep water, which leads to
a considerable reduction in pressure drag, as observed from Figure 9 (a). Furthermore, the sinkage of the

catamaran in shallow water is positive at subcritical speeds. With the further increase of Froude number,
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the catamaran’s centre of mass starts to move upward and when Fn > 0.35, the change rate of sinkage

becomes less significant.
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Figure 9 Comparison of resistances (a) and motions (b) of Isondon Demonstrator in deep and shallow water (H = 2.15
m).
The resistance coefficients of the London Demonstrator in deep and shallow water are illustrated in Figure
10 and Figure 11 respectively. The total resistance coefficients (Cr) are normalised using both static and
dynamic areas and the differences are small for both deep and shallow water cases. Generally, the
coefficients calculated based on the dynamic wetted area are slightly smaller and the difference only
becomes noticeable for the highest speed (Fn = 0.8). The frictional resistance coefficients (Cr) of the
catamaran in both deep and shallow water agree well with those predicted using the ITTC 1957 correlation
line formula, indicating the frictional resistance is not significantly affected by shallow water. Moreover,
for deep water cases shown in Figure 10, Cr and Cp experience multiple peaks as the increase of Froude
number. The peaks at lower Froude numbers (Fn < 0.4) are higher than that at Fn = 0.46. The total
resistance coefficient drops significantly as the further increase of the advance speed. The present Cr curve
differs from those observed in some previous studies, where the humps at smaller Froude numbers were
usually lower [9,13,30]. This may be associated with the exact hull form and configuration of the

catamaran, which leads to a different wave interference between the demihulls.
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Figure 10 Total resistance coefficient (a), and pressure and frictional resistance coefficients (b) of the London
Demonstrator in deep water.

For the shallow water scenario (Figure 11), the resistance coefficient of the catamaran reaches its peak
value around the critical depth Froude number and then declines dramatically as the moving speed
increases. The maximum C; value in shallow water is approximately 2.4 times higher than that created in
deep water. This ratio is smaller than the value obtained by Castiglione et al. [48] for a similar catamaran
configuration, where the C; peak in shallow water is about 4.2 times larger than that in deep water.
Different from the hump of the Ry curve in shallow water, as shown in Figure 9 (a), which is not
commonly seen in previous papers, the dramatic increase of Cy near the critical speed has been widely
observed in both model tests and numerical simulations [45,48]. It is worth noting that the maximum total
resistance coefficient does not correspond to the maxima of the total resistance, according to which the
propulsion power should be installed. For the London Demonstrator examined here, the maximum total

resistance is accomplished at the highest speed considered here (see Figure 9 (a)), where Cy reaches its

minimum value.
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Figure 11 Total resistance coefficient (a), and pressure and frictional resistance coefficients (b) of the London
Demonstrator in shallow water (H = 2.15 m).

4.2 Wave patterns

The wave patterns created by the London Demonstrator at various speeds in deep water are demonstrated
in Figure 12. The catamaran generates typical Kelvin wave patterns at lower speeds, which comprise of
both transverse and divergent waves. As the increase of the Froude number, the amplitude and length of
the induced wave also increase while the Kelvin wave angle becomes smaller. Besides, the divergent
waves become dominant in the wave pattern at Fn = 0.805. Figure 13 demonstrates the wave elevations
of the catamaran in shallow water, which are profoundly different from those shown in Figure 12. As
expected, when the depth Froude number is near its critical value (Fny = 1.0), the Kelvin wave angle is
close to 90 degree and the critical wave is created at Fny = 1.12, which is located right in front of the
catamaran. The critical wave is normal to the advance direction of the vessel and its attitude is significantly
elevated, which leads to the hump observed in the Ry curve in Figure 8 (a) and the remarkable Cr peak
shown in Figure 11 (b). Besides, the critical wave significantly elevates the bow, creating the trim maxima
observed from Figure 8 (b). Behind the stern of the vessel, divergent waves are generated. As the moving
speed increases to the supercritical range, the critical wave disappears and divergent waves are created
near both the bow and stern of the hull. The further increase of the Froude number reduces the angles of

the divergent waves. However, the overall wave patterns are not significantly changed. In both deep and
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shallow water, the decrease of the Kelvin wave angle leads the intersection point of the bow waves created
by the two demihulls to move astern, which will be more clearly observed from Figure 14 and Figure 15

as well as the wave cuts demonstrated in the next section.

Figure 12 Wave patterns created by the London Demonstrator in deep water.

0

Figure 13 Wave patterns created by the London Demonstrator in shallow water (H = 2.15 m).
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Figure 14 The wave interaction between demihulls in deep water.

The behaviours of the resistance, trim and sinkage discussed in the previous section can be better
understood by analysing the interaction between the wave systems generated by the demihulls. Figure 14
shows a closer inspection of the wave interference between the demihulls in deep water. We can observe
that at smaller Froude numbers (e.g. when Fn < 0.3), multiple crests and troughs exist within the inner
region between the two hulls. Enhanced crests and troughs become pronounced when Fn = 0.345 at the
symmetry plane of the catamaran, where the waves meet and strengthen each other. At Fn = 0.46, another
two troughs are generated on each side of the symmetry plane apart from the one created at the central

plane, indicating a significant secondary wave interference. At this Froude number, the secondary troughs
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are located slightly behind midship. As the Froude number increases to 0.575, the crest and troughs
between the demihulls are moved further downstream, which has also been reported in previous studies
[13,30]. In particular, the secondary wave troughs are generated near the stern with higher amplitudes,
which leads to a larger sinkage at the stern, thereby creating the peak of trim as shown in Figure 7 (b).
Moreover, as discussed in Figure 9 (a), the pressure resistance Rp reaches its maximum value at Fn =
0.575, implying the wave interference is the strongest at this Froude number. When Fn = 0.805, the wave
troughs created due to the secondary wave interaction are moved behind the aft of the catamaran (see
Figure 12), which leads to a decrease in the trim as the secondary troughs are closer to the hull surface,
thereby having more direct impact on the motion of the demihull. Another observation from the wave
pattern at Fn = 0.805 is that the first crest in the inner region is produced near midship, which results in
the reduction of the moment causing the pitch motion, leading to the decrease in trim angle. On the other
hand, with the first crest further strengthened and moved near the catamaran’s centre of mass, this crest
will lift the entire catamaran instead of the bow. Therefore, the sinkage becomes negative (the hull moves

upward) at higher Froude numbers.

The wave interferences between demihulls in shallow water are demonstrated in Figure 15. Several
significant differences from those in deep water can be observed. First, at trans-critical speeds (Fn =0.23
and 0.287), wave interactions between the demihulls seem to be suppressed due to the creation of the
critical wave in front of the catamaran (see Figure 13), i.e., the phenomenon of existing multiple crests
and troughs within the inner region disappears. At supercritical speeds (Fn > 0.345), the three troughs
observed in deep water (e.g., in Figure 14 when Fn = 0.46) are not seen in shallow water cases. Instead,
another two secondary crests are generated apart from the primary one at the catamaran’s central plane.
As the Froude number increases, the wave crests are stretched and moved towards the stern. As previously
discussed, both trim and sinkage will be decreased with the first crest moving midship. This trend will be
further enhanced due to the creation of the secondary crests, i.e., at higher speeds, both the trim and sinkage

in shallow water are smaller, as seen from Figure 9 (b).
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Figure 15 The wave interaction between demihulls in shallow water.

4.3 Longitudinal wave cuts

The wave propagation within the inner region can be better understood by analysing the longitudinal wave
cuts at the central plane of the catamaran as demonstrated in Figure 16. It is seen that the wave starts to
come into being at the forward perpendicular (FP) for all cases except those at trans-critical speeds (Fny
=0.896 and 1.12) in shallow water, where the water is elevated at least 0.5L, ahead of the catamaran and
reaches the maximum height near the FP. In deep water, both the wave height and wave length increase
as the Froude number rises, confirming the observations from Figure 14. The increase of the wave length
leads to a reduction in the number of waves between FP and aft perpendicular (AP). For example, there

are approximately three waves between FP and AP when Fn = 0.23 while the number becomes less than
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one when Fn increases to 0.805. It is interesting to observe that at Fn = (0.575, the wave number between
FP and AP is approximately unity and this Froude number corresponds to the maximum value of the
pressure component of total resistance (see Figure 9 (a)). In shallow water, the first wave crest behind the
bow is always higher than that created in deep water, especially near the critical speed. The difference is
considered small only when the Froude number is greater than 0.575. Moreover, no noteworthy wave
troughs are generated between FP and AP in shallow water, which significantly differs from those in deep
water. Furthermore, the catamaran generates higher wave crests behind the stern in deep water while

creating deeper wave troughs in shallow water.

As observed from previous wave patterns in Figure 14 and Figure 15, the catamaran generates a
remarkable trough right behind the stern of the demihull. The magnitude of this trough can be more clearly
demonstrated by the longitudinal wave cuts at the mid-plane of the demihull, as shown in Figure 17. In
deep water, the magnitude of the trough reaches its maximum value at Fn = 0.575, where the water level
difference between FP and AP is also maximised. In shallow water, the trough’s magnitudes at trans-
critical speeds are significantly larger than those in deep water. The maximum amplitude is achieved at
Fn = 0.287, where the critical wave is also created in front of the bow, resulting in a remarkably large
difference between the water levels at the FP and AF of the catamaran. It is worth emphasising that Fn =
0.287 and 0.575 correspond to the speeds where the maximum pressure resistance is produced in shallow
and deep water respectively, as seen from Figure 9 (a). At supercritical speeds, the trough’s amplitude in
shallow water becomes smaller than that in deep water, which can be attributed to smaller sinkage and

trim created in shallow water.
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Figure 16 Comparison of the longitudinal wave cuts at the catamaran symmetry plane in deep and shallow water.
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4.4 Cross flow fields

With the wave interference between the demihulls, the flow field created by the demihull becomes non-
symmetrical against its mid-plane, which will cause a transverse pressure gradient. This can further lead
to a cross flow under the keel of the demihull, which is believed to be one of the main causes of the
increase in total resistance [31]. The cross flow fields of the London Demonstrator are plotted in Figure
18, where the positive and negative velocities indicate that the flow moves to the outer and inner regions
respectively. In deep water, the location and strength of the cross flow are closely associated with the wave
interaction between the demihulls. At lower Froude numbers, multiple changes of the cross flow direction
under the keel can be observed, which corresponds to the existence of multiple waves between the
demihulls (see Figure 14 and Figure 16). With the increase of the Froude number, the strength and
extension of the cross flow are significantly enhanced and the locations where the cross flow occurs is
also moved towards the stern. This phenomenon was also observed by Zaghi et al. [30] and Farkas et al.
[34]. Besides, the number of changes in the cross flow direction is also reduced with the increase of the
speed. At higher Froude numbers, significant cross flows are also generated behind the stern. For shallow
water scenarios, similar to the deep water cases, the strength of the cross flow is considerably enhanced
and the location where the maximum cross flow occurs is also moved towards the stern with the increase
of the speed. However, the cross flows created in shallow water are remarkably stronger than the
corresponding cases in deep water. Moreover, the phenomenon of multiple changes in cross flow direction
observed at lower Froude numbers no longer exists, and for all speeds in shallow water, the cross flow

moves from the inner side of the demihull to the outer region.
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Figure 18 Cross flow fields at the mid-plane of the demihull for deep (left) and shallow (right) water. Positive and
negative velocity values mean the flow moves towards the outer and inner sides of the demihull respectively.

5 Conclusion

In the present work, the hydrodynamics of a full scale, zero-emission, high-speed catamaran (London
demonstrator) in both deep and shallow water was numerically investigated. The numerical methods used
in the current study were validated against experimental data of the NPL 4a02 model [9] and the Stavanger
demonstrator [2]. For numerical simulations on the London Demonstrator, a blind validation was also

carried out in collaboration with HSVA and good agreement was accomplished.
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The resistance, sinkage and trim of the London Demonstrator as functions of Froude number (ranged from
0.2 to 0.8) in deep and shallow water were firstly analysed. The total resistance in deep water increased
continuously while in shallow water, a hump was experienced at Fn = 0.287 (Fny = 1.12). Besides, the
total resistance in shallow water was higher when Fn < 0.45 and became smaller at larger speeds. As the
frictional resistance was almost the same in deep and shallow water, i.e., the difference in total resistance
was mainly caused by the pressure component. The variations of the pressure resistance were closely
related to the behaviours of trim and sinkage. In particular, the maximum trim was accomplished at the
Froude number where the pressure resistance was maximised (Fn = 0.287 and 0.575 for shallow and deep
water respectively). The largest sinkage in shallow water occurred at the lowest speed whereas in deep
water the sinkage reaches its maxima at a Froude number (Fn = 0.517) slightly lower than the one where
the maximum trim occurred. Furthermore, the total resistance coefficient curve in deep water showed

multiple humps while only one significant peak near the critical speed was produced in shallow water.

The computed wave patterns, longitudinal wave cuts and cross flow fields were also analysed and
correlated with the behaviours of the resistance and motion of the catamaran. In general, for both deep
and shallow water scenarios, the crests and troughs generated within the inner region were strengthened
and moved astern with the increase of Froude number. In deep water, the maximum pressure resistance
was related to the creation of a secondary trough near the stern of the demihull. In contrast, the mechanism
involved in shallow water was due to the generation of a critical wave in front of the catamaran and normal
to the moving direction. Moreover, the creation of maximum pressure resistance was also correlated with
the largest water level difference between the forward and aft perpendiculars. Cross flows occurred in
both deep and shallow water scenarios due to the asymmetrical flow fields between the inner and outer
regions. Compared with deep water cases, the cross flows created in shallow water were much stronger.
Moreover, the cross flow in shallow water moved towards the outer region for all speeds considered here,

whereas, in deep water, changes in cross flow directions were observed.
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