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The present paper investigates numerically the resistance at full-scale of a zero-emission, high-speed 

catamaran in both deep and shallow water, with the Froude number ranging from 0.2 to 0.8. The numerical 

methods are validated by two means: a) comparison with available model tests; b) a blind validation using 

two different flow solvers. The resistance, sinkage and trim of the catamaran, as well as the wave pattern, 

longitudinal wave cuts and cross-flow fields, are examined. The total resistance curve in deep water shows 

a continuous increase with the Froude number while in shallow water, a hump is witnessed near the critical 

speed. This difference is mainly caused by the pressure component of total resistance, which is 

significantly affected by the interaction between the wave systems created by the demihulls. The pressure 

resistance in deep water is maximised at a Froude number around 0.58, whereas the peak in shallow water 

is achieved near the critical speed (Froude number ≈ 0.3). Insight into the underlying physics is obtained 

by analysing the wave creation between the demihulls. Profoundly different wave patterns within the inner 

region are observed in deep and shallow water. Specifically, in deep water, both crests and troughs are 

generated and moved astern as the increase of the Froude number. The maximum pressure resistance is 

accomplished when the secondary trough is created at the stern, leading to the largest trim angle. In 

contrast, the catamaran generates a critical wave normal to the advance direction in shallow water, which 
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significantly elevates the bow and creates the highest trim angle as well as pressure resistance. Moreover, 

significant wave elevations are observed between the demihulls at supercritical speeds in shallow water 

which may affect the decision for the location of the wet deck.       

 

Keywords:  fast catamaran; shallow water resistance; full-scale CFD
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1 Introduction 

Low-carbon, environmentally-friendly maritime transport is playing an important role in reducing the 

emission of greenhouse gases and building a sustainable future. The need for technological innovations in 

the design of zero-emission ships is posing challenges for the maritime industry in the coming decades. 

The research presented herein was conducted in the European Commission (EC) funded research project 

TrAM (Transport: Advanced and Modular, https://tramproject.eu/), which aims at designing and 

manufacturing battery-powered fast catamarans operating in coastal areas and inland waterways by 

implementing modular design and production methods. Given the significant lower specific energy 

content of batteries compared to conventional fuels [1], the design of zero-emission high-speed marine 

vehicles poses unique challenges and limitations which are tackled within the TrAM project. These include 

the selection of the appropriate battery technology and specification, safety considerations and of course, 

multi-objective hull form optimisation in the presence of shallow water effects [1–4]. The present study 

is focused on the battery-driven, zero-emission ‘TrAM London Demonstrator’, designed for The Thames 

River. It examines the hydrodynamic performance of the preliminary design of this high-speed catamaran 

in shallow water as it affects directly the rate by which the vessel consumes the stored energy. Therefore, 

it verifies and validates the computational methods employed in the hydrodynamic optimisation of the 

hull form. 

 

Catamarans, due to their favourable performance in efficiency and stability at high speeds, have been 

widely studied experimentally, theoretically and numerically over the past decades [5–7]. A series of 

model tests were carried out by Insel and Molland [8] and Molland et al. [9] investigating the calm water 

resistance of fast catamarans with symmetrical demihulls, whereas Zaraphonitis et al. [10] have studied 

asymmetrical demihulls. Their studies emphasised the effects of demihull dimensions and separation 

distance on the resistances and motions of the catamarans over a wide range of Froude numbers (0.2 ≤ Fn 

≤ 1.0). van’t Veer [11] also experimentally investigated the resistance and dynamic motion characteristics 

using Delft 372 catamaran, which has been used as a benchmark for numerical simulations. Later 

experimental studies with Delft 372 catamaran were concentrated on the hydrodynamic interference 

between demihulls [12,13] and seakeeping [14–16]. Broglia et al. [13] carried out experimental work 

examining the interference effects between the demihulls of a catamaran. It was found that positive 

inference only occurred within a narrow range of testing conditions and the interaction between demihulls 
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could increase the total resistance by up to 30%. The interference effects were less strong at very low and 

very high Froude numbers (Fn < 0.3 or Fn > 0.7). Zaraphonitis et.al. [17] studied the optimisation of the 

hull shape with regards to powering and wash for a high speed catamaran. Souto-Iglesias et al. [18] also 

investigated experimentally the interference phenomenon of a catamaran and compared the wave systems 

created by the catamaran and the corresponding monohull. They concluded that the non-centred inner 

wave cuts are also important evidence for the analysis of wave interference. Later, Souto-Iglesias et al. 

[19] further studied the influence of demihull separation and testing condition on the interference 

resistance of a Series 60 catamaran and found that the free sinkage-trim condition enhanced both the 

favourable and unfavourable interference effects compared with fixed condition cases. Danışman [20] 

found that the wave interference resistance between the demihulls could be considerably reduced by 

placing an optimised Centrebulb, which led to a favourable secondary wave interaction. 

 

With the fast development of computer science and numerical methods, computational fluid dynamics 

(CFD) has become a feasible approach with sufficient accuracy to investigate ship hydrodynamics [21]. 

Various CFD solvers have been applied to examine the calm water resistance and seakeeping of both 

monohulls [22–24] and multihulls [25–29]. A combined experimental and numerical study was carried 

out by Zaghi et al. [30] to analyse the interference effects between the demihulls and the dependency on 

the separation of a high-speed catamaran. Two humps were found in the total resistance coefficient curves 

and the second one was much higher, corresponding to a stronger interference. Besides, a smaller 

separation distance led to a stronger interaction and a larger speed where the peak occurred. Broglia et al. 

[31] conducted a numerical analysis on the interference phenomena between the demihulls of the 

catamaran with emphasis on the validation of the CFD code and the Reynolds number effect. It was found 

that the numerical results agreed very well with the experiment in terms of resistance and wave cuts and 

the dependency on the scale effect was rather weak. He et al. [32] computationally investigated the effects 

of Froude number and demihull separation distance on the resistance and motion of the catamaran. They 

found that the resistance coefficient became higher at smaller separation distances, indicating stronger 

interference between the demihulls. Besides, the strongest demihull interaction occurred when Froude 

number is between 0.45 and 0.65 (0.45 < Fn < 0.65). When the Froude number is below 0.45 or above 

0.65, the variation of the separation distance had a negligible effect on the resistance as well as the sinkage 

and trim of the catamaran. Haase et al. [33] proposed a novel CFD-based method for the prediction of 

full-scale ship resistance, which relied on the results of the model test experiment and CFD simulation at 
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both model-scale and full-scale Reynold number. Farkas et al. [34] carried out a numerical study on the 

interference of resistance components for a Series 60 catamaran at medium Froude numbers, where the 

interference factor was decomposed into viscous interference and wave interference. They found that the 

form factor of the catamaran was independent of the Froude number, but decreased to the value of the 

monohull when the separation distance became larger. It was also observed that the viscous interference 

factor was independent of the Froude number but relied on the separation ratio of the catamaran. 

  

The shallow water effects must be considered when designing ships for restricted waterways (e.g., inland 

rivers, canals). Previous studies regarding shallow water effects for monohulls [35–39] revealed that the 

depth Froude number (𝐹𝑛𝐻 = 𝑈 √𝑔𝐻⁄ , where 𝑈 is the ship speed, 𝑔 is gravity acceleration and 𝐻is the 

water depth) is playing a key role in determining the performance of the vessel. A ship moving near the 

critical depth Froude number (𝐹𝑛𝐻 = 1.0) will experience a surge in total resistance coefficient and drastic 

changes in motions and wave patterns, which should be taken into account when passing through shallow 

water areas. In terms of catamarans operating in shallow water, several experimental and numerical studies 

are also available [40–43]. Molland et al. [44,45] experimentally investigated the resistance of a series of 

fast displacement catamarans in shallow water. Similar to monohulls, the catamarans experienced large 

increases in total resistance and wave elevation, and significant changes in sinkage and trim near the 

critical depth Froude number. The resistance increase was higher for the smaller water depth. Gourlay [46] 

theoretically predicted the sinkage and trim of various catamaran configurations in shallow water. It was 

found that the maximum sinkage and trim occurred at the trans-critical speed range. Lee et al. [47] 

designed and tested the shallow water behaviours of a small catamaran and further investigated the 

influence of the separation ratio between the demihulls on the resistance characteristics. The residual 

resistance coefficient surged near the critical depth Froude number and the sinkage and trim also varied 

significantly in the critical region. Castiglione et al. [48] studied the interference effects between the 

demihulls of a high-speed catamaran in shallow water using a CFD method. They concluded that for all 

separation ratios, the total resistance coefficients were significantly increased due to shallow water effects, 

with peaks achieved near the critical depth Froude number. However, at extreme subcritical and 

supercritical speeds, the total resistance coefficients in shallow water became smaller than the values of 

corresponding deepwater cases. It was also found that the interference factor reached its peak values 

around the critical speed and increased for smaller separation distances. Moreover, the sinkage and trim 

were also increased compared with deep water values and maximised at the critical speed. 
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Despite the extensive studies on the calm water resistance and interference of high-speed catamarans, 

CFD simulations on full-scale fast catamarans in shallow water are still rare. As aforementioned, the work 

in the present paper is part of the ongoing TrAM Project (https://tramproject.eu/) and the objectives of the 

current study are twofold: 1) validate the numerical methods and setups that will be employed in the hull 

optimisation stage, 2) investigate the shallow water effect on the calm water resistance, sinkage, trim and 

wave creation of the full-scale London Demonstrator catamaran using a CFD method. The rest of this 

paper is organized as follows: In Section 2, the geometry of the London Demonstrator and parameters 

used for analysis are presented. The computational methods are introduced in Section 3 and they are 

validated in Section 3.4. In the next section, the numerical results are given. The conclusions are drawn in 

the final section. 

2 Geometry and Parameters 

2.1 Catamaran geometry and dimensions 

The London Demonstrator catamaran investigated in the present work is designed by the Maritime Safety 

Research Centre (MSRC) at the University of Strathclyde, which is a partner at the ongoing EU funded 

project TrAM (https://tramproject.eu/). The London Demonstrator is designed for The Thames River as a 

battery-driven, zero-emission passenger ferry. As the catamaran is still at the initial design stage, the 

geometry illustrated in Figure 1 is selected as a showcase validating the numerical methods and examining 

the shallow water effect. Some main dimensions of the London Demonstrator are summarised in Table 1, 

where 𝐿𝑝𝑝 is the length between perpendiculars. 

 

Figure 1 Geometry of London demonstrator. 
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Table 1 Main dimensions of the TrAM London Demonstrator catamaran. 

Dimension Symbol Value* 

Overall breadth B/𝐿𝑝𝑝 0.255 

Demihull breadth b/𝐿𝑝𝑝 0.068 

Separation  s/𝐿𝑝𝑝 0.187 

Draught T/𝐿𝑝𝑝 0.033 

Water depth H/T 2.0 

*All values are dimensionless 

2.2 Parameters for analysis 

In ship hydrodynamics, Froude number is an important non-dimensional parameter measuring the speed 

of the vessel, which is defined as: 

 𝐹𝑛 =
𝑈

√𝑔𝐿𝑝𝑝
 (1) 

where 𝑈 is the ship speed, 𝑔 is gravity acceleration. For ships advancing in shallow waterways, the Froude 

number defined based on the water depth is playing a significant role in determining the ship 

hydrodynamics: 

 𝐹𝑛𝐻 =
𝑈

√𝑔𝐻
 (2) 

The hydrodynamic performance of the TrAM London Demonstrator is analysed by examining its total 

resistance (𝑅𝑇), sinkage (𝜎) and trim (𝜃). The total resistance is decomposed into the frictional component 

(𝑅𝐹) and pressure component (𝑅𝑃), i.e., 𝑅𝑇 = 𝑅𝐹 + 𝑅𝑃. The sinkage and trim are measured based on the 

centre of mass of the catamaran and they defined as positive when the catamaran goes down and the bow 

moves up respectively. Moreover, the resistance coefficients are also used for analysis. The total resistance 

coefficient is defined as 

 𝐶𝑇 =
𝑅𝑇

0.5𝜌𝑈2𝑆
 (3) 

Similarly, the frictional and pressure resistance coefficients can be formulated as 
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𝐶𝐹 =
𝑅𝐹

0.5𝜌𝑈2𝑆

𝐶𝑃 =
𝑅𝑃

0.5𝜌𝑈2𝑆

 (4) 

where 𝜌 is the water density, 𝑈 is the moving speed of the catamaran and 𝑆 ∈ (𝑆𝑠𝑤, 𝑆𝑑𝑤 ) is the wetted 

surface area, where 𝑆𝑠𝑤  and 𝑆𝑑𝑤  are the static and dynamic wetted surface areas respectively. The 

frictional resistance coefficient can also be estimated by the ITTC 1957 correlation line formula 

 𝐶𝑇,𝐼𝑇𝑇𝐶 =
0.075

[𝑙𝑜𝑔10(𝑅𝑒) − 2]2
 (5) 

 

3 Methodology 

3.1 Computational methods 

3.1.1 Flow simulation 

The unsteady incompressible turbulent flow in the present study is simulated by solving the unsteady 

Reynolds-Averaged Navier-Stokes (URANS) equations. The corresponding continuity and momentum 

equations can be formulated as 

 
𝜕𝑢𝑖̅
𝜕𝑥𝑖

= 0 (6) 

 
𝜕𝑢𝑖̅
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝑢𝑖̅𝑢𝑗̅ + 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ) +

1

𝜌

𝜕𝑝̅

𝜕𝑥𝑖
−
𝜕𝜏𝑖𝑗̅̅ ̅

𝜕𝑥𝑗
= 0 (7) 

where 𝜌 is the fluid density, 𝑥𝑖 and 𝑥𝑖 are the components of the position vector in Cartesian coordinate, 

𝑢𝑖̅ and 𝑢𝑗̅ are the components of the mean velocity vector, 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  is the Reynolds stresses and 𝑝̅ is the mean 

pressure. 𝜏𝑖𝑗̅̅ ̅ are the components of the mean viscous stress tensor, which can be written as 

 𝜏𝑖𝑗̅̅ ̅ = 𝜈 (
𝜕𝑢𝑖̅
𝜕𝑥𝑗

+
𝜕𝑢𝑗̅

𝜕𝑥𝑖
) (8) 

where 𝜈 is the fluid kinematic viscosity. 

 

The 𝑘 − 𝜔 SST turbulence model, which has been widely used for marine hydrodynamics [21,29,32], is 

employed as the closure for Eq. (6) and (7). Here, the flow governing equations including the turbulent 

model are solved using a finite volume method implemented in the commercial code Star CCM+ 14.06. 
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The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) was used as the solution procedure, 

where the continuity and momentum equations are solved sequentially and then coupled via a predictor-

corrector approach. The spatial discretisation was achieved using a second-order scheme while a first-

order scheme was employed for temporal discretisation since we are only focused on the final converged 

equilibrium state. 

3.1.2 Free surface capturing 

For marine hydrodynamics, the appropriate capture of the free surface is of great importance in order to 

accurately predict the wave height. In the present work, the volume of fluid (VOF) method in combination 

with the High-Resolution Interface Capturing (HRIC) scheme was adopted to calculate the wave elevation 

induced by the motion of the catamaran. To avoid the wave’s reflection at the boundaries of the 

computational domain, a wave forcing method was used at relevant boundaries to guarantee that the wave 

is completely damped out when it reaches the domain boundary. The wave forcing length and relevant 

boundaries are illustrated in Figure 3. 

3.1.3 Dynamic trim and sinkage 

As the catamaran is advancing in the water, the surface of the hull will interact with the surrounding water, 

leading to a fluid-body interaction problem. In the present study, only the heave and pitch motions were 

allowed while the rest degrees of freedom were fixed. The Dynamic Fluid-Body Interaction (DFBI) 

method provided in Star CCM+ 14.06 package was employed to calculate the sinkage and trim of the 

catamaran according to the fluid forces and moments acting on the hull surface. As the overset grid strategy 

was used in the present study, the DFBI method was only applied to the demi-hull and its associated region 

(see section 3.2). 

3.1.4 Coordinate system 

In the present simulation, two different coordinate systems are used: an earth-fixed (global) system and a 

ship-fixed (local) system. The flow simulation was carried out within the earth-fixed coordinate system 

and the computed forces and moments were then transformed to the ship-fixed coordinate system whose 

origin was located at the centre of mass of the catamaran. The equations of the motion were solved based 

on the latest forces and moments using the DFBI method. The new position and velocity of the hull were 

then converted back to the earth-fixed system as the boundary condition for the flow simulation. After 
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updating the position of the hull, the connectivity between the two sub-domains in the overset grid method 

was re-calculated accordingly. 

3.2 Computational domain and boundary conditions 

As the catamaran is geometrically symmetrical about its mid-plane, only one demi-hull was used for CFD 

simulation in order to reduce computational cost. Besides, the overset grid method was employed in the 

present study, i.e., the entire computational domain was decomposed into two regions: an inner region 

around the demi-hull (Hull Region) and an outer region forming the virtual tank (Tank Region).  Figure 2 

shows the two regions and corresponding boundary conditions. The flow variables between the two flow 

regions were exchanged at the overlapping boundary via linear interpolation. For deep water scenarios, as 

demonstrated in Figure 3 (a-b), the Tank Region was extended 1.5Lpp in front of the hull and 5Lpp behind 

it. The lower and upper boundaries were 2.5Lpp and 1.5Lpp away from the undisturbed water level 

respectively. The side boundary of the Tank Region was 2.5Lpp away from the symmetry plane of the 

catamaran. The velocity inlet condition was applied at the inlet, top, bottom and side boundaries. The 

pressure outlet condition was used for the outlet boundary. The demi-hull surface was considered as the 

no-slip wall. To avoid wave refection, a wave forcing method was applied to the regions near the inlet, 

outlet and side boundaries, as shown in Figure 3 (a-b). For shallow water scenarios, the size of the Tank 

Region remained the same as the one used for deep water cases except that the bottom surface was 2.15 

metres below the water level (water depth = 2.15 m), where the slip wall boundary condition was applied.  

 

 

Figure 2 Computational domains (left: Tank Region; right: Hull Region) and boundary conditions. 

 

 

3.3 Mesh generation 

The CFD mesh used in the present study was generated using the automated meshing functionality in Star 
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CCM+ 14.06, which was comprised of prism cells around the hull and the hexahedral cells in the rest 

region. The meshes for the Tank Region and Hull Region were generated separately and an overset grid 

interface was created between the two regions. Anisotropic mesh refinements were performed in various 

areas in order to appropriately capture the flow features. Specifically, three volumetric mesh controls in 

three different levels were created around the hull. Similarly, such volumetric mesh controls were also 

generated to capture the Kelvin waves, the flow wakes behind the hull and the free surface, as 

demonstrated in Figure 3. All mesh refinements were done by setting a target mesh size relative to a base 

size specified by the user in the automated meshing tool of Star CCM+ 14.06. The mesh density can also 

be controlled by varying the value of this base size. Additionally, special attention was given to the 

overlapping area of the Tank Region and Hull Region when generating the volume mesh. First, the mesh 

cells within the overlapping region were of similar size. Besides, the overlapping zone was comprised of 

at least five cell layers in both regions to ensure an accurate and conservative interpolation.  

 

 

Figure 3 Computational meshes and domain dimensions used for deep water (a, c) and shallow water cases (b, d). 

 

 

To properly resolve the flow boundary layer, prism mesh layers should be used in the vicinity of the hull. 

Here, the thickness of the turbulent boundary layer was estimated by 

 𝛿 = 0.37𝐿𝑝𝑝 𝑅𝑒0.2⁄  (9) 

where 𝑅𝑒 is the Reynolds number based on 𝐿𝑝𝑝. Ten layers of prism cells were placed within the boundary 
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layer. As the wall function was used in the turbulent model, the distance of the first prism layer to the hull 

surface was targeted at y+ =100. Figure 4 demonstrates the computed y+ distribution on the hull surface 

and it can be observed that for both Froude numbers the y+ values are within the range (30 < y+ < 300) 

that the wall function can be appropriately applied. 

 

 

Figure 4 Computed y+ distribution on the demihull surface at Fn = 0.287 (upper) and 0.805 (below) in shallow water. 

 

3.4 Numerical validation 

3.4.1 NPL 4a02 catamaran 

The first case used to validate the computational methods used in the present study was the NPL 4a02 

catamaran from a series of model tests carried out by Molland et al. [9]. The same computational methods 

and mesh generation strategies presented in Section 3 were also applied here. The total number of mesh 

cells used for this validation case was around 4.7 million. Figure 5 demonstrates the total resistance 

coefficients, sinkage-to-draught ratios and trim angles as functions of the Froude number, from which it 

is observed that the computed results are in good agreement with the experimental data. 
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Figure 5 Total resistance coefficients (a), sinkage and trim (b) of NPL 4a02 model. 

 

3.4.2 Stavanger demonstrator 

The computational methods presented in Section 3 were further validated against the experimental data of 

the Stavanger demonstrator [2,3] measured in the Hamburg Ship Model Basin (HSVA). The geometry of 

the Stavanger demonstrator is illustrated in Figure 6 (a) and the mesh used for simulation is demonstrated 

in Figure 6 (b), which was consisted of about 11.4 million cells. The computational domain, boundary 

conditions and mesh system were generated in similar manners to those presented in Section 3. Table 2 

compares the total resistance coefficients of the Stavanger demonstrator obtained from CFD simulations 

with that from physical model tests. It is seen that for the four speeds considered here, the difference 

between the present numerical result and the experimental data is within 1.5%. 

 

 

Figure 6 Geometry of Stavanger demonstrator (a) and CFD mesh used for simulation (b). 
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Table 2 Total resistance coefficient of Stavanger demonstrator obtained from model tests and CFD simulation. 

Fn 𝑪𝑻,𝑪𝑭𝑫  10
3 𝑪𝑻,𝑬𝒙𝒑  10

3 Error 

0.57 5.476 5.520 -0.79% 

0.63 4.844 4.899 -1.11% 

0.69 4.404 4.437 -0.74% 

0.75 4.098 4.157 -1.42% 

4 Results and Discussion 

4.1 Resistance, sinkage and trim 

As the present paper aims to validate the numerical methods adopted for simulation, a blind validation 

study was carried out by MSRC and HSVA, where the commercial solver Star CCM+ 14.06 was used by 

MSRC whereas an in-house code FreSCo+ [49] was employed by HSVA. The number of mesh cells for 

both simulations was approximately 6 million. Figure 7 shows the resistances and motions of the full-

scale London Demonstrator in deep water, from which we can observe that very good agreement is 

accomplished between the present results (Strath) and those from HSVA. It is seen from Figure 7 (a) that 

the total resistance (𝑅𝑇) rises monotonously as the speed of the catamaran increases. The relation between 

𝑅𝑇 and 𝐹𝑛 is almost linear when 𝐹𝑛 < 0.4. A continuous change in the slope of the total resistance curve 

can be observed when 0.4 < 𝐹𝑛 < 0.6, which is also reported by Zaghi et al. [30] in the same Froude 

number range and indicates the experience of unfavourable interferences. The frictional component (𝑅𝐹) 

also rises monotonously with the increase of the speed while the pressure component (𝑅𝑃) experiences a 

peak at 𝐹𝑛 = 0.575. Besides, 𝑅𝑃 is the larger component at lower speeds whilst it becomes smaller when 

𝐹𝑛 is greater than 0.65.  

 

The sinkage and trim are demonstrated in Figure 7 (b) and it is observed that the trim angle of the 

catamaran is always positive, i.e., the stern goes down for all speeds considered here. At lower speeds (𝐹𝑛 

< 0.4), the trim angle of the London Demonstrator remains almost zero. When 𝐹𝑛 becomes higher than 

0.4, it rises significantly and reaches its peak at 𝐹𝑛 = 0.575 where 𝑅𝑃 also achieves its maximum value. 

In terms of the sinkage of the catamaran, it keeps positive (the hull moves downwards) until the 𝐹𝑛 is 

higher than 0.7. The largest sinkage is experienced at 𝐹𝑛 = 0.517, which is slightly smaller than the Froude 

number where the trim maximum is accomplished.  It should also be noted that the significant changes in 
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trim and sinkage occur when 0.4 < 𝐹𝑛 < 0.6, corresponding to the range where the total resistance curve 

varies. It will be shown in the following sections that these behaviours of resistance and motion are closely 

associated with the position and strength of the crests and troughs at the central plane of the catamaran. 

 

Figure 7 Resistances (a) and motions (b) of the London Demonstrator in deep water. 

 

Figure 8 compares the resistances and motions of the London Demonstrator in shallow water obtained 

from the present calculation with those computed by HSVA using FreSCo+. It can be seen that the results 

from both solvers also agree very well with each other for shallow water scenarios. It is interesting to 

observe from Figure 8 (a) that 𝑅𝑇 experiences a hump at 𝐹𝑛 = 0.287, corresponding to a depth Froude 

number (𝐹𝑛𝐻 = 1.12) around the critical value. It has been widely acknowledged that fast catamarans will 

experience a dramatic surge in total resistance coefficient near the critical speed in shallow water [45,48]. 

However, the existence of such a hump in total resistance rather than the coefficient near the critical depth 

Froude number is rarely reported in previous studies. 𝑅𝑇 rises monotonously after the hump (when 𝐹𝑛 > 

0.35) as the continuous increase of the frictional resistance. An inspection of 𝑅𝑃 and 𝑅𝐹 curves reveal that 

the hump comes from the pressure component of the resistance, indicating it is the consequence of wave 

interference between the demihulls. Different from the total resistance, 𝑅𝑃 declines after the hump and the 

frictional resistance exceeds 𝑅𝑃 and becomes the larger part of the total resistance when 𝐹𝑛 > 0.55. The 

existence of such a hump in the 𝑅𝑇 curve should be carefully considered in the design of the catamaran to 

guarantee that the installed power is sufficient to overcome the hump resistance in the process of 

accelerating the vessel to the designed speed. It is observed from Figure 8 (b) that the sinkage and motion 

of the catamaran change significantly near the critical speed, which agrees with previous studies on high 
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speed catamarans [45,48]. 

 

 

Figure 8 Resistances (a) and motions (b) of the London Demonstrator in shallow water (H = 2.15 m). 

 

Figure 9 compares the resistances and motions of the London Demonstrator in deep and shallow water. 

Hereafter, only the results computed using Star CCM+ 14.06 are used for further analysis. The total 

resistance in shallow water is higher than that in deep water at smaller Froude numbers (𝐹𝑛  < 0.45) 

because of the hump near the critical speed. When 𝐹𝑛 further increases, 𝑅𝑇 in shallow water becomes 

lower due to the reduction of pressure resistance 𝑅𝑃. The frictional resistances in deep and shallow water 

are almost the same, i.e., the difference between the total resistance in deep and shallow water results from 

significantly different wave patterns and interferences, which will be demonstrated in the following 

sections. By comparing the motions of deep and shallow water cases, it is found that the maximum trim 

angles accomplished in deep and shallow water are close to each other (≈  1.0 degree). However, the 

maximum of trim in shallow water is reached near the critical speed (𝐹𝑛 = 0.287) whereas the peak in 

deep water is achieved at 𝐹𝑛 = 0.575. Similar to deep water cases, the maximum value of shallow water 

trim is also achieved at the Froude number where the pressure resistance peaks (𝐹𝑛 = 0.287). The sinkage 

of the catamaran in shallow water is larger in sub- and trans-critical ranges (𝐹𝑛  < 0.3) whilst in 

supercritical region, the sinkage in shallow water becomes smaller than that in deep water, which leads to 

a considerable reduction in pressure drag, as observed from Figure 9 (a). Furthermore, the sinkage of the 

catamaran in shallow water is positive at subcritical speeds. With the further increase of Froude number, 
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the catamaran’s centre of mass starts to move upward and when 𝐹𝑛 > 0.35, the change rate of sinkage 

becomes less significant. 

 

 

Figure 9 Comparison of resistances (a) and motions (b) of London Demonstrator in deep and shallow water (H = 2.15 

m). 

 

The resistance coefficients of the London Demonstrator in deep and shallow water are illustrated in Figure 

10 and Figure 11 respectively. The total resistance coefficients (𝐶𝑇) are normalised using both static and 

dynamic areas and the differences are small for both deep and shallow water cases. Generally, the 

coefficients calculated based on the dynamic wetted area are slightly smaller and the difference only 

becomes noticeable for the highest speed (𝐹𝑛 ≈ 0.8). The frictional resistance coefficients (𝐶𝐹) of the 

catamaran in both deep and shallow water agree well with those predicted using the ITTC 1957 correlation 

line formula, indicating the frictional resistance is not significantly affected by shallow water. Moreover, 

for deep water cases shown in Figure 10, 𝐶𝑇 and 𝐶𝑃 experience multiple peaks as the increase of Froude 

number. The peaks at lower Froude numbers (𝐹𝑛  < 0.4) are higher than that at 𝐹𝑛  = 0.46. The total 

resistance coefficient drops significantly as the further increase of the advance speed. The present 𝐶𝑇 curve 

differs from those observed in some previous studies, where the humps at smaller Froude numbers were 

usually lower [9,13,30]. This may be associated with the exact hull form and configuration of the 

catamaran, which leads to a different wave interference between the demihulls.  
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Figure 10 Total resistance coefficient (a), and pressure and frictional resistance coefficients (b) of the London 

Demonstrator in deep water. 

 

For the shallow water scenario (Figure 11), the resistance coefficient of the catamaran reaches its peak 

value around the critical depth Froude number and then declines dramatically as the moving speed 

increases. The maximum 𝐶𝑇 value in shallow water is approximately 2.4 times higher than that created in 

deep water. This ratio is smaller than the value obtained by Castiglione et al. [48] for a similar catamaran 

configuration, where the 𝐶𝑇  peak in shallow water is about 4.2 times larger than that in deep water. 

Different from the hump of the 𝑅𝑇  curve in shallow water, as shown in Figure 9 (a), which is not 

commonly seen in previous papers, the dramatic increase of 𝐶𝑇 near the critical speed has been widely 

observed in both model tests and numerical simulations [45,48]. It is worth noting that the maximum total 

resistance coefficient does not correspond to the maxima of the total resistance, according to which the 

propulsion power should be installed. For the London Demonstrator examined here, the maximum total 

resistance is accomplished at the highest speed considered here (see Figure 9 (a)), where 𝐶𝑇 reaches its 

minimum value. 
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Figure 11 Total resistance coefficient (a), and pressure and frictional resistance coefficients (b) of the London 

Demonstrator in shallow water (H = 2.15 m). 

 

4.2 Wave patterns 

The wave patterns created by the London Demonstrator at various speeds in deep water are demonstrated 

in Figure 12. The catamaran generates typical Kelvin wave patterns at lower speeds, which comprise of 

both transverse and divergent waves. As the increase of the Froude number, the amplitude and length of 

the induced wave also increase while the Kelvin wave angle becomes smaller. Besides, the divergent 

waves become dominant in the wave pattern at 𝐹𝑛 = 0.805. Figure 13 demonstrates the wave elevations 

of the catamaran in shallow water, which are profoundly different from those shown in Figure 12. As 

expected, when the depth Froude number is near its critical value (𝐹𝑛𝐻 = 1.0), the Kelvin wave angle is 

close to 90 degree and the critical wave is created at 𝐹𝑛𝐻 = 1.12, which is located right in front of the 

catamaran. The critical wave is normal to the advance direction of the vessel and its attitude is significantly 

elevated, which leads to the hump observed in the 𝑅𝑇 curve in Figure 8 (a) and the remarkable 𝐶𝑇 peak 

shown in Figure 11 (b). Besides, the critical wave significantly elevates the bow, creating the trim maxima 

observed from Figure 8 (b). Behind the stern of the vessel, divergent waves are generated. As the moving 

speed increases to the supercritical range, the critical wave disappears and divergent waves are created 

near both the bow and stern of the hull. The further increase of the Froude number reduces the angles of 

the divergent waves. However, the overall wave patterns are not significantly changed. In both deep and 
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shallow water, the decrease of the Kelvin wave angle leads the intersection point of the bow waves created 

by the two demihulls to move astern, which will be more clearly observed from Figure 14 and Figure 15 

as well as the wave cuts demonstrated in the next section. 

 

 

Figure 12 Wave patterns created by the London Demonstrator in deep water. 

 

 

Figure 13 Wave patterns created by the London Demonstrator in shallow water (H = 2.15 m). 
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Figure 14 The wave interaction between demihulls in deep water. 

 

The behaviours of the resistance, trim and sinkage discussed in the previous section can be better 

understood by analysing the interaction between the wave systems generated by the demihulls. Figure 14 

shows a closer inspection of the wave interference between the demihulls in deep water. We can observe 

that at smaller Froude numbers (e.g. when 𝐹𝑛 < 0.3), multiple crests and troughs exist within the inner 

region between the two hulls. Enhanced crests and troughs become pronounced when 𝐹𝑛 = 0.345 at the 

symmetry plane of the catamaran, where the waves meet and strengthen each other. At 𝐹𝑛 = 0.46, another 

two troughs are generated on each side of the symmetry plane apart from the one created at the central 

plane, indicating a significant secondary wave interference. At this Froude number, the secondary troughs 
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are located slightly behind midship. As the Froude number increases to 0.575, the crest and troughs 

between the demihulls are moved further downstream, which has also been reported in previous studies 

[13,30]. In particular, the secondary wave troughs are generated near the stern with higher amplitudes, 

which leads to a larger sinkage at the stern, thereby creating the peak of trim as shown in Figure 7 (b). 

Moreover, as discussed in Figure 9 (a), the pressure resistance 𝑅𝑃 reaches its maximum value at 𝐹𝑛 = 

0.575, implying the wave interference is the strongest at this Froude number. When 𝐹𝑛 = 0.805, the wave 

troughs created due to the secondary wave interaction are moved behind the aft of the catamaran (see 

Figure 12), which leads to a decrease in the trim as the secondary troughs are closer to the hull surface, 

thereby having more direct impact on the motion of the demihull. Another observation from the wave 

pattern at 𝐹𝑛 = 0.805 is that the first crest in the inner region is produced near midship, which results in 

the reduction of the moment causing the pitch motion, leading to the decrease in trim angle. On the other 

hand, with the first crest further strengthened and moved near the catamaran’s centre of mass, this crest 

will lift the entire catamaran instead of the bow. Therefore, the sinkage becomes negative (the hull moves 

upward)  at higher Froude numbers. 

 

The wave interferences between demihulls in shallow water are demonstrated in Figure 15. Several 

significant differences from those in deep water can be observed. First, at trans-critical speeds (𝐹𝑛 = 0.23 

and 0.287), wave interactions between the demihulls seem to be suppressed due to the creation of the 

critical wave in front of the catamaran (see Figure 13), i.e., the phenomenon of existing multiple crests 

and troughs within the inner region disappears. At supercritical speeds (𝐹𝑛 > 0.345), the three troughs 

observed in deep water (e.g., in Figure 14 when 𝐹𝑛 = 0.46) are not seen in shallow water cases. Instead, 

another two secondary crests are generated apart from the primary one at the catamaran’s central plane. 

As the Froude number increases, the wave crests are stretched and moved towards the stern. As previously 

discussed, both trim and sinkage will be decreased with the first crest moving midship. This trend will be 

further enhanced due to the creation of the secondary crests, i.e., at higher speeds, both the trim and sinkage 

in shallow water are smaller, as seen from Figure 9 (b). 
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Figure 15 The wave interaction between demihulls in shallow water. 

 

4.3 Longitudinal wave cuts 

The wave propagation within the inner region can be better understood by analysing the longitudinal wave 

cuts at the central plane of the catamaran as demonstrated in Figure 16. It is seen that the wave starts to 

come into being at the forward perpendicular (FP) for all cases except those at trans-critical speeds (𝐹𝑛𝐻 

= 0.896 and 1.12) in shallow water, where the water is elevated at least 0.5Lpp ahead of the catamaran and 

reaches the maximum height near the FP. In deep water, both the wave height and wave length increase 

as the Froude number rises, confirming the observations from Figure 14. The increase of the wave length 

leads to a reduction in the number of waves between FP and aft perpendicular (AP). For example, there 

are approximately three waves between FP and AP when 𝐹𝑛 = 0.23 while the number becomes less than 
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one when 𝐹𝑛 increases to 0.805. It is interesting to observe that at 𝐹𝑛 = 0.575, the wave number between 

FP and AP is approximately unity and this Froude number corresponds to the maximum value of the 

pressure component of total resistance (see Figure 9 (a)). In shallow water, the first wave crest behind the 

bow is always higher than that created in deep water, especially near the critical speed. The difference is 

considered small only when the Froude number is greater than 0.575. Moreover, no noteworthy wave 

troughs are generated between FP and AP in shallow water, which significantly differs from those in deep 

water. Furthermore, the catamaran generates higher wave crests behind the stern in deep water while 

creating deeper wave troughs in shallow water. 

 

As observed from previous wave patterns in Figure 14 and Figure 15, the catamaran generates a 

remarkable trough right behind the stern of the demihull. The magnitude of this trough can be more clearly 

demonstrated by the longitudinal wave cuts at the mid-plane of the demihull, as shown in Figure 17. In 

deep water, the magnitude of the trough reaches its maximum value at 𝐹𝑛 = 0.575, where the water level 

difference between FP and AP is also maximised. In shallow water, the trough’s magnitudes at trans-

critical speeds are significantly larger than those in deep water. The maximum amplitude is achieved at 

𝐹𝑛 = 0.287, where the critical wave is also created in front of the bow, resulting in a remarkably large 

difference between the water levels at the FP and AF of the catamaran. It is worth emphasising that 𝐹𝑛 = 

0.287 and 0.575 correspond to  the speeds where the maximum pressure resistance is produced in shallow 

and deep water respectively, as seen from Figure 9 (a). At supercritical speeds, the trough’s amplitude in 

shallow water becomes smaller than that in deep water, which can be attributed to smaller sinkage and 

trim created in shallow water. 
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Figure 16 Comparison of the longitudinal wave cuts at the catamaran symmetry plane in deep and shallow water. 
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Figure 17 Comparison of the longitudinal wave cuts at the mid-plane of the demihull in deep and shallow water. 
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4.4 Cross flow fields 

With the wave interference between the demihulls, the flow field created by the demihull becomes non-

symmetrical against its mid-plane, which will cause a transverse pressure gradient. This can further lead 

to a cross flow under the keel of the demihull, which is believed to be one of the main causes of the 

increase in total resistance [31]. The cross flow fields of the London Demonstrator are plotted in Figure 

18, where the positive and negative velocities indicate that the flow moves to the outer and inner regions 

respectively. In deep water, the location and strength of the cross flow are closely associated with the wave 

interaction between the demihulls. At lower Froude numbers, multiple changes of the cross flow direction 

under the keel can be observed, which corresponds to the existence of multiple waves between the 

demihulls (see Figure 14 and Figure 16). With the increase of the Froude number, the strength and 

extension of the cross flow are significantly enhanced and the locations where the cross flow occurs is 

also moved towards the stern. This phenomenon was also observed by Zaghi et al. [30] and Farkas et al. 

[34]. Besides, the number of changes in the cross flow direction is also reduced with the increase of the 

speed. At higher Froude numbers, significant cross flows are also generated behind the stern. For shallow 

water scenarios, similar to the deep water cases, the strength of the cross flow is considerably enhanced 

and the location where the maximum cross flow occurs is also moved towards the stern with the increase 

of the speed. However, the cross flows created in shallow water are remarkably stronger than the 

corresponding cases in deep water. Moreover, the phenomenon of multiple changes in cross flow direction 

observed at lower Froude numbers no longer exists, and for all speeds in shallow water, the cross flow 

moves from the inner side of the demihull to the outer region. 
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Figure 18 Cross flow fields at the mid-plane of the demihull for deep (left) and shallow (right) water. Positive and 

negative velocity values mean the flow moves towards the outer and inner sides of the demihull respectively. 

 

5 Conclusion 

In the present work, the hydrodynamics of a full scale, zero-emission, high-speed catamaran (London 

demonstrator) in both deep and shallow water was numerically investigated. The numerical methods used 

in the current study were validated against experimental data of the NPL 4a02 model [9] and the Stavanger 

demonstrator [2]. For numerical simulations on the London Demonstrator, a blind validation was also 

carried out in collaboration with HSVA and good agreement was accomplished. 
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The resistance, sinkage and trim of the London Demonstrator as functions of Froude number (ranged from 

0.2 to 0.8) in deep and shallow water were firstly analysed. The total resistance in deep water increased 

continuously while in shallow water, a hump was experienced at 𝐹𝑛 = 0.287 (𝐹𝑛𝐻 = 1.12). Besides, the 

total resistance in shallow water was higher when 𝐹𝑛 < 0.45 and became smaller at larger speeds. As the 

frictional resistance was almost the same in deep and shallow water, i.e., the difference in total resistance 

was mainly caused by the pressure component. The variations of the pressure resistance were closely 

related to the behaviours of trim and sinkage. In particular, the maximum trim was accomplished at the 

Froude number where the pressure resistance was maximised (𝐹𝑛 = 0.287 and 0.575 for shallow and deep 

water respectively). The largest sinkage in shallow water occurred at the lowest speed whereas in deep 

water the sinkage reaches its maxima at a Froude number (𝐹𝑛 = 0.517) slightly lower than the one where 

the maximum trim occurred. Furthermore, the total resistance coefficient curve in deep water showed 

multiple humps while only one significant peak near the critical speed was produced in shallow water. 

 

The computed wave patterns, longitudinal wave cuts and cross flow fields were also analysed and 

correlated with the behaviours of the resistance and motion of the catamaran. In general, for both deep 

and shallow water scenarios, the crests and troughs generated within the inner region were strengthened 

and moved astern with the increase of Froude number. In deep water, the maximum pressure resistance 

was related to the creation of a secondary trough near the stern of the demihull. In contrast, the mechanism 

involved in shallow water was due to the generation of a critical wave in front of the catamaran and normal 

to the moving direction. Moreover, the creation of maximum pressure resistance was also correlated with 

the largest water level difference between the forward and aft perpendiculars. Cross flows occurred in 

both deep and shallow water scenarios due to the asymmetrical flow fields between the inner and outer 

regions. Compared with deep water cases, the cross flows created in shallow water were much stronger. 

Moreover, the cross flow in shallow water moved towards the outer region for all speeds considered here, 

whereas, in deep water, changes in cross flow directions were observed. 
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