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Abstract: Training data for a deep learning (DL) neural network (NN) controller are obtained from 

the input and output signals of a conventional digital controller that is designed to provide the suit-

able control signal to a specified plant within a feedback digital control system. It is found that if the 

DL controller is sufficiently deep (four hidden layers), it can outperform the conventional controller 

in terms of settling time of the system output transient response to a unit-step reference signal. That 

is, the DL controller introduces a damping effect. Moreover, it does not need to be retrained to op-

erate with a reference signal of different magnitude, or under system parameter change. Such prop-

erties make the DL control more attractive for applications that may undergo parameter variation, 

like sensor networks. 

Keywords: deep learning; feedback control; conventional controller; neural network; backpropaga-

tion.  

 

1. Introduction 

Design methods for feedback control systems are well-established. These include 

classical linear control system design, techniques for nonlinear control, robust control, H-

∞ control and adaptive control. In addition, model-free control has emerged with tech-

niques such as fuzzy logic control and artificial neural networks (ANN). The latter meth-

ods generally extend adaptive control techniques to nonlinear systems [1]. Closed-loop 

control applications of NNs are different from classification and image processing appli-

cations which are open-loop. NNs were first introduced in closed-loop control systems by 

Werbos in [2]. Offline learning in particular was formalized in [3] and was shown to yield 

important structural information. In addition, an important problem that also had to be 

addressed in closed-loop NN control was weight initialization for feedback stability [4]. 

In this work, a NN is trained and used for function approximation to replace a conven-

tional controller in a digital feedback control system. Neural networks can model linear 

or nonlinear systems as they are excellent at finding the underlying processes that govern 

these systems. It has been stated in [1] that the 2-layer NN is sufficient for feedback control 

purposes. In the present work, however, we show that the addition of hidden layers, re-

sulting in deep NN controllers, produces a damping effect and improves feedback control 

system stability. The multi-layer NN (specifically the 2-layer network with one hidden 

layer) took 30 years to effectively replace the single-layer NN which was introduced as 

early as the 1950s. The reason was the lack of the proper learning rule to update the hidden 

layer weights during training, a problem which was later solved by the backpropagation 

(BP) algorithm in 1986 [5]. The BP algorithm is also based on stochastic gradient descent 

(SGD) learning as in the single-layer NN, but uses a different method to update the gra-

dient, namely, backpropagation. It took another 20 years to solve the poor performance 

issues of the deep NN (two or more hidden layers) through the innovation of deep learn-

ing (DL). DL, in essence, comprises many small technical improvements to ensure proper 
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training. DL solves problems like vanishing gradient, overfitting and computational load 

[6, 7]. A deep NN with two hidden layers is shown in Figure 1. The inter-layer arrows in 

the figure represent weighted connections. It is a multiple-input, multiple-output (MIMO) 

system; however, in this work, only a single outlet is considered, with the hidden layers 

using a nonlinear activation function Φ(·), while the output layer uses a linear activation 

function Ψ(·). The output vector Y in Figure 1 can be expressed as follows:  

1 1 1 1 1 1[ { ( ) } ]L L K K J J I I J KY M H W X B b       =   + + +            (1) 

where X is the input vector, W, H, and M are the weight matrices of the first hidden, sec-

ond hidden and output layers respectively, I, J, K, and L are the numbers of nodes of the 

input, first hidden, second hidden and output layers respectively. The variables B, ꞵ, and 

b represent the respective biases. The activation functions operate point-wise on the rele-

vant vectors.  
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Figure 1. A generic diagram for a three-layer deep NN with two hidden layers. 

In this work, a conventional controller is first designed and tested in a feedback con-

trol system. By using the input-output information of this controller as the training data 

of a learning algorithm such as the BP algorithm, a DL controller consisting of a deep NN 

is trained offline and then made to replace the conventional controller. Finally, the system 

or plant is controlled just by the DL controller and its performance monitored. It is shown 

that the feedback control system performance criteria can all be improved such as settling 

time, overshoot, steady-state error, etc. 

Relevant works in the literature include [8] in which the speed of a DC motor is con-

trolled in a feedback control loop with a proportional-integral-derivative (PID) controller 
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which is the most commonly used in industry. Similar to the present work, DL is also 

resorted to in order to design an intelligent controller but via a deep belief network (DBN) 

algorithm [9]. A DBN performs a kind of unsupervised learning using a restricted Boltz-

mann machine (RBM) [9] to generate a set of initial weights to improve learning. RBM’s 

are networks in which probabilistic states are learned for a set of inputs suitable for unsu-

pervised learning. A similar approach to DL control is the work in [10], where RBMs are 

also used for weight initialization by unsupervised training. The disadvantage of DBNs is 

the hardware requirement since they consist of two stages, unsupervised pre-training and 

supervised fine tuning. The ordinary deep NNs used in the present work are less compu-

tationally demanding, and moreover, single-stage supervised offline learning is possible 

due to the availability of input-target data in the application considered. 

In addition to supervised and unsupervised learning, there is also a third type of 

learning in machine learning called reinforcement learning (RL). This is learning by mak-

ing and correcting mistakes in a trial and error fashion, that is, learning by experience in 

case of the absence of a training data set. It is a process in which a software agent makes 

observations and takes actions within an environment and in return, it receives rewards 

[11]. RL thereby achieves long-term results which are otherwise very difficult to achieve. 

Deep RL has recently been used in robotic manipulation controllers [12, 13]. However, RL 

is very computationally expensive and requires large amounts of data, and as such, it is 

not preferable to use to solve simple problems. RL suffers from the lack of real-world 

samples such as in robotic control where robotic hardware is expensive and undergoes 

wear and tear.   

  

The rest of the paper is organized as follows: Section 2 presents the design of the 

conventional controller within the digital feedback control system. Section 3 explains the 

training procedure of the deep NN to construct the DL controller. The simulation results 

are given in Section 4, and, finally, Section 5 concludes the paper. 

2. Conventional Controller Design for Digital Feedback Control System 

The block diagram of a feedback control system with a digital controller )(zD  is 

shown in Figure 2. The z-transforms of the input sampled reference signal, the sampled 

error signal, the sampled control signal and the sampled output signal are denoted by 

)(zR , )(zE , )(zU  and )(zY  respectively. We assume that )(zG  is the z-transform 

of )(sG  which is given by: 

)(.)()( sGsGsG po=        (2) 

where )(sG p  is the plant transfer function and )(sGo  is the transfer function of the 

zero-order hold which represents a digital-to-analog converter that converts the sampled 

control signal to a continuous signal to be input to the plant. The zero-order hold takes 

the sample value and holds it constant for the duration of the sampling interval T. As 

such, )(sGo  is given by [14]: 
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The closed loop transfer function is: 
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Figure 2. Block diagram of a feedback control system with a digital controller. 

We will consider a second-order system with the plant transfer function given by: 

)4(

6960
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Note that, whereas a continuous second-order feedback control system is stable for 

all values of gain assuming left-half s-plane open-loop poles, a second-order sampled sys-

tem can be unstable with increasing gain [14]. Using Equations (2), (3) and (5), we convert 

to digital as follows: 
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Substituting in the above for T by 0.001 sec, we obtain: 

996.0996.1

003471.0003475.0
)(

2 +−

+
=

zz

z
zG          (7) 

An analog controller )(sGc  can be designed such as to achieve a phase margin of 

45◦ with a crossover frequency of 125 rad/sec. Using the compensation design methods in 

[14] for meeting phase margin specifications, we find that: 

312
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With T = 0.001sec, we find )]([)( sGZzD c=  as: 

73.0

61.485.4
)(

−

−
=

z

z
zD        (9) 

Now the system in Figure 2 can be implemented in MATLAB with a unit-step refer-

ence input in order to obtain the digital error and control signals, e(n) and u(n) 
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respectively. These signals are shown in Figures 3 and 4, whereas the unit step response 

of the control system is shown in Figure 5. While these figures are simulation results, an 

analytical expression for the unit step response can be obtained. In Equation (4), substi-

tuting for )(zG  and )(zD  by Equations (7) and (9) respectively, and also substituting 

for the unit step reference input )(zR  by )1/( −zz , we solve by partial fractions to ob-

tain:  
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Taking the inverse Z-transform, we obtain the unit step response as: 

 

0;)9615.00302.0cos()9096.0(9816.2)8979.0(9765.11)( +++= nnny nn     (11) 

Plotting the above expression coincides exactly with the plot of Figure 5. The conventional 

controller input-output signals are needed to train the DL controller described in the fol-

lowing section. 

 

Figure 3. The error signal input to the digital controller. 
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Figure 4. The control signal output from the digital controller. 

 

Figure 5. The unit step response of the feedback control system.  

3. The DL Controller 

 The error and control signals of Figures 3 and 4 can be used to train a deep NN offline 

to obtain a DL version of the controller that learns the correspondence between e(n) and 

u(n). In other words, the training data consisting of input and correct output of the DL 

controller are the error input and control output signals of the conventional controller 

stored for a sufficient number of discrete time instants during feedback digital control 
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system operation. Training is performed using the BP algorithm [6]. The trained DL con-

troller is intended to replace the conventional controller for real-time feedback control 

system operation.  

There are several training algorithms for training the neural network weights, the 

most important is the backpropagation (BP) algorithm, in which the output error starts 

from the output layer and propagates backwards until it reaches the hidden layer next to 

the input layer to update the weights. Based on the update strategy, there are different 

variations of BP, the most common is BP based on gradient descent (GD) [15]. With refer-

ence to Figure 1, the GD-based BP algorithm for updating the weights can be summarized 

by the following equations assuming a linear activation function for the output layer and 

nonlinear activation functions for the hidden layers.    

.,....,1.....,,1, KkandLlmmm lklklk ==+   

where klklllk yyydm  =−= )(  

.,....,1.....,,1, JjandKkhhh kjkjkj ==+  

where jkkj yh = with  =
l

kllkk vm )(.][         (12) 

.,....,1.....,,1, IiandJjwww jijiji ==+  

where ijji xw = with  =
k

jkkjj vh )(.][   

and so on for more hidden layers. In Equations (12) above, α is the BP learning rate, the 

d’s are the correct outputs at the output layer needed for supervised training, the v’s are 

the activation function inputs, the y’s are the activation function outputs for output and 

hidden layers, the x’s are the inputs to the input layer, and (.)' is the derivative of the 

nonlinear activation function (.) . 

In the present application, the training data consisting of the correct outputs (d’s) and 

inputs (x’s) would be values of the control signal u(n) and the error signal e(n) respec-

tively.  

It should be noted, however, that the correspondence between e(n) and u(n) is not 

one-to-one as can be seen from Figures 3 and 4. Instances can be found of a single value 

of e(n), occurring at different time indices, that corresponds to more than one value of 

u(n). These identical values of e(n) at different time indices can be made distinguishable 

from each other if their past values are taken into account. Error values may be the same 

for different time instants, but their past behaviors are normally different. Therefore, the 

input layer of the deep NN may consist of more than one node to take into consideration 

present as well as past values of the error signal, but the output layer has only one node 

such that the NN performs regression or function approximation. The activation functions 

of the hidden-layer nodes are chosen as the rectified linear unit (ReLU) function which is 

known to perform better with DL than the sigmoid function [6, 7]. The output layer single 

node, however, can be chosen to have a linear activation function. A neural network with 

two or more hidden layers is considered deep [7]. It is important to properly choose the 

convenient topology of a NN. Clearly, the number of neurons in the input layer is equal 

to the number of inputs, and the number of neurons in the output layer is likewise equal 

to the number of outputs. As for the number of neurons in the hidden layers, this is a 

problem facing many researchers. Rules of thumb are given in many instances in the lit-

erature [16, 17]. Some of these rules state that the number of nodes in the hidden layer 

should lie between those in the input and output layers, and the number of hidden nodes 

could be taken as two-thirds the sum of input and output layer nodes. In [18], it is con-

cluded that the power of the NN does not depend on whether the first hidden layer or 

second hidden layer has more neurons, whereas [19] presents an empirical study of a 3-

layer (two hidden layers) NN concluding that: 

  121 15.0 nnnandnn hh −=+=      (13)  
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where 1n  and 2n  are numbers of neurons in the first hidden and second hidden layers 

respectively, ⌈·⌉ is the ceil integer function, and hn  is the total number of hidden neurons 

in both hidden layers. The trial-and-error approach, however, is often used to successfully 

determine the number of layers and the number of neurons in the hidden layers [18]. 

4. Simulation Results and Discussion 

All simulations are implemented in MATLAB. Figures 3 and 4 demonstrate the train-

ing data that are used in offline training of the deep NN that constitutes our DL controller. 

The training data are the necessary input-correct output pairs needed for implementing 

the BP algorithm which is a supervised learning algorithm. The learning rate of the BP 

algorithm is taken by trial and error as 0.02. In each training or learning iteration, seven 

past samples plus the present sample of the error signal are used as input to the deep NN 

as discussed in Section 3. Thus, the input layer will consist of eight nodes. By trial and 

error, this number of necessary input nodes was found to yield optimum performance for 

this case of two hidden layers. The output layer will have only one node as only one con-

troller output is required to provide the control signal to the plant. The output node is 

made to operate with a linear activation function. The number of neurons in each of the 

hidden layers is taken as 5. For two hidden layers, this number is almost in conformity 

with the empirical rule of Equation (13). The nonlinear activation function for all hidden 

nodes is the ReLU function which has the merit of solving the vanishing gradient problem 

for deep NNs trained by the BP algorithm [6, 7]. As in Figures 3 and 4, the number of 

available training data pairs is 200. Training for 200 iterations, called an epoch [7], is re-

peated 200 times. That is, the number of epochs is also 200. The DL controller with two 

hidden layers is first trained. Its weights are initialized with real random numbers be-

tween 1 and -1 taken from a uniform random distribution. However, the learning behavior 

and subsequent closed-loop stability was found to be sensitive to the initial values of the 

weights. Therefore, different initial random weights from the same uniform distribution 

were tried for good performance. The offline nature of our training procedure renders this 

possible. There exist, however, various weight initialization methods and algorithms in 

the literature [20, 21]. These can prove especially helpful in applications where the con-

troller parameters are to be adjusted online [22]. When learning was achieved, the DL 

controller was used in inference mode to test its performance. In this mode, the same 

stored error signal from the conventional controller is entered to the trained DL controller, 

every sample with its seven past values, and the DL controller output is obtained as 

shown in Figure 6. It is clear that good learning is achieved as Figure 6 is almost identical 

to Figure 4.  

The next step is to use the trained DL controller in real time to provide the control 

signal to the plant within the feedback control system. The unit step response is shown in 

Figure 7. This, in turn, is almost identical to Figure 5 that corresponds to the conventional 

controller whose behavior was learned. 

The same trained DL controller is made to operate within the feedback system but 

subject to a step reference of magnitude 2. The resulting step response of the system is 

shown in Figure 8, where it is clear that the system yields the correct response with the 

same trained DL controller regardless of the step magnitude. Note that the input to the 

DL controller is different from the training input. That is, the DL controller does not ex-

hibit any signs of overfitting [6]. The latter is a situation where the deep NN fails to re-

spond correctly to other than the training data. That is why, in this work, we do not need 

to employ dropout which is another DL technique used to overcome overfitting [6, 7]. 
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Figure 6. Output signal of trained DL controller (with two hidden layers) in inference mode. 

 

 

Figure 7. Unit step response of feedback control system using the trained DL controller with two 

hidden layers. 
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Figure 8. System response to a step magnitude of 2 using the trained DL controller. 

We now investigate the use of deeper NNs for DL controllers in feedback control and 

compare between them as well as with the conventional controller in terms of settling 

time. The settling time of the second-order system under consideration is taken as the time 

needed for the system step response to reach a value within a certain percentage of the 

final value. The percentages considered are 2, 0.2 and 0.02. Table (1) lists the settling time 

of the different tested cases. The number of nodes is 5 in each hidden layer, and the num-

ber of input layer nodes is 8 for all cases. It can be seen from Table (1) that the deeper the 

controller the smaller (better) the settling time of the feedback control system. The reason 

is that better learning is achieved with deeper NNs. Moreover, with four hidden layers, 

the DL controller even outperforms the conventional controller in terms of settling time. 

So the DL controller has the advantage of producing a damping effect when sufficiently 

deep, thereby enhancing performance. The number of input layer nodes was fixed at 8 for 

all entries of Table (1) for the purpose of comparison. However, with four hidden layers, 

results are better if we set this number to 4. For this case, the feedback system unit step 

responses with the conventional and trained DL controllers are shown in Figure 9.  

Table 1. Unit step response settling times for the different types of controllers under consideration. 

Controller type 
Settling times (milliseconds) within r % of final value 

r = 2  r = 0.2  r = 0.02 

Conventional 48  74  104 

DL with 2 hidden lay-

ers 

49  > 200 > 200 

DL with 3 hidden lay-

ers 

49  85  120 

DL with 4 hidden lay-

ers 

47  55  92 
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Figure 9. Unit step response of the feedback system with conventional and trained DL controllers. 

The number of hidden layers is 4 and the number of input nodes is 4.  

Now we can study the influence of system parameter change on the performance of 

the trained DL controller. Let us assume that the plant gain in Equation (5) undergoes a 

considerable change from 6960 to 20000. Using Equation (2) and converting to digital with 

T = 0.001sec, we arrive at the following expression for G(z) using the same steps that led 

to Equation (7): 

996.0996.1

009973.0009987.0
)(

2 +−

+
=

zz

z
zG          (14) 

The trained DL controller for Figure 9 with four hidden layers and four input nodes 

is tested in online operation of the feedback control system with the above plant parameter 

change. The unit-step response is shown in Figure 10 together with the simulated conven-

tional controller case (without re-design) under the same system parameter change.  

 

Proceeding with a workout similar to that which led to Equation (11), the analytical 

expression for the feedback system unit step response using the conventional controller 

of Equation (9) under system parameter change is: 

0);9936.00927.0cos()9050.0(0948.1)9439.0(1433.09999.0)( +++= nnny nn   (15) 

Plotting Equation (15) above coincides exactly with the corresponding plot in Figure 

10. It is clear from Figure 10 that the DL controller behaves much more satisfactorily than 

the conventional controller. This means that the latter has to be redesigned for successful 

operation, whereas the DL controller does not need re-training. A magnified view of Fig-

ure 10 is shown in Figure 11.  

The advantage of obtaining smaller settling time with the DL controller is evident. 

DL causes the system to reach steady state faster with less overshoot; the first-peak ratio 

is almost 8. Table (2) shows the settling times of the control system for both controllers. 

The steady state error for all above results is zero. 
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Figure 10. Unit step response of the feedback control system with the trained DL controller (four 

hidden layers and four input nodes) as well as with the conventional controller, both under system 

parameter change, Equation (14). 

 

Figure 11. A magnified view of Figure 10. 

 

 

 

Table 2. Unit step response settling times for different controllers under system parameter change. 
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Controller type 
Settling times (milliseconds) within r % of final value 

r = 2  r = 0.2  r = 0.02 

Conventional 40  80  114 

DL with 4 hidden lay-

ers 

14  30  43 

 

If the pole locations of the analog plant change further towards instability, the closed 

loop digital control system unit step response begins to exhibit steady state error while 

using the same trained DL controller and the same conventional controller. This is shown 

in Figure 12 and the magnified view of Figure 13 for the analog plant given by: 

6960
( )

( 0.5)
pG s

s s
=

+
                       (16) 

This, together with the zero-order hold, and with T = 0.001sec corresponds to the 

digital system given by: 

9995.02

003479.0003479.0
)(

2 +−

+
=

zz

z
zG       (17) 

Under this parameter change, the analytical expression for the unit step response is: 

0);9480.00285.0cos()9096.0(2810.3)9011.0(1642.20901.1)( +++= nnny nn      (18) 

 

Figure 12. Unit step response of the feedback control system with the trained DL controller (four 

hidden layers and four input nodes) as well as with the conventional controller, both under system 

parameter change, Equation (17). 
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Figure 13. A magnified view of Figure 12. 

Figure 13 shows a steady state error for the conventional controller that is greater 

than that for the DL controller which is another advantage of the latter. The DL controller 

also results in smaller overshoot. By the final value theorem, the steady state error of the 

digital feedback control system subject to a unit step input, and using the conventional 

controller, is given by: 









+
−= −

→
)(

)()(1
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Therefore, 
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Substituting in the above by Equations (9) and (17), we find that 09.0=sse . This is 

in accordance with the curve in Figure 13 that corresponds to the conventional controller 

and with Equation (18) as n tends to infinity. 

 

5. Conclusions 

A deep learning controller can efficiently replace a conventional controller in a feed-

back control system if trained offline with the input-output signals of the conventional 

controller. It has been shown that, if the DL controller is sufficiently deep, it can outper-

form the conventional controller in terms of settling time of the step response of the tested 

second-order system. Also, no re-training is needed under different reference input mag-

nitude or in case of system parameter change. Under system parameter change, the con-

ventional controller needs to be redesigned for comparable performance with the DL 
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controller. Another performance indicator for feedback control systems, namely the 

steady state error, was also shown to improve using DL controllers. 
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