Abstract—The runtime environment is an important concern for self-adaptive systems (SASs). Although researchers have proposed many approaches for developing SASs that address the issue of uncertain runtime environments, the understanding of these environments varies depending on the objectives, perspectives, and assumptions of the research. Thus, the current understanding of the environment in SAS development is ambiguous and abstract. To make this understanding more concrete, we describe the landscape in this area through a systematic literature review (SLR). We examined 128 primary studies and 14 unique environment models. We investigated concepts of the environment depicted in the primary studies and the proposed environment models based on their ability to aid in understanding. This illustrates the characteristics of the SAS environment, the associated emerging environmental uncertainties, and what is expressed in the existing environment models. This paper makes explicit the implicit understanding about the environment made by the SAS research community and organizes and visualizes them.

Index Terms—self-adaptive systems, environment, concept, model, systematic literature review

I. INTRODUCTION

A self-adaptive system (SAS) adaptively changes its behavior or structure at runtime to achieve its goals and respond to unanticipated situations of the system itself or its operating environment. We refer to these unanticipated situations as uncertainty. This uncertainty can come from imperfect requirements, defective SAS design or implementation, or an unknown runtime environment [P94]. Among the various reasons for uncertainty, the environment is one of the most interesting and challenging entities to address in SAS development. It is difficult to fully anticipate at design time the environment that an SAS will encounter during its operation, and the environments of modern systems are complex and open.

To develop a system that is adaptive to an uncertain environment, various engineering approaches, such as eliciting adaptive requirements from the environment [P25], analyzing SAS design while considering an uncertain environment [P63], testing an SAS implementation with environmental inputs [P17], and updating environmental knowledge for optimal runtime decision-making of an SAS [P66], have been proposed. In this context of active research of an SAS in an uncertain environment, one shortcoming we have noticed is that the meanings of “uncertain environment” and “environmental uncertainty” are inconsistent across different studies. For example, in different papers, an uncertain environment has been described as an environment that changes itself over time, an environment that has been changed by an SAS, an environment that has been misrecognized by sensor noise, and so on.

Although there could be many reasons for this inconsistent understanding of the environment and its uncertainty, what we focus on is the lack of a concrete understanding of the environment of an SAS. In the software engineering community for SASs, we have achieved implicit agreement on the concepts of the environment, its uncertainty, and its effect on SASs, but this implicit agreement has led to ad-hoc interpretations. We believe that the various interpretations of the environment of an SAS are all meaningful in establishing a concrete understanding of it, so we have conducted a systematic literature review (SLR) to gather and analyze them. To detail the landscape in this understanding of the environment, we examined the concepts (how existing studies defined and described it) and models (how existing studies abstracted it) of the environment of SASs. In summary, this SLR tries to answer the following questions:

• How do existing studies describe the environment?
• What are the characteristics of the environment?
• How is the environment abstracted as a model?

The remainder of this paper is organized as follows. Section II introduces the basic concepts of an SAS and the environment. Section III presents our systematic review protocol. Section IV shows the review results for each research question. Section V provides one of the lessons that we have learned through this SLR, and Section VI reveals threats and the validity of our work. Section VIII concludes the paper.

II. BACKGROUND: SAS AND ENVIRONMENT

Some papers that introduce SAS engineering provide a fundamental understanding of SASs and the environment [1]–[3]. Fig. 1 illustrates a conceptual model of an SAS [1]. It
shows the relationships between the SAS and the environment. The environment is an external world where the SAS operates comprising observable physical and virtual entities. Because the environment is regarded as uncertain, the SAS continuously senses it to reliably achieve its adaptation goals. The sensed environmental condition affects the decisions of the SAS, and these decisions can have new effects on the environment. This high-level understanding has been agreed upon in the SAS research community, but the abstract concept of the environment has not been specifically organized. In this paper, we attempt to organize specific concepts and models of the environment empirically.

III. REVIEW PROTOCOL

To conduct an SLR, we designed a review protocol including the review steps and specific inputs and outputs for each step shown in Fig. 2. Designing a review protocol in advance prevents a biased or subjective survey; disclosing it ensures a reproducible review. Based on the goal of this SLR, we specified the research questions, automated search engines, manual search venues, and the search string. The papers searched were evaluated to determine whether they were primary studies1 under the predefined criteria. The selected primary studies were examined thoroughly. The primary studies also became the sources of cross-reference searching. It was a step in which all the references of the primary studies were exhaustively explored to minimize the possibility of missing important papers. Any newly discovered papers were evaluated by the selection criteria. In particular, we utilized the “snowballing” method2. When searching finished, we extracted predefined data items from the primary studies. The extracted data were analyzed, and the analysis results are reported in Section IV. The rest of this section describes the elements of this protocol.

The goal of this SLR is to show the landscape of concepts and models of the environment of SAS in software engineering. To achieve this goal, we specified questions that will be answered, as shown in Table I. Regarding RQ1, to define the environment of SAS, we surveyed how primary studies have explicitly defined the environment. For RQ2, because the majority of primary studies may not explicitly define the environment and only describe its characteristics, we clarified what characteristics were used to describe the environment. Besides, RQ3 was included because environmental uncertainty is a huge area of interest in software engineering for SAS, but it is an ambiguous term. Therefore, as an approach to reduce this ambiguity, we examined specific causes of the phenomenon called environmental uncertainty in the primary studies.

<table>
<thead>
<tr>
<th>Category</th>
<th>ID</th>
<th>RQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts of the environment of SAS</td>
<td>RQ1</td>
<td>Definitions of the environment. How did primary studies explicitly define the “environment” of an SAS?</td>
</tr>
<tr>
<td>Models of the environment of SAS</td>
<td>RQ2</td>
<td>Characteristics of the environment. What characteristics of the environment of an SAS did primary studies mention in describing it?</td>
</tr>
<tr>
<td></td>
<td>RQ3</td>
<td>Sources of the environmental uncertainty. What was considered by primary studies to be the source of environmental uncertainty?</td>
</tr>
<tr>
<td></td>
<td>RQ4</td>
<td>Modeling of the environment. Who models, how do they model, when do they model, and why do they model the environment of SAS?</td>
</tr>
<tr>
<td></td>
<td>RQ5</td>
<td>Application of the environment models. When and how are the environment models used?</td>
</tr>
<tr>
<td></td>
<td>RQ6</td>
<td>Expressiveness of the environment models. How are the characteristics of the environment expressed in the models?</td>
</tr>
</tbody>
</table>

1In this case, a primary study refers to a paper subject to review, and the SLR itself is a secondary study [4].

2The snowballing cross-reference checking method exhaustively explores all of the backward (cited by the subject paper) and forward (citing the subject paper) references until no additional papers are discovered [5].
Explicit definition of the “environment” of an SAS

Characteristics of the environment expressed in the models

Research papers peer-reviewed and published in conferences, journals, or books

Environment model application details (application time, usage, venue)

Expressions explicitly mentioned to describe characteristics of the environment

Papers summarizing existing studies or concepts (i.e., overviews, introductions, keynotes, roadmaps, or surveys)

Papers whose contents are not fully accessible

Sources of environmental uncertainty addressed in the primary studies

Environment modeling details (modeling time, agent, effort, purpose, formalism, process, etc.)

Characteristics of the environment expressed in the models

Environment model application details (application time, usage, supportive techniques, etc.)

works as possible. In addition, we conducted a manual search for publications in related journals and conferences, listed in Table III, for added focus in case of unknown errors in the automated search. High-end software engineering and SAS-related venues were selected.

The following search string was used to find related papers:

```
{(self- OR adapt) AND (software OR system) AND (environment) AND (uncertain)}
```

Papers handling “software” or “system” with “self-” prefixed properties or “adapt” (as in “adaptive”, “adaptiveness”, etc.) were searched. The “self-” prefix identifies the most general terms of various adaptive properties [6]. In addition, we searched for studies explicitly referencing the uncertain environment or environmental uncertainties of SAS, which were both caught by our specification of forms of “environment” and “uncertain”. This approach was more liberal than searching on the exact phrases, but it provided more papers for manual review, which removed any extraneous ones. One of the candidate keywords was “model”, but it was intentionally omitted in order to obtain a larger number of papers for identifying the concepts of the environment. For RQs 4–6, we manually selected papers that proposed environment models after reading all the primary studies. We used the previously identified search string for both the automated and manual search; the search scope included titles, abstracts, and author keywords of the papers.

The searched papers were evaluated using the predefined selection criteria in Table IV. There were both inclusion and exclusion criteria. If a paper satisfied all the inclusion criteria and none of the exclusion criteria, it was selected as a primary study. The inclusion criteria IC4 evaluated whether a paper was appropriate to answer our RQs. Our purpose was to gain a general understanding of the environment of an SAS from papers motivated by the environment and its uncertainty. All the authors of this work read abstracts of the papers (and the introduction if needed) and together judged if the papers were mainly motivated by some characteristics of the uncertain environment of the SAS. Other criteria helped control the discipline focus, quality, and form of the primary studies.

For each RQ, extracted data items are identified in Table V. Data extraction was conducted manually, and the collected data were analyzed to answer the RQs.

Following our review protocol, we found 128 primary studies. Among the 128 primary studies, we manually found 14 unique models of the environment. We extracted data and analyzed it to answer the six RQs. During all the review steps, to create a reproducible and objective survey, we recorded all the outputs for each step and made all the review data accessible. It includes lists of the searched papers, selection sheets, extracted raw data, and so on. All the data are open to readers, but due to a lack of space, this paper only reports the processed analysis results for each RQ in Section IV.

TABLE II
AUTOMATED SEARCH ENGINES

<table>
<thead>
<tr>
<th>Disciplinary</th>
<th>Search engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer science and related subjects</td>
<td>IEEE Xplore (http://ieeexplore.ieee.org/)</td>
</tr>
</tbody>
</table>

TABLE III
MANUAL SEARCH VENUES

<table>
<thead>
<tr>
<th>Type</th>
<th>Venue</th>
</tr>
</thead>
</table>

TABLE IV
INCLUSION AND EXCLUSION CRITERIA

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>Papers written in English</td>
</tr>
<tr>
<td>IC2</td>
<td>Research papers peer-reviewed and published in conferences, journals, or books</td>
</tr>
<tr>
<td>IC3</td>
<td>Papers in the field of computer science</td>
</tr>
<tr>
<td>IC4</td>
<td>Papers on the topic of a domain-general software engineering approach for self-adaptive systems motivated from uncertain environment</td>
</tr>
<tr>
<td>EC1</td>
<td>Duplicated papers</td>
</tr>
<tr>
<td>EC2</td>
<td>Papers whose contents are not fully accessible</td>
</tr>
<tr>
<td>EC3</td>
<td>Papers not in the form of full research papers (i.e., abstracts, tutorials, or reports)</td>
</tr>
<tr>
<td>EC4</td>
<td>Collections of studies (i.e., books or proceedings)</td>
</tr>
<tr>
<td>EC5</td>
<td>Papers summarizing existing studies or concepts (i.e., overviews, introductions, keynotes, roadmaps, or surveys)</td>
</tr>
</tbody>
</table>

TABLE V
DATA EXTRACTION ITEMS

<table>
<thead>
<tr>
<th>RQ</th>
<th>Data items</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ1</td>
<td>Explicit definition of the “environment” of an SAS</td>
</tr>
<tr>
<td>RQ2</td>
<td>Expressions explicitly mentioned to describe characteristics of the environment</td>
</tr>
<tr>
<td>RQ3</td>
<td>Sources of environmental uncertainty addressed in the primary studies</td>
</tr>
<tr>
<td>RQ4</td>
<td>Environment modeling details (modeling time, agent, effort, purpose, formalism, process, etc.)</td>
</tr>
<tr>
<td>RQ5</td>
<td>Characteristics of the environment expressed in the models</td>
</tr>
<tr>
<td>RQ6</td>
<td>Environment model application details (application time, usage, supportive techniques, etc.)</td>
</tr>
</tbody>
</table>

3 Access the SLR website for all the review data: https://sites.google.com/se.kaist.ac.kr/sas-environment-slr/

TABLE VI

<table>
<thead>
<tr>
<th>Explicit definition of “environment” of SAS</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>“anything observable by the software system, such as end user input, external hardware devices and sensors, or program instrumentation”</td>
<td>P6</td>
</tr>
<tr>
<td>“the physical world or computing elements that are not under direct control of the system”</td>
<td>P24</td>
</tr>
<tr>
<td>“circumstances that interact with or affect the system”</td>
<td>P77</td>
</tr>
</tbody>
</table>

IV. Review Results

A. Concept of the Environment of SAS

RQ1) Definitions of the Environment of SAS: To understand the environment of an SAS, we first collected explicit definitions. Three explicit definitions were found and are listed in Table VI. [P6] defines it as external and observable objects. [P24] highlighted the fact that it is not under the direct control of an SAS. In contrast, [P77] defined it as circumstances interacting with the SAS. In paraphrasing the existing definitions, we can say that the environment of an SAS contains external and observable objects that are not under the control of the SAS but rather interact with it.

The definitions are acceptable and indicate some key characteristics of the environment, such as diverse factors, externality, observability, and interaction. However, we note that few of the selected studies explicitly defined environment, and they varied considerably in terms of the authors’ perspectives. This made it difficult to get considerable knowledge about the concept of environment only from the existing definitions. This confirmed the assumptions that drove our motivation for conducting the SLR. Fortunately, the studies without explicit definitions implicitly shared a common understanding about the environment. Therefore, we attempted to gather this understanding in answering RQ2 based on these definitions.

RQ2) Characteristics of the Environment of SAS: To establish the concept of the environment, we collected characteristics of the environment of an SAS. Although we had limited definitions, almost all of the primary studies informally described the environment of an SAS of their interests. We searched for all the sentences that included “environment” in the primary studies and collected and categorized the various expressions from the sentences that described the environment in Table VII. The expressions in the primary studies are listed in the second column, and we organized the expressions into five characteristics of the environment of an SAS in the first column. We referred to the features mentioned in the definitions collected in answering RQ1 to make the classifications. Descriptions for each characteristic and the related expressions are also given in the table.

We organized expressions of the environment that were found into five characteristics in Table VII. Diversity is represented in how the environment comprises diverse environmental factors. Specification of the environment requires the specification of each environmental factor of interest. Externality demonstrates that the environment is outside the SAS boundary. Therefore, the environment is not under the direct control of the SAS. Observability is one aspect of the relationship between the environment and the SAS. Although the environment is not within the SAS boundary, it is observable by monitoring elements of the SAS, so the SAS can respond to the environment. Interactivity also defines the relationship between the two. The SAS interacts with the environment. The interaction affects both the SAS and the environment. Uncertainty is the last characteristic. Because the environment is an external element, it is uncertain. Sometimes the environment itself is dynamic, and an SAS developer may have limited or incorrect information.

Fig. 3 shows how many papers mentioned each characteristic of the environment. This indicates what environmental characteristics were relatively familiar to the researchers as expressed in their writing. For example, “dynamic operating environment” was one of the most widely used expressions to describe the environment. The figure shows trends in characteristics mentioned. More important than the trends, however, is that in addressing RQ2, the various characteristics and expressions have been organized to help understand the environment more comprehensively. Although there were not many clear definitions, the SAS research community has established a significant and implicit agreement on the characteristics of the environment of an SAS. Lastly, we have been able to make these agreed upon characteristics explicit and visual.

RQ3) Sources of the Environmental Uncertainty of an SAS: Among the characteristics of an environment, uncertainty is one of the core reasons that a system should be adaptive. However, the use of the term “uncertainty” is typically conceptual and ambiguous, so it can cause inconsistent understanding among various engineers. To tackle ambiguous...
understanding, we examined concrete sources that cause environmental uncertainty. In the selected primary studies, we found three papers [P22, P94, P102] whose contributions comprise proposed taxonomies of environmental uncertainty sources. We summarized these taxonomies of sources of environmental uncertainty. In the selected primary studies, environmental uncertainty causes were addressed compared to the others. With regard to sources of incomplete interaction, the sources related to sensors were relatively familiar to researchers, as evidenced in the writing, more so than effectors. Here, in noting the trends, we must also acknowledge that even if various studies are addressing environmental uncertainty, their use of this term does not necessarily rely on a shared definition. Therefore, researchers need to specifically explain their concerns regarding environmental uncertainty to prevent misinterpretation.

B. Models of the Environment of an SAS

**RQ4) Modeling of the environment of an SAS: A model is an abstraction of a subject that represents its important characteristics. We collected 14 unique models that represent the environment of an SAS from the 128 primary studies, and...

<table>
<thead>
<tr>
<th>Organized characteristics</th>
<th>Explicit expressions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversity</td>
<td>(Diverse factors) computing/physical (environment element), user (human), system, service, time, factor</td>
<td>The environment consists of diverse (environmental) factors/elements, for example, computing or physical elements, users (humans), or external systems (services).</td>
</tr>
<tr>
<td></td>
<td>(Constrained) constraints</td>
<td>An environmental element has its own constraints.</td>
</tr>
<tr>
<td>Externality</td>
<td>(External) external, surrounding</td>
<td>The environment is outside of the SAS boundary.</td>
</tr>
<tr>
<td></td>
<td>(Operational) operation, execution, deployment, runtime</td>
<td>The environment is where the system is deployed, operates, and executes at runtime.</td>
</tr>
<tr>
<td></td>
<td>(Out of control) no control, indirect</td>
<td>An SAS cannot (directly) control its environment.</td>
</tr>
<tr>
<td>Observability</td>
<td>(Observable) observable, sense, monitor, measure</td>
<td>The environment is observable by an SAS.</td>
</tr>
<tr>
<td></td>
<td>(Interpretable) parameter, attribute, variable, value, data, input, condition, event, phenomena</td>
<td>An SAS perceives and interprets its environment based on data or values of environmental variables or parameters. The perception is an SAS’s environmental input condition or event.</td>
</tr>
<tr>
<td>Interactivity</td>
<td>(Interaction) interaction, influence, affect, impact, interface, trigger</td>
<td>The environment interacts with an SAS, so it affects and is affected by the SAS.</td>
</tr>
<tr>
<td></td>
<td>(Media) sensor, effector/actuator</td>
<td>An SAS interacts with the environment through its sensors and effectors (actuators).</td>
</tr>
<tr>
<td></td>
<td>(Incompleteness) error, noise, variation in sensing, signal interference, failure</td>
<td>Interactions between the environment and an SAS can be incomplete or have failed.</td>
</tr>
<tr>
<td></td>
<td>(Adverse influence) disturbing, unsafe, adverse, disruptive, unfavorable, threat</td>
<td>The environment may adversely affect SAS goal satisfaction.</td>
</tr>
<tr>
<td></td>
<td>(Supportive influence) resource</td>
<td>The environment may be supportively used for SAS goal satisfaction.</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>(Unpredictable) uncertain, unforeseen, unexpected, unpredictable</td>
<td>The environment is not fully anticipated at the design time of an SAS.</td>
</tr>
<tr>
<td></td>
<td>(Misunderstanding) unknown, lack of knowledge, missing</td>
<td>Knowledge of the environment may be incomplete. An SAS can encounter an unknown environment. Missing environmental parameters might also be a problem.</td>
</tr>
<tr>
<td></td>
<td>(Dynamic) change, fluctuation, dynamic</td>
<td>The environment dynamically changes its states or behavior.</td>
</tr>
<tr>
<td></td>
<td>(Probabilistic) non-deterministic, probabilistic, stochastic</td>
<td>The environmental knowledge is non-deterministic.</td>
</tr>
</tbody>
</table>
they are listed in Table IX. If a paper named the model, that is presented in the table; otherwise, a descriptive name was created for the model for the purpose of this review. All the models provide an abstraction of the environment of an SAS, but their representations vary depending on the purpose of the modeling and the authors’ perspectives. In addition, based on the authors’ purpose, the formalism of the model was decided. Some models followed standardized formalisms, but others were created using the authors’ modeling languages or rules. These are summarized in the table. Due to a lack of space, each model is not explained in detail (the reader is directed to the original reference for this information), but the insights obtained from the analysis of the models (modeling process and modeling effort) are shown.

We summarized the modeling processes for each model and noticed common milestones for the modeling of the environment of an SAS. The milestones were as follows:

- Modeling the system boundary and environmental factors
- Modeling the environmental impact on the system goal
- Modeling interfaces of the sys.-env. interactions
- Modeling the variability of the environment

All 14 modeling processes included at least one milestone. The first milestone is identifying the system boundary and enumerating the environmental factors that are outside of the system boundary. The second milestone focuses on the goal of the SAS and models how the environment affects the goal. The third milestone highlights the boundary between the SAS and the environment. It represents how the SAS and the environment utilize their interfaces, such as sensors and actuators. The fourth milestone models the variability of the environment. It expresses the environment that is able to change itself over time or is changed by the SAS. It is not necessary to achieve all the milestones, and they do not need to be achieved in a sequential order. The choice of milestones depends on the modeling purpose.

In addition, we examined the modeling efforts for each model, and these are summarized in Fig. 5. We divided the modeling efforts into automated and manual modeling. Automated modeling generates environment models automatically through the use of data by their methods. Manual modeling was divided into two cases. The first case (high) is when significant expert-level environment knowledge, such as how that behaves or which environmental conditions are expected, is required. The second case (low) is when modeling can be completed with assistance, such as data, without significant knowledge. Among the 14 models, only four were modeled automatically. The others were manually modeled. It is natural for engineers to manually build models for their purposes. However, the fact that most manual models require significant environmental knowledge suggests that the results of many engineering techniques using environment models can vary, depending on the quality of engineer’s knowledge.

RQ5) Application of the environment models: In answering this RQ, we examined how the environment models were used. We summarized the applications of the models in Fig. 6. We categorized the four usages of the models. The first was requirement analysis. Some environment models were used to explicitly identify environmental factors and elicit requirements affected by them. Another application was using the environment models as verification environments to mimic the actual environments of SASs. This was the most common usage. Another way to use the environment model was in generating testing inputs for an SAS. The environment models

<table>
<thead>
<tr>
<th>Reorganized Source</th>
<th>Subcategory</th>
<th>Existing description (P22, P94, P102)</th>
<th>Existing terms (P22, P94, P102)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Uncertainty from limited environmental knowledge</td>
<td>Overall (cyber factor)</td>
<td>“current operating conditions, which are continuously invalidated due to changes” [P22]</td>
<td>“Uncertainty in the context” [P22,P102]</td>
</tr>
<tr>
<td></td>
<td>Physical factor</td>
<td>“the effect of physical world on the software is a subset of context, which was described in the previous source (uncertainty in the context)” [P22]</td>
<td>“Uncertainty in cyber-physical systems” [P22,P102]</td>
</tr>
<tr>
<td></td>
<td>Human factor</td>
<td>“the behavior of the crew (human) may be very unpredictable” [P22]</td>
<td>“Uncertainty due to human in the loop” [P22,P102]</td>
</tr>
<tr>
<td></td>
<td>Inaccurate sensor</td>
<td>“A sensor ... may return a slightly different number every time even if the actual value ... is fixed.” [P22]</td>
<td>“Uncertainty due to noise” [P22,P102], “Sensor noise” [P94]</td>
</tr>
<tr>
<td></td>
<td>Sensor failure</td>
<td>“When a sensor cannot measure or report the value of a property” [P94]</td>
<td>“Sensor failure” [P94]</td>
</tr>
<tr>
<td></td>
<td>Inaccurate effector</td>
<td>“system’s ability ... is not only a function of the accuracy of its software, but the precision in the physical steering components (actuator)” [P22]</td>
<td>“Uncertainty in cyber-physical systems” [P22,P102], “effector” [P94]</td>
</tr>
<tr>
<td></td>
<td>Effector failure</td>
<td>“an actuator ... can either fail during an adaptation or ... introduce adverse effects upon the execution environment” [P94]</td>
<td>“effector” [P94]</td>
</tr>
</tbody>
</table>
TABLE IX
MODELS OF THE ENVIRONMENT OF SAS

<table>
<thead>
<tr>
<th>ID</th>
<th>Model name</th>
<th>Representation</th>
<th>Modeling purpose / Usage</th>
<th>Formalism</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Interactive app model (IAM)</td>
<td>Program, program interface, environment, environment interface, uncertainty, configuration</td>
<td>SAS testing environment</td>
<td>-</td>
<td>P17</td>
</tr>
<tr>
<td>M2</td>
<td>RELAX-marked conceptual environment model</td>
<td>Environment, environmental factors, sensors, etc.</td>
<td>Uncertainty-aware requirements elicitation</td>
<td>UML class diagram</td>
<td>P25</td>
</tr>
<tr>
<td>M3</td>
<td>PRISM stochastic environment game player model</td>
<td>System, environment, sensor model</td>
<td>Uncertainty-aware formal analysis</td>
<td>MDP</td>
<td>P28</td>
</tr>
<tr>
<td>M4</td>
<td>Environment model of Tropos4AS</td>
<td>Environmental artifacts, relationships to system agents</td>
<td>Testing environment code generation</td>
<td>UML class diagram</td>
<td>P36</td>
</tr>
<tr>
<td>M5</td>
<td>DTMC environment model</td>
<td>Stochastic environmental change</td>
<td>Optimal adaptation decision making</td>
<td>DTMC</td>
<td>P44</td>
</tr>
<tr>
<td>M6</td>
<td>Environmental constraint graph</td>
<td>Environmental states and their correlations</td>
<td>Improving model checking validity</td>
<td>Graph</td>
<td>P52</td>
</tr>
<tr>
<td>M7</td>
<td>Learning Petri net environment model</td>
<td>Environment states</td>
<td>Formal analysis of SAS behavior and environment</td>
<td>Petri net</td>
<td>P63</td>
</tr>
<tr>
<td>M8</td>
<td>Environment domain model</td>
<td>Environment state changes responding to system actions</td>
<td>Runtime behavior model revision</td>
<td>-</td>
<td>P66</td>
</tr>
<tr>
<td>M9</td>
<td>Interactive state machine and uncertainty specification</td>
<td>Environmental change, sensor and actuator noise, and environmental constraints</td>
<td>Uncertainty-aware and realistic verification</td>
<td>State machine</td>
<td>P72</td>
</tr>
<tr>
<td>M10</td>
<td>Ragnarok uncertainty genome</td>
<td>Numeric information of uncertainty sources</td>
<td>Exploring adverse environmental conditions</td>
<td>-</td>
<td>P82</td>
</tr>
<tr>
<td>M11</td>
<td>Game of testing environment model</td>
<td>Environmental state change responding to system actions</td>
<td>Environment model learning for runtime testing</td>
<td>MDP</td>
<td>P97</td>
</tr>
<tr>
<td>M12</td>
<td>Contextual variable dependency tree</td>
<td>Contextual variable states and their dependencies</td>
<td>Environment-aware requirements elicitation</td>
<td>Tree</td>
<td>P124</td>
</tr>
<tr>
<td>M13</td>
<td>System-environment interaction state model</td>
<td>Interactions between a software system and environment</td>
<td>Optimal adaptation decision making</td>
<td>State machine</td>
<td>P127</td>
</tr>
<tr>
<td>M14</td>
<td>Environment configuration variability and reconfiguration model</td>
<td>Environment situation variabilities and reconfiguration process</td>
<td>Environmental condition test case generation</td>
<td>-</td>
<td>P128</td>
</tr>
</tbody>
</table>

Fig. 6. Application of the environment models

of verification and testing were used to explore failures of an SAS that were triggered by the environment. The last application of the models was for decision-making of an SAS during operation. The environment models were generated or updated during runtime and help an SAS to make optimal decisions in the runtime environment. The usage of each model is also presented in Table IX.

We also summarized techniques that support leveraging the models but do not present them here due to a lack of space (they are available on our website3). However, one point that we would like to share here is that a common supportive technique of 11 models was simulation, which was seen as the most fundamental use of environmental models.

RQ6) Expressiveness of the environment models: Finally, we examined how the characteristics of the environment (revealed in answering RQ2) were represented in the models. Fig. 7 shows the analyzed results for each characteristic (the details of each model can be found on our website3). For diversity (Fig. 7a), five models required explicit modeling of each environmental factor. They highlight the independence of the factors and can also represent the interaction among the factors. The other models implicitly show that an environmental condition comprises diverse variables. For externality (Fig. 7b), ten environment models were decoupled from the system model. However, the other models were coupled with
the system model, and externality was implicitly a part of their modeling process. For observability (Fig. 7c), only three models explicitly described how the environment is monitored by an SAS representing sensor interfaces for environment observation. The others did not show an observation mechanism in the model but just assumed it.

For interactivity (Fig. 7d), all the models illustrated interactions between the environment and the SAS, but the direction of interaction influence can be in either direction. First, environmental conditions can affect the SAS; second, SAS behaviors can affect the environment. Nine models represented only how the environment affects the system. They showed how the SAS goal is affected by or how the SAS reacts to the various environmental conditions. Only five models represented two-way interactions. They modeled how the environment was changed by SAS’s behaviors, in addition to the SAS’s reaction to the environment. When modeling the interactions, the incompleteness of the environment was also represented in some models. Among the models expressing environmental influence on the SAS (Fig. 7d-1), only four representations of inaccurate sensors, such as sensor noise, and one representation of sensor failure were found. Among the models expressing the SAS behavior’s influence on the environment (Fig. 7d-2), only one representation of an effector or actuator possibly being inaccurate was found. This demonstrates that most models so far assume ideal interactions.

With regard to uncertainty (Fig. 7e), although there may be various ways to represent this in the environment, we included how models represented the variability of the environment because most models did this. 12 models explicitly represented the variability of the environment, but two models just assumed the environmental condition can vary over time and not represent it. Among the 12 models (Fig. 7e1), six models represented how the environment responds to the SAS operation, and the other three modeled autonomous changes in the environment over time. They usually specified environmental states and reactive or autonomous state transitions. The other three models represented the variability as an enumeration of possible environmental states. In answering RQ6, we found that every model had a unique expression for the characteristics of the environment depending on perspective, and we have shown the trends of those expressions.

V. LESSONS LEARNED

The analyzed SLR results were described in the previous section; in this section, we present lessons learned through this SLR. First, we found the following four common perspectives for specifying or modeling the environment of an SAS:

- **SAS boundary and external factors:** Identifying a system boundary is essential in defining the environment; identifying the external environmental factors then follows.
- **Environmental impact on the SAS goal:** Understanding how the environment affects the SAS goal is important to make the purpose of adaptation clear.
- **Interface of the SAS-environment interaction:** The interfaces between the environment and the SAS, such as monitored environmental variables, actuating variables of the SAS, or specification of incomplete interaction (e.g., noise or failure) should be identified.
- **Variability of the environment:** Change of an environment over time or by the SAS should be identified for analysis by the SAS in the environment.

These four perspectives will help to sufficiently consider various aspects of the environment throughout the whole development process of the SAS as well as in the modeling. Second, we identified some research challenges and limitations of the existing SAS’s environment modeling, as follows:

- **Limited consideration of various characteristics of environment:** Few papers systematically identified the characteristics of the SAS environment prior to this work, so the various characteristics of environments were not often explicitly expressed. Future modeling should reflect diverse characteristics and perspectives of the SAS environment.
- **Limited consideration of various sources of environmental uncertainty:** Although there are various sources of environmental uncertainty, existing models do not represent them comprehensively. Future research should also address complex environmental uncertainty in which various sources are combined.
- **Considerable manual effort and domain knowledge required for modeling:** Adaptations based on environment models are increasing, but they still rely on manual models and domain knowledge. For effective use of the environment model, more research on automated or data-driven model generation is needed. To overcome the limitations, this SLR provides background knowledge about the environment of SASs.

VI. THREATS TO VALIDITY

Every survey paper must deal with the threat of poor representativeness in the primary studies that have been chosen. To reduce this threat, we designed a systematic review protocol (shown in Section III), so that we could exhaustively search for related papers as much as possible and select primary studies objectively. In addition, having and presenting a review protocol makes our method reproducible by readers. Another threat is the possibility of biased analysis of the collected data. To reduce this threat, we tried to utilize the existing expressions or terms and mostly reorganize them for the analysis, as shown in Tables VII and VIII. Nevertheless, because the authors’ viewpoints can inevitably be reflected in the interpretation of the data, all raw data extracted from the primary studies are disclosed3 so that anyone can re-examine it and our conclusions.

VII. RELATED SURVEYS ON SAS

Several systematic literature reviews describe the landscape of research on SAS engineering. Weyns et al. identified tradeoffs of architectural self-adaptation and proposed research directions [7]. Yang et al. et al. [8] and Sucipto et al. [9] investigated requirement engineering approaches for SASs. Muccini et al. analyzed the state of the art of architectural
adaptation approaches for cyber-physical systems [10]. Da Silva et al. investigated UML-based modeling languages for SASs [11]. Recently, applications of machine learning in SASs were surveyed by Saputri et al. [12]. So far, there has been no systematic survey to organize the concepts and models of the environment of an SAS; and as far as we know, this is the first SLR to address them.

VIII. CONCLUSION

In this paper, we examine the landscape of understanding regarding the environment of SASs, we conducted an SLR and examined how primary studies described the concepts of the environment; in addition, we investigated how the studies represented the environment as models. Following a systematic review protocol, we collected 128 primary studies and 14 unique environment models among the primary studies. Through the SLR, we organized five characteristics of the environment of an SAS (diversity, externality, observability, interactivity, and uncertainty) and two main sources of environmental uncertainty (limited environmental knowledge and incomplete environmental interaction). Based on them, we analyzed trends in what aspects of an uncertain SAS environment have been addressed by the selected studies. It was shown that the characteristics of the environment were variously represented in the environment models for each study. This paper provided a view of the current understanding of the environment to which an SAS should adapt, along with evidence from the primary studies. This will guide future research by providing knowledge of the environment to be considered in SAS development and environment modeling. In addition, we provided a perspective that enables environment specification from diverse aspects.

REFERENCES

PRIMARY STUDIES

REFERENCES

