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Abstract

In this paper we deal with the resolution of a fuzzy multiobjective program-
ming problem using the level sets optimization. We compare it to other
optimization strategies studied until now and we propose an algorithm to
identify possible Pareto efficient optimal solutions.
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1. Introduction

Lofti Zadeh said that fuzzy logic grew out of something as impractical
as an idea, namely a reflection on the nature of precision: ”As a systems
engineer, I have always been a firm believer in the power of mathematics
to solve all kinds of problems, but I also realized that such a precise con-
ceptual framework imposed limitations. Solve all kinds of problems, but I
also realized that such a precise conceptual framework imposed limitations.
Psychology, linguistics, etc., are not precise. I have always wanted to re-
duce the gap between the real world, with all its inaccuracies, and classical
mathematics. That was the origin of fuzzy sets and fuzzy logic.”

Fuzzy set theory is the good framework to handle the imprecise informa-
tion. An important and growing field is the Fuzzy Optimization. In 1978,
Zimmerman [4] introduced the fuzziness in the multiobjective linear problem.
Later, in 1994, with Delgado et al.[1] contributions’ we can find the first pa-
pers on fuzzy optimization. The multiobjective programming problem comes
up in some applications including water resources [2] or production planning
problems [3].

A first and essential step is to establish the optimum notion in the fuzzy
environment. In the literature we can find different strategies to define and
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find an optimum for a fuzzy function. One of them uses the approximation
of a fuzzy set by a crisp number (defuzzification techniques). In [7] and
[8] the author uses the embedding theorem and the scalarization in vector
optimization to solve fuzzy multiobjective programming problem. However
when we use a defuzzification operator which replaces a fuzzy set by a single
number we generally loose too much important information.

In [9] an approximation of a fuzzy set by an interval is proposed. In
this approach, a given fuzzy set is substituted by a crisp interval, which
is -in some sense-close to the former one. A new interval approximation
operator, the Nearest Interval Approximation Operator (NIA), which is the
best one with respect to a certain measure of distance between fuzzy numbers
is considered. He proposed an interval which minimize the distances between
the initial fuzzy numbers and all its approximations.

In [10], the author explains what interesting is to use the Nearest Inter-
val Approximation Operator to solve a multiobjective programming prob-
lem with fuzzy objective functions. They established a sufficient Karush-
Kuhn-Tucker type of Pareto optimality conditions, using continuously gH-
differentiable functions where the sum of the end-points functions is convex.

This can be summarized in the following table:

Methods Technique Inconvenience
Defuzzification Replace a fuzzy set Loose information
[7] [8] by a single number
Nearest Interval Approximation of a fuzzy Depends on the
Approximation [9] set by an interval distance

In 2017, Ren and Wang [5] given an approach for solving fuzzy bilevel
programming problems through nearest interval approximation approach.
In 2018, Sharma and Aggarwal [6] solving fully fuzzy multiobjective linear
programming problems using nearest interval approximation of fuzzy number
and interval programming.

Recently, Osuna-Gomez et al. [16] demonstrated optimality conditions
for the case of a fuzzy problem with a single objective function.

The inspiration for this paper comes from the one published in 2009 by
Wu [24] where sufficient optimality conditions were obtained to solve a fuzzy
multiobjective problem but not necessary conditions. In this paper we face
the challenge of searching for such necessary conditions and with more general
hypotheses than those existing in the literature.

In this paper, we propose to use an optimality concept by levels, that
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means we are going to use the level sets that completely characterize the
fuzzy set ([11]) to define the optimum. We demonstrate that this concept
is more general that before mentioned. With no doubt the optimum notion
should be determinated by the decisor’s interest, so in some cases the crisp
optima or interval-optima can be considered more satisfactory than the ones
here showed. However, by including the latter to the previous, the search
mechanisms proposed here will be valid whatever the concept used.

We consider that the optimization problem has multiple objectives, and
propose an algorithm to examine all possible candidates to be Pareto op-
timal solutions under the only hypothesis that the fuzzy functions are gH-
differentiable functions.

This paper is organized as follows. In section 2 we recall the order and
arithmetic for using intervals and fuzzy numbers on α-level sets. In section 3
we put the focus on the multiobjective problem with fuzzy objective functions
and the relationships between their satisficing solutions and Pareto solutions.
In section 4 we present the gH-differentiable fuzzy function concept based on
gH-difference of fuzzy numbers. It is the necessary tool to obtain optimality
conditions. In section 5 we prove our main results. A necessary optimality
condition for Pareto efficiency and an algorithm based on it are obtained.
Finally, in section 6 we present the conclusion remarks.

2. Preliminaries

We recall the arithmetic and order for intervals we are going to use.
We denote by KC the family of all bounded closed intervals in R, i.e.,
KC = {[a, a] / a, a ∈ R and a ≤ a}. If α, β are the end-points of the

interval A (but it is not necessarily α ≤ β), we write A = [α
∨
β].

For A = [a, a], B =
[
b, b
]
∈ KC and ν ∈ R we consider the following

operations:

A+B = [a, a]+
[
b, b
]

=
[
a+ b, a+ b

]
, νA = ν [a, a] =

{
[νa, νa] if ν ≥ 0,
[νa, νa] if ν < 0,

(1)

A	gH B = C ⇔
{

(a) A = B + C, or
(b) B = A+ (−1)C.

(2)

This difference (2), called generalized Hukuhara difference (gH−difference for
short) has many interesting properties compared to other definitions (Min-
skowki, Hukuhara differences) for example A	gH A = {0} = [0, 0]. Also, the
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gH-difference of two intervals A = [a, a] and B =
[
b, b
]

always exists and it
is equal to ([14])

A	gH B =
[
min

{
a− b, a− b

}
,max

{
a− b, a− b

}]
.

Given two intervals we define the distance between A and B byH(A,B) =
max

{
|a− b| ,

∣∣a− b∣∣} . It is well-known that (KC , H) is a complete metric
space.

We consider the following order relation in KC .

Definition 1. Let A,B ∈ R be. It is said that

• A�B ⇔ a ≤ b and ā ≤ b̄.

• A � B ⇔ A�B and A 6= B, i.e. a ≤ b and ā ≤ b̄, with a strict
inequality.

• A ≺ B ⇔ a < b and ā < b̄.

It is clear that A ≺ B ⇒ A � B ⇒ A�B.
A fuzzy set on Rn is a mapping ũ : Rn → [0, 1]. For each fuzzy set ũ, we

denote its α-level set as [ũ]α = {x ∈ Rn | ũ(x) ≥ α} for any α ∈ (0, 1]. The
support of ũ is denoted by supp(ũ) where supp(ũ) = {x ∈ Rn | ũ(x) > 0}.
The closure of supp(ũ) is defined by the 0-level of u, .i.e. [ũ]0 = cl(supp(ũ))
where cl(M) means the closure of the subset M ⊂ Rn. The core of ũ, core(ũ),
is defined by core(ũ) = {x ∈ Rn|ũ(x) = 1}.

Definition 2. A fuzzy set on R, ũ : R→ [0, 1] is said to be a fuzzy interval
or fuzzy number if the following properties are satisfied:

1. ũ is normal, i.e. there exists x0 ∈ R such that ũ(x0) = 1;

2. ũ is an upper semi-continuous function;

3. ũ(λx+ (1− λ)y) ≥ min{ũ(x), ũ(y)}, x, y ∈ R, λ ∈ [0, 1];

4. [ũ]0 is compact.

Let FC denote the family of all fuzzy intervals on R. So, for any ũ ∈ FC ,
we have that [ũ]α ∈ KC for all α ∈ [0, 1] and we denote its α-levels by
[ũ]α = [uα, uα], for all α ∈ [0, 1]. A fuzzy interval is completely determined
by [ũ]α = [uα, uα] satisfying certain conditions, [11].

Triangular fuzzy numbers are a special type of fuzzy numbers which are
well determined by three real numbers a ≤ b ≤ c. We write b̃ = (a, b, c)
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to denote the triangular fuzzy number b̃ with core or 1-level given by the
singleton {b} and whose α-levels sets are[

b̃
]α

= [a+ (b− a)α, c− (c− b)α],

for all α ∈ [0, 1]. A particular case of triangular fuzzy number (or fuzzy
number) are the real numbers a ∈ R with membership function given by χ{a},
where χA denotes the characteristic function of the set A. Also considering
the characteristic function we can see that any interval A = [a, a] is a fuzzy
interval, i.e. χA is a fuzzy interval (fuzzy number) such that [χA]α = A, for
all α ∈ [0, 1].

For fuzzy numbers, ũ, ṽ ∈ FC , represented by [uα, uα] and [vα, vα] respec-
tively, and for any real number λ, we define the addition ũ + ṽ and scalar
multiplication λũ as follows:

(ũ+ ṽ)(x) = supy+z=x min{ũ(y), ṽ(z)}, (λũ)(x) =

{
ũ
(
x
λ

)
, if λ 6= 0,

0, if λ = 0.

It is well known that, for every α ∈ [0, 1],

[ũ+ ṽ]α = [(u+ v)α, (u+ v)α] = [uα + vα , uα + vα] , (3)

[λũ]α =
[
(λu)α, (λu)α

]
= λ[ũ]α = λ [uα, uα] = [min{λuα, λuα},max{λuα, λuα}] .

(4)

Definition 3. ([12]) Given two fuzzy intervals ũ and ṽ, the generalized Hukuhara
difference (gH-difference for short) is the fuzzy interval w̃, if it exists, such
that

ũ	gH ṽ = w̃ ⇔
{

(i) ũ = ṽ + w̃,
or (ii) ṽ = ũ+ (−1)w̃.

It is easy to show that (i) and (ii) are both valid if and only if w is a crisp
number. Note that the case (i) coincides with Hukuhara difference (see [13])
and so the gH-difference concept is more general than the H-difference one.

If ũ	gH ṽ exists then, in terms of α-level sets, we have that

[ũ	gH ṽ]α = [ũ]α 	gH [ṽ]α = [min{uα − vα},max{uα − vα}] , (5)

for all α ∈ [0, 1], where [u]α 	gH [v]α denotes the gH-difference between two
intervals (see [14, 12]).
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Given ũ, ṽ ∈ FC , the distance between ũ and ṽ is defined by

D(ũ, ṽ) = sup
α∈[0,1]

H ([u]α, [v]α) = sup
α∈[0,1]

max {|uα − vα| , |uα − vα|} .

So (FC , D) is a metric space [15].
Let us now consider the set of all vector fuzzy intervals, FmC , i.e ũ ∈ FmC

if ũ = (ũ1, ..., ũm) where each ũi ∈ FC . For any ũ ∈ FmC we have that

[ũ]α = {x = (x1, ..., xm) ∈ Rm|ũi(xi) ≥ α, i = 1, ...,m}.

Geometrically it would be a cartesian product of closed intervals in Rm

[ũ]α =
m∏
i=1

[ũi]
α.

Lemma 1. It is verified that [ũ]α ⊆ [u]0, for all α ∈ [0, 1], ∀ũ ∈ FmC .

Proof. If x ∈ [ũ]α then ũi(xi) ≥ α ≥ 0, for all i = 1, ...m and then x ∈ [ũ]0.

We recall the usual order for fuzzy intervals based on α-level sets:

Definition 4. For ũ, ṽ ∈ FC, it is said that:

• ũ�ṽ, if for every α ∈ [0, 1], [ũ]α�[ṽ]α.

If ũ�ṽ, ṽ�ũ then ũ = ṽ.

• ũ � ṽ if ũ�ṽ and ∃α0 ∈ [0, 1], such that [ũ]α0 � [ṽ]α0.

• ũ ≺ ṽ if [ũ]α ≺ [ṽ]α, ∀α ∈ [0, 1].

For ũ, ṽ ∈ FC if either ũ�ṽ or ṽ�ũ, then it is said that ũ and ṽ are compa-
rable; otherwise they are incomparable.

Note that � is a partial order relation on FC . So ṽ�ũ instead of ũ�ṽ
can be written. We observe that if ũ ≺ ṽ then ũ � ṽ and then ũ�ṽ.

Henceforth, S denotes an open subset of R. Let us consider f̃ : S → FC
a fuzzy function or fuzzy mapping. For each α ∈ [0, 1], we associate with f̃
the interval-valued functions family f̃α : S → KC given by f̃α(t) = [f̃(t)]α.
For any α ∈ [0, 1], we denote

f̃α(t) =
[
f
α
(t), fα(t)

]
=
[
f(α, t), f(α, t)

]
.
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Here, for each α ∈ [0, 1] the real-valued endpoint functions f
α
, fα : S → R

are called lower and upper functions of f̃ , respectively.
Once we have fixed the order we are going to use necessary to obtain

optimal conditions, we will focus on our problem.

3. Multiobjective problem with fuzzy objective functions

In this paper, we consider the following multiobjective fuzzy mathemati-
cal programming problem:

(P) Min
(
f̃1(x), ..., f̃p(x)

)
where f̃j : S ⊆ R → FC , j = 1, ..., p are fuzzy functions defined on S, an
open non-empty subset in R.

We need to interpret the meaning of ”minimizer a vector fuzzy function”.
We are going to follow similar solution concept to non-dominated solution
introduced by Pareto, and usually considered in real-valued multiobjective
optimization.

Definition 5. Let f̃ : S → FpC be a vector fuzzy function defined on S. It is
said that x∗ ∈ S is an efficient solution or Pareto solution if there exists no
x ∈ S such that f̃j(x)�f̃j(x∗), ∀j = 1, ..., p and ∃k such that f̃k(x) ≺ f̃k(x

∗).

Notice that before definition coincides with the classic one when the func-
tions are real-valued.

In [7] a defuzzification function, η : FC → R and two order relations are
defined

Definition 6. Let ũ and ṽ be fuzzy numbers. We write

• ũ �1 ṽ if the Hukuhara difference ṽ 	H ũ exists and η(ṽ 	H ũ) ≥ 0.

• ũ �2 ṽ if the Hukuhara difference ṽ 	H ũ exists and ṽ 	H ũ is non-
negative, where a fuzzy number ã is said nonnegative if aα ≥ 0 for all
α ∈ [0, 1].

Notice that these definitions can only be applied to fuzzy numbers such
that their Hukuhara difference exists, i.e. µ([ũ]α) ≤ µ([ṽ]α), ∀α ∈ [0, 1],
where µ is the interval range.

Now we are going to relate those order relations on FC with the one we
propose to use ”�”:
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Proposition 1. �2 and � coincide when Hukuhara difference does exist.

Proof. If A,B ∈ KC , A�B if and only if A	gH B�[0, 0] because

A	gH B =
[
min

{
a− b, a− b

}
,max

{
a− b, a− b

}]
.

If A�B then a−b ≤ 0 and a−b ≤ 0. Thus A	gHB�[0, 0]. And reciprocally.
In particular if the Hukuhara difference does exist then ṽ	H ũ = ṽ	gH ũ.

If ṽ 	gH ũ is nonnegative [0, 0]�[ṽ 	gH ũ]α for all α ∈ [0, 1]. From (5),
[0, 0]�[ṽ]α 	gH [ũ]α, therefore [ũ]α�[ṽ]α and ũ�ṽ from Definition 4.

In [16] is shown that a minimum based on average index ordering relation
is a minimum for α-level sets ordering relation when η(ũ) =

∫
Y
λuα + (1 −

λ)uαdP (α), where Y is a subset of the unit interval and P a probability
distribution function on Y . In general:

Proposition 2. If η(ã) ≥ 0 when ã is a nonnegative fuzzy number, then �1

is equivalent to �.

Proof. Let us suppose that ṽ 	H ũ exists, then ũ �1 ṽ ⇔ η(ṽ 	H ũ) ≥ 0⇔
η(ṽ	gH ũ) ≥ 0⇔ ṽ	gH ũ is nonnegative ⇔ [0, 0]�[ṽ	gH ũ]α = [ṽ]α	gH [ũ]α

forall α ∈ [0, 1] ⇔ ũ�ṽ.

Definition 7. An interval approximation of a fuzzy number is an operator
I : FC → KC such that for ũ, ṽ ∈ FC,

(i) I(ũ) ⊂ supp(ũ),

(ii) core(ũ) ⊂ I(ũ),

(iii) ∀ε > 0,∃δ > 0/D(ũ, ṽ) < δ ⇒ H(I(ũ), I(ṽ)) < ε.

Proposition 3. [9] The interval

N(ũ) =

[∫ 1

0

u(x, α)dα,

∫ 1

0

u(x, α)dα

]
is an Interval Approximation of fuzzy number ũ such that N(ũ) minimizes
D(ũ, I(ũ)) for all I belonging to the space of interval approximation operators
of fuzzy numbers. N(·) is called Nearest Interval Approximation (NIA).
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Notice that D(ũ, I(ũ)) is the distance between fuzzy numbers, defined in
FC and, it can be considered here since each interval is also a fuzzy number
with constat α-level sets for all α ∈ [0, 1].

In [10] to find a solution of (P ), the authors have been approximated it
by the following interval multiobjective program:

(P1) Min (F1(x), ..., Fp(x))

where Fj(x) stands for the nearest interval approximation (NIA) of f̃j(x),

i.e. Fj(x) =

[∫ 1

0

f
j
(x, α)dα,

∫ 1

0

f j(x, α)dα

]
, x ∈ S, that it is among inter-

val approximation operators of a fuzzy number, the one that minimize the
distance to the fuzzy number.

Definition 8. [10] x∗ ∈ S is called a satisficing solution of (P) if it is a
Pareto optimal solution of (P1), i.e., if there is no x ∈ S such that Fj(x) �
Fj(x

∗) for all j = 1, ..., p and F (x) 6= F (x∗).

Proposition 4. If x∗ is a satisficing solution of (P ) then x∗ is a Pareto
solution for (P ).

Proof. Let us suppose that there exists x ∈ S such that f̃j(x)�f̃j(x∗). Then

it follows that f
j
(x, α) ≤ f

j
(x∗, α) and f j(x, α) ≤ f j(x

∗, α), ∀α and thus

Fj(x) ≤ Fj(x
∗) and besides there exists k such that f

k
(x, α) < f

k
(x∗, α) and

fk(x, α) < fk(x
∗, α), ∀α and thus Fk(x) < Fk(x

∗). It stands in contradiction
to the hypothesis.

In the next section we give the convenient differentiability concept to get
our objectives.

4. gH-Differentiable fuzzy functions

In Optimization Theory, when the functions are differentiable, their gra-
dients allow us to find analytical optimality conditions. Different fuzzy differ-
entiability concepts have been used in fuzzy optimization but they are more
restrictive than the gH-differenciability. Notice that the gH-differentiability
coincides with the H-differentiability [17], only when f

α
and fα are differ-

entiable and (f
α
)′(t) ≤ (fα)′(t) for all α ∈ [0, 1]. And G-differentiability

implies gH-differentiability (see [19]).
Next, we present the gH-differentiable fuzzy function concept based on

the gH-difference of fuzzy numbers.
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Definition 9. ([20]) The gH-derivative of a fuzzy function f̃ : S → FC at
t0 ∈ S is defined as

f̃ ′(t0) = lim
h→0

1

h

[
f̃(t0 + h)	gH f̃(t0)

]
. (6)

If f̃ ′(t0) ∈ FC satisfying (6) exists, we say that f̃ is generalized Hukuhara
differentiable (gH-differentiable, for short) at t0.

The following results establish relationships between gH-differentiability
of f̃ and the gH-differentiability of the interval-valued functions family f̃α,
[22] and gH-differentiability of f̃ and the differentiability of its endpoint
functions f

α
and fα.

Theorem 1. [22] If f̃ : S → FC is gH-differentiable at t0 ∈ S, then f̃α is
gH-differentiable at t0 uniformly in α ∈ [0, 1] and

f̃ ′α(t0) = [f̃ ′(t0)]
α,

for all α ∈ [0, 1].

Theorem 2. [23] Let f̃ : S → FC be a fuzzy function. If f̃ is gH-differentiable
at t0 ∈ S then the lateral derivatives of real-valued endpoints functions
(f

α
)′−(t0), (f

α
)′+(t0), (fα)′−(t0) and (fα)′+(t0) exist, uniformly in α ∈ [0, 1],

and satisfy

[f̃
′
(t0)]

α = f̃ ′α(t0) =
[
(f

α
)

′

+(t0)
∨

(fα)
′

+(t0)
]
.

Remark 1. As a consequence of before results we use the following notation:

[f̃
′
(t0)]

α = f̃ ′α(t0) =
[
(f̃

′

α(t0))
L, (f̃

′

α(t0))
U
]

where

(f̃
′

α(t0))
L = min

{
(f

α
)

′

+(t0), (fα)
′

+(t0)
}

= min
{

(f
α
)

′

−(t0), (fα)
′

−(t0)
}
,

(f̃
′

α(t0))
U = max

{
(f

α
)

′

+(t0), (fα)
′

+(t0)
}

= max
{

(f
α
)

′

−(t0), (fα)
′

−(t0)
}
.
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Theorem 3. [23] Let f̃ : S → FC be a continuous fuzzy function in (t0 −
δ, t0 + δ) ⊂ S for some δ > 0 . Then f̃ is gH-differentiable at t0 ∈ S if
and only if (f

α
)′−(t0), (f

α
)′+(t0), (fα)′−(t0) and (fα)′+(t0) exist, uniformly in

α ∈ [0, 1], and satisfy

[f̃
′
(t0)]

α = f̃ ′α(t0) =
[
(f

α
)

′

+(t0)
∨

(fα)
′

+(t0)
]
.

Definition 10. Given a fuzzy vector function f̃ = (f̃1, ..., f̃p) ∈ FpC, we say
that f̃ is a vector gH-differentiable fuzzy function at t0 ∈ S if and only if f̃j
is gH-differentiable at t0, for all j = 1, ..., p.

We are now ready to proof the main results of this paper.

5. Necessary conditions for Pareto solutions

In this section we prove a necessary optimality condition for Pareto effi-
ciency and give an algorithm based on it, in order to find the possible optima
for our problem. With the necessary optimality conditions we can exclude
feasible solutions that are not optimal. In Section 3 we have proved that the
optimum concept used until now in the different strategies to solve a fuzzy
multiobjective programming problem are more restrictive than the Pareto
solution concept based on the α-level sets. So, the algorithm we develop here
remains valid for the other optimum notions.

In [24] the author uses the same Pareto efficiency notion than in this
paper and prove sufficient optimality conditions for it, but they use more
restrictive hypotheses on the functions (level-wise differentiable functions)
than the ones we suppose here and so, the necessary optimality condition
presented here and the algorithm developed remain valid.

Remark 2. For convenience, we introduce the following notations. Let A =
(A1, ..., Ap) be with Aj ∈ KC. Let Λ ∈ Mp×2, we denote by Λ× A the lineal
combination

Λ× A =

p∑
j=1

λj1aj + λj2aj.

If 0 ∈ Aj for some j = 1, ..., p then there exists Λ ∈ Mp×2, λji ≥ 0 and not
all zero, such that: Λ× A = 0.
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If Λ × A = 0 with λji ≥ 0, but not all zero, there exist λ, λ, (λ, λ) ≥ 0
such that

0 ∈
[
λTa, λ

T
a
]
.

with a = (a1, ..., ap) and a = (a1, ..., ap).

Proposition 5. Let f̃ be a vector gH-differentiable fuzzy function on S. If
x∗ ∈ S is an efficient or Pareto solution for (P ) then the following system
does not have solution at y ∈ R.

y
(
f̃ ′j(x

∗)
)
≺ 0̃p j = 1, ..., p. (7)

Proof. Arguing by contradiction, let us suppose that ∃y ∈ R such that

yf̃ ′j(x
∗) ≺ 0̃ ∀j = 1, ...p.

Then,
y[f̃ ′j(x

∗)]α ≺ [0, 0] ∀α ∈ [0, 1] ∀j = 1, ..., p.

From Theorem 2, for each j there exist (fj(α, (x
∗))′+ and (fj(α, x

∗))′+, uni-

formly in α ∈ [0, 1] and they satisfy

[f̃ ′j(x
∗)]α =

[
min

{
(fj(α, x

∗))′+, (fj(α, x
∗))′+

}
,max

{
(fj(α, x

∗))′+, (fj(α, x
∗))′+

}]
Since

y
[
f ′j(x

∗)
]α ≺ [0, 0]⇔

{
y(fj(α, x

∗))′+ < 0
y(fj(α, x

∗))′+ < 0
, ∀α ∈ [0, 1].

From

y(fj(α, x
∗))′+ = lim

t→0+

1

t
(fj(α, x

∗ + yt)− fj(α, x∗)) < 0

So it follows that there exist ε+j > 0, such that for all t, with 0 < t < ε+j

fj(α, x
∗ + yt)− fj(α, x∗) < 0 ∀α ∈ [0, 1],

fj(α, x
∗)− fj(α, x∗) < 0, ∀α ∈ [0, 1]. (8)

And analogously there exists ε+j > 0 such that for all t, with 0 < t < ε+j

fj(α, x
∗ + yt)− fj(α, x∗) < 0 ∀α ∈ [0, 1],
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fj(α, x
∗)− fj(α, x∗) < 0, ∀α ∈ [0, 1]. (9)

Taking ε = min{ε+j , ε+j : j = 1, ..., p} , t ∈ (0, ε) and from (8) and (9):

f(α, x)− f(α, x∗) < 0 and f(α, x)− f(α, x∗) < 0, ∀α ∈ [0, 1],

where we suppose that x ∈ S. Hence, ∃x ∈ S and f̃(x) ≺ f̃(x∗), and this is
a contradiction to x∗ is an efficient solution for f̃ .

Now, we prove the main result of this section.

Theorem 4. Let f̃ : S → FpC be a vector gH-differentiable fuzzy function at
x∗ ∈ S. If x∗ is an efficient or Pareto solution for (P ), then there exists a
non-negative matrix Λ ∈Mp×2 such that

Λ×
[
f̃ ′(x∗)

]0
= 0. (10)

Proof. If x∗ is a Pareto solution for f̃ , then (7) does not have solution. From
Lemma 1,

y
[
f̃ ′(x∗)

]α
≺ [0, 0], ∀α ∈ [0, 1] ∀j = 1, ..., p⇔

y
[
f̃ ′j(x

∗)
]0
≺ [0, 0] ∀j = 1, ..., p.

Now, let us consider the following lineal system and let us see it has no
solution:

yA < 0
yB < 0

}
(11)

where A,B ∈Mp×1 and

A =


(

(f̃ ′1)0(x
∗)
)L

...(
(f̃ ′p)0(x

∗)
)L
 , B =


(

(f̃ ′1)0(x
∗)
)U

...(
(f̃ ′p)0(x

∗)
)U

 .

If (11) has solution then the system (7) also would have solution and this is
impossible by Proposition 5.
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Since (11) is a system of linear inequalities and it does not have solution ,
from Gordan’s alternative theorem, there exist α, β ∈ Rp with α = 0, β = 0
but not all zero, such that

ATα +BTβ = 0⇔
p∑
j=1

αj

(
(f̃j
′
)0(x

∗)
)L

+ βj

(
(f̃ ′j)0(x

∗)
)U

= 0. (12)

Redefining Λ = (αj, βj) we obtain that there exits Λ ∈Mp×2 such that

Λ×
[
f̃ ′(x∗)

]0
= 0.

And the proof is completed.

Remark 3. If there exists j = 1, ..., p such that 0 ∈ [f̃ ′j(x
∗)]0 then (12) is

verified, and so to identify possible candidates for Pareto solutions is reduced
to identify those feasible solutions whose 0-level set of the derivative contain
the zero element. It coincides with the result for an unique objective function
given by Osuna-Gómez et al. [16].

Remark 4. Expression (12) is equivalent to the existence of a positive linear
combination of

{(f ′
j
)+(x∗, 0), (f ′j)+(x∗, 0), j = 1, ..., p}

equal to zero. That means that (12) is equivalent to the existence of λ, λ ∈ Rp,
λ, λ = 0 not both zero such that

λT (f̃ ′)L0 (x∗) + λ
T

(f̃ ′)U0 (x∗) = 0.

From Theorems 2, 4 and Remark 4, an algorithm to identify the Pareto
solutions candidates can be design, in the same form than in classical Math-
ematical Programming we solve the equations where the gradients are equal
to zero in order to identify the possible optima.
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Algorithm

Step 1. Start and input p (Objective function (f̃1(x), ..., f̃p(x)))
Step 2. Put j = 1, P = ∅, P+ = ∅, P− = ∅
Step 3. While j ≤ p

Step 3.1 P+(j) = P−(j) = ∅.
Step 3.2 Calculate f ′

j
(x, 0)+, f

′
j(x, 0)+

Step 3.3 Define and find lj(x) = min{f ′
j
(x, 0)+, f

′
j(x, 0)+},

uj(x) = max{f ′
j
(x, 0)+, f

′
j(x, 0)+}

Step 3.4 Put [lj(x), uj(x)]
Step 3.5 For x such that lj(x) ≤ 0 ≤ uj(x) then x ∈ P .
Step 3.6 For x such that lj(x) ≥ 0 then x ∈ P+(j)
Step 3.7 For x such that uj(x) ≤ 0 then x ∈ P−(j)
Step 3.8 j = j + 1

Step 4. Set P+ =
⋃p
j=1 P+(j) and P− =

⋃p
j=1 P−(j). If x ∈ P+

⋂
P− then x ∈ P

Step 5. Print P= possible Pareto solutions set and stop.

Example 1. We look for the Pareto optimal solutions for

(P) Min
(
f̃1(x), f̃2(x)

)
, x ∈ R

• In step 1, let us consider two fuzzy functions f̃1, f̃2 : R → FC, whose
α-level sets are given by

[f̃1(x)]α = [(x− 2 + α, (x− α)2], [f̃2(x)]α = [1 + α, 2(3− α)]x, α ∈ [0, 1]

respectively because f̃2(x) = Cx where C is a fuzzy interval.

• In step 2, for j = 1, we begin with P = ∅, P+ = ∅ and P− = ∅.

• In step 3, for j = 1, [f̃ ′1(x)]0 = [min{2x− 4, 2x},max{2x− 4, 2x}].
Then l1(x) = 2x − 4 ≤ 0 ≤ u1(x) = 2x so we get that P = [0, 2]
is a possible Pareto efficient solution for (P ), P+(1) = [2,+∞) and
P−(1) = (−∞, 0]

For j = 2, [f̃ ′2(x)]0 = [1, 6] and so P = ∅, P+(2) = R and P−(2) = ∅

• In Step 4, P+ = P+(1)
⋃
P+(2) = R and P− = P−(1)

⋃
P−(2) =

(−∞, 0]
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• In step 5, in summary, we get that x ∈ (−∞, 2] is a possible Pareto
efficient solution for (P ).

6. Conclusions

In this paper we have addressed the resolution of a fuzzy multiobjective
programming problem using the level sets optimization.

The results presented in this paper lead to the following conclusions:

• We have presented the gH-differentiable fuzzy function concept based
on gH-difference of fuzzy numbers to fuzzy multiobjective optimization
problem.

• We have obtained a necessary optimality condition for Pareto efficiency.
We have completed and improved the results achieved by Wu [24] and
Osuna-Gómez et al. [16].

• We have provided an algorithm and an example based on it.

In our opinion, future work will focus on algorithms or software that
reflect the theoretical results achieved here, and identify further applications
to real-world situations.
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