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Abstract: The entropy of a system gives a powerful insight into its microscopic degrees of freedom,
however standard experimental ways of measuring entropy through heat capacity are hard to apply
to nanoscale systems, as they require the measurement of increasingly small amounts of heat. Two
alternative entropy measurement methods have been recently proposed for nanodevices: through
charge balance measurements and transport properties. We describe a self-consistent thermodynamic
framework for treating few-electron nanodevices which incorporates both existing entropy measure-
ment methods, whilst highlighting several ongoing misconceptions. We show that both methods can
be described as special cases of a more general relation and prove its applicability in systems with
complex microscopic dynamics — those with many excited states of various degeneracies.

Keywords: nanoscale system, quantum transport, Coulomb blockade, entropy measurement, ther-
modynamic relations

1. Introduction

Entropy is one of the cornerstones of thermodynamics. Boltzmann's original insight
in his namesake equation S = kg In () summarises the main source of power of thermody-
namics — the ability to connect a macroscopic quantity to the number of microstates () in a
system-independent way.

In the macroscopic realms of thermodynamics, large Hamiltonian systems with many
degrees of freedom, the number of accessible microstates is so great that the microscopic
meaning of entropy is largely ignored, while it is treated as a state function dependent
on other, more readily measured, state functions. As the size of the system and with it
the volume of its state-space are reduced, individual microstates come into focus and the
knowledge of entropy can provide information about the number and relative probabilities
of the microstates of the system in question. Entropy measurements have been performed
in various microscopic systems: spin-ice [1], 2D electron gas in GaAs structures [2-4] and
fractional quantum Hall states [5,6]. Yet, as experimentally accessible thermodynamic
systems become progressively smaller, from quantum dots [7,8] and quantum dot systems,
through molecules [9-11] to single atoms [12,13] and individual electron spins [14], the
usual approach to entropy measurement, based on the Clausius definition dS = 6Q/T
becomes increasingly difficult since it involves measuring ever-decreasing heat flows.
Therefore, the problem of finding an alternative entropy measurement method applicable
for small systems presents itself.

Recently, two such methods were developed to measure the entropy of few-electron
nanodevices. The first method relies on measuring the charge state of the nanodevice
[15,16], while the second is concerned with the electronic transport through the device
[8,17,18]. Here we show that both direct entropy measurement methods are special cases
of a more general relation between the average electron occupation of the nanodevice and
its entropy. We will derive this relation from purely thermodynamic considerations, i.e.
without any knowledge of the microscopic details of the nanodevice.

This paper is organised as follows: first, in Section 2 we discuss the system under
consideration and the parameters characterising it. Next, in Section 3 we look into the effects
of degeneracy arising from the rate equation and how these have been used previously
to measure entropy [15]. Then, in Section 4 we employ a fully thermodynamic approach
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Figure 1. Experimental regimes of Coulomb-blocked nanodevices: a) A quantum dot coupled
to a thermal bath and exchanging electrons with it. The charge state of the quantum dot can be
independently determined. b) A quantum dot coupled to two electrodes through tunnel junctions. A
potential difference dV between can be applied between them and current through the quantum dot
is measured.

to derive a thermodynamic relation for a system with no excited states and show that it
describes both previously used entropy measurement methods [15,17] as special cases,
before expanding the approach to more complex systems with multiple excited states in
Section 5. Finally, we conclude with a brief summary in Section 6.

2. The system

Following the previously described electric entropy measurement methods [15,17], we
will focus on single-electron nanodevices such as quantum dots [7,8] and single-molecule
devices in the resonant transport regime (sequential tunnelling) [19]. Experimental mea-
surements of these devices fall into two broad categories, as shown in Figure 1: charge
state measurements [15]; and transport measurements (including thermoelectric transport)
[8,17,18]. The free parameters in both experimental setups are the temperatures of the baths
and the energy level of the quantum dot (or molecule, we will refer to both as the quantum
dot in the future). In the transport measurement setup (Figure 1b) additional degrees of
freedom are the temperature difference between the baths and the bias voltage, however
we will look at the quasistatic case where both are infinitesimally small.

We will consider the case where the quantum dot has only two energetically accessible
charge states, with N and N + 1 electrons occupying it, and define the single-particle
energy of the quantum dot ¢ = E(N + 1) — E(N) as the energy difference between the
total energy of the quantum dot in the N + 1 and N charge states [20]. The single-particle
energy level can be controlled by applying a gate voltage Vg, ¢ = ¢g — eaV, where the lever
arm « is given by the electrostatic coupling between the gate and the quantum dot. For
now we will forgo the consideration of excited states and assume that energy depends on
the charge state only. See Section 5.1 for the discussion of € in case of energy splitting of a
charge state.

We treat the electrodes as ideal thermal baths with Fermi-distributions and chemical
potential y. For all practical applications up to and above room temperature, the Fermi-gas
in the electrodes remains highly degenerate, therefore we can put 4 = Er and neglect
its dependence on temperature. Since the quantum dot and the electrodes are in equilib-
rium with respect to particle exchange (arbitrarily close to equilibrium in the transport
measurement setup), the chemical potential of the of the quantum dot is equal to y.

We emphasize that it does not imply that € and y can be equated, as suggested by
Hartman et al. [15]. The single-particle energy level ¢, the additional energy the quantum
dot gets when entered by a new electron, is often referred to as an electrochemical potential
(see for example [21]), however it is not one from a thermodynamic perspective. By
definition, ¢ = (dU/0N)gy, whilst in our case, an electron entering a quantum dot
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Figure 2. a) The dependence of the mean excess population and conductance of a quantum dot
coupled to a heat bath for a non-degenerate transport level and a two-fold degenerate one with
even and odd N respectively — dy41/dy =1, 2, 1/2. The blue lines show the charge degeneracy
point n = 1/2, and red lines the conductance peak for each temperature. b) The dependence of
mean excess population on the dimensionless energy parameter (¢ — y)/kpT for a non-degenerate
transport level and a two-fold degenerate one with even and odd N respectively. c¢) The dependence
of the conductance of a quantum dot on the dimensionless energy parameter (¢ — u)/kgT for a
non-degenerate transport level and a two-fold degenerate one with even and odd N respectively.

necessarily changes its entropy. Below, we will demonstrate that entropy can be measured
directly from e — p.

3. Rate equations
3.1. Degeneracy effects in the rate equation

First, we consider the effects of transport level degeneracy emergent from a rate
equation approach. Starting with a quantum dot coupled to a thermal bath, with only
charge states accessible containing N and N + 1 electrons, the hopping rates of the electrons
to and from the dot are proportional to the degeneracies of the charge states [22]:

I'r = ydnif(e) 1)
Tr = ydn[1 = f(¢)]
where I'7/p are the rate of electron hopping to/from the quantum dot, f(e) = (exp[(e —

#)/kgT] + 1)1 is the Fermi-distribution of the bath,  is a geometric rate factor, and
dn/N+1 is the degeneracy of the charge state with N/N + 1 electrons.
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As the probability for the system to occupy a given charge state, and with it the time it
spends in each state depends on the hopping rates, the probabilities px;,n1 of each charge
state occupation can be written as:

__TIr
PN = i
()
I'r

PN4+1 = ﬁ

If the charge state of the system can be measured directly with high-enough time resolution,
the fraction of the total time the system occupies a given charge state is equal to {5 /tn41 =
pN/PN+1 and contains information about relative charge state degeneracies [23].

In the simplest case the transport level of a quantum dot has a two-fold degeneracy
due to spin orientation, and the degeneracies dy,n+1 depend on the parity of N — for an
even N the transport level is empty and an additional electron can have two possible spin
orientations, while for an odd N the transport level already contains one electron (with
an arbitrary spin orientation), and an additional electron enters with an opposite spin.
Therefore dny1/dy = 2 for an even N and dy41/dny = 1/2 for odd N. The mean excess
population of the quantum dot 7 is equal px1 and varies between 0 and 1. See Figure 2a
for the dependence of 7 on ¢ for a non-degenerate level and two parities of N of a two-fold
degenerate level.

A second charge state degeneracy effect is manifested in the quantum transport
setup (Figure 1b). For a non-degenerate transport level, the conductance of the device is
highest for the transport level coinciding with the chemical potentials of the electrodes
(e = p) —see Figure 2c. The change in the hopping rates due to the level degeneracy causes
a temperature-dependent shift in the peak conductance of a single-electron transistor
predicted in [24] and experimentally measured in [8,18] (Figure 2 a). For a two-fold
degenerate transport level, standard for the spin-degeneracy of electronic current through
a quantum dot (¢, — ) /kgT = +1n2/2, where ¢, is the value of ¢ corresponding to peak
conductance and its sign depends on the parity of N — Figure 2c.

Both effects — the conductance peak shift and the charge state occupation probability
depend on the degeneracies and therefore allow to construct an entropy difference between
the charge states retroactively by extracting relative degeneracies. However this isn't a
“true” entropy measurement, as it is based on assumptions about the hopping rates and
in this form is only applicable to a single energy level with dy,n4+1 degeneracy in the
weak coupling limit, while expansion to more complex systems, even a quantum dot
in a magnetic field, is not possible, as entropy is artificially constructed utilising prior
knowledge of the system.

In order for a method to be capable of measuring the entropy difference between the
charge states with arbitrary dynamics (each charge macrostate can consist of a number of
microstates with different energies), and for a method to be truly thermodynamic, it has
to be free of any assumptions based on our knowledge of the system. One approach to
these prior knowledge-independent, “direct” entropy measurements lies in applying the
Maxwell relations to nanodevices.

3.2. Detailed balance approach to Maxwell relations

The first alternative fully-thermodynamic entropy measurement methods that did
not involve the measurement of heat were developed for quantum Hall states [25,26]
and utilised Maxwell relations to relate the derivative of entropy to other, more readily
measurable parameters.

The idea proposed by Hartman et al. [15] was to apply a Maxwell relation to a quantum

dot device: 5 35
o T
(5),= (), ®
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which connects the change in entropy with the number of electrons, the quantity we are
most interested in, with others, which can be measured directly, without making any
previous assumptions about the nature of the system.

However, a quantum dot with few electrons is far from the usual system for application
and equation 3 has to be treated with utmost care.

One of the issues with the way the Maxwell relation was used in [15] was treating
the right-hand side derivative as a ratio of finite increments AS/AN, where AN = 1 since
only one electron can tunnel in or out, and AS is the entropy change associated with a
single tunnelling event. Since the quantum dot is a few-electron system and only two
charge states are accessible, AN = 1 is not only a large, but the only possible fluctuation.
Moreover, under the treatment of N as the particle number in equation 3, its left-hand
side loses its meaning, since in all states, except the two extreme ones of ¢ — y — £oo the
particle number fluctuates between N and N + 1 and cannot be taken as constant.

The relationship between entropy and energy in [15] is derived from detailed balance
— if the probabilities of finding the quantum dot in both charge states are equal (the point
the authors look at experimentally), the tunneling rates (equation 1) in and out are equal,
which results in the equation dy1/dy = (1 — f(€))/ f(¢), which after taking a logarithm
takes the form:

£ _T” = kg(Indys1 — Indy) = AS )

This equation resembles the Maxwell relation written for the quantum dot, however it is
only valid for one value of € — y — the one corresponding to equal charge state probabilities,
while a Maxwell relation holds true for all values of external parameters.

To make sure we apply the Maxwell relation correctly to the quantum dot, in the
following section we look at all the parameters involved separately.

4. Thermodynamic relation, no excited states
4.1. Derivation and entropy definition

First, we consider a preliminary case of a system where energy depends on the charge
state of the quantum dot only — each charge state might have several microstates, but they
all have the same energy, E(N’), where N’ isequalto Nor N+ 1and E(N +1) = E(N) +e.

As thermodynamics operates with averaged quantities, to derive a general thermody-
namic relation between entropy difference between the two charge states of a quantum
dot and its energy level, we need to consider the mean population of the quantum dot
N. The single-particle energy level has a mean occupation 1 between 0 and 1, while the
base population of the dot N remains unchanged. Since N = N + 7, the mean additional
energy is en and the mean free energy F = E(N) + en — TS. As N remains constant, the
derivatives in the Maxwell relation for the quantum dot can be taken by the mean excess

population, which yields:
AN aS
(7).~ ~(G), o

similarly to the “macroscopic” expression (equation 3). More importantly, we find the
relation between the chemical potential and entropy from y = (0F /0N), leading to:

a5

Note that the entropy used above is the entropy of the quantum dot with a mean excess
population 7, not the entropy of one of the charge states. Next, we derive the expression
this entropy. Since the quantum dot is an open system — it can exchange both energy
and particles with the environment and, in principle, an infinite number of microstates is
accessible to it — we use the Gibbs entropy expression.

In the steady state at any point of time the quantum dot exists in one of the available
charge states and in one of the microstates corresponding to each of the charge macrostates.
The value of entropy has to represent both macrostate and microstate uncertainty — the
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Figure 3. Illustration of equation 9 — the dependence of the dot energy level on the population and
temperature for a non-degenerate dot energy level, dy1/dy = 2 and dn41/dn = 1/2 respectively.
The blue line shows the space of &1/, and the red line ¢), — corresponding to the conductance peak.

uncertainty in the charge state of the quantum dot, and uncertainty in which microstate of
each charge state is occupied.

We introduce a theorem: if a system can occupy m macrostates with probabilities of
occupation p; and each macrostate in turn has m; microstates with probabilities p;;, the
total Gibbs entropy of this system is

S =5.4)Y piSi )
i
where S, is the “coarse” Gibbs entropy of macrostate occupation S = —kg }_ p;Inp; and S;
i
are the Gibbs entropies of the microstates: S; = —kg }_ p;jIn p;;.
i

In the case of the quantum dot with two macrostates with the probabilities px11 = n
and py = 1 — n corresponding to charge states with N + 1 and N electrons, the entropy is
equal to:

S=—kg(nlnn—(1—n)In(1—n))+ 8)
+nSn11+ (1—n)Sy.

Substituting the above, and the entropy of a two-macrostate system into equation 6, we
arrive at: 1

e— -

=kpln

T B n

where AS is the entropy difference between the two charge states Sy+1 — Sy and n is the
mean excess population of the quantum dot. Like the initial Maxwell relation it has been
derived from, this equation holds true for any value of «.

T as )

4.2. Applications and experimental evidence: a two-fold degenerate energy level

We have arrived at equation 9 directly from the corresponding Maxwell relation
without any assumptions about the properties of electronic structure in the quantum dot.
It connects the entropy difference between the two charge states with the energy level of
the dot, the temperature and the mean excess population of the dot as shown in Figure 3.

First, we will show that the general thermodynamic relation describes the entropy
measurements based on charge and conductance. Charge state measurements [15] monitor
the shift of ¢ — u for the charge degeneracy point, where the probabilities of finding
the system in both charge states are equal, as a function of temperature. At the charge
degeneracy point n = 1/2, the “coarse” entropy term kg In[(1 — 1) /n] in equation 9 is
equal to zero, reducing the equation to &1, — 4 = TAS, where ¢/, is the value of ¢ for
the charge degeneracy point. The temperature-dependent energy for n = 1/2 is shown in
Figure 3 for charge state transitions where AS = 0, kgIn2, and —kg In2, corresponding to
dN+1/dN = 1/1, 1/2, and 2/1.

Next, we show from microscopic considerations (see Appendix A) that the peak


https://doi.org/10.20944/preprints202104.0609.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 April 2021 d0i:10.20944/preprints202104.0609.v1

7 of 14

G/Gax

(e-p)ksT

Figure 4. a) The dependence of the population of a quantum dot on (¢ — p) /kgT for different level
degeneracies. The inflection points n = 1/2 fall on the exponential curve, as predicted. b) The
dependence of the conductance of a quantum dot on (¢ — p) /kgT for different level degeneracies.
The conductance peaks fall on the exponential curve with a twice greater argument.

in conductance corresponds to the “inverse non-degenerate” quantum dot population:
n =1— f(e) (for non-degenerate quantum dot in contact with a reservoir n = f(¢)). For
the conductance peak, equation 9 takes the form:

f(sp)
1— f(ep)

which results in ¢, = TAS/2, agreeing with both the theoretical evaluation [17] for the
charge transport measurement setup and the experimental result of conductance peak
shifting by +kgTIn2/2 in [8,18] for a two-fold degenerate level in a quantum dot. As
shown in Figure 3, for AS = 0 the conductance is maximum at n = 1/2, while for
AS = kgIn2 and —kg In2 the population at the conductance peak is np = V2/ 1+ \/E)
and n, = 1/(1 + /2) respectively.

It is important to note that the two previously described entropy measurement meth-
ods are merely specific cases of a more general approach that allows the determination of
entropy for any fixed value of the mean excess population n. This is particularly useful for
systems where due to limited gate control not all values of n are accessible [27]. Moreover,
equation 9 can be used in reverse to find the dependence of occupation probabilities of two
charge states of known dynamics (known entropy difference) on the gate voltage of the
device without relying on rate equations, or when it cannot be determined, for instance
when the levels and degeneracies are known, but not the hopping rates — see appendix B.

ep— 1
T

= kgln +AS (10)

4.3. A single N-fold degenerate energy level

The general thermodynamic relation can be applied to systems with a higher degen-
eracy of the transport level, for instance, molecules with spatial symmetry that leads to
extra spacial degeneracy for each charge state. A common example of such high-symmetry
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Figure 5. a) The energy level structure of a quantum dot if all states with the same charge are
energetically degenerate. b) Energy level structure in a quantum dot with excited states. Each charge
state has a family of excited states at energies E(N’) + J¢; and there is a non-zero mean energy Epr
of the excited states above Ey. ¢ is the energy difference between the ground states, while £ is the
difference between the mean energies of the charge states.

molecules are fullerenes [27,28], which have a five-fold degenerate HOMO (highest occu-
pied molecular orbital) and a three-fold degenerate LUMO (lowest unoccupied molecular
orbital).

Figure 4 shows the dependence of population and conductance on the reduced dot
level energy (¢ — i) /kgT for different values of dy.1/dy. For a transition between a
dn4+1 degenerate state and a dy degenerate one the entropy difference is equal to AS =
kplndyy1 —kplndy = kgIn(dni1/dn). As expected, the reduced energy for the charge
degeneracy point n = 1/2is AS/kg = In(dn1/dn) and the conductance peak energy is
§/2kg = In(dn+1/dN) /2.

5. General thermodynamic relation
5.1. Systems with excited states

Now we look at a more general system. Each charge state N” has a family of excited
states with energies E(N) + d¢;, where de can be arbitrarily large. Each of the excited states
can have its own degeneracy.

It is both usual and practical to define ¢ as the energy difference between the ground
states of the charge state families [21]. We also define the additional mean energy of the
charge state:

EN’ = EPZ'(SSZ' (11)
i

where the sum is over all the states corresponding to the charge state and p; is the probabil-
ity of occupation of the microstate (for the ground state de = 0).

To write the mean free energy of the system, we need to include the mean additional
energies of the charge states:

F=E(N)+HE+HEN+1+(1—W)E_N—TS (12)
Following the derivation in Section 4.1, we arrive at a new form of the thermodynamic
relation: _ _
E—p 1—n En — Eny1
= kpln AS + ———— 1
T B " +AS + T (13)

If we define & as the difference between the mean energies of the charge states, & =
E(N+1) — E(N) + Eny1 — En, and equation 13 can be simplified as:

E—u 1—n
=kpln—— +A 14
T BIn 1 + AS ()
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This final result could be obtained from the beginning, as the energy introduced with the
additional population of the quantum dot is equal to &1, however & is harder to determine,
both experimentally and computationally than e. We should also note that the difference
between the two parameters ¢ and & disappears in most experimental realisations of the
measurement technique [8,18], since de/9dT is measured.

5.2. Discussion

As the derivation of equation 14 followed only from the Maxwell relation written for
the quantum dot, it makes no assumptions about the “nature” of the entropy of the system
— the physical origin of the microstate probabilities and energies and the tunnelling rates
into each of the microstates, and therefore it can be applied to systems with all kinds of
dynamics. This is a distinguishing feature of of this work, which arises from the purely
thermodynamic approach, in contrast to the previous results.

Hartman et el. [15] performed an experiment comparing the dependence of the thermal
shift of the charge degeneracy point on the magnetic field with the theoretical expression
for the entropy of a single spin in a magnetic field: S = kg(pyInps + p;Inp|), where
pr | = (14 exp(+gupB/kgT))~!. We note that while the excellent agreement between
the two is not unexpected, there has been no theoretical proof previously for applicability
of the entropy measurement method for systems with transport that is not described by
integer level degeneracy.

To further justify the thermodynamic approach, we have derived the main result of
the paper (equation 14) from microscopic considerations, starting from the Gibbs distri-
bution (see Appendix C) for a system with excited states, to show that the “top-down”
thermodynamic approach agrees with the more standard “bottom-up” microscopic one,
common in the field. This also serves as evidence for the validity of our choices of entropy
and chemical potential for the problem.

It may seem that the thermodynamic approach we suggest is simply a reformulation
of the rate equation and, knowing the system, one can always find the shift in the charge
or conductance traces. However, as the thermodynamic approach produces the value
of entropy without making any prior assumptions, it can provide an important tool for
choosing a physical model for an unknown system.

One important note, however, is that while we have shown that the charge state
measurement method is applicable to all conceivable systems, our proof of the validity of
the method based on conductance relies on the assumption that the energy spacing between
the levels corresponding to each of the charge states is small — the hopping rates to all of
them are equal (see Appendix A). This suggests that the applicability of the conductance
measurement is narrower than that of the charge state measurement.

6. Conclusion

We have presented a purely thermodynamic treatment of the entropy measurement
methods in few-electron nanodevices, which is free of any prior assumptions about the
system. It agrees with both previously proposed entropy measurement methods, based on
the charge state measurement and the conductance of the device, and, furthermore, shows
that they are special cases of a single relation. This allows to broaden the experimental
scope of the methods, for instance, by measuring the entropy of a system where mean
population is known, but a charge-degeneracy state is not accessible.

Additionally, we provide proof that the result holds true for much more complex
systems than those that have been considered before: systems with multiple excited states
with different degeneracies and large level spacings for each charge state.

Our approach demonstrates the subtlety of applying thermodynamic relations to
microscopic systems and its agreement with previous results obtained by different methods,
both theoretical and experimental indicates that our application and choice of parameters
is correct. Thus we can hope that we have provided a simple framework, which can be
expanded for use with other microscopic systems with more than two charge states or


https://doi.org/10.20944/preprints202104.0609.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 April 2021 d0i:10.20944/preprints202104.0609.v1

10 of 14

detectable macrostates of a different origin using the same toolkit of the mean population,
thermal bath-defined chemical potential and entropy that includes both microstate and
charge state uncertainty.
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Appendix A. Proof of peak conductance condition

We look at the conductance of a quantum dot coupled to two Fermi baths (L and R).
The dot has two accessible charge states, with N and N + 1 electrons, each of which can
have an arbitrary number of microstates with slightly different energies within Je of each
other. We assume that de — the degeneracy lifting is much smaller than ¢, which allows us to
treat the hopping rates to each of the charge macrostates (independent of what microstate
is involved in the transfer) as dependent on ¢ only.

The hopping rates under this assumption are:

Trr = ve(1 = fr(e))
Trr = v7fR(€)
Trp=7e((1— fL(e))
Trr = yrfe(e)

(A1)

where I'(7/p)(r/1) is the rate of electrons hopping to/from the dot with the right/left
electrode involved, fr, () is the Fermi-distribution of the right/left electrode and 7, r
are the coefficients accounting for hopping to or from the dot, to any of the microstate
levels, independent of the state of the electrodes. The occupation probabilities are the same
as in equation 2, with I'r/p = T'(7/p) + ' (1/F)R-

The current through the dot in a steady state is equal to

I = pnNTre — pN+1TeL = PN TFR — PNTER (A2)

We prove that the conductance peak occurs when the mean excess population of the
dot is equal to the “inverse electrode population” n = 1 — f(e) by showing that the the
conductance doesn’t change in the first order by de around this point.

For n = 1 — f(e), the condition for the current to be zero at zero bias voltage and

temperature difference is:

_ 2 2(e—p)

(1 f(€)> =TT _ ot (A3)
f(e) YF

Thus, exp[(e — 1) /kgT] = \/yr/vr and substituting it in the Fermi-distribution, we get
the occupation probabilities:

_ _VrE
PN—f(S)—iﬁJr\/TF

__ T
VT +VE

(A4)

pn+1=1—f(e)
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The conductance is equal to:
_dl . dpnn dpn _
C=qy =Trr—gy ~Trrgy = (A5)
(A6)

_ e f(1=f(e))
2 (yr—or)f(e) +r

It can be demonstrated that the it does not change in the first order by df, which implies a
zero derivative of conductance by f(e) and therefore ¢.

Appendix B. Dot population from the Maxwell relation

The final expression we derive from the Maxwell relation 9 can be used to find the
dependence of the population of the quantum dot on € — y if the entropy difference AS is
known.

Solving equation 9 for n with a known AS, we find:

1
W=PN+1= ~c1as (A7)
e BT

This highlights the fact, first described by Beenakker [24] that the population of the dot
differs from the Fermi-distribution in the electrodes. However, the population always has
the form of a Fermi-distribution shifted by some energy value and the entropy quantifies

this shift.
For a two-fold degenerate level with dy_1/dy = 2 from equation A7 we find:

1 2¢ FgT

n = =
kBLTJran

(A8)

1+e 24 ¢ BT

which agrees with both the Gibbs distribution for the two charge states and the result
found through the rate equation for arbitrary degeneracies [8,29]:

dn(Trr +T1Rr)
dny1(Trr +Trr) +dn(Trr + Trr)

PN+1 = (A9)
Comparing equations A7 and A9 it is evident that the thermodynamic approach is A7
yields the result in a simpler way even for a relatively simple rate equation.

Appendix C. Independent proof

Our derivation of the main result of the paper, equation 9 from the Maxwell relation
involved several decisions on our part: mainly the use of the chemical potential and the
expression for entropy. We will demonstrate that the same result can be derived directly
from the Gibbs distribution, confirming the validity of our initial ansatz.

We have two charge macrostates, which consist of microstates with energies

E;i = E(N/) + 5ei(N') (A10)

where N’ can take the values of N or N + 1, and J¢;(N’) is the energy shift of the ith
microstate of the N’th charge state from the charging energy. We assume that ¢; do not
depend on e.
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We write the Gibbs distribution for two charge states separately, taking the energy
floor to be E(N) — uN, as the Gibbs distribution does not depend of the choice of zero

energy:
_ ETt0E;

P(N +1,5¢;) = %Q(N +1,0e)e T

(A11)

1 _ o

P(N, 581‘) = ZQ(N, 581')6 kgT
where Q(N’, §¢;) is the microstate multiplicity, and we have contracted the dependence of
Jde on N’ as each charge state takes its own microstate energy shifts. And Z is the partition

function, which has the form:

7€’V+5€j
Z=3) QO(N+1,6¢e)e Tl + (A12)
i
JO¢; I

+ Y O(N, de;)e T = Zy + Zy qe 8T
i

where Z; are the macrostate partition functions:

e ptde;
Zn =Y Q(N',bej)e FoT (A13)
i
The mean excess population can be expressed as:
7 - %
B
A= SN 7 (A14)

ZN+ Znyre BT

As Zy and Zy 41 to not depend on e due to our prior assumption, we can solve for it,

obtaining:
€M kpln " ¢ kgln 2N (A15)
T n
In the general case, the Gibbs entropy of a system in contact with a heat bath is equal
to:
E
Sg = T +kglnZ (Ale)

where E is the mean energy of the state. Substituting equation A16 into A15 we obtain the
same result as we found thermodynamically (equation 14).
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