
3Department of Mathematics,
Sun Yat-sen University, Guangzhou 510275, China.
E-mail: stslyj@mail.sysu.edu.cn
and
4School of Mathematics and Statistics,
Guangdong University of Foreign Studies,
Guangzhou, 510006, P. R. China.
Email: zhgugz@163.com

1

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 April 2021                   doi:10.20944/preprints202104.0597.v1

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202104.0597.v1
http://creativecommons.org/licenses/by/4.0/


Existence and uniquenes solution of

integral equations via common fixed

point theorems

Gunaseelan Mani 1, Arul Joseph Gnanaprakasam2, Yongjin Li3

and Zhaohui Gu4∗

April 22, 2021

Abstract

In this paper, we prove some common fixed point theorems
on complex partial metric space. The presented results gener-
alize and expand some of the literature well-known results. We
also explore some of the application of our key results.
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1 Introduction

Azam et al. [1] introduced the concept of complex valued metric spaces and
studied some fixed point theorems for mappings satisfying a rational inequality.

Two years after, in [2] Rao et al. discussed for the first time the idea of
complex-valued b-metric spaces.

In 2017, Dhivya and Marudai [3] introduced the concept of complex partial
metric space and suggested a plan to expand the results, as well as proving com-
mon fixed point theorems under the rational expression contraction condition.
This idea has been followed by Gunaseelan [4], who introduced the concept of
complex partial b-metric spaces and discussed some results of fixed point theory
for self-mappings in these new spaces.

In [5], Prakasam and Gunaseelan proved an existence and uniqueness of com-
mon fixed point (with an illustrative example) theorem using (CLR) and (E.A.)
properties in complex partial b-metric spaces. Their proved results generalize
and extend some of the well known results in the literature.

In [6], Gunaseelan et al. proved a fixed point theorem in complex partial
b-metric spaces under a contraction mapping. They also gave some applications
of their main results.
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In this paper, we prove some common fixed point theorems on complex
partial metric space.

2 Preliminaries

Let C be the set of complex numbers and τ1, τ2, τ3 ∈ C. Define a partial order
� on C as follows:
τ1 � τ2 if and only if R(τ1) ≤ R(τ2), I(τ1) ≤ I(τ2).
Consequently, one can infer that τ1 � τ2 if one of the following conditions is
satisfied:
(i) R(τ1) = R(τ2), I(τ1) < I(τ2),
(ii)R(τ1) < R(τ2), I(τ1) = I(τ2),
(iii)R(τ1) < R(τ2), I(τ1) < I(τ2),
(iv)R(τ1) = R(τ2), I(τ1) = I(τ2).
In particular, we write τ1 � τ2 if τ1 6= τ2 and one of (i), (ii) and (iii) is satisfied
and we write τ1 ≺ τ2 if only (iii) is satisfied. Notice that
(a) If 0 � τ1 � τ2, then |τ1| < |τ2|,
(b) If τ1 � τ2 and τ2 ≺ τ3 then τ1 ≺ τ3,
(c) If η, γ ∈ R and η ≤ γ then ητ1 � γτ1 for all 0 � τ1 ∈ C.
Here C+(= {(ℵ, y)|ℵ, y ∈ R+}) and R+(= {ℵ ∈ R|ℵ ≥ 0}) denote the set
of non negative complex numbers, and the set of non negative real numbers,
respectively.
Now, let us recall some basic concepts and notations, which will be used in the
sequel.

Definition 2.1. [3] A complex partial metric on a non-void set G is a function
%cb : G×G→ C+ such that for all θ, ω, ϑ ∈ G:
(i) 0 � %cb(θ, θ) � %cb(θ, ω)(small self-distances)
(ii) %cb(θ, ω) = %cb(ω, θ)(symmetry)
(iii) %cb(θ, θ) = %cb(θ, ω) = %cb(ω, ω) if and only if θ = ω(equality)
(iv) %cb(θ, ω) � %cb(θ, ϑ) + %cb(ϑ, ω)− %cb(ϑ, ϑ)(triangularity).
A complex partial metric space is a pair (G, %cb) such that G is a non-void set
and %cb is the complex partial metric on G.

Definition 2.2. [3] Let (G,℘cb) be a complex partial metric space. Let {θn} be
any sequence in θ ∈ G. Then

(i) The sequence {θn} is said to be converges to ℵ, if limn→∞ ℘cb(θn, θ) =
℘cb(θ, θ).

(ii) The sequence {θn} is said to be Cauchy sequence in (G,℘cb) if
limn,m→∞ ℘cb(θn, θm) exists and is finite.

(iii) (G,℘cb) is said to be a complete complex partial metric space if for every
Cauchy sequence {θn} in G there exists θ ∈ G such that
limn,m→∞ ℘cb(θn, θm) = limn→∞ ℘cb(θn, θ) = ℘cb(θ, θ).
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(iv) A mapping Π : G → G is said to be continuous at θ0 ∈ G if for every
ε > 0, there exists δ > 0 such that Π(B℘cb

(θ0, δ)) ⊂ B℘cb
(Π(θ0, ε)).

Definition 2.3. [3] Let Π and Ψ be self mappings of non-void set G. A point
ℵ ∈ G is called a common fixed point of Π and Ψ if ℵ = Πℵ = Ψℵ.

Theorem 2.1. [3] Let (G,�) be a partially ordered set and suppose that there
exists a complex partial metric %cb in G such that (G, %cb) is a complete complex
partial metric space. Let Π,Ψ : G → G be a pair of weakly increasing mapping
and suppose that for every comparable ℵ, y ∈ G we have either

%cb(Πℵ,Ψy) � a%cb(ℵ,Πℵ)%cb(y,Ψy)

%cb(ℵ, y)
+ b%cb(ℵ, y)

for %cb(ℵ, y) 6= 0 with a ≥ 0, b ≥ 0, a+ b < 1, or

%cb(Πℵ,Ψy) = 0 if %cb(ℵ, y) = 0.

If Π or Ψ is continuous then Π and Ψ have a common fixed point ∝∈ G and
%cb(∝,∝) = 0.

Inspired by Theorem 2.1, here we prove some common fixed point theorems
on complex partial metric space with an application. For complex partial metric
space, we will use the CPMS notation.

3 Main Results

Theorem 3.1. Let (G,℘cb) be a complete CPMS and Π,Ψ: G → G be two
continuous mappings such that

℘cb(Πθ,Ψω) � fmax{℘cb(θ, ω), ℘cb(θ,Πθ), ℘cb(ω,Ψω),

1

2
(℘cb(θ,Ψω) + ℘cb(ω,Πθ))}, (1)

for all θ, ω ∈ G, where 0 ≤ f < 1. Then the pair (Π,Ψ) has a unique common
fixed point and ℘cb(θ

∗, θ∗) = 0.

Proof. Let θ0 be arbitrary point in G and define a sequence {θn} as follows:

θ2n+1 = Πθ2n and θ2n+2 = Ψθ2n+1, n = 0, 1, 2, . . . (2)
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Then by (1) and (2), we obtain

℘cb(θ2n+1, θ2n+2) = ℘cb(Πθ2n,Ψθ2n+1)

� fmax{℘cb(θ2n, θ2n+1), ℘cb(θ2n,Πθ2n), ℘cb(θ2n+1,Ψθ2n+1),

1

2
(℘cb(θ2n,Ψθ2n+1) + ℘cb(θ2n+1,Πθ2n))}

� fmax{℘cb(θ2n, θ2n+1), ℘cb(θ2n, θ2n+1), ℘cb(θ2n+1, θ2n+2),

1

2
(℘cb(θ2n, θ2n+2) + ℘cb(θ2n+1, θ2n+1))}

� fmax{℘cb(θ2n, θ2n+1), ℘cb(θ2n+1, θ2n+2),

1

2
(℘cb(θ2n, θ2n+1) + ℘cb(θ2n+1, θ2n+2)− ℘cb(θ2n+1, θ2n+1)

+ ℘cb(θ2n+1, θ2n+1))}
= fmax{℘cb(θ2n, θ2n+1), ℘cb(θ2n+1, θ2n+2),

1

2
(℘cb(θ2n, θ2n+1) + ℘cb(θ2n+1, θ2n+2))}

Case I: If max{℘cb(θ2n, θ2n+1), ℘cb(θ2n+1, θ2n+2),
1

2
(℘cb(θ2n, θ2n+1) + ℘cb(θ2n+1, θ2n+2))} = ℘cb(θ2n+1, θ2n+2), then we have

℘cb(θ2n+1, θ2n+2) � f℘cb(θ2n+1, θ2n+2).

This implies f ≥ 1, which is a contradiction.
Case II: If max{℘cb(θ2n, θ2n+1), ℘cb(θ2n+1, θ2n+2),
1

2
(℘cb(θ2n, θ2n+1) + ℘cb(θ2n+1, θ2n+2))} = ℘cb(θ2n, θ2n+1), then we have

℘cb(θ2n+1, θ2n+2) � f℘cb(θ2n, θ2n+1). (3)

From the next step, we have

℘cb(θ2n+2, θ2n+3) � fmax{℘cb(θ2n+1, θ2n+2), ℘cb(θ2n+2, θ2n+3),

1

2
(℘cb(θ2n+1, θ2n+2) + ℘cb(θ2n+2, θ2n+3))}.

The following three cases arises, we have
Case IIa:

℘cb(θ2n+2, θ2n+3) � f℘cb(θ2n+2, θ2n+3),

which implies f ≥ 1, is a contradiction.
Case IIb:

℘cb(θ2n+2, θ2n+3) � f℘cb(θ2n+1, θ2n+2). (4)

From (3) and (4), ∀n = 0, 1, 2, . . ., we get

℘cb(θn+1, θn+2) � f℘cb(θn, θn+1) � . . . � fn+1℘cb(θ0, θ1).
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For m,n ∈ N, with m > n, we have

℘cb(θn, θm) � ℘cb(θn, θn+1) + ℘cb(θn+1, θm)− ℘cb(θn+1, θn+1)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θm)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θm)

− ℘cb(θn+2, θn+2)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θm)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θn+3)

+ . . .+ ℘cb(θm−2, θm−1) + ℘cb(θm−1, θm).

Moreover, by using (4), we get

℘cb(θn, θm) � fn℘cb(θ0, θ1) + fn+1℘cb(θ0, θ1) + fn+2℘cb(θ0, θ1)

+ . . .+ fm−2℘cb(θ0, θ1) + fm−1℘cb(θ0, θ1)

=

m−n∑
i=1

fi+n−1℘cb(θ0, θ1).

Therefore

|℘cb(θn, θm)| ≤
m−n∑
i=1

fi+n−1|℘cb(θ0, θ1)| =
m−1∑
t=n

ft|℘cb(θ0, θ1)|

≤
∞∑
i=n

|℘cb(θ0, θ1)|

=
fn

1−f
|℘cb(θ0, θ1)|.

Then, we have

|℘cb(θn, θm)| ≤ fn

1−f
|℘cb(θ0, θ1)| → 0 as n→∞.

Hence {θn} is a Cauchy sequence in G.
Case IIc:

℘cb(θ2n+2, θ2n+3) � f
1

2
(℘cb(θ2n+1, θ2n+2) + ℘cb(θ2n+2, θ2n+3)).

This implies that

℘cb(θ2n+2, θ2n+3) � f
(2−f)

℘cb(θ2n+1, θ2n+2). (5)

Since a :=
f

2−f
< 1, we get ℘cb(θn+1, θn+2) � a℘cb(θn, θn+1). Therefore

{θn}n∈N is a Cauchy sequence in G.
Case III:
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If max{℘cb(θ2n, θ2n+1), ℘cb(θ2n+1, θ2n+2),
1

2
(℘cb(θ2n, θ2n+1)+℘cb(θ2n+1, θ2n+2))} =

1

2
(℘cb(θ2n, θ2n+1)+℘cb(θ2n+1, θ2n+2)).

Then, we have

℘cb(θ2n+1, θ2n+2) � f
2

(℘cb(θ2n, θ2n+1) + ℘cb(θ2n+1, θ2n+2))

Hence,

℘cb(θ2n+1, θ2n+2) � f
2−f

℘cb(θ2n, θ2n+1). (6)

For the next step, we have

℘cb(θ2n+2, θ2n+3) � fmax{℘cb(θ2n+1, θ2n+2), ℘cb(θ2n+2, θ2n+3),

1

2
(℘cb(θ2n+1, θ2n+2) + ℘cb(θ2n+2, θ2n+3))}.

Then, we have the following three cases:
Case IIIa:

℘cb(θ2n+2, θ2n+3) � f℘cb(θ2n+2, θ2n+3),

which implies f ≥ 1, which is a contradiction.
Case IIIb:

℘cb(θ2n+2, θ2n+3) � f℘cb(θ2n+1, θ2n+2). (7)

Then by (6) and (7), we get ℘cb(θn+1, θn+2) � γ℘cb(θn, θn+1), where

γ = max

{
f,

f
2−f

}
< 1. Hence {θn}n∈N is a Cauchy sequence in G.

Case IIIc:

℘cb(θ2n+2, θ2n+3) � 1

2
(℘cb(θ2n+1, θ2n+2) + ℘cb(θ2n+2, θ2n+3)).

Hence, we obtain

℘cb(θ2n+2, θ2n+3) � f
(2−f)

℘cb(θ2n+1, θ2n+2). (8)

By using (6) and (8) yields

℘cb(θn+1, θn+2) � o℘cb(θn, θn+1), (9)

where 0 ≤ o = f
2−f

< 1.

Then ∀n = 0, 1, 2, . . . , we get

℘cb(θn+1, θn+2) � o℘cb(θn, θn+1) � . . . � on+1℘cb(θ0, θ1).
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For m,n ∈ N, with m > n, we have

℘cb(θn, θm) � ℘cb(θn, θn+1) + ℘cb(θn+1, θm)− ℘cb(θn+1, θn+1)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θm)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θm)

− ℘cb(θn+2, θn+2)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θm)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θn+3)

+ . . .+ ℘cb(θm−2, θm−1)) + ℘cb(θm−1, θm).

Using (9), we get

℘cb(θn, θm) � on℘cb(θ0, θ1) + on+1℘cb(θ0, θ1) + on+2℘cb(θ0, θ1)

+ . . .+ om−2℘cb(θ0, θ1) + om−1℘cb(θ0, θ1)

=

m−n∑
i=1

oi+n−1℘cb(θ0, θ1).

Therefore,

|℘cb(θn, θm)| ≤
m−n∑
i=1

oi+n−1|℘cb(θ0, θ1)| =
m−1∑
t=n

ot|℘cb(θ0, θ1)|

≤
∞∑
i=n

ot|℘cb(θ0, θ1)|

=
on

1− o
|℘cb(θ0, θ1)|.

Hence, we have

|℘cb(θn, θm)| ≤ on

1− o
|℘cb(θ0, θ1)| → 0 as n→∞.

Hence {θn} is a Cauchy sequence in G. In all cases above discussed, we get
the sequence {θn}n∈N is a Cauchy sequence. Since G is complete, there exists
θ∗ ∈ G such that θn → θ∗ as n→∞ and

℘cb(θ
∗, θ∗) = lim

n→∞
℘cb(θ

∗, θn) = lim
n→∞

℘cb(θn, θn) = 0

By the continuity of Π it follows θ2n+1 = Πθ2n → Πθ∗ as n→∞.

i.e. ℘cb(Πθ
∗,Πθ∗) = lim

n→∞
℘cb(Πθ

∗,Πθ2n) = lim
n→∞

℘cb(Πθ2n,Πθ2n).

But

℘cb(Πθ
∗,Πθ∗) = lim

n→∞
℘cb(Πθ2n,Πθ2n) = lim

n→∞
℘cb(θ2n+1, θ2n+1) = 0.
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Next we have to prove that θ∗ is a fixed point of Π.

℘cb(Πθ
∗, θ∗) � ℘cb(Πθ∗,Πθ2n) + ℘cb(Πθ2n, θ

∗)− ℘cb(Πθ2n,Πθ2n).

As n → ∞, we obtain |℘cb(Πθ∗, θ∗)| ≤ 0. Thus ℘cp(Πθ
∗, θ∗) = 0. Hence

℘cb(θ
∗, θ∗) = ℘cb(θ

∗,Πθ∗) = ℘cb(Πθ
∗,Πθ∗) = 0 and Πθ∗ = θ∗. In the same way,

we have θ∗ ∈ G such that θn → θ∗ as n→∞ and

℘cb(θ
∗, θ∗) = lim

n→∞
℘cb(θ

∗, θn) = lim
n→∞

℘cb(θn, θn) = 0

By the continuity of Π it follows θ2n+2 = Ψθ2n+1 → Ψθ∗ as n→∞.

i.e. ℘cb(Ψθ
∗,Ψθ∗) = lim

n→∞
℘cb(Ψθ

∗,Ψθ2n+1) = lim
n→∞

℘cb(Ψθ2n+1,Ψθ2n+1).

But

℘cb(Ψθ
∗,Ψθ∗) = lim

n→∞
℘cb(Ψθ2n+1,Ψθ2n+1) = lim

n→∞
℘cb(θ2n+2, θ2n+2) = 0.

Next we have to prove that θ∗ is a fixed point of Ψ.

℘cb(Ψθ
∗, θ∗) � ℘cb(Ψθ∗,Ψθ2n+1) + ℘cb(Ψθ2n+1, θ

∗)− ℘cb(Ψθ2n+1,Πθ2n+1).

As n → ∞, we obtain |℘cb(Ψθ∗, θ∗)| ≤ 0. Thus ℘cp(Ψθ
∗, θ∗) = 0. Hence

℘cb(θ
∗, θ∗) = ℘cb(θ

∗,Ψθ∗) = ℘cb(Ψθ
∗,Ψθ∗) = 0 and Ψθ∗ = θ∗. Therefore θ∗ is

a common fixed point of the pair (Π,Ψ).
To prove uniqueness, let us consider ω∗ ∈ G is another common fixed point for
the pair (Π,Ψ). Then

℘cb(θ
∗, ω∗) = ℘cb(Πθ

∗,Ψω∗)

� fmax{℘cb(θ∗, ω∗), ℘cb(θ∗,Πθ∗), ℘cb(ω∗,Ψω∗),
1

2
(℘cb(θ

∗,Ψω∗) + ℘cb(ω
∗,Πθ∗))}

� fmax{℘cb(θ∗, ω∗), ℘cb(θ∗, θ∗), ℘cb(ω∗, ω∗),
1

2
(℘cb(θ

∗, ω∗) + ℘cb(ω
∗, θ∗))}

� f℘cb(θ
∗, ω∗).

This implies that θ∗ = ω∗.

In the absence of the continuity condition for the mappings Π and Ψ, we get
the the following Theorem.

Theorem 3.2. Let (G,℘cb) be a complete CPMS and Π,Ψ: G → G be two
mappings such that

℘cb(Πθ,Ψω) � fmax{℘cb(θ, ω), ℘cb(θ,Πθ), ℘cb(ω,Ψω),

1

2
(℘cb(θ,Ψω) + ℘cb(ω,Πθ))}, (10)

for all θ, ω ∈ G, where 0 ≤ f < 1. Then the pair (Π,Ψ) has a unique common
fixed point and ℘cb(θ

∗, θ∗) = 0.

9
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Proof. Following from Theorem 3.1, we get that the sequence {θn} is a Cauchy
sequence. Since G is complete, there exists θ∗ ∈ G such that θn → θ∗ as n→∞.
Since Π and Ψ are not continuous, we have ℘cb(θ

∗,Πθ∗) = ϑ > 0.
Then we estimate

ϑ = ℘cb(θ
∗,Πθ∗)

� ℘cb(θ∗, θ2i+2) + ℘cb(θ2i+2,Πθ
∗)− ℘cb(θ2i+2, θ2i+2)

� ℘cb(θ∗, θ2i+2) + ℘cb(θ2i+2,Πθ
∗)

� ℘cb(θ∗, θ2i+2) + ℘cb(Ψθ2i+1,Πθ
∗)

� ℘cb(θ∗, θ2i+2) + fmax{℘cb(θ2i+1, θ
∗), ℘cb(θ2i+1,Ψθ2i+1), ℘cb(θ

∗,Πθ∗),

1

2
(℘cb(θ2i+1,Πθ

∗) + ℘cb(θ
∗,Ψθ2i+1))}

� ℘cb(θ∗, θ2i+2) + fmax{℘cb(θ2i+1, θ
∗), ℘cb(θ2i+1, θ2i+2), ℘cb(θ

∗,Πθ∗),

1

2
(℘cb(θ2i+1,Πθ

∗) + ℘cb(θ
∗, θ2i+2))}

� ℘cb(θ∗, θ2i+2) + f℘cb(θ
∗,Πθ∗)

� s℘cb(θ∗, θ2i+2) + fϑ.

This yields,

|ϑ| ≤ |℘cb(θ∗, θ2i+2)|+ f|ϑ|.

Hence, f ≥ 1, which is a contradiction. Then θ∗ = Πθ∗. In the same way, we
obtain θ∗ = Ψθ∗. Hence θ∗ is a common fixed point for the pair (Π,Ψ) and
℘cb(θ

∗, θ∗) = ℘cb(θ
∗,Ψθ∗) = ℘cb(Ψθ

∗,Ψθ∗) = 0. For uniqueness of the common
fixed point θ∗ follows from Theorem 3.1.

For Π = Ψ, we get the following fixed points results on CPMS.

Theorem 3.3. Let (G,℘cb) be a complete CPMS and Π: G→ G be a continu-
ous mapping such that

℘cb(Πθ,Πω) � fmax{℘cb(θ, ω), ℘cb(θ,Πθ), ℘cb(ω,Πω),

1

2
(℘cb(θ,Πω) + ℘cb(ω,Πθ))}, (11)

for all θ, ω ∈ G, where 0 ≤ f < 1. Then the pair Π have a unique fixed point
and ℘cb(θ

∗, θ∗) = 0.

Remark 3.4. Similarly, we get a fixed point result in the absence of continuity
condition for the mapping Π.

Corollary 3.5. Let (G,℘cb) be a complete CPMS and Ψ: G→ G be a contin-
uous mapping such that

℘cb(Ψ
nθ,Ψnω) � fmax{℘cb(θ, ω), ℘cb(θ,Ψ

nθ), ℘cb(ω,Ψ
nω),

1

2
(℘cb(θ,Ψ

nω) + ℘cb(ω,Ψ
nθ))},

10
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for all θ, ω ∈ G, where 0 ≤ f < 1, n ∈ N. Then Ψ has a unique fixed point and
℘cb(θ

∗, θ∗) = 0.

Proof. By Theorem 3.1, we get θ∗ ∈ G such that Ψnθ∗ = θ∗ and ℘cb(θ
∗, θ∗) = 0.

Then we get

℘cb(Ψθ
∗, θ∗) = ℘cb(ΨΨnθ∗,Ψnθ∗) = ℘cb(Ψ

nΨθ∗,Ψnθ∗)

� fmax{℘cb(Ψθ∗, θ∗), ℘cb(Ψθ∗,ΨnΨθ∗), ℘cb(θ
∗,Ψnθ∗),

1

2
(℘cb(Ψθ

∗,Ψnθ∗) + ℘cb(θ
∗,ΨnΨθ∗))}

� fmax{℘cb(Ψθ∗, θ∗), ℘cb(Ψθ∗,Ψθ∗), ℘cb(θ∗, θ∗),
1

2
(℘cb(Ψθ

∗, θ∗) + ℘cb(θ
∗,Ψθ∗))}

= f℘cb(Ψθ
∗, θ∗).

Hence Ψnθ∗ = Ψθ∗ = θ∗. Then Ψ has a unique fixed point.

Remark 3.6. From the above corollary 3.5, similarly, we get a fixed point result
in the absence of continuity condition for the mapping Ψ.

Next we will present a new generalization of a common fixed point theorem
on CPMS.

Theorem 3.7. Let (G,℘cb) be a complete CPMS and Π,Ψ: G → G be two
continuous mappings such that

℘cb(Πθ,Ψω) � fmax

{
℘cb(θ, ω),

℘cb(θ,Πθ)℘cb(ω,Ψω)

1 + ℘cb(θ, ω)
,
℘cb(θ,Πθ)℘cb(Πθ,Ψω)

1 + ℘cb(θ, ω)

}
,

(12)

for all θ, ω ∈ G, where 0 ≤ f < 1. Then the pair (Π,Ψ) has a unique common
fixed point and ℘cb(θ

∗, θ∗) = 0.

Proof. Let θ0 be arbitrary point in G and define a sequence {θn} as follows:

θ2n+1 = Πθ2n and θ2n+2 = Ψθ2n+1, n = 0, 1, 2, . . . (13)

Then by (12) and (13), we obtain

℘cb(θ2n+1, θ2n+2) = ℘cb(Πθ2n,Ψθ2n+1)

� fmax{℘cb(θ2n, θ2n+1),
℘cb(θ2n, θ2n+1)℘cb(Ψθ2n+1,Πθ2n)

1 + ℘cb(θ2n, θ2n+1)
,

℘cb(θ2n,Πθ2n, )℘cb(Πθ2n,Ψθ2n+1)

1 + ℘cb(θ2n, θ2n+1)
}

� fmax{℘cb(θ2n, θ2n+1),
℘cb(θ2n, θ2n+1)℘cb(θ2n+1, θ2n+2)

1 + ℘cb(θ2n, θ2n+1)
,

℘cb(θ2n, θ2n+1)℘cb(θ2n+1, θ2n+2)

1 + ℘cb(θ2n, θ2n+1)
}

� fmax{℘cb(θ2n, θ2n+1), ℘cb(θ2n+1, θ2n+2)}.

11
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If max{℘cb(θ2n, θ2n+1), ℘cb(θ2n+1, θ2n+2)} = ℘cb(θ2n+1, θ2n+2), then

℘cb(θ2n+1, θ2n+2) � f℘cb(θ2n+1, θ2n+2).

This shows that f ≥ 1, which is a contradiction. Therefore

℘cb(θ2n+1, θ2n+2) � f℘cb(θ2n, θ2n+1). (14)

Similarly, we obtain

℘cb(θ2n+2, θ2n+3) � f℘cb(θ2n+1, θ2n+2). (15)

From (14) and (15), ∀n = 0, 1, 2, . . ., we get

℘cb(θn+1, θn+2) � f℘cb(θn, θn+1) � . . . � fn+1℘cb(θ0, θ1). (16)

For m,n ∈ N, with m > n, we have

℘cb(θn, θm) � ℘cb(θn, θn+1) + ℘cb(θn+1, θm)− ℘cb(θn+1, θn+1)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θm)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θm)

− ℘cb(θn+2, θn+2)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θm)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θn+3)

+ . . .+ ℘cb(θm−2, θm−1) + sm−n℘cb(θm−1, θm).

By using (16), we get

℘cb(θn, θm) � fn℘cb(θ0, θ1) + fn+1℘cb(θ0, θ1) + fn+2℘cb(θ0, θ1)

+ . . .+ fm−2℘cb(θ0, θ1) + fm−1℘cb(θ0, θ1)

=

m−n∑
i=1

fi+n−1℘cb(θ0, θ1).

Therefore

|℘cb(θn, θm)| ≤
m−n∑
i=1

fi+n−1|℘cb(θ0, θ1)| =
m−n∑
i=1

ft|℘cb(θ0, θ1)|

≤
∞∑
i=n

ft|℘cb(θ0, θ1)|

=
fn

1−f
|℘cb(θ0, θ1)|.

Hence, we have

|℘cb(θn, θm)| ≤ fn

1−f
|℘cb(θ0, θ1)| → 0 as n→∞.

12
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Hence {θn} is a Cauchy sequence in G. Since G is complete, then there exists
θ∗ ∈ G such that θn → θ∗ as n→∞ and

℘cb(θ
∗, θ∗) = lim

n→∞
℘cb(θ

∗, θn) = lim
n→∞

℘cb(θn, θn) = 0.

Since Ψ is continuous yields

θ∗ = lim
n→∞

θ2n+2 = lim
n→∞

Ψθ2n+1 = Ψ lim
n→∞

θ2n+1 = Ψθ∗.

Similarly, by the continuity of Π, we get θ∗ = Πθ∗. Then the pair (Π,Ψ) has
a common fixed point. To prove uniqueness, let us consider ω∗ ∈ G is another
common fixed point for the pair (Π,Ψ). Then

℘cb(θ
∗, ω∗) = ℘cb(Πθ

∗,Ψω∗)

� fmax{℘cb(θ∗, ω∗),
℘cb(θ

∗,Πθ∗)℘cb(ω
∗,Ψω∗)

1 + ℘cb(θ∗, ω∗)
,

℘cb(θ
∗,Πθ∗)℘cb(Ψω

∗,Πθ∗)

1 + ℘cb(θ∗, ω∗)
}

� f℘cb(θ
∗, ω∗)

This implies that θ∗ = ω∗.

In the absence of the continuity condition for the mapping Π and Ψ in the
Theorem 3.7, we obtain the following the result.

Theorem 3.8. Let (G,℘cb) be a complete CPMS and Π,Ψ: G → G be two
mappings such that

℘cb(Πθ,Ψω) � fmax

{
℘cb(θ, ω),

℘cb(θ,Πθ)℘cb(ω,Ψω)

1 + ℘cb(θ, ω)
,
℘cb(θ,Πθ)℘cb(Πθ,Ψω)

1 + ℘cb(θ, ω)

}
,

(17)

for all θ, ω ∈ G, where 0 ≤ f < 1. Then the pair (Π,Ψ) has a unique common
fixed point and ℘cb(θ

∗, θ∗) = 0.

Proof. Following from Theorem 3.7, we get that the sequence {θn} is a Cauchy
sequence. Since G is complete, then there exists θ∗ ∈ G such that θn → θ∗ as
n→∞ and

℘cb(θ
∗, θ∗) = lim

n→∞
℘cb(θ

∗, θn) = lim
n→∞

℘cb(θn, θn) = 0.

Since Π and Ψ are not continuous, we have ℘cb(θ
∗,Πθ∗) = ϑ > 0.

13
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Then we estimate

ϑ = ℘cb(θ
∗,Πθ∗)

� ℘cb(θ∗, θ2i+2) + ℘cb(θ2i+2,Πθ
∗)− ℘cb(θ2i+2, θ2i+2)

� ℘cb(θ∗, θ2i+2) + ℘cb(Πθ
∗, θ2i+2)

� ℘cb(θ∗, θ2i+2) + ℘cb(Πθ
∗,Ψθ2i+1)

� ℘cb(θ∗, θ2i+2) + fmax

{
℘cb(θ

∗, θ2i+1),
℘cb(θ

∗,Πθ∗)℘cb(θ2i+1,Ψθ2i+1)

1 + ℘cb(θ∗, θ2i+1)
,

℘cb(θ
∗,Πθ∗)℘cb(Πθ

∗,Ψθ2i+1)

1 + ℘cb(θ∗, θ2i+1)

}
� ℘cb(θ∗, θ2i+2) + fmax

{
℘cb(θ

∗, θ2i+1),
℘cb(θ

∗,Πθ∗)℘cb(θ2i+1, θ2i+2)

1 + ℘cb(θ∗, θ2i+1)
},

℘cb(θ
∗,Πθ∗)℘cb(Πθ

∗, θ2i+2)

1 + ℘cb(θ∗, θ2i+1)

}
� ℘cb(θ∗, θ2i+2) + f℘cb(θ

∗,Πθ∗)2

� ℘cb(θ∗, θ2i+2) + fϑ2.

This yields,

|ϑ| ≤ |℘cb(θ∗, θ2i+2)|+ f|ϑ|2.

Hence, f ≥ 1, which is a contradiction. Then θ∗ = Πθ∗. In the same way, we
obtain θ∗ = Ψθ∗. Hence θ∗ is a common fixed point for the pair (Π,Ψ). For
uniqueness of the common fixed point θ∗ follows from Theorem 3.7.

For Π = Ψ, we get the following fixed points results on CPMS.

Theorem 3.9. Let (G,℘cb) be a complete CPMS and Π: G→ G be a continu-
ous mapping such that

℘cb(Πθ,Πω) � fmax

{
℘cb(θ, ω),

℘cb(θ,Πθ)℘cb(ω,Πω)

1 + ℘cb(θ, ω)
,
℘cb(θ,Πθ)℘cb(Πθ,Πω)

1 + ℘cb(θ, ω)

}
,

for all θ, ω ∈ G, where 0 ≤ f < 1. Then Π has a unique fixed point and
℘cb(θ

∗, θ∗) = 0.

Remark 3.10. Similarly, in the absence of continuity condition, we can get a
fixed point result on Π.

Corollary 3.11. Let (G,℘cb) be a complete CPMS and Π: G → G be a con-
tinuous mapping such that

℘cb(Π
nθ,Πnω) � fmax

{
℘cb(θ, ω),

℘cb(θ,Π
nθ)℘cb(ω,Π

nω)

1 + ℘cb(θ, ω)
,

℘cb(θ,Π
nθ)℘cb(Π

nθ,Πω)

1 + ℘cb(θ, ω)

}
,

for all θ, ω ∈ G, where 0 ≤ f < 1. Then Π has a unique fixed point and
℘cb(θ

∗, θ∗) = 0.
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Proof. By Theorem 3.7, we get θ∗ ∈ G such that Πnθ∗ = θ∗ and ℘cb(θ
∗, θ∗) = 0.

Then we get

℘cb(Πθ
∗, θ∗) = ℘cb(ΠΠnθ∗,Πnθ∗) = ℘cb(Π

nΠθ∗,Πnθ∗)

� fmax

{
℘cb(Πθ

∗, θ∗),
℘cb(Πθ

∗,ΠnΠθ∗)℘cb(θ
∗,Πnθ∗)

1 + ℘cb(Πθ∗, θ∗)
,

℘cb(Πθ
∗,ΠnΠθ∗)℘cb(Π

nΠθ∗,Πnθ∗)

1 + ℘cb(Πθ∗, θ∗)

}
� fmax

{
℘cb(Πθ

∗, θ∗),
℘cb(Πθ

∗,ΠΠnθ∗)℘cb(θ
∗,Πnθ∗)

1 + ℘cb(Πθ∗, θ∗)
,

℘cb(Πθ
∗,ΠΠnθ∗)℘cb(ΠΠnθ∗,Πnθ∗)

1 + ℘cb(Πθ∗, θ∗)

}
= f℘cb(Πθ

∗, θ∗).

Hence Πnθ∗ = Πθ∗ = θ∗. Then Π has a unique fixed point.

Remark 3.12. From the above corollary 3.11, similarly, we get a fixed point
result in the absence of continuity condition for the mapping Π.

Example 3.13. Let G = {1, 2, 3, 4} be endowed with the order θ � ω if and
only if θ ≤ ω. Then � is a partial order in G. Define the complex partial metric
space ℘cb : G×G→ C+ as follows:

(θ, ω) ℘cb(θ, ω)
(1,1), (2,2) 0
(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(3,3) eix

(1,4),(4,1),(2,4),(4,2),(3,4),(4,3),(4,4) 3eix

Obviously, (G,℘cb) is a complete CPMS for x ∈ [0, π2 ]. Define Π,Ψ : G→ G by
Πθ = 1,

Ψ(θ) =

{
1 if θ ∈ {1, 2, 3}
2 if θ = 4.

Clearly Π and Ψ are continuous functions. Now for f = 1
3 , we consider the

following cases:

(A) If θ = 1 and ω ∈ G − {4}, then Π(θ) = Ψ(ω) = 1 and the conditions of
Theorem 3.1 satisfied.

(B) If θ = 1, ω = 4, then Πθ = 1, Ψω = 2,

℘cb(Πθ,Ψω) = eix � 3 f eix

= fmax{3eix, 0, 3eix, 1

2
(eix + 3eix)}

= fmax{℘cb(θ, ω), ℘cb(θ,Πθ), ℘cb(ω,Ψω),

1

2
(℘cb(θ,Ψω) + ℘cb(ω,Πθ))},

15
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(C) If θ = 2, ω = 4, then Πθ = 1, Ψω = 2,

℘cb(Πθ,Ψω) = eix � 3 f eix

= fmax{3eix, eix, 3eix, 1

2
(0 + 3eix)}

= fmax{℘cb(θ, ω), ℘cb(θ,Πθ), ℘cb(ω,Ψω),

1

2
(℘cb(θ,Ψω) + ℘cb(ω,Πθ))},

(D) If θ = 3, ω = 4, then Πθ = 1, Ψω = 2,

℘cb(Πθ,Ψω) = eix � 3 f eix

= fmax{3eix, eix, 3eix, 1

2
(eix + 3eix)}

= fmax{℘cb(θ, ω), ℘cb(θ,Πθ), ℘cb(ω,Ψω),

1

2
(℘cb(θ,Ψω) + ℘cb(ω,Πθ))},

(E) If θ = 4, ω = 4, then Πθ = 2, Ψω = 2,

℘cb(Πθ,Ψω) = eix � 3 f eix

= fmax{3eix, 3eix, 3eix, 1

2
(3eix + 3eix)}

= fmax{℘cb(θ, ω), ℘cb(θ,Πθ), ℘cb(ω,Ψω),

1

2
(℘cb(θ,Ψω) + ℘cb(ω,Πθ))},

Moreover for f = 1
3 , with f < 1, the conditions of Theorem 3.1 are

satisfied. Therefore, 1 is the unique common fixed point of Π and Ψ.

4 Application

Consider the following systems of integral equations:

w(s) =

∫ b

a

T1(s, p, w(p))dp, (18)

and

z(s) =

∫ b

a

T2(s, p, z(p))dp, (19)

where

(i) w(s) and z(s) are unknown variables for each s ∈ J = [a, b], b > a ≥ 0,

(ii) T1(s, p) and T2(s, p) are deterministic kernels defined for s, p ∈ J = [a, b].

16

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 April 2021                   doi:10.20944/preprints202104.0597.v1

https://doi.org/10.20944/preprints202104.0597.v1


In this section, we present an existence theorem for a common solution to (18)
and (19) that belongs to G = (C(J),Rn) (the set of continuous functions defined
on J) by using the obtained result in Theorem 3.1. We consider the continuous
mappings Π,Ψ : G→ G given by

Πw(s) =

∫ b

a

T1(s, p, w(p))dp, w ∈ G, s ∈ J,

and

Ψz(s) =

∫ b

a

T2(s, p, z(p))dp, z ∈ G, s ∈ J,

Then, the existence of a common solution to the integral equations (18) and
(19) is equivalent to the existence of a common fixed point of T1 and T2. It is
well known that G, endowed with the metric ℘cb defined by

℘cb(w, z) = |w(s)− z(s)|+ 2,

forall w, z ∈ G is a complete CPMS. G can also be equipped with the partial
order � given by

w, z ∈ G, w � z if and only w(s) ≥ z(s), for all s ∈ J.

Further let us consider a system of integral equation as (18) and (19) under the
following condition hold:

(A) T1, T2 : J × J × Rn → Rn are continuous functions satisfying

|T1(s, p, w(p))− T2(s, p, z(s))| � S(w, z)

(b− a)et
− 2

b− a
, ∀t > 0,

where

S(w, z) = max{℘cb(w, z), ℘cb(w,Πw), ℘cb(z,Ψz),

1

2
(℘cb(w,Ψz) + ℘cb(z,Πw))}.

Theorem 4.1. Let (C(J),Rn, ℘cb) be a complete CPMS, then the system (18)
and (19) under the condition (A) have a unique common solution.

Proof. For w, z ∈ (C(J),Rn) and s ∈ J , we define the continuous mappings
Π,Ψ : G→ G by

Πw(s) =

∫ b

a

T1(s, p, w(p))dp,

and

Ψz(s) =

∫ b

a

T2(s, p, z(p))dp.
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Then we have

℘cb(Πw(s),Ψz(s)) = |Πw(s)−Ψz(s)|+ 2

=

∫ b

a

|T1(s, p, w(p))− T2(s, p, z(s))|dp+ 2

�
∫ b

a

(
S(w, z)

(b− a)et
− 2

b− a

)
dp+ 2

=
S(w, z)

et

= fS(w, z)

= fmax{℘cb(w, z), ℘cb(w,Πw), ℘cb(z,Ψz),

1

2
(℘cb(w,Ψz) + ℘cb(z,Πw))}.

Hence, all the conditions of Theorem 3.1 are satisfied for 0 < f = 1
et < 1 with

t > 0. Therefore the system of integral equations (18) and (19) have a unique
common solution.

5 Conclusion

In this paper, we proved some common fixed point theorems on complex partial
metric space. An illustrative example and application on complex partial metric
space is given.
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