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Abstract

In this paper, we prove some common fixed point theorems
on complex partial metric space. The presented results gener-
alize and expand some of the literature well-known results. We
also explore some of the application of our key results.
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1 Introduction

Azam et al. [1] introduced the concept of complex valued metric spaces and
studied some fixed point theorems for mappings satisfying a rational inequality.

Two years after, in [2] Rao et al. discussed for the first time the idea of
complex-valued b-metric spaces.

In 2017, Dhivya and Marudai [3] introduced the concept of complex partial
metric space and suggested a plan to expand the results, as well as proving com-
mon fixed point theorems under the rational expression contraction condition.
This idea has been followed by Gunaseelan [4], who introduced the concept of
complex partial b-metric spaces and discussed some results of fixed point theory
for self-mappings in these new spaces.

In [5], Prakasam and Gunaseelan proved an existence and uniqueness of com-
mon fixed point (with an illustrative example) theorem using (CLR) and (E.A.)
properties in complex partial b-metric spaces. Their proved results generalize
and extend some of the well known results in the literature.

In [6], Gunaseelan et al. proved a fixed point theorem in complex partial
b-metric spaces under a contraction mapping. They also gave some applications
of their main results.
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In this paper, we prove some common fixed point theorems on complex
partial metric space.

2 Preliminaries

Let € be the set of complex numbers and 7, 72,73 € €. Define a partial order
=< on ¢ as follows:

71 = 72 if and only if R(11) < R(72), Z(11) < Z(72).

Consequently, one can infer that 71 < 7o if one of the following conditions is
satisfied:

(i) R(r1) = R(72), Z(r1) < Z(
(ii)R(Tl) < R(TQ), I(Tl) = I(
(111)7?,(7’1) < R(Tg), I(Tl) < I(Tg),

(iv)R(m1) = R(12), Z(11) = Z(12).

In particular, we write 71 3 73 if 71 # 72 and one of (i), (i7) and (ii7) is satisfied
and we write 7 < 7 if only (4i%) is satisfied. Notice that

(a) Ifo<mn ;é To, then |’7’1| < |7'2|7

(b) If 14 =X 79 and 75 < 73 then 7 < 73,

(¢) Ifn,y € Rand n <~ then nry <y7 forall0 <7 € €.

Here €. (= {(X,n)|X,np € R;}) and Ry (= {X € R|R > 0}) denote the set
of non negative complex numbers, and the set of non negative real numbers,
respectively.

Now, let us recall some basic concepts and notations, which will be used in the
sequel.

7—2)7
7’2)

)

Definition 2.1. /3] A complex partial metric on a non-void set G is a function
0ch : G X G — C* such that for all §,w,9 € G:

(i) 0 = 0cp(0,0) = 0cp(0,w)(small self-distances)

(“) ch(evw) = ch(wve)(symmetry)

(111) 0e6(0,0) = 0ep(0,w) = 0ep(w,w) if and only if 6 = w(equality)

(1v) 0cb(0,w) = 0eb(0,9) + 0ep(F, w) — 0ep (Y, 9) (triangularity).

A complex partial metric space is a pair (G, gep) such that G is a non-void set
and 9¢p 15 the complex partial metric on G.

Definition 2.2. [3] Let (G, pep) be a complex partial metric space. Let {0,} be
any sequence in 0 € G. Then

(i) The sequence {0} is said to be converges to W, if lim, o0 pep(0n,0) =
pcb(ﬁ,ﬁ).

(i) The sequence {6,} is said to be Cauchy sequence in (G, pep) if
limy, 1 —o0 ©cb(On, Om) exists and is finite.

(iii) (G, pep) is said to be a complete complex partial metric space if for every
Cauchy sequence {0,,} in G there exists € G such that

hmn,m—>oo @cb(ona am) =limy, 00 @cb(gnv 0) = pcb(oa 0)
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(iv) A mapping 11 : G — G is said to be continuous at Oy € G if for every
€ > 0, there exists § > 0 such that II(B,,_, (60,9)) C By, (I1(6o,€)).

Definition 2.3. [3] Let I and U be self mappings of non-void set G. A point
N € G is called a common fized point of Il and ¥ if X = [IN = UN.

Theorem 2.1. [3] Let (G, <) be a partially ordered set and suppose that there
exists a complex partial metric oo in G such that (G, o) s a complete complex
partial metric space. Let I, W : G — G be a pair of weakly increasing mapping
and suppose that for every comparable X,y € G we have either

ch(Na HN)ch(U7 \IIU)
QCb(N, U)

for 0ap(R,9) #0 witha > 0,b>0, a+b< 1, or

ch(HNa \IIU) j a + chb(N7 U)

ch(HN7 \IIU) =0 Zf QCb(N7 U) =0.

If I or W is continuous then II and ¥ have a common fized point x€ G and
0eb(0¢, x) = 0.

Inspired by Theorem 2.1, here we prove some common fixed point theorems
on complex partial metric space with an application. For complex partial metric
space, we will use the CPMS notation.

3 Main Results

Theorem 3.1. Let (G, pep) be a complete CPMS and II,V: G — G be two
continuous mappings such that

WCb(Hea \I/(,U) j A maX{ch(& w)? pcb(97 H9)7 pcb(wa \I/w)7

%(pcb(ﬁ, \IIW) —+ pcb(c‘)?]:[g))}’ (1)

for all 0,w € G, where 0 < A < 1. Then the pair (II, ¥) has a unique common
fized point and pep(0*,0%) = 0.

Proof. Let 0y be arbitrary point in G and define a sequence {6,,} as follows:

92n+1 = H92n and 92n+2 = \11(92”_,_1, n = 0, 1, 2, ce (2)
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Then by (1) and (2), we obtain

pcb(02n+17 62n+2) = ©Ocb (HGQTL’ \110277,—1»1)
= A max{pcb(ehu 92n+1)7 @cb(GQna HaQn)a @cb(02n+17 \I/02n+1)a

1
= (e (02n, ¥O2141) + ©cb(O2n+1,1102,,)) }
2

= A max{pcs(O2n, 02n+1), Pcb(O2n, O2n+1), b (O2n+1, 02n+2),

1
5(@cb(92m O2n+2) + ©cb(02n41,02n41)) }

A max{pes(O2n, 02n+1), Pcb(O2n41, 02n+2),

PN

1
> (@cb(Gan 92n+1) + pcb(92n+17 02n+2) - @cb(02n+17 02n+1)
2

+ @b (O2n41,02n41)) }

= A max{pep(O2n, O2nt1), ©cb (O2n+1,02n+2),

1

5(@cb(92m O2n+1) + ©cb(02n41,02n42)) }

Case I: If max{p(02n, 02n+1); 9cb(O2n+1, O2n42),

1
5(@01}(9271, 92n+1) + @cb(92n+1a 92n+2))} = @cb(92n+1a 92n+2)7 then we have

©cb(O2n+1, 02n+2) = A@cb (02041, O2n12).

This implies A > 1, which is a contradiction.
Case II: If max{pcy(02n, 02n+1), Pcb(O2nt1, O2n12),

1
= (9eb(O2n, O2ny1) + ©cb (0241, 02n12)) } = eb(O2n, O2n+1), then we have
2

©cb (0241, 02n42) = Apep(O2n, O2nt1)- (3)

From the next step, we have

©cb(O2n+t2,02n+3) = A max{pep(P2nt1,02n+2), Pcb(O2nt2, 02n+43),

1

§(Pcb(92n+1, O2n12) + Peb(O2n12, 02n43))}-
The following three cases arises, we have
Case Ila:

©eb(O2n+2, 02n+3) = A@cb (02012, 02n13),

which implies A > 1, is a contradiction.
Case IIb:

©cb(O2n+2, 02n+3) = A@cb (02041, O2n12). (4)
From (3) and (4), Vn =0,1,2, ..., we get

pcb(9n+179n+2) j )\@cb(enyen—&-l) j j An+1pcb(9o791)-
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For m,n € N, with m > n, we have

©cb(On, 0m) = 9cb(On, O0ng1) + ©cb(Ong1, Om) — 9cb(Oni1,0ni1)
= 9cb(Ons Ont1) + b (Oni1, Om)
= 90eb(Ons Ont1) + ©cb(Ont1,0nt2) + Oeb(Ont2, Om)
- pcb(6n+2a 9n+2)
©cb(On, Ont1) + ©cb(Ont1, Ong2) + ©eb(Ong2, Om)
©cb(Ons Ong1) + 9eb(Ong1, Ontz) + 9eb(Ont2, Onis)
+ oot 9eb(Om—2,0m—-1) + Pcb(Om—1,0m).

PPN

Moreover, by using (4), we get

©ct (0, 0m) = A0 (00,01) + A" 0 (00,01) + A" 20000, 61)
+ ...+ )\m_zpcb(eo,eﬁ + Am_lpcb(ao, 91)

— Z A”"‘lpcb(%,&l).
=1

Therefore

m—mn m—1

|pcb(9n79m)| S Z AH_n_l‘pcb(aanlﬂ = Z At|pcb(90u91)|

i=1 t=n

<3 Ipen(8o,01)]

)kn
= mmcb(eo,el”-

Then, we have

n

‘f@cb(envem” < |@cb(90,91)| —0 as n— oo.

1— A
Hence {6,,} is a Cauchy sequence in G.
Case Ilc:

1

©cb(02n+2,02n43) = Ai(@cb(%nﬂ, O2n+2) + ©cb (02042, 02n43)).

This implies that

A
©eb(O2n+2, 02n43) = mpcb(HQn—O—la Oant2). (5)

A
Since a = T < 1, we get @p(Ont1,0nie) = apep(On,0nr1). Therefore

{0n}nen is a Cauchy sequence in G.
Case III:
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If max{pcs(02n, O2n+1)s Pcb(02n+1, O2nt2),

i(Pcb(GQna O2n+1)+9cb(O2nt1,02n42))} = 3 (9cb (0205 O2n+1)+9cb(O2n+1, O2nt2))-
Then, we have

©cb(O2nt1,02n+2) = = (0cb(02n; O2nt+1) + ©cb(B2nt1, O2nt2))

o -

Hence,

©cb(O2n+1,02n42) = ©cb(02n, O2n41)- (6)

2—- A

For the next step, we have

©cb(O2nt2,02n+3) = A max{pcs(02n+1,02n+2), b (O2n+2, O2n+3),

1

§(ch(92n+1, O2n+2) + ©cb(02n+2, 02n43)) }-

Then, we have the following three cases:
Case IIla:

©cb(02n+2, 02n+3) = A@eb(O2nt2,02n+3),

which implies A > 1, which is a contradiction.
Case IIIb:

©eb(O2n+2, 02n+3) = A@cb (02041, O2n12). (7)

Then by (6) and (7), we get @cb(9n+17 Ony2) = 'Y@cb(am On+1), where
A
= A
~ max{ 5
Case Illc:

< 1. Hence {6, }nen is a Cauchy sequence in G.

1
©cb(02n+2,02n43) = §(pcb(92n+1,92n+2) + ©cb (O2n+2,02n13))-

Hence, we obtain

A
©cb(O2n+2,02n43) = m@cb(GQn-&-la O2n12). (8)
By using (6) and (8) yields
@cb(9n+1v 9n+2) j chb(ony 07L+1)1 (9)

A
where 0 <1= —— < 1.
2— A
Then Vn =10,1,2,..., we get

@cb(an—l-la 9n+2) j chb(an,en—&-l) j CIEa j 2n+1@cb(90791)~
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For m,n € N, with m > n, we have

@cb(em em) = pcb(ena 9n+1) + @cb(en-ﬁ-h 9m> - Pcb(9n+lv 6n+1)
= 9eb(Ons Ont1) + ©cb(Onr1, 0m)
= 90eb(Ons Ont1) + ©cb(Ont1, 0nt2) + Peb(Ont2, Om)
— ¢ (9n+27 9n+2)
(em 9n+1) + pcb(9n+17 9n+2> + @cb(9n+2v em)
5(On, Ont1) + ©cb(Ont1, Ong2) + ©cb(Ong2, Ong3)
c+ Peb(Om—2,0m—1)) + ©cb(Om—1,0m).

= e
= e
_|_
Using (9), we get

©ct (0, 0m) = U 0en(00,01) + U o (00, 01) + 20 (00, 01)
AU 200 (00,01) + 1" e (00, 61)

+
Z U o0 (600, 61).-

Therefore,
m—n ) m—1
[9cb (0, 0m)| < D VT o (60, 01) = > Vlpen(Bo,601))
=1 t=n
Z e (00, 61)]
|@cb(90,91)|

Hence, we have

n

l
locb (On, Om )| < 1—_2|pcb(00,91)| —0 as n—oo.

Hence {0,} is a Cauchy sequence in G. In all cases above discussed, we get
the sequence {0, },en is a Cauchy sequence. Since G is complete, there exists
0* € G such that 6,, — 0* as n — oo and

©eb(07,0%) = nli)n;o ©eb(0%,0,) = Jim. ©cb(0n,0,) =0
By the continuity of IT it follows 603,11 = 105, — I10* as n — oo.
i.e. pop(110%,T16%) = nh_}rr;o pep (1167, 1105, = nll)rr;o ©cb (102, 116a,,).
But

@cb(n9*7 He*) = nh—>Igo pcb(HQQna H92n) = nh—>néo @cb(92n+1a 92n+1) =0.
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Next we have to prove that 8* is a fixed point of II.
@cb(Ha*u 9*) j @cb(H9*7 H92n) + K)cb(H92n7 0*) - pcb(H02na H02n)

As n — oo, we obtain [pq(I16%,0%)] < 0. Thus p.,(116*,6*) = 0. Hence
b (0%, 0%) = pep (0%, 110%) = pop (110, 110*) = 0 and I10* = 6*. In the same way,
we have 0* € G such that 6,, — 0* as n — oo and

0 (67.6°) = T 0y (6°.6,) = T p0s(6,.6,) = 0
By the continuity of II it follows 02,12 = ¥ls, 41 — ¥O* as n — oco.
Le. pop(WO", WO™) = lim (WO, Wozpp1) = L ooy (Wb, Wopi1).
But
Pep (WO, VO™) = n11_>120 ©cb (VO2n41, Vl2p41) = nll_{go ©cb(02n+2,02n42) = 0.

Next we have to prove that 6* is a fixed point of W.

©co(WO*,0) = (VO™ , Wb i1) + ©cb (VO2r41,0") — e (VO2p 11, 11020, 41).

As n — oo, we obtain |p(¥6*,0%)] < 0. Thus p.,(V0*,6*) = 0. Hence
eb(0%,0%) = pep(0%, V%) = pp(TO*, TO*) = 0 and VO* = 6*. Therefore 6* is
a common fixed point of the pair (IT, ¥).

To prove uniqueness, let us consider w* € G is another common fixed point for
the pair (II, ¥). Then

Peb (0", w") = pep (1167, V™)

= Amax{pe (07, w"), pep (0%, 110%), pep (W™, Pw*),
2 (08", W) + (e, TI6%))}
A max{pey(0%,w"), pep (07, 0%), pep (W™, w™),
(e (6°,07) + pu(e,6°)))
Apen (6", w™).

IA

PN

This implies that 8* = w*. O
In the absence of the continuity condition for the mappings IT and ¥, we get

the the following Theorem.

Theorem 3.2. Let (G, pe) be a complete CPMS and IL,V: G — G be two
mappings such that

pcb(Hea \Ilw) j A maX{@cb(e, w)) pcb(ea He)a @Cb(wa \ij)a

(900, 90) + pun (0, TIO)}, (10)

for all 0,w € G, where 0 < A < 1. Then the pair (II, ¥) has a unique common
fized point and pep(6*,0%) = 0.
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Proof. Following from Theorem 3.1, we get that the sequence {6,,} is a Cauchy
sequence. Since G is complete, there exists * € G such that 6,, — 0* asn — co.
Since IT and ¥ are not continuous, we have p.,(6*,I16*) = ¥ > 0.
Then we estimate
¥ = pep(6%,110%)

= 0eb (07, 02i12) + @cb (0252, 110%) — ©cp (02542, 02i42)

= 9 (07,02i12) + peb(02i 12, 1107)

= 0eb(07,02i12) + et (VOi41,1167)
= 0cb(07, 02i12) + X max{pey (02i11,0%), Peb(O2i1, YO2i11), peu(0*, 116%),

1
§(pcb(92i+1, I10%) + peb (6%, Wh2i41)) }

= e (07,02i12) + A max{pes (02i11,0%), peb(O2i 1, 02i12), pep(07, 116%),

1
5(@01)(921’4-1) I10%) + pcb (67, 02i42)) }
= (0", 02i42) + Apep(0*,110%)

= 5pep(0", 02i42) + AD.
This yields,
[9] < e (07, O2i12)| + A|D].

Hence, A > 1, which is a contradiction. Then 6* = I16*. In the same way, we
obtain 6* = WH*. Hence 0* is a common fixed point for the pair (II, ¥) and
©cb(0%,0%) = pep (0%, ¥O*) = pep(PO*, UO*) = 0. For uniqueness of the common
fixed point 6* follows from Theorem 3.1. O

For IT = U, we get the following fixed points results on CPMS.

Theorem 3.3. Let (G, pep) be a complete CPMS and I1: G — G be a continu-
ous mapping such that

pcb(Hoa Hw) j A max{pcb(ey w)a pcb(ea HG), Pcb(w, HCU),

5 (90(0,T0) + pan (0, TIO)}, (1)

for all ,w € G, where 0 < A < 1. Then the pair II have a unique fized point
and pep(0*,60%) = 0.

Remark 3.4. Similarly, we get a fized point result in the absence of continuity
condition for the mapping I1.

Corollary 3.5. Let (G, pep) be a complete CPMS and ¥: G — G be a contin-
uous mapping such that

pCb(\Iln97 \Ilnw) = A max{pcb(ﬁ, w)) pcb(ev \IJ"Q% @cb(wv \Ilnw),

%(@cbw, U"w) + pep(w, \11"9))}7

10
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for all 0,w € G, where 0 < A < 1,n € N. Then ¥ has a unique fized point and
pcb(e*,é?*) =0.

Proof. By Theorem 3.1, we get 6* € G such that U"0* = 6* and g (0*,6*) = 0.
Then we get
b (VO™ 0%) = pp (TUT0*, U 0%) = o0, (U WO, T"H*)
=< A max{p (T, 0%), o (PO*, T"TVH*), 0 (07, U0,

1

5 (e (W07, W"0%) + oy (607, U™ 007)) }
A max{pcb(\ya*a 9*)7 pcb(m6*7 \Ije*)7 pcb(9*7 6*)3
1
5 (9 (W07, 07) + pep (67, 067)) }
= App(V0*, 6%).

IA

Hence U"0* = W* = #*. Then ¥ has a unique fixed point. O

Remark 3.6. From the above corollary 3.5, similarly, we get a fized point result
in the absence of continuity condition for the mapping V.

Next we will present a new generalization of a common fixed point theorem
on CPMS.

Theorem 3.7. Let (G, pe) be a complete CPMS and IL,V: G — G be two
continuous mappings such that

11 \\ 11 116, U
pcb(He,\Dw)jAmaX{pcb(&w),%b(e’ O)per(w, D)  pes (6, T19) oot (116, w)}’

1+ pcb(G,w) ’ 1+ pcb(e,w)

(12)
for all 0,w € G, where 0 < A < 1. Then the pair (I, ¥) has a unique common
fized point and o (0*,0%) = 0.

Proof. Let 0y be arbitrary point in G and define a sequence {6,,} as follows:
02n+1 = Hagn and 02n+2 = \1192n+1, n = O, 1, 2, [P (13)
Then by (12) and (13), we obtain

©cb(O2n+1, O2nt2) = @eb(b2p, ¥h2,41)
@cb(92n, 92n+1)@cb(‘1’92n+1, H92n)
L+ ©cb(02n, O2n41) ’
©cb (02, 1020, ) o (021, W2y, 1 1) )
L+ @cb(O2n, O2n41)
©cb(02n, 0o 1) 9cb (02011, 020 42)
14 peb(O2n, O2n41) '
@cb(92n, 92n+1)@cb(92n+1, 92n+2) }
1+ @cb(92n, 92n+1)
A max{ ey (02n, 02n41), Pcb(O2n+1, O2n42) }-

PN

A max{pep(O2n, O2ni1),

PN

A max{es (02, O2n+1),

PN

11
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If max{pcs(O2n, O2n+1), Pcb (O2n+41,02n+2)} = cb(02n41, O2n42), then
©cb(O2n+41, 02n+2) = A@eb (02041, O2n12).

This shows that A > 1, which is a contradiction. Therefore

@cb(02n+1a 92n+2) = )\pcb(GZna 02n+1)- (14)

Similarly, we obtain

©cb(O2nt2, O2n43) = Apeb(O2nt1, O2ni2)- (15)
From (14) and (15), Vn =0,1,2,..., we get

@cb(0n+170n+2) j )\@cb(anaen-&-l) j j kn+lpcb(00791)~ (16)

For m,n € N, with m > n, we have

©cb(On, Om) = 9cb(0n, Ont1) + ©eb(Ont1,0m) — ©eb(Ont1, Ont1)
= 9eb(Ons Ont1) + ©cb(Ont1, 0m)
= 9cb(On, Ont1) + ©cb(Ont1,Ony2) + ©cb(Onr2, 0m)
— ©eb(Ont2,Onia)
Ons Oni1) + 9cb(Oni1, Ony2) + 0cb(Ony2, Om)
Ony Ont1) + 0cb(Ont1, Ont2) + ©cb(Ont2, Ony3)
coit 0 (Om—2,0m—1) + 8" " 0cb(Om-1,0m)-

b(
b

I TA

e
e
_'_
By using (16), we get

©cb(Ons Om) = A" 0eb(00,01) + A" 0o (00, 01) + LA™ 20 (00, 01)
i+ K200 (00, 01) + A ooy (60, 61)

= Z )\””_lpcb(ﬂo, 01)
=1

Therefore
|9cb(0n Om)| < D AT oo (00,01)] = > K g (o, 01))|
i=1 =1
<3 KB, 01)]
)kn
= 7= 19es(00,01)]-
Hence, we have
A’I’L

‘pcb(aru 9m)| <

1_)\|pcb(90,91)|—>0 as n — oo.
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Hence {6,} is a Cauchy sequence in G. Since G is complete, then there exists
0* € G such that 6,, — 0* as n — oo and

@cb(a 79 ) = nh~>Holo @cb(g ;gn) = n114>ngo @cb(env gn) =0.
Since W is continuous yields

0* = lim 92n+2 = lim \1192n+1 =V lim 92n+1 = UH*.
n—00 n—o0 n—00

Similarly, by the continuity of II, we get 6* = I16*. Then the pair (II, ¥) has
a common fixed point. To prove uniqueness, let us consider w* € G is another
common fixed point for the pair (IT, ¥). Then

pcb(a*,w*) = pcb(He*, \Ilw*)
Peb (07, 116" pep (W™, V™)
1+ @b (0%, w*) ’
Peb (07, 116%) pep (Pw™, 1167)
L+ pep (0%, w*) J
= )\@cb(o*aofk)

= A max{pep (0%, w"),

This implies that 0* = w*. O

In the absence of the continuity condition for the mapping IT and ¥ in the
Theorem 3.7, we obtain the following the result.

Theorem 3.8. Let (G, pep) be a complete CPMS and I, V: G — G be two
mappings such that

(0, T10) oo (w0, W) 0 (6, TI0) ooy (110, ©
(110, 8) = K { (0., £ GO B0) 00 CTO0 TR

14 (0, w) ’ 1+ peb(6,w) j
(17

for all 0,w € G, where 0 < A < 1. Then the pair (II, ¥) has a unique common
fized point and pep(6*,0%) = 0.

Proof. Following from Theorem 3.7, we get that the sequence {6,,} is a Cauchy
sequence. Since G is complete, then there exists * € G such that 8,, — 6* as
n — oo and

@cb(o*, 0*) = nlingo Pcb(o*a gn) = nlglc}o pcb(ena on) =0.

Since IT and ¥ are not continuous, we have p.,(6*,I16*) = ¥ > 0.

13


https://doi.org/10.20944/preprints202104.0597.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 April 2021 d0i:10.20944/preprints202104.0597.v1

Then we estimate
U = pep(07, 1167)
=007, 02i12) + peb(O2ir2, 10") — ©cp(02i42, O2i12)
29 (07,02i12) + e (1107, O2; 1)
= et (07, 02i12) + pep (11607, Woo; 4 1)

©cb (0%, 110" ) e (0241, YO2i41)
14+ peb (0%, 02i41)

)

= (0", 02i42) + A max {pcb(e*, 02i41),

©eb (0%, 110,) ey (1167, ‘1’921‘4-1) }
14 @ep (0%, 02i41)

©eb (07, 110 ) e (02541, O2i42)
L+ pep (0%, 02i41)

)

= 907, 02i12) + A max {pcb(e*, 02i+1),
©cb (07, 110, ) 0ep (1107, 02 1 2) }
1+ (0%, 02i41)
= (07, 02i12) + Apep (07, 116%)?
= pep (07, 02i42) + AU2.
This yields,

9] < |peb (0%, O2i42)| + A9

Hence, A > 1, which is a contradiction. Then 6* = II6*. In the same way, we
obtain 6* = ¥O*. Hence 6* is a common fixed point for the pair (II, ¥). For
uniqueness of the common fixed point 6* follows from Theorem 3.7. O

For IT = ¥, we get the following fixed points results on CPMS.

Theorem 3.9. Let (G, pep) be a complete CPMS and I1: G — G be a continu-
ous mapping such that

1L
g)cb(H07HW) j )\max{gocb(e,w), pcb(e,He)pcb(wan) @cb(e,He)@cb(H97 w) }7

L+ pep(0,w) 1+ pep(0,w)

for all 0,w € G, where 0 < A < 1. Then Il has a unique fized point and
Per(67,6%) = 0.

Remark 3.10. Similarly, in the absence of continuity condition, we can get a

fized point result on II.
Corollary 3.11. Let (G, pep) be a complete CPMS and 11: G — G be a con-

tinuous mapping such that

0ep(0, T1"0) pep (w, ITMw)
1+ pep(0,w)

Pcb (0, 11"0) e (110, Hw) }
1+ pep(0,w) ’

for all 0,w € G, where 0 < A < 1. Then Il has a unique fized point and
peb(0*,0%) = 0.

b

pep (1170, TT"w) < A max {pcb(e,w),

14
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Proof. By Theorem 3.7, we get 6* € G such that II"6* = 0* and g (6*,60*) = 0.
Then we get

peb(T10%, 0%) = e (T O*, T1"0%) = . (TT"T10*, T176%)
« gey eb (1107, TIMI16%) oy (67, 1176%)
A b (1167, 67), )
©eb (116*, TIMI160* ) o o (TTT10*, T16*) }
1+ pcb(l'[é’*, 9*)

IA

T16*, TITT"0* ) oy (0%, TI"0%)
1+ pcb(Hg*a 9*) ’
ey (116°, TIIT"0* )y (ITIT"0°, T1"6)
14 pcb(Ho*a 0*) }
= Apcb(He*, 9*)

PN

A max {pcb(H9*7 0*)7 pCb(

Hence I1"0* = 110* = 6*. Then II has a unique fixed point. O

Remark 3.12. From the above corollary 3.11, similarly, we get a fized point
result in the absence of continuity condition for the mapping 11.

Example 3.13. Let G = {1,2,3,4} be endowed with the order § < w if and
only if < w. Then = is a partial order in G. Define the complex partial metric
space Qo G X G — C as follows:

(0,w) Peb(0, w)
(1,1), (2,2) 0
(1,2),(2,1),(1,3),(3.1),(2,3).(3,2),(3,5) | e
(1,4).(4:1).(2.4).(4:2).(3.4).(4,3). (4.4) | 3e™

Obviously, (G, pep) is a complete CPMS for x € [0, T]. Define IL, ¥ : G — G by
e = 1,

(o) = 1 if6e{1,2,3}
]2 ifo=4.

Clearly 11 and ¥ are continuous functions. Now for A = %, we consider the
following cases:

(A) If 6 =1 and w € G — {4}, then I1(9) = V(w) = 1 and the conditions of
Theorem 3.1 satisfied.

(B) If 0 =1, w=4, then I = 1, Yw = 2,
peb (110, Yw) = e <3 A e
= Amax{3e”,0,3e", %(e” + 3e'*)}
= A max{pe(6,w), 9o (8, T10), pop (w0, V),

%(W,(e, W) + pep(w, 116))},

15
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(C) If 0 =2, w=4, then 110 = 1, Yw = 2,

oep(II0, Tw) = ' < 3 A e
o 1 .
= A max{3e**, e, 3e**, 5(0 +3e)}
= A max{pcb(97 W), pcb(aa HG), pcb(wa ‘I/UJ>7
1

5 (9e(0, Ye) + pep (w, 110)) },

(D) If0 =3, w=4, thenlf = 1, Yw = 2,

peb (110, Yw) = e <3 A e
S+ 36%))
= K max{ pep (6, ), 9ep (6, T16), pep (w, Vov),

%(pcb(e, Vw) + pep(w, 116))},

= A max{3e'®, e**, 3",

(E) If 0 =4, w=4, then 110 = 2, Yw = 2,
9 (10, Ww) = ' < 3 A e
= A max{3e’, 3¢, 3¢, %(36” + 3¢}
= A max{pe(0,w), e (0, 110), pep (w, Yw),

1

5 (9 (6, ) + 9w, TI0))},

Moreover for A = %, with A < 1, the conditions of Theorem 3.1 are

satisfied. Therefore, 1 is the unique common fixed point of II and V.

4 Application
Consider the following systems of integral equations:
b
w(s) = [ Tils.p.we)dp (18)
and
b
#9) = [ Talovp. ()b (19)

where
(i) w(s) and z(s) are unknown variables for each s € J = [a,b], b > a > 0,

(i1) Ti(s,p) and Ts(s,p) are deterministic kernels defined for s,p € J = [a, b].

16
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In this section, we present an existence theorem for a common solution to (18)
and (19) that belongs to G = (C(J),R™) (the set of continuous functions defined
on J) by using the obtained result in Theorem 3.1. We consider the continuous
mappings I, ¥ : G — G given by

b
Hu(s) = [ Tulspw)dp.we Gus e

and

b
Uz(s) = / To(s,p,z(p))dp,z € G, s € J,

Then, the existence of a common solution to the integral equations (18) and
(19) is equivalent to the existence of a common fixed point of 77 and T5. It is
well known that G, endowed with the metric @, defined by

Pebr(w; 2) = [w(s) — 2(s)| + 2,

forall w,z € G is a complete CPMS. G can also be equipped with the partial
order =< given by

w,z € G, w = z if and only w(s) > z(s), for alls € J.

Further let us consider a system of integral equation as (18) and (19) under the
following condition hold:

(A) T1, Ty : J x J x R™ — R™ are continuous functions satisfying

(350 00) ~ Talovp 2(6))] = ey = 2 0,

where
S(w, z) = max{p(w, 2), P (w, Hw), Pz, ¥2),

5 (9a1,02) + oz )

Theorem 4.1. Let (C(J),R", o) be a complete CPMS, then the system (18)
and (19) under the condition (A) have a unique common solution.

Proof. For w,z € (C(J),R™) and s € J, we define the continuous mappings
ILY : G — G by

b
M (s) = / T (s, p, w(p))dp,

and

\I/z(s)z/ Ta(s,p, z(p))dp.

17
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Then we have
pep(TTw(s), ¥z(s)) = [TTw(s) — Vz(s)| + 2
b
— [ 173050 0) ~ Talo.p,2(5))ldp + 2
b

5/a ((f(—w&)zit - b3a>dp+2
S(w, 2)

et
= AS(w, z)
= A max{pcb(w7 Z)v pcb(wv H’LU), pcb(zv lIJZ)v

1

5 (9w, 2) + g1 (2, ).
Hence, all the conditions of Theorem 3.1 are satisfied for 0 < A = e—lt < 1 with
t > 0. Therefore the system of integral equations (18) and (19) have a unique
common solution. O

5 Conclusion

In this paper, we proved some common fixed point theorems on complex partial
metric space. An illustrative example and application on complex partial metric
space is given.
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