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Abstract: Studies have shown that in many practical applications, data interpolation by splines leads
to better approximation and higher computational efficiency as compared to data interpolation by a
single polynomial. Data interpolation by splines can be significantly improved if knots are allowed
to be free rather than at a priori fixed locations such as data points. In practical applications, the
smallest possible curvature is often desired. Therefore, optimal splines are determined by minimizing
a derivative of continuously differentiable functions comprising the spline of the required order.
The problem of obtaining an optimal spline is tantamount to minimizing derivatives of a nonlinear
differentiable function over a Banach space on a compact set. While the problem of data interpolation
by quadratic splines has been accomplished analytically, interpolation by splines of higher orders
or in higher dimensions is challenging. In this paper, to overcome difficulties associated with the
complexity of the interpolation problem, the interval over which data points are defined, is discretized
and continuous derivatives are substituted by their discrete counterparts. It is shown that as the
mesh of the discretization approaches zero, a resulting near-optimal spline approaches an optimal
spline. Splines with the desired accuracy can be obtained by choosing an appropriate mesh of the
discretization. By using cubic splines as an example, numerical results demonstrate that the linear
programming (LP) formulation, resulting from the discretization of the interpolation problem, can
be solved by linear solvers with high computational efficiency and resulting splines provide a good
approximation to the optimal splines.
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1. Introduction

Many applications require piecewise polynomial functions, usually referred to as
“splines,” which interpolate given data points and satisfy additional conditions such as
continuity, smoothness, and convexity or concavity. The recent and the ongoing COVID-19
pandemic, spurred advances in spline-related research, specifically, splines have been
shoen to be useful for modeling and forecasting of the COVID-19 spread [1–4], and COVID-
19 trend [5]. In [6], splines were used to analyse the relationship between the ambient
temperature and the transmission of COVID-19. Moreover, splines were shown to be
useful for capturing the nonlinear relationship between “fasting blood glucose” levels and
risk of intensive care unit admission for COVID-19 patients [7] unlike other conventional
linear, dichotomous, or categorically methods. Other traditional and recent applications of
splines include: 1) dynamic programming [8–27], 2) mathematical programming [28–36],
3) statistics [37–51], 4) control theory [50–68], 5) computer graphics [97–120], and 6) path
planning [51] as discussed below.

When an exact functional form in a model is unknown, it is often described by
measurements represented by data points. Traditionally, data points were interpolated
by polynomials more frequently than by spline functions. While polynomials have many
desirable properties, polynomial interpolation suffers from the Runge’s Phenomena [69]
- a polynomial oscillation at the edges of an interval. With large data, the derivatives of
a single polynomial at each of the data points tend to grow thereby resulting multiple
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local extrema. In particular, it has been shown that polynomials, extensively used in
thermometry [70], are not capable of recovering local behavior with good quantifiable
accuracy. Spline interpolation, on the other hand, tends to greatly reduce oscillation
between data points and (cubic) splines have been shown to be able to reproduce local
characteristics well [70]. In addition, the problem of finding a polynomial interpolating
a large number of data points is equivalent to inverting a van der Monde matrix with a
large condition number thereby rendering the interpolation problem intractable, inefficient
and unstable in computer implementations. On the other hand, the great flexibility of
splines, resulting from the use of several lower degree polynomials smoothly connected
at optimally chosen points (usually referred to as “knots”), resolves the major problems
mentioned above effectively. This is why splines are turning out to be so useful in a wide
variety of applications.

The aim of this paper is two-fold: 1) to give a perspective on applications of spline
functions in Mathematical Programming, Dynamic Programming, Statistics, Optimal Con-
trol Theory, and Computer Graphics in Section 2; and 2) to formulate a linear optimization
program that finds near-optimal curvature of splines with free knots interpolating a given
set of data points efficiently and with the desired level of accuracy in Section 3. Section 4
provides numerical results, presenting computational efficiency of the method developed.
Section 5 gives brief concluding remarks.

2. Literature Review

Spline functions were introduced as early as in the nineteenth century by Lobachevsky
[71, p.165]. In the mid 40’s, the B-splines were investigated by Schoenberg [72]. Since then
the subject has grown vigorously and many excellent texts are available on the subject:
[37,73–78]. A good introduction is given in [74]. The early computational algorithms have
been developed and are available in [75]. A comprehensive theory can be found in [76],
and a briefer treatment in [37]. Reference [38] finds [77] “one of the most useful such
volumes.” A general survey can be found in the overviews given in these texts. Moreover,
the selection of topics largely depends on the application area of the reader’s interest.

In a basic way, spline theory deals with a simple but important question of how
one uses a lower degree piecewise polynomial function rather than a single larger degree
polynomial to represent given data and attendant properties. Spline theory attempts to
obtain appropriate problem formulations, existence and characterization of solutions, and
properties and computation of such functions.

Representation of the function with lower degree polynomials, facilitation of efficient
computation, as well as good approximation of the original function between the given
data points being interpolated, continuous or essentially bounded derivatives (often second
and third derivatives), are some of the important assumptions in spline applications. For
example, second derivative is used as a measure of nonlinearity of models such as in
convex separable programming [28,29], and nonlinear statistical estimation problems [79].
Boundedness of the third derivative in interpolation by cubic splines is natural since one
can always have a function interpolating the given point with arbitrarily high curvature.
Therefore, to estimate the most favorable possible error in function approximation, one
would like to determine the smallest curvature possible.

One of the first books on the approximation by least squares cubic splines was pub-
lished in 1968 by de Boor and Rice [80] and [81]. Studies have shown that the approxima-
tions by splines can be significantly improved if knots are allowed to be free rather than
at a priori fixed locations (e.g., data points). When the knots of a spline are fixed a priori
(for example, knots coincide with data points) we call it a spline with fixed knots. When
the knots are not fixed but are determined optimally it is a spline with free or variable
knots. Generally, as one would expect, the analysis for fixed knots tends to be simpler than
for free knots [37] (p. 190). A spline is required to pass through the data points exactly,
when data are fairly accurate, is called an interpolatory spline, otherwise an approximating
spline. The methods given in this section focus on optimal interpolatory cubic splines
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with free knots. A comparative analysis showing advantages of free-knot splines over
data-smoothing techniques has been given in [82]. Typically the degree of smoothness is
controlled by both the number and the position of the knots. In [83] the knots are estimated
by solving a non-linear least-squares optimization problem.

It has been shown in [39] that there always exists an optimal spline with
∥∥∥ f (r)

∥∥∥
∞
= k∗

for each polynomial comprising the spline and (n− r− 1) knots, where n is the number of
data points and r is the degree of the spline that interpolates them. It is noted that for a
given value k∗, an optimal spline with

∥∥∥ f (r)
∥∥∥

∞
= k∗ is not necessarily unique (since some

of the polynomials comprising the spline (but not all) that interpolate given data points
may have

∥∥∥ f (r)
∥∥∥

∞
that is less than the optimal value k∗).

Supported by substantial mathematical theory and effective computational methods,
splines have a very wide spectrum of general applications. Applications of splines range
from modeling insect natality and DNA coils in biology [84,85], pattern recognition of
handwritten Japanese in linguistics [86], study of geomagnetism in physics [87], analysis
of liquid alloys in chemistry [88], characterization of vibrations in acoustics [89], to solving
spectroscopic orbits in astronomy [90].

Among many of these, cubic splines have also come in common use in multiple
disciplines such as robotics and statistics. Cubic splines are used in the problem of coor-
dination and planning of the robotic motion [91]. The trajectories for robot motion are
frequently described by smooth cubic splines [92]. Cubic splines are used to characterize
the dependency of the Markov model parameters on the conditional parameters [93]. Many
filtering techniques require the use of splines. Splines are used to extract curves to model
approximation to the shapes of segmented images that result from smoothing the lines
of an object in the presence of its shape uncertainty [94]. In digital signal processing,
splines are used to generate new sequences with a higher sampling rate (up-sampling) [95].
Numerical shape-preserving quadratic splines were developed in [96].

2.1. Spline Applications

Spline applications include areas of mathematical programming, dynamic program-
ming, engineering, statistics, and optimal control theory that will be discussed below in
detail.

2.1.1. Dynamic Programming Applications

Dynamic programming has had multiple important applications in the area of se-
quential decision making. The ability to handle nonlinearities and stochastic nature of
functional relations describing the model, empower it with great versatility. However,
equally well-known is the “curse of dimensionality.” As the dimension of the state space
and the number of decision stages increases, the computational burden grows enormously
and becomes computationally prohibitive very quickly. In such a case, to use the dynamic
programming methodology, approximation of the space by discretization at certain grid
points is often necessary. Clearly, the greater the number of the grid points, the better the
approximation and the larger the computational effort. We briefly describe here a stochas-
tic, continuous state space water reservoir model in water/power resource management,
where the use of cubic splines instead of a more common piecewise linearization leads to
rather impressive computational performance.

Such models have been used for real world problems in Shasta/Trinity system in
Northern California, Brazil’s large hydropower system, and Egypt’s High Aswan Dam
[10,11]. For an important and well discussed 4-reservoir, 3-period water release problem
[12–14] the computational time to obtain an optimal decision was reduced very significantly.
For this problem, the number of grid points varying from 3 to 17 was used to discretize
the values of functions representing starting volume of water, the inflow of water, released
amount of water at time t and related variables. Rather than the usual piecewise linear
interpolation, cubic splines with continuous second derivatives were used for this purpose.
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Since (1) cubic polynomials allowed for better approximation, and (2) the continuity of
the second derivative made possible the use of Quasi-Newton methods in the solution
of the subproblems, very significant computational savings have been achieved. For a
1% error, the spline dynamic programming algorithm reduced the computational time
by a factor of 255. For a 0.5% error the reduction factor was even greater: 330 [15]. For
practical reservoir problems with more than 2-3 dimensions, while linear interpolation
needs prohibitive amounts of computation time for reasonable accuracy, the use of cubic
splines for 5-dimensional problems led to significant computational improvement and an
overall advancement in the area [15]. The more traditional approaches for containing a
sprawling dynamic program include the use of principal component analysis, sampling,
duality, Benders decomposition, substitution of deterministic equivalents for stochastic
components, and partition of the original problem into separable components [15–20].

There are many other problems that are modeled as continuous state space, including
manufacturing process control, management of forests, fisheries, crops pest control, and
portfolio selection under fluctuating interest rates [8,9,21–27]. Though realistic parameters
would be different in these applications, the use of splines would offer a promising strategy
to estimate them.

2.1.2. Mathematical Programming Applications (Estimating the objective function and
solution error for piecewise linear approximations)

Piecewise linear functions often appear in optimization largely because of their in-
creased mathematical tractability, and “one of the most useful applications of piecewise
linear representation is for approximating nonlinear functions” [33, p. 382]. Since approxi-
mations obviously affect the computed quantities of interest (e.g., the optimal objective
value), how do we measure the quality of this approximation quantitatively beyond the
common assertion that ‘the greater the number of the linear pieces, the better the approxi-
mation’, and how do we determine the errors in the values of interest? Optimal splines
help find a bound on this error. Found by computing an optimal quadratic spline, the
minimal required curvature value k∗ of

∣∣ f 2
∣∣ of a smooth function taking specified values at

the given points, will provide a bound on the error in such approximations. For example,
if f̂ is the piecewise linear function resulting from joining the adjacent points, {(xi, yi)}r+2

1
obtained, say, from an experiment [52, p. 171] or a function from its values at {xi}’s, then
k∗ gives a bound on the function error max

a≤x≤b

∣∣∣ f (x)− f̂ (x)
∣∣∣ [34] that can be shown to be

bounded by:
max

a≤x≤b

∣∣∣ f (x)− f̂ (x)
∣∣∣ ≤ k∗δ2/8,

where δ = max
1≤i≤r−1

(xi+1 − xi). Since we have determined k∗ ≤
∣∣ f 2
∣∣ for any admissible

function f , one specific use of such a solution k∗ is in the computation of error bounds on
the optimal objective value and optimal solution (vector) of convex separable programs.
Similarly, considering a convex separable program Z with a nonempty feasible space and
its piecewise linear approximation Z1, with a subdivision interval δ, the bounds on the
maximum deviation between the optimum objective values Z∗1 and Z∗ can be calculated
by using quantities

Dj = max
0≤xj≤rj

∣∣∣ f j(xj)− f̂ j(xj)
∣∣∣,

Eij = max
0≤xj≤rj

∣∣gij(xj)− ĝij(xj)
∣∣,

where Dj, Eij values are calculated by the solutions of the quadratic splines as k∗ discussed
above. Similarly, the method to compute bounds on each component of the optimal solution
vector X∗ of Z∗ using k∗ is given in [35]. These bounds, in turn, have also been used to
develop more efficient algorithms for convex separable programming problems [28] and
[29], and non-convex programming problems [36].
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As discussed above, separable programming solutions are inexact since they corre-
spond only to piecewise-linear approximations and not the original functions. Estimation
of the errors in the optimal quantities is therefore important in practice. This is even more
so because, for large problems without any special structure, the technique may often be
the only nonlinear optimization technique available with large commercial linear program-
ming systems; the systems with which practitioners solving large, real-world problems
have been familiar for a long time. Estimation of k∗, obtained by optimal quadratic splines,
will also allow such systems to give estimates of the errors in the solutions produced.

2.1.3. Applications in Statistics (Density estimation and nonparametric regression models)

The great flexibility of splines to interpolate data with lower degree polynomials which
minimize computational burden and large oscillations between data points resulting from
interpolation by using higher degree polynomials is invaluable in statistical models. Since
data representation and its analysis is one of the core issues in statistics, it is not surprising
that there are applications of splines starting from the basic problems of smoothing a
histogram. For pioneering work on this subject, an interested reader is referred to the
age distribution of Hungarian mothers in 1963, ears of Iowa variety of corn [44–46], and
various problems relating to the estimation of density functions and higher moments of
distributions [39,47]. For a comprehensive survey of uses of splines in general statistics, an
interested reader is referred to [38] and in approximate regression models [48].

The text [47] discusses splines in nonparametric regression and its “intriguing con-
nection” with Bayesian estimation in a very general framework. The [49] provides a very
readable yet elementary and concise discussion of fitting spline functions with fixed knots
by standard regression methods, e.g., using SPSS package computations. While in paramet-
ric regression we need very specific quantitative information, generally based on theory
or past experience, the flexibility of spline functions in nonparametric regression lets the
“data speak for itself” [47]. In addition, such regression allows to examine the validity
of an assumed parametric form of the regression function, and in turn, a spline function
obtained may suggest an appropriate functional form for a parametric analysis. Regression
problems in statistics under order restrictions are discussed in [121]. For other models that
require splines refer to [37,50].

2.1.4. Applications to Optimal Control Problems (Optimal timing policies)

Many optimization problems requiring an optimal function rather than only an opti-
mal point in Rn for their solution are best handled by control theory [58–62] framework.
An excellent introduction to splines in control theory intended to be read by ‘ordinary
mortals’ (p. vi) is [50]. The problems analyzed in the applications area include several prob-
lems in inventory and production [63,64], construction project scheduling [59], timing of
acceleration to achieve takeoff with minimum energy consumption [52], optimal extraction
timing of natural resources such as timber or oil reserves [65], system or user optimiza-
tion in dynamic network traffic assignment problems [66], and in the topic of dynamic
scheduling and routing for flexible manufacturing systems [67]. In certain optimal control
situations the optimal function must be a spline. For example, consider a time-optimal
control problem solved in [68]. A particle moves along the y-axis according to y = F(t),
and the velocities of different orders are given by

F(ν)(t), ν = 0, 1, ..., n− 1,

which are absolutely continuous. If we are given a bound on the nth derivative |F(n)(t)| ≤ A
for fixed A, and the initial and final states of the particle are:

F(0)(t) = 0, F(ν)(T) = 0, ν = 0, 1, ..., n− 1, F(T) = l,

then find the shortest time T0 to complete this motion of the particle from 0 to the height of
l on the y-axis and determine the optimal function F(t) which will achieve this minimal
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T0. The optimal solution F(t) is given by a perfect spline (that is, the nth derivative F(n)

changes sign at the knots but has the same absolute value |F(n)|) with minimum

T0 = 2
(

2n−2(n− 1)!l
A

)1/n

.

The above applications give a perspective on applications of splines. The general
definition of optimal splines of rth order and the corresponding problem formulation to
determine optimal splines will be provided in the following section.

2.1.5. Computer Graphics and CAD/CAM Applications (Generating free-form lines and
surfaces)

Perhaps the most intuitively clear need for smoothness appears in free-form curves
and surfaces, the fundamental tools in computer-aided design, modeling, and graphics.
Splines generate free-form curves and surfaces and are used in the design of airplanes
[100,101], automobiles [102,103], hulls of ships and tankers [104,105], and bottles [106].
Here splines seem to fall almost as a natural requirement. The continuity of specified
derivatives in splines can provide the desirable amount of smoothness. In CAD/CAM and
computer graphics [107–110], a recurring basic problem is to connect points specified by
the user on the screen. When we need to join them “smoothly” by a curve, straight lines
are not sufficient and splines are often used.

For example, smoothness would be required for the access ramps in highway sys-
tems, for conveyors in material flow systems, for minimizing resistance in aerodynamic
or hydraulic systems, or even for visual esthetics in display or plotting systems. An ex-
tensive graphic system SAS/GRAPH [111] provides a (cubic) spline option for displaying
plots of given or computed data. Smooth spirals have been used in highway design for
many decades [112,113], where smoothness and controlling the curvature is of concern
since a vehicle’s turning ability is limited and sharp turns are undesirable. Cubic splines
have been used for such applications [113]. Applications of splines in this area have
grown very rapidly due to the great progress made in computer technology during past
decades. Several survey articles in this area are [114–116]. Book-length expositions of
splines on computer-aided geometric design include [101,110,117]. Briefer discussions of
splines in computer graphics are in [118,119] and with more emphasis on computer-aided
manufacturing in [120].

3. Problem Formulation
3.1. General Problem Formulation

For a given set of data points {xi, yi}n
i=1 such that A=x1<. . .<xn=B, a spline function

S(x) of degree r with the knots at xknot1 , ..., xknotK is a real valued function defined on the
interval [A,B] such that:
(i) S(x) passes through all the data points, i.e., S(xi) = yi,
(ii) In each interval

(
A, xknot1

)
,
(
xknot1 , xknot2

)
, ...,

(
xknotK , B

)
, where K is the number of

knots, S(x) is given by a polynomial of degree r or less,
(iii) S(x) and its derivatives of orders 1, 2, ..., r− 1 are continuous in the interval (A, B),
(iv) rth derivative of S(x) can be discontinuous at a finite number of points.

Thus, a spline function of degree r is a piecewise polynomial function with (r− 1)
continuous derivatives. We could also say that it is a member of Cr−1 whose rth derivative
is a step function. In other words, it is an rth order indefinite integral of a step function.
Polynomial pieces of a spline are ‘spliced’ appropriately at the knots where rth derivative
jumps from one value to another (often with opposite signs), enabling it to turn or change its
shape; while all derivatives up to (r− 1)th order remain continuous, imparting smoothness
to the spline. It should be noted that x-coordinates of given data points {xi, yi}n

i=1 are
generally not the knot points.

The problem of finding the optimal spline of rth degree is
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min
f∈Cr−1

∥∥∥ f (r)
∥∥∥

∞
= min

f∈Cr−1
max

∣∣∣ f (r)∣∣∣ (1)

s.t. f (xi) = yi, (2)

where {xi, yi}n
i=1 are given data points.

The formulation (1)-(2), though simple and elegant, is unfortunately not easy to solve.
This formulation amounts to the optimization over a Banach space of continuous functions
on a compact set [A,B], which is well-known to be notoriously difficult [51, p. 3]. In problem
(1)-(2), the decision variable is a function f that minimizes

∥∥∥ f (r)
∥∥∥

∞
. In order to mediate

the computational burden, the entire space is discretized into segments over which the
optimization can be done with much less computational effort while the solution obtained
still satisfies an acceptable accuracy criterion.

3.2. Linear Optimization Formulation of the Problem (1)-(2)

This section presents a numerical approach for finding the optimal splines in maxi-
mum norm space (typically referred to as L∞ space) since we are minimizing

∥∥∥ f (r)
∥∥∥

∞
=

max
∣∣∣ f (r)∣∣∣. The main idea of the approach is to formulate a linear optimization problem,

the solution of which approximates
∥∥∥ f (r)

∥∥∥
∞

, with certain tolerance, of the optimal spline

interpolating given n data points {xi, yi}n
i=1.

All n data points are assumed to be equidistant such that A=x1, B=xn and xi − xi−1 =
H, H > 0, i = 2, ..., n, and [A, B] =

⋃n−1
i=1 [xi, xi+1]. In order to discretize the problem, we

choose to divide each interval [xi, xi+1], i = 1, ..., n− 1 in m subintervals of equal width.
Thus we partition interval [A, B] into l evenly spaced subintervals, where l = (n− 1)m.
Note that the number of points defining the l subintervals is l + 1, and the points are

denoted by
{

x̂j
}(n−1)m+1=l+1

j=1 , such that the relation x̂(i−1)m+1 = xi, i = 1, ..., n− 1 holds
between original data points xi and data points x̂j created by subdivisions.

For example, x̂1 = x1 = A, x̂11 = x2, x̂21 = x3, ..., x̂(n−1)m+1=l+1 = xn = B. It

should also be pointed out that the general formula for x̂j is x̂j = B (j−1)
l + A (1−j+l)

l , so

that x̂1 = A, x̂2 = B
l + A (1+l)

l , x̂3 = 2B
l + A (2+l)

l ,. . . ,x̂l+1 = B. Also, while H denotes the
width of each interval [xi, xi+1] specified in the data, h denotes the width of each smaller
interval

[
x̂j, x̂j+1

]
created after m subdivisions of each interval. In other words, H = mh.

After the interval [A, B] is discretized, the derivatives are replaced by their discrete
counterparts. Derivatives of a function are often approximated by finite differences. A
discrete analog of the rth derivative of a continuous function is the rth order difference
divided by hr. A general formula of the rth order forward difference is based on r consecutive
(sub)intervals and is represented as follows [122–124]

∆r
h[ f ] (x) =

r

∑
i=0

(−1)i
(

r
i

)
f (x + (r− i)h).

Central differences δr
h[ f ](x) = ∑r

i=0(−1)i
(

r
i

)
f
(
x +

( r
2 − i

)
h
)

provide more ac-

curate approximations as compared to forward (or backward) differences: ∆r
h [ f ] (x)

hr =

f (r)(x) + O(h) and δr
h [ f ] (x)

hr = f (r)(x) + O
(
h2), thus error in forward differences is of the

order h while in central differences it is of the order h2 . Essentially, this is due to con-
sidering the values of the function at h/2 distance away both to the left and to the right
of the function in central differences rather than the entire h distance only on one side of
the function in forward differences, resulting in a better approximation of the function
derivative by central differences.
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Briefly, the first order difference
f (x+ h

2 )− f (x− h
2 )

h divided by h can be expanded into
Taylor series in the following way:

f
(

x + h
2

)
− f

(
x− h

2

)
h

≈

(
f (x)

h
+

f
′
(x)
2

+
f
′′
(x)
2

h +
1

48
f (3)(x)h2

)
−
(

f (x)
h
− f

′
(x)
2

+
f
′′
(x)
2

h− 1
48

f (3)(x)h2

)
=

f
′
(x) +

1
24

f (3)(x)h2

Also,

f (x + h)− f (x)
h

≈ f (x)
h

+ f
′
(x) +

1
2

f
′′
(x)h− f (x)

h
= f

′
(x) +

1
2

f
′′
(x)h,

from which one can observe that
f (x+ h

2 )− f (x− h
2 )

h − f
′
(x) = O(h2), while f (x+h)− f (x)

h −
f
′
(x) = O(h). Similar arguments hold for higher order finite differences.

Even though the forward difference approximates the third derivative at x̂j with the

error of the order of O(h), it approximates the third derivative at midpoint
x̂j+1+x̂j+2

2 with
the error of the order of O(h2), as in the discussion of central differences above. Indeed, if
we denote ẑj =

x̂j+1+x̂j+2
2 , then

f
(
x̂j
)
− r f

(
x̂j+1

)
+ r(r− 1) f

(
x̂j+2

)
+ ... + (−1)r f

(
x̂j+3

)
h3 =

f
(

ẑj − 3h
2

)
− r f

(
ẑj − h

2

)
+ r(r− 1) f

(
ẑj +

h
2

)
+ ... + (−1)r f

(
ẑj +

3h
2

)
h3 ,

which is the third-order central difference, and therefore, the overall accuracy of the
approximation is of the order of O(h2).

A straightforward approach to find a near-optimal solution of (1)-(2) is to minimize
maximum of the rth-order differences directly:

min
f (x̂1), f (x̂2),..., f (x̂(m−1)n+1)

max
∣∣∣∣∆r

h [ f ](x̂j)
hr

∣∣∣∣
s.t., f

(
x̂(m−1)i+1

)
= yi, i = 1, ...n

 (3)

Note that in this discretized version (and for the rest of the paper), points denoted by
f
(
x̂j
)

are decision variables, where x̂j, j = 1, . . . , (n− 1)m + 1 are endpoints of subintervals.
Since the objective function in the formulation (3) is clearly non-linear due to max and

absolute value operators, in order to deal with this nonlinearity, the problem is converted
into an equivalent linear counterpart (similar to [52, p. 28]):

min
f (x̂1), f (x̂2),..., f (x̂(m−1)n+1)

k

s.t.,
∆r

h [ f ] (x̂j)
hr ≤ k, j = 1, ..., l − r

∆r
h [ f ] (x̂j)

hr ≥ −k, j = 1, ..., l − r
f (x̂(m−1)i+1) = yi, i = 1, ..., n


(4)

Since f
(

x̂(m−1)i+1

)
= yi are given as data, the actual decision variables to determine

are f
(

x̂j
)

with the exception of f
(

x̂(m−1)i+1

)
, i = 1, ..., n, although for more convenient
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implementation, f
(

x̂(m−1)i+1

)
can still be treated as decision variables. Also, due to

linearity, (4) can be solved with much higher efficiency than (3). This is generally the
goal of all linearization processes used to deal with non-linearity from a computational
perspective.
Theorem 3.1. The optimal value of the formulation (4) approaches k∗, the optimal value of the
formulation (1)-(2), as the number of subintervals approaches infinity (m→ ∞).

Proof. As established above, the formulation (4)

min
f (x̂1), f (x̂2),..., f (x̂(m−1)n+1)

k

s.t.,
∆r

h [ f ] (x̂j)
hr ≤ k, j = 1, ..., l − r

∆r
h [ f ] (x̂j)

hr ≥ −k, j = 1, ..., l − r
f
(

x̂(m−1)i+1

)
= yi, i = 1, ...n


is equivalent to formulation (3).

min
f (x̂1), f (x̂2),..., f (x̂(m−1)n+1)

max |∆
r
h [ f ](x̂j)|

hr

s.t., f
(

x̂(m−1)i+1

)
= yi, i = 1, ...n


As the number of subintervals approaches infinity (m→ ∞) the third-order difference

approaches the third derivative, so the formulation (4) becomes

min
f (x̂1), f (x̂2),...

max
∣∣∣ f (3)(x̂j

)∣∣∣
s.t., f (xi) = yi, i = 1, ...n

 (5)

Despite having the same objective function, the formulation (5) is theoretically not
equivalent to the formulation of the original problem (1)-(2). Any countable (even infinitely
countable) set of decision variables

{
f
(
x̂j
)}

is a set of measure zero (a set of points that can
be enclosed by intervals with arbitrarily small width), whereas the space over which formu-
lation (1)-(2) is optimized is continuous, namely, the entire interval [A, B]. In other words,
formulations (5) and (1)-(2), though they have the same objective function, are optimized
over different decision variable spaces, namely, discrete and continuous respectively.

Notwithstanding the differences between formulations (5) and (1)-(2) noted above,
their respective optimal values differ by an infinitesimally small value as the number of
subintervals approaches infinity. Indeed, for an arbitrarily small ε > 0, we can always find
a large enough m, number of subintervals (of each interval), such that

∣∣x̂j − x̂j+1
∣∣ < ε. Since

the third derivative of f exists almost everywhere for a cubic spline by definition, we can

define central differences at the midpoints of each subinterval
(
x̂j, x̂j+1

)
as

δr
h [ f ]

(
x̂j+x̂j+1

2

)
hr =

f (3)(x) + O
(
h2). Now, as explained before, note that

δr
h[ f ]

( x̂j+x̂j+1
2

)
hr =

∆r
h[ f ]

(
x̂j−1

)
hr

and therefore, the optimal solution to (5) differs from the optimal solutions by a quantity of
the order of O

(
h2). In other words, for any two arbitrarily close decision variables f

(
x̂j
)

and f
(
x̂j+1

)
, the respective third derivative of f evaluated at any point between them

differs from the third derivative evaluated at either of these points by a quantity that is
arbitrary small except possibly at the points of discontinuity of f (r), which constitute a set
of measure zero since f (r) exists almost everywhere.
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Therefore, respective optimal values of formulations (5)

min
f (x̂1), f (x̂2),...

max
∣∣∣ f (r)(x̂j

)∣∣∣
s.t. f (xi) = yi, i = 1, ...n


and (1)-(2)

min
f∈C2

∥∥∥ f (r)
∥∥∥

∞

s.t. f (xi) = yi


differ by a quantity of the order of O

(
h2).

4. Numerical Testing

The algorithms described above were implemented in CPLEX on an Intel R© Core
TM

i7
CPU Q 720 @1.60GHz and 4.00 GB RAM (see the CPLEX code in Appendix A).
4.1 Numerical Examples

In this section four examples are presented. Example 4.1 provides a step by step
walk-through the algorithm. Examples 4.2-4.4 illustrate performance of the algorithm for
different test functions. Scalability results are presented in Examples 4.5-4.6. In addition,
Example 5 gives computational evidence that the optimal value of the formulation (2)
approaches the optimal value of (1)-(2) as O

(
h2).

Example 4.1: In order to illustrate all the steps of the formulation very clearly, we provide
all basic details for this example.

Consider a problem with 5 data points: (x1=1, y1=3), (x2=2, y2=5), (x3=3, y3=4.5),
(x4=4, y4=6.6), and (x5=5, y5=2.6). Here we divide each interval into 2 subintervals, so
n = 5, m = 2, l = (n− 1)m = 8 and h = 0.5 with the resulting subintervals [x̂1, x̂2]=[1, 1.5],
[x̂2, x̂3]=[1.5, 2], [x̂3, x̂4]=[2, 2.5], [x̂4, x̂5]=[2.5, 3], [x̂5, x̂6]=[3, 3.5], [x̂6, x̂7]=[3.5, 4], [x̂7, x̂8]=[4, 4.5],
and [x̂8, x̂9]=[4.5, 5]. Note that some of the x̂j, j = 1, ..., 9 are problem data values xi, i =
1, ..., 5: x̂1 = x1, x̂3 = x2, x̂5 = x3, x̂7 = x4 and x̂9 = x5.

In this case the formulation (4) takes the following form

min
f (x̂1), f (x̂2), f (x̂3), f (x̂4), f (x̂5), f (x̂6), f (x̂7), f (x̂8), f (x̂9)

k

s.t., −k ≤ f (x̂1)−3 f (x̂2)+3 f (x̂3)− f (x̂4)
0.53 ≤ k;

−k ≤ f (x̂2)−3 f (x̂3)+3 f (x̂4)− f (x̂5)
0.53 ≤ k;

−k ≤ f (x̂3)−3 f (x̂4)+3 f (x̂5)− f (x̂6)
0.53 ≤ k;

−k ≤ f (x̂4)−3 f (x̂5)+3 f (x̂6)− f (x̂7)
0.53 ≤ k;

−k ≤ f (x̂5)−3 f (x̂6)+3 f (x̂7)− f (x̂8)
0.53 ≤ k;

−k ≤ f (x̂6)−3 f (x̂7)+3 f (x̂8)− f (x̂9)
0.53 ≤ k;

f (x̂1) = y1 = 3; f (x̂3) = y2 = 5; f (x̂5) = y3 = 4.5; f (x̂7) = y4 = 6.6; f (x̂9) = y5 = 2.6;

Here x̂1 = x1, x̂2 = x1+x2
2 , x̂3 = x2, x̂4 = x2+x3

2 , x̂5 = x3, x̂6 = x3+x4
2 , x̂7 = x4, x̂8 = x4+x5

2 ,
x̂9 = x5. The decision variables are f (x̂1), f (x̂2), f (x̂3), f (x̂4), f (x̂5), f (x̂6), f (x̂7), f (x̂8)
and f (x̂9), but f (x̂1), f (x̂3), f (x̂5), f (x̂7) and f (x̂9) are known to be y1, y2, y3, y4 and y5
respectively, so the actual decision variables are only f (x̂2), f (x̂4), f (x̂6) and f (x̂8).

The solution is: f (x̂2) = 4.9625, f (x̂4) = 4.4125, f (x̂6) = 5.6625, f (x̂8) = 6.0125,
k = 10.4.

Figures 1 and 2 present a near-optimal cubic spline, presented by discrete points,
interpolating data points from Example 1 using m = 10. Dots represent data point and
calculated decision variable values with smooth line representing the resulting spline and
the cubic polynomials constituting the spline.
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Figure 1. Near-optimal spline for Example 1 with m = 10
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Figure 2. Polynomials comprising the near-optimal spline for Example 1 with m = 10
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Table 1: Data for Examples 2-4

x Example 2 Example 3 Example 4

x1 =1 y1 =1.1051 y1 =0.8415 y1 =3
x2 =2 y2 =1.2214 y2 =0.9093 y2 =3.3113
x3 =3 y3 =1.3498 y3 =0.1411 y3 =3.74
x4 =4 y4 =1.4918 y4 =-0.757 y4 =4.2219
x5 =5 y5 =1.6487 y5 =-0.959 y5 =4.6928
x6 =6 y6 =1.8221 y6 =-0.279 y6 =5.0883
x7 =7 y7 =2.0137 y7 =0.6570 y7 =5.3443
x8 =8 y8 =2.2255 y8 =0.9894 y8 =5.3963
x9 =9 y9 =2.4596 y9 =0.4121 y9 =5.1947
x10 =10 y10 =2.7183 y10 =-0.5440 y10 =4.7732
x11 =11 y11 =3.0042 y11 =-1 y11 =4.196
x12 =12 y12 =3.3201 y12 =-0.537 y12 =3.5274
x13 =13 y13 =3.6693 y13 =0.4202 y13 =2.8317
x14 =14 y14 =4.0552 y14 =0.9906 y14 =2.1731
x15 =15 y15 =4.4817 y15 =0.6503 y15 =1.6159
x16 =16 y16 =4.9530 y16 =-0.288 y16 =1.2244
x17 =17 y17 =5.4739 y17 =-0.961 y17 =1.0628
x18 =18 y18 =6.0496 y18 =-0.751 y18 =1.1953
x19 =19 y19 =6.6859 y19 =0.1499 y19 =1.6863
x20 =20 y20 =7.3890 y20 =0.9129 y20 =2.6

Table 2: Computed optimal values and CPU time for Examples 2-4

CPU time (s) k̂ Actual k

Example 2 (Exp.) 0.25 0.0062 0.0073891
Example 3 (Sine) 0.24 0.8947 1
Example 4 (Polyn.) 0.2 0.0645 0.0642609

Example 4.2: Consider a problem with n=20 and m=50 and a “test” function: f (x) = ex/10.
After being discretized, function f can be represented as 20 points {xi, yi}20

i=1 shown in
Table 1.
Example 4.3: Consider a problem with n=20 and m=50 and a “test” function: f (x) = sin(x).
After being discretized, function f can be represented as 20 points {xi, yi}20

i=1.
Example 4.4: Consider a problem with n=20 and m=50 and a “test” function:

f (x) =
98442
34295

+
2725

157757
x +

97012
788785

x2 − 8448
788785

x3, x ≤ 8.125

f (x) = − 6798459
34295

+
671965
157757

x− 314828
788785

x2 +
8448

788785
x3, x > 8.125

The data points for examples 2-4 are shown in Table 1.
Note that in most practical cases the exact functional form which the cubic spline

is used to approximate is not necessarily polynomial and is unknown, so the optimal k∗

of optimal splines interpolating given points may differ from the exact k of given test
functions. When the test function is polynomial, the optimal k∗ is very close to the exact k
(see Example 4.5).
4.2 Scalability Results

To test scalability of our approach, formulation (2) is used to test problems with
varying number of subintervals. The computation times are summarized in Table 3.
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Table 3: Scalability results for Example 5

No. of sub-intervals(m) k̂ k∗−k̂
k∗ CPU time (s)

2 5.75 4.17% 0.05
4 5.93548 1.08% 0.05
8 5.98373 0.27% 0.03
16 5.99592 0.07% 0.03
32 5.99898 0.02% 0.04
64 5.99974 0.00% 0.08
128 5.99993 0.00% 0.22
256 5.99988 0.00% 0.38
512 5.99999 0.00% 0.27

Example 4.5: Consider 5 data points (1, 4); (2, 15); (3, 39.75); (4, 78.25); (5, 124.75) chosen in
such a way that the optimal splines has the known value of third derivative equal to 6.

As one can see in Table 3, the algorithm scales well since increase in the computation
time is almost linear for the number of subintervals.

5. Conclusions

Classical data interpolation by a general spline with free knots is formulated as
linear programming problem to minimize spline curvature and the problem is efficiently
solved by using linear programming solvers. Theoretical convergence to the true optimal
splines is proved indicating that the interpolatory data points obtained by solving the
LP problem are arbitrarily close to the points on the true optimal splines. Testing results
based on cubic interpolatory splines provide good approximations to optimal splines
within a fast computation time. Future research direction will be to obtain exact functional
representation of the optimal splines as well as the exact positions of the knots.
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6. Appendix A: CPLEX Code

For illustrative purposes, the CPLEX code is provided for Example 3:
//Data File For Example 3
nbData = 20;
nbPoints = 30;
DataPoints = [0.841470985, 0.909297427, 0.141120008,
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-0.756802495, -0.958924275, -0.279415498, 0.656986599, 0.989358247, 0.412118485, -0.544021111,
-0.999990207,
-0.536572918, 0.420167037, 0.990607356, 0.65028784,
-0.287903317, -0.961397492, -0.750987247, 0.14987721, 0.912945251];
//Main Model
int nbPoints = ...;
int nbData = ...;
range points = 1..nbData;
range t = 1..(nbData - 1)*nbPoints+1;
dvar float x[t] in xmin..xmax;
dvar float k in amin..amax;
float DataPoints[points] = ...;
minimize
k;
subject to {
forall (p in points) x[nbPoints*(p-1)+1] == DataPoints[p];
forall (t in 1..(nbData - 1)*nbPoints-2)
(x[t]-3*x[t+1]+3*x[t+2]-x[t+3])*nbPoints*nbPoints*nbPoints<=k;
forall (t in 1..(nbData - 1)*nbPoints-2)
(x[t]-3*x[t+1]+3*x[t+2]-x[t+3])*nbPoints*nbPoints*nbPoints>=-k;}
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