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Abstract: This work focuses on the analysis of the performance of satellite-based precipitation products 

for monitoring extreme rainfall events. Five precipitation products are inter-compared and evaluated in 

capturing indices of extreme rainfall events during 1998-2019 considering four indices of extreme 

rainfall. Satellite products show a variable performance, which in general indicates that the occurrence 

and amount of rainfall of extreme events can be both underestimated or overestimated by the datasets 

in a systematic way throughout the country. Also, products that consider the use of ground truth data 

have the best performance.  
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1. INTRODUCTION 

Bangladesh is a country highly affected by natural disasters. In many cases, these disasters are associated with 

extreme hydrometeorological events caused by tropical cyclones and wet spells causing floods and landslides, 

affecting lives, infrastructure and livelihoods (Eckstein et al., 2020). These events can be triggered by intense 

precipitation during the monsoon season and can be enhanced by geographical factors such as the sea proximity, 

low-elevation and flat terrain (Mirza, 2011), which, combined with the high population density, generate 

conditions of high propensity for natural disasters. Moreover, given that a large proportion of Bangladesh's land is 

under agricultural land use, extreme rainfall events can become a significant threat to dominant rainfed crops and 

to the country's food security during the main crop season (Kelley et al., 2020).  

The above highlights the importance of having accurate precipitation measurements to characterize the amount, 

frequency and variability of extreme events, over a small-area country where precipitation exhibits high variability 

(Shahid, 2010). However, timely and reliable rainfall information on an appropriate spatial coverage can be 

difficult to generate by ground-truth rain gauges given their installation and maintenance costs. Apart from ground 

observation networks, other instruments are available for measuring precipitation, namely radars and satellites. 

Weather radars have proven to be very useful in generating detailed information at regional levels, but there are 

few networks worldwide generating homogeneous and long-term data, limiting their coverage, which necessary 

for studies of extreme events (Liang and Ding, 2017). However, time and space continuous gridded precipitation 

products generated from merging multiple ground and satellite sources of information have allowed capturing both 

space and time variability (Sorooshian et al., 2011). 

Multiple gridded precipitation datasets have been released during the last decades for different purposes, 

resolutions, and spatial coverages (Beck et al., 2017). These products range from those generated using rain gauges 

only such as the Global Precipitation Climatology Centre (GPCC) (Schamm et al., 2010) and the Asian 

Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources 

(APHRODITE) (Yatagai et al., 2009) to merged products between satellite and rain gauges. By merging climate 

model outputs and observations through data assimilation schemes, current atmospheric reanalysis products 

provide homogeneous and continuous precipitation estimates. The NCEP/NCAR Reanalysis (Kalnay et al., 1996) 
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and the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis ERA5 (C3S, 2017) can be 

mentioned as among the most used. However, large biases can be obtained in reanalysis in relation to field 

observations since they have been mostly developed for large-scale applications. Multiple precipitation products 

have become available due to the recent advances in satellite sensors and remote sensing algorithms. These 

products are generated from sensors that vary widely in their characteristics, from geostationary or geocentric and 

active to passive signal (Kidd and Levizzani, 2011), and consequently, retrieved precipitation can be 

heterogeneous and highly variable error (Sun et al., 2018). These uncertainties have been decreased in recent years 

due to the development of gridded products issued from the merging of direct satellite precipitation and ground 

observations (Xie et al., 2003). 

Among the most commonly used operational satellite-derived precipitation products we can mention the Tropical 

Rainfall Measuring Mission (TRMM) (Huffman et al., 2007), the Climate Prediction Center morphing technique 

(CMORPH) (Joyce et al., 2004), and the Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks (PERSIANN) (Ashouri et al., 2015). Additionally, the Climate Hazards Group 

InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 2015) has become one of the most used products 

among those that are generated by merging satellite and gauge data. The global coverage and almost real time 

availability of these products make them useful for multiple applications such as the monitoring of extreme rainfall 

events. However, the inherent differences between these products have been reported as leading to significant 

differences in extreme rainfall retrieval accuracy, making their assessment necessary (Huang et al., 2014; Jiang et 

al., 2019). Although various studies have been carried out to assess satellite precipitation products in the context 

of extreme events, in Bangladesh these studies have focused on other aspects of rainfall variability. For instance, 

TRMM precipitation was evaluated by Islam et al. (2005) and its performance retrieving daily-scale precipitation 

and by Islam and Uyeda (2008) to assess seasonal patterns in vertical profiles of rainfall intensity. Similar, TRMM 

precipitation was assessed by Islam and Cartwright (2020) in terms of accumulated totals. Nashwan et al. (2019) 

used a set of gridded rainfall products to assess their performance in representing spatial patterns in annual and 

seasonal precipitation trends, revealing important differences among products.  

The main purpose of this study is to provide an evaluation of satellite-derived estimates of extreme rainfall indices 

over Bangladesh using a set of rain gauges during the monsoon season. We considered four independent satellite 

gridded products: CHIRPS, TRMM, PERSIANN and CMORPH. Along with these products, we evaluated the 

performance of the Enhancing National Climate Services for Bangladesh (ENACTS-BMD) dataset recently 

generated by the Columbia University’s International Research Institute for Climate and Society and the 

Bangladesh Meteorological Department.  

2. METHODOLOGY  

2.1 Datasets  

2.1.1 Rain gauge data 

The performance of the selected satellite precipitation products in capturing heavy rainfall events was assessed 

using ground-truth data provided by the Bangladesh Meteorological Department (BMD). Data consist in daily 

precipitation observations from 30 weather stations for the period 1998 through 2019, which corresponds to the 

overlapping period of satellite data time series, as presented below. The period June through September was 

considered as the monsoon season. Although BMD has a greater number of stations spanning a longer period of 

time than the selected ones, we removed stations with missing data higher than 10%, and also two stations located 

over small islands in the South of the country.  

2.1.2 Satellite precipitation products  

Five satellite-based precipitation products were selected. These products correspond to daily precipitation data 

from: (1) the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS); (2) the PERSIANN-
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Climate Data Record (PERSIANN-CDR); (3) the National Aeronautics and Space Administration (NASA) 

Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42V7 product 

(Huffman et al., 2007); (4) the National Oceanic Atmospheric Administration (NOAA) Climate Prediction 

Center’s (CPC) morphing technique (CMORPH) (Joyce et al., 2004) reprocessed and bias corrected Version 1.0 

(Xie et al., 2017); and (5) the latest precipitation product (ENACTS-BMD) generated by the Columbia 

University’s International Research Institute for Climate and Society (IRI) and the Bangladesh Meteorological 

Department (Acharya et al., 2020; Dinku et al., 2017).  

The latest CHIRPS V.2 version was used in this study. CHIRPS is a satellite-derived precipitation dataset provided 

at 0.05° and 0.25° spatial resolutions and from daily to annual from 1981 until the present (Funk et al., 2015). It 

is developed by the Santa Barbara Climate Hazards Group at the University of California in association the U.S. 

Geological Survey Earth Resources Observation and Science Center. Data are obtained by combining infrared 

cold cloud duration data and TRMM precipitation data to generate a pentad rainfall estimation. These data are 

subsequently blended with ground precipitation measurements using an inverse distance weighting-based 

algorithm.  

PERSIANN-CDR precipitation is generated by using an artificial neural network model developed by the National 

Centers for Environmental Prediction (NCEP) to convert infrared brightness temperature measured by 

geostationary satellites into precipitation rates. The final product is a multi-satellite high-resolution estimation of 

daily precipitation at 0.25º  0.25º, calibrated using monthly Global Precipitation Climatology Project (GPCP) 

precipitation data (Ashouri et al., 2015).  

TRMM corresponds to a satellite mission which remained operational between the years 1997 and 2015 and carried 

out by NASA and the Japan’s National Space Development Agency. This multi-instrument mission was designed 

to monitor tropical and sub-tropical precipitation between 50°N-50°S, generating data at 0.25º  0.25º resolution 

every 3 hours from infrared and microwave sensor data. We used the calibrated 3B42-V7 product, which, after 

2015, is generated by the Global Precipitation Measurement (GPM) project using information from the Integrated 

Multi-satellite Retrievals for GPM (IMERG) algorithm until 2019.  

The CMORPH algorithm is generated using satellite passive microwave observations to estimate instantaneous 

precipitation that is propagated spatially using thermal infrared observations from geostationary satellites. The 

“raw” product is generated at 8 km resolution and every 30 minutes between 60°S and 60°N and from 2002 to 

2017. We used the more recent 0.25º  0.25º resolution CMORPH Version 1.0 daily product of Xie et al. (2017), 

which corresponds to a reprocessed version using observations from the Climate Prediction Center (CPC) and 

Global Precipitation Climatology Project (GPCP) products.  

Finally, the IRI’s and BMD’s ENACTS product was considered for evaluation. The ENACTS-BMD dataset is a 

high resolution daily gridded (0.05° × 0.05°) rainfall and temperature constructed by blending data from BMD 

weather stations, satellite products (for rainfall) and reanalysis dataset (for temperature) (Acharya et al., 2020; 

Dinku et al., 2017). For constructing gridded rainfall, BMD station data merged with satellite rainfall estimates 

data from CHIRP (Funk et al., 2014). ENACTS-BMD used more station data (almost all available) than CHIRPS. 

Since February 2020, BMD hosts this dataset in their website*. Its record begins in January 1981 and is ongoing 

(updated every month in real-time) at daily, decadal and monthly temporal resolutions. 

2.2 Extreme precipitation indices 

Extreme precipitation indices proposed by the Expert Team on Climate Change Detection and Indices (ETCCDI; 

Zhang et al., 2011; Herold et al., 2018) were used. ETCCDI indices have been widely used for the study of 

extremes in climate. We selected four indices characterizing precipitation intensity, which are summarized in Table 

1. However, we have modified the original definition recommended by ETCCDI since our period corresponds to 

the monsoon season (JJAS) instead of the whole year. These extreme precipitation indices are the total JJAS 

rainfall when daily precipitation (> 1 mm/day) is greater than the 95th and 99th percentile (R95p and R99p, 

 
* http://datalibrary.bmd.gov.bd/ 
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respectively), and the total JJAS precipitation due to very (> 95th percentile; R95pTOT) and extremely wet days 

(> 99th percentile; R99pTOT).  

Table-1: Acronym, name, definition and units of indices of seasonal (JJAS) extreme rainfall used in this study. 

Index Name Definition Units 

R95p Very wet days Total precipitation for daily rainfall > 95th percentile mm 

R99p Extremely wet days Total precipitation for daily rainfall > 99th percentile  mm 

R95pTOT 
Contribution from very 

wet days 
(R95p/total precipitation)*100 % 

R99pTOT 
Contribution from 

extremely wet days 
(R99p/total precipitation)*100 % 

 

3. RESULTS AND DISCUSSION 

In this section, results are presented first in terms of the overall performance of the satellite products in representing 

total seasonal precipitation (JJAS). Subsequently, the comparison between satellite estimates and observations of 

extreme precipitation indices is presented, including a statistical evaluation of associated errors.  

3.1 Monsoon rainfall climatology 

Maps of climatology and interannual variability of total JJAS precipitation for satellite precipitation and stations 

are presented in Fig. 1. An overall agreement is observed in terms of a well captured pattern of higher precipitation 

over the Southeast and Northeast region by the five gridded products. These products are not completely 

independent, and as expected, CHIRPS and ENACTS-BMD products look similar and show the better 

performance since stations data are used in their algorithms; the rest showing greater discrepancies in relation to 

the observed values, similar to previously described by Nashwan et al. (2019) for other gridded products. In 

general, the main relative differences are observed for maximum mean values country, with TRMM and CMORPH 

showing the higher and lower maximum, respectively. Fig. 1 also shows the root mean square error (RMSE), a 

measure of the absolute difference between datasets being compared, and the bias between estimations and 

observations, both calculated between gauges and the closest grid cell. The higher country-mean RMSE is 

observed for PERSIANN and CMORPH, followed by TRMM, CHIRPS and ENACTS-BMD. While PERSIANN 

shows a slightly positive bias (52 mm), as a result of positive and negative biases, CMORPH exhibits a general 

underestimation of JJAS precipitation (bias = -274 mm). Interannual variability, represented by the standard 

deviation (SD; Fig. 1f-1j) shows a similar pattern. Higher discrepancies are observed for CMORPH, which 

overestimates variability, especially over the Southeast. PERSIANN shows a lower and more homogeneous 

variability along the country. TRMM tends to underestimate SD, showing an area of high variability in the 

northeast region, coinciding the maximum amount of Fig. 1d. Both CHIRPS and ENACTS-BMD show a good 

agreement with stations, being the last dataset the one with the better performance.  

3.2 Extreme precipitation indices: rain gauges 

In this section, the performance of the five selected precipitation products is evaluated in terms of extreme 

precipitation indices. As a first analysis, Fig. 2 shows the climatology of the selected indices (Table 1) calculated 

from rain gauges data only. The mean R95p exhibits a similar spatial pattern as total JJAS rainfall, ranging from 

266 to 839 mm, with the highest values in the East of the country (Fig. 2a). A similar spatial distribution of total 

seasonal JJAS rainfall for extremely wet days (R99p) is observed (Fig. 2b), which range from 83 to 250 mm, with 

a country average of 140 mm. The total contribution from the top 5% rainy days (R95pTOT, Fig. 2c) shows a 

regional average of 25%, ranging from 23% to 29%. With a similar pattern, the contribution extremely wet days 

(R99pTOT, Fig. 2d) ranges from 7% to 9%. The values of these last two indices show a slightly different spatial 
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pattern. For example, in the rainy Northeast area, which has high values of R95p and R99p, it is observed that the 

total contribution of very and extremely wet days is relatively lower. On the other hand, some stations in the center 

of the country show relatively higher total contribution from very rainy days. In addition, the respective averages 

of 8% and 25% are indicative that a small number of heavy precipitation events can account for a significant 

percentage of total precipitation during the rainy season.  

 

 

 

Fig. 2 also shows the interannual variability of the indices. Considering the country-averaged R95p and R99p of 

446 mm and 140 mm, respectively, the interannual variations of the total rainfall from the top 5% and 1% 

precipitation events is 62% and 121%, respectively. SD for R95pTOT ranges from 9% to 16%, and exhibits a 

spatial pattern of higher variability that tends to be higher for stations located in the center of the country. R99pTOT 

SD appears as slightly more heterogeneous in its spatial distribution.  

 

 

 

fig.1: (a)-(e) Climatology (mean) (1998-2019) and (f)-(j) interannual variability (standard 

deviation SD) of total JJAS precipitation for the five precipitation products and BMD stations. 

RMSE and bias statistics are displayed at the bottom of each map. 

fig.2: (a)-(d) Climatology (mean) and (e)-(h) interannual variability (SD) of extreme 

precipitation indices (1998-2019) for BMD stations.  

our indices for BMD stations.  
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3.3 Extreme precipitation indices: gridded products 

Indices of extreme precipitation were calculated for each of the gridded products. Fig. 3 shows the maps of 

climatology 1998-2019 R95p, including error metrics RMSE and bias. In general, Fig. 3a-3d shows a similar 

spatial distribution of R95p for the five gridded products, but some differences can be observed. As expected, 

CHIRPS and ENACTS-BMD look similar, while PERSIANN and CMORPH show relatively higher values in the 

Northeast and South of the country. The later can be corroborated by RMSE values for each satellite product. 

Overall, the error in the inland areas of the country is observed similar for each dataset, although it tends to be 

greater for CMORPH. In addition, it is also observed that the error for all the products shows its higher values over 

coastal areas. The latter may be due to the greater complexity of retrieving precipitation in these areas, which, for 

example, has been documented for microwave and infrared sensors (Kim et al., 2017), and similar results have 

been obtained over different regions (e.g. Jiang et al., 2019). Additionally, maps of Fig. 3f and 3g show that 

ENACTS-BMD reproduces a similar error than CHIRPS, but it is lower over regions such as the Northeast.  

The bias statistics (Fig. 3k-3o) shows a shift from an average underestimation of 18 mm by CHIRPS to an average 

overestimation of 133 mm by ENACTS-BMD. CHIRPS overestimates R95p in the Northeast and South areas of 

the country. In the case of PERSIANN, a gradient that goes from a general underestimation in the South to an 

overestimation of R95p towards the North is observed. On the other hand, both TRMM and CMORPH show a 

general overestimation of R95p throughout the country. These results indicate that although the spatial pattern of 

R95p is adequately captured by these gridded products, the associated error varies considerably. The highest 

RMSE is presented by CMORPH, especially on coastal and southern areas of the country. Furthermore, both 

CHIRPS, PERSIANN and TRMM present an error that does not differ substantially among them in terms of 

magnitude and spatial distribution. It is also observed that ENACTS-BMD presents lower associated error. The 

satellite products present a varying performance in terms of the bias statistics, which has been also highlighted 

when probability of detection metrics is used (Islam, 2018). 

 

 

 

fig.3: (a)-(e) Climatology (1998-2019) of R95p for the five satellite-based 

precipitation products, including (f)-(j) RMSE and (k)-(o) bias.  
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Fig. 4 show the climatology of R99p, also including error metrics RMSE and bias statistics. The spatial distribution 

of R99p is very similar to that previously described for R95p and rain gauges (Fig. 2). Again, while ENACTS-

BMD shows a lower RMSE in relation to CHIRPS and to the other products, the bias shifts from negative to 

positive, indicating an overestimation of total precipitation during extremely wet days. Furthermore, PERSIANN 

generally shows the lowest R99p values, and TRMM and CMORPH show the highest values towards the Northeast 

and South of the country, which range between 132 mm and 402 mm, and 123 mm and 289 mm, respectively. 

RMSE maps show a slight reduction in ENACTS-BMD in relation to CHIRPS, similar values for PERSIANN and 

TRMM, and a higher average error in CMORPH. In the case of R99p, the bias in CHIRPS is generally negative, 

which shifts to positive in ENACTS-BMD. PERSIANN has a negative bias that is distributed similarly to CHIRPS. 

On the other hand, TRMM and CMORPH present a positive bias throughout the country, except over some 

southern coastal areas.  

 

 

Results for the index R95pTOT, representing the contribution from the top 5% rainy days to total JJAS 

precipitation, are presented in Fig. 5. For all products, it is observed that in general the contribution of R95pTOT 

varies from about 20% to 40%. In this case, and unlike previous indices, the greatest contribution is observed for 

inland areas. The coastal zones, the Northeast and Southeast, which represent hotspots of extreme event according 

to R95p and R99p, present a greater number of rainy events that make the contribution of extreme events to total 

precipitation relatively lower. Fig. 5b shows that ENACTS-BMD represents an increase in R95TOT in relation to 

CHIRPS, being the later more homogeneous. While PERSIANN exhibits the most homogeneous spatial 

distribution, both TRMM and CMORPH show the highest values and very similar results. Again, although 

ENACTS-BMD is able to decrease RMSE to CHIRPS results, the bias shows the same shift from negative to 

positive observed previously. While PERSIANN shows a slight underestimation, a general overestimation is 

observed for TRMM and CMORPH. These results are of course in agreement with the skills of these products in 

representing both total JJAS rainfall and R95p. For example, similar values of R95pTOT for TRMM and 

CMORPH are the result of similar error pattern in JJAS rainfall and R95p for both products.  

 

fig.4: (a)-(e) Climatology (1998-2019) of R99p for the five satellite-based 

precipitation products, including (f)-(j) RMSE and (k)-(o) bias. 
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The contribution from the top 1% rainy days to JJAS rainfall, represented by R99pTOT, is shown in Fig. 6. 

Although not substantial differences are observed for the five products, the separation of CHIRPS and PERSIANN. 

CHIRPS shows a fairly homogeneous range of values ranging from 5% to 9%. Those values are increased by 

ENACTS-BMD, which ranges from 7% to 14%. In addition, a clear hotspot of R99pTOT contribution is observed 

in ENACTS-BMD towards the North of the country. Contrarily, PERSIANN exhibits less variable values 

throughout the country, similar to CHIRPS. Furthermore, TRMM and CMORPH reproduce a highest contribution 

of R99pTOT up to 14% with a similar spatial distribution. In terms of RMSE, the associated errors for R99pTOT 

are in general of similar order that the indices value, and it is observed that ENACTS-BMD is able to reduce the 

RMSE but again shifting the sign of the bias as with the other indices. It can be also seen that PERSIANN, TRMM 

and CMORPH behave similar than for R95pTOT for both RMSE and bias: R99pTOT is underestimated by 

CHIRPS and PERSIANN, and conversely, it is overestimated by ENACTS-BMD, TRMM and CMORPH.  

fig.5: (a)-(e) Climatology (1998-2019) of R95pTOT for the five satellite-based 

precipitation products, including (f)-(j) RMSE and (k)-(o) bias.  
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CONCLUSIONS 

Five satellite-derived precipitation products were evaluated in terms of their performance representing the 

climatology of four indices of extreme rainfall over Bangladesh. There are important discrepancies in these 

products and in their ability to reproduce total precipitation during the rainy season. Statistically, this pattern is 

preserved when extreme rainfall indices are calculated. The five satellite-derived products are able to capture the 

spatial distribution and variability of the indices. Nevertheless, the performance can be highly variable in terms of 

values and associated errors in with respect to ground truth data. First, there is a poorer representation of the indices 

over coastal and high precipitation areas, which can be considered as inherent complexity of retrieving 

precipitation from satellites (sensors, algorithms). This is partially improved by CHIRPS and ENACTS-BMD, 

which are generated by merging with station data. PERSIANN, TRMM and CMORPH exhibit the worst 

performance, being CMORPH the one with the highest RMSE and biases. On the other hand, CHIRPS and 

ENACTS-BMD are products generated using BMD stations (although ENACTS-BMD used more station data 

than CHIRPS), resulting in a better performance. Moreover, ENACTS-BMD presents the best performance among 

the products considering the fact that it uses almost all available BMD stations, with the particular feature of a 

systematic overestimation of the indices, suggesting that the occurrence of extreme events could be included in its 

generation in order to improve its overall performance. 

Results show that although the observed biases, satellite products are able to capture main features of extreme 

rainfall events, which is important for non-gauged areas. However, products with a poor performance should be 

used carefully and perhaps with other auxiliary data for heavy rainfall events monitoring. Additionally, results 

provide evidence of the usefulness of the algorithms used to correct satellite precipitation using ground data, which 

has been little explored in the case of extreme events.  
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