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Abstract: Sentinel-2 can provide multi-spectral optical remote sensing images in RGBN bands with 
a spatial resolution of 10m, but the spatial details provided are not enough for many applications. 
WorldView can provide HR multi-spectral images less than 2m, but it is a commercial paid resource 
with relatively high usage costs. In this paper, without any available reference images, Sentinel-2 
images at 10m resolution are improved to a resolution of 2.5m through super-resolution (SR) based 
on deep learning technology. Our model, named DKN-SR-GAN, uses degradation kernel estima-
tion and noise injection to construct a dataset of near-natural low-high-resolution (LHR) image 
pairs, with only low-resolution (LR) images and no high-resolution (HR) prior information. DKN-
SR-GAN uses the Generative Adversarial Networks (GAN) combined of ESRGAN-type generator, 
PatchGAN-type discriminator and the VGG-19-type feature extractor, using perceptual loss to op-
timize the network, so as to obtain SR images with clearer details and better perceptual effects. Ex-
periments demonstrate that in the quantitative comparison of the non-reference image quality as-
sessment (NR-IQA) metrics like NIQE, BRISQUE and PIQE, as well as the intuitive visual effects of 
the generated images, compared with state-of-the-art models such as EDSR8-RGB, RCAN and RS-
ESRGAN, our proposed model has obvious advantages. 
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1. Introduction 
Satellite remote sensing images have important applications in many fields, such as 

agriculture, environmental protection, land use, urban planning, natural disasters, hy-
drology, climate and so on [1]. With the continuous updating of optical instruments and 
other equipment, the spatial resolution of satellite images is constantly improving. For 
example, Worldview-3/4 satellite can collect 8 bands of multi-spectral data with a ground 
resolution of 1.2m [2]. However, Worldview-3/4 satellite data need to be paid for its use, 
and when covering a large area or performing a multi-temporal analysis, it will be re-
stricted by the data cost. Therefore, open access data with acceptable spatial quality can 
be considered, such as Landsat [3] or Sentinel [4]. Sentinel-2 updates remote sensing im-
ages of every location in the world for free approximately every 5 days, and these remote 
sensing images are becoming more and more important resources for applications. Senti-
nel-2 uses two satellites to achieve remote sensing coverage at the equator on a global 
scale and provides a multi-resolution layer composed of 13 spectral bands, among which 
10m resolution images are provided in 4 bands of the visible lights in red (B4), green (B3) 
and blue (B2) and the near-infrared (B8), 20m resolution images provided in 6 bands, and 
60m resolution images provided in the other 3 bands respectively [4]. The bands of 10m 
and 20m resolution are usually used for land cover or water mapping, agriculture or for-
estry, while the band of 60m with lower resolution is mainly used for water vapor moni-
toring [5]. Due to the open data distribution strategy, the 10m resolution remote sensing 
images provided by Sentinel-2 are becoming important resources for some applications. 
However, such spatial resolution is still slightly insufficient in many applications. In order 
to make full use of the free availability of Sentinel-2 images, and to achieve the spatial 
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resolution of about 2m, it is worth considering some post-processing methods to obtain 
the spatial enhancement of LR images, and recover the high-frequency details to generate 
HR images. In order to improve the spatial resolution of Sentinel-2 images, some research-
ers [6-12] fused the data of the several bands of Sentinel-2 with 60m, 20m and 10m spatial 
resolution to obtain higher spatial resolution images, however this paper focuses on SR 
directly using 10m resolution images. 

At the earlier period, Yang et al. [13] and Gou et al. [14] studied the supervised SR 
model based on dictionary learning, and provided an effective solution by using sparse 
coding technology. Pan et al. [15] applied structural self-similarity and compressed sens-
ing to SR tasks. Zhang et al. [16] and Li et al. [17] adopted several different image repre-
sentation spaces in SR to achieve higher performance. 

Deep learning has attracted more and more attention in the field of SR [18]. Deep 
learning does not need to directly map the relationship between HR and LR domains. As 
long as there is enough training data, a deep learning network in principle can learn very 
complex non-linear relationships [19]. Among them, the model based on convolutional 
neural network (CNN) can make better use of the high-order features of the images to 
conduct HR images, and can significantly improve the performance of SR [18]. Dong et al. 
[19] proposed SRCNN network with high learning ability based on CNN, and adopted 
pixel loss to optimize the network, but the result was too smooth without consideration 
of the perceptual quality. And on this basis, Kim et al. [20] and Zhang et al. [21] introduced 
residual learning models, Tai et al. [22] introduced recursive learning models, and Hu et 
al. [23] introduced attention mechanism to optimize the deep learning architecture to im-
prove performance, but these models also had the problem of over-smoothing because 
they all solely relied on pixel loss to optimize the network. 

Goodfellow et al. [24] proposed GAN training two models at the same time, one of 
which was called generator (G), and the other was called discriminator (D). The generator 
took the random samples in the potential space as the input, and its output needed to 
imitate the real samples in the training set as much as possible. The input of the discrimi-
nator was the real sample or the output of the generator, and its goal was to distinguish 
the output of the generator from the real sample as far as possible, while the goal of the 
generator was to cheat the discriminator as far as possible. SRGAN [25] proposed by Led-
ing et al. was a pioneering work to implement SR based on GAN theory, and because of 
its ability to generate images with rich texture and high quality, GAN has been widely 
used in SR. Wang et al. [26] further improved SRGAN model, proposed ESRGAN, used a 
more complex and denser residual layer combination in the generator and deleted batch 
normalization layer. As SR model based on GAN was gradually applied in the field of 
satellite remote sensing, Ma et al. [27] proposed transfer GAN (TGAN) to solve the short-
comings of poor quantity and quality of remote sensing data. Haut et al. [28,29] and Lei 
et al. [30] designed the network to form LHR image pairs by downsampling the public 
remote sensing images, and tested different network architectures. Aiming at the remote 
sensing image provided by Sentinel-2, Gong et al. [31] proposed  Enlighten-GAN SR 
model, which adopted internal inconsistency loss and cropping strategy and achieved 
good results in gradient similarity measurement (GSM) for the medium resolution remote 
sensing images of Sentinel-2. Sentinel-2 can provide the images with spatial resolution up 
to 10m. In the task of upgrading the resolution from 10m to 2m, SR model based on GAN 
has encountered a great challenge that mainly comes from the lack of HR real images at  
2m resolution. In recent years, some researchers used the 10m resolution images of Senti-
nel-2 and 2m HR images of worldview satellite to form LHR image pairs to construct 
training dataset. For example, Galar et al. [32] proposed a SR model based on enhanced 
depth residual network (EDSR), and Salgueiro et al. [33] proposed an RS-ESRGAN model 
based on ESRGAN. All the proposed models could enhance the 10m channel of Sentinel-
2 to 2m. However, by using the unnatural low-high image pairs consisting of Sentinel-2 
and Worldview images, and other models using the BiCubic downsampling to construct 
LHR image pairs [21,25,26,34-37], the track details related to frequency will be lost [38]. In 
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order to solve this problem, inspired by blind SR model KernelGAN [39] and the blind 
image denoising model [40], we explicitly estimate the degradation kernel of LHR image 
pairs of natural images through GAN, estimate the distribution of the degraded noises at 
the same time and degrade the 10m resolution images of Sentinel-2 to construct near-nat-
ural LHR image datasets. On the basis of these datasets, with the references to SRGAN, 
PatchGAN and VGG-128 network structure,  DKN-SR-GAN is designed to implement 
SR of Sentinel-2 images from 10m to 2.5m. 

2. Dataset 
For the convenience of the following analysis, we initially present the datasets used 

in training and testing. The model proposed in this paper is aimed at Sentinel-2 images, 
so we use SEN12MS [41] dataset to train and test the models. SEN12MS contains complete 
multi-spectral information in geocoded images, it also includes SAR and multi-spectral 
images provided by Sentinel-1 and Sentinel-2, and adds land cover information obtained 
by MODIS system. This paper mainly focuses on 10m resolution images of red (B4), green 
(B3) and blue (B2) bands in multi-spectral images, namely, RGB color images with 10m 
resolution. SEN12MS gives Sentinel-2 cloudless images of the region of interest (ROI) at 
specified time intervals. SEN12MS divides the images into patches with 256x256 pixels, 
which span 128 pixels so that the overlap rate between the adjacent patches is 50%. 
SEN12MS takes 50% overlap as an ideal compromise between the independence of 
patches and the maximum number of samples. SEN12MS dataset obtains randomly sam-
pled ROI based on four seeds(1158, 1868, 1970 and 2017), and the distribution of ROI is 
shown in Figure 1. 

Figure 1. Distribution of regions of interest corresponding to four random seeds 

In this paper, DKN-SR-GAN uses a dataset of SEN12MS, named ROIs1158, which is 
composed of 56 regions of interest across globe generated from 1158 seeds from June 1, 
2017 to August 31, 2017. ROIs1158 is divided into 56 subsets by region, totally 40883 pieces 
of 256x256 pixel images. This paper randomly selects the subset “ROIs1158_spring_106” 
as the test dataset (ROI_Te), which contains 784 test images; while for the remaining 55 
subsets, including 40099 images, are used as the source images dataset (ROI_Src), and 
ROI_Src is degraded to generate LR image dataset (ROI_LR). The source images 𝐈  in 
ROI_Src are directly used as HR images 𝐈  in the training, which forms LHR image 
pairs dataset (ROI_Tr) with the images 𝐈  in ROI_LR dataset one by one. This paper 
compares the performance of the newly proposed models including EDSR8-RGB [32], 
RCAN [21], and RS-ESRGAN [33], as well as the traditional model of BiCubic [42]. Bicubic 
directly uses ROI_Te for interpolation test without training; RCAN takes the images in 
ROI_Src as LR images, and generates HR images by BiCubic-interpolating every image to 
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form a LHR image pair dataset; the models of EDSR8-RGB and RS-ESRGAN respectively 
refer to the models proposed in [32] and [33] to construct a dataset based on ROI_Src. 

3. Methods 
3.1. Structure of DKN-SR-GAN 

This paper use DKN-SR-GAN to generate 2.5m resolution images 𝐈  from 10m res-
olution source images 𝐈  of Sentinel-2 in two stages. In the first stage, KernelGAN is 
used to implement the estimation of the explicit degradation kernel of 𝐈  images, and 
then combined with injecting the degraded noise, the source images 𝐈  are degraded to 
LR images 𝐈 , which will combine with HR image 𝐈  (equivalent to 𝐈 ) to construct 
LHR image pairs (𝐈 ，𝐈 ). In the second stage, the dataset (𝐈 , 𝐈 )  is used to train 
the super-resolution generative adversarial network (SR-GAN), which consists of a super 
resolution generator (SR-G), a super resolution discriminator (SR-D), and a super resolu-
tion perceptual feature extractor (SR-F). DKN-SR-GAN represents Sentinel-2 image SR 
model proposed in this paper, and the structure of DKN-SR-GAN is shown in Figure 2. 

Figure 2. Structure of DKN-SR-GAN on Sentinel-2 remote sensing images 

3.2. Degradation Kernel Estimation and Noise Injection 
Here we introduce an image degradation model based on kernel estimation and noise 

injection. The natural pairing relationship between low and high resolution images can be 
approximately understood as the degradation relationship between HR images and LR 
images, and the degradation process can be expressed as:  

𝐈 = (𝐈 ∗ 𝐤𝒔) ↓ + 𝐧 (1) 
Where, 𝐤𝒔 and 𝐧 represents degradation kernel and degraded noise respectively, 

and 𝑠 represents scaling factor. The quality of degradation kernel and degraded noise 
determines the relevance between LHR image pairs and natural image pairs, as well as 
accuracy of the extracted mapping features between low and high resolution images, 
which further determines the quality of images generated by SR. 
3.2.1. Degradation Kernel Estimation Based on KernelGAN 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2021                   doi:10.20944/preprints202104.0556.v1

https://doi.org/10.20944/preprints202104.0556.v1


 5 of 22 
 

 

Here we first consider the noise-free degradation process, assuming that the noise-
free LR image 𝐈 _  is the result of downsampled HR image 𝐈  by using the degrada-
tion kernel through the scaling factor 𝑠: 

𝐈 _ = (𝐈 ∗ 𝐤𝒔) ↓  (2) 
In this paper, KernelGAN is used to estimate the image degradation kernel 𝐤𝒔, which 

is a blind SR degradation kernel estimation model based on Internal-GAN [43], and a 
completely unsupervised GAN requiring no extra training data except the image 𝐈  it-
self [39]. KernelGAN uses only the images 𝐈  for training to learn the distribution of 
internal pixel patches, with the goal to find the image-specific degradation kernel and to 
search for the best degradation kernel to retain the distribution of pixel patches on each 
scale of the image 𝐈 . More specifically, our goal is to “generate” downsampled images 
and to make the pixel patch distribution of the downsampled images as close to the im-
ages 𝐈  as possible. The essence of the model is to extract the cross-scale recursive char-
acteristics between LR and HR images through deep learning, and GAN in KernelGAN 
can be understood as the matching tool for pixel patch distribution. The implementation 
process of KernelGAN is shown in Figure 3, by training on a single input image to learn 
the distribution of internal pixel patches of the cropped patch. KernelGAN consists of a 
kernel generator (Kernel-G) and a kernel discriminator (Kernel-D). Both the kernel-G and 
the kernel-D are fully convolutional, which means that the network is applied to the pixel 
patch rather than the whole image. With the given input of the images 𝐈 , the kernel 
generator will learn to downsample then to 𝐈 _ , whose goal is to make the discriminator 
indistinguishable from the input images 𝐈  at the pixel patch level. 

Figure 3. Structure of KernelGAN 

The objective function of KernelGAN is defined as: 
𝐺∗(𝐈 ) = argmin𝑚𝑎𝑥  𝔼 ∼patches(𝐈 ) |𝐷(𝐈 ) − 1| + 𝐷 𝐺(𝐈 ) + ℛ  (3) 

Where, G represents generator, D represents discriminator. And ℛ is the regulariza-
tion term optimized by degradation kernel 𝐤𝒔: 

ℛ = 𝛼s_1ℒs_1 + 𝛼bℒb + 𝛼spℒsp + 𝛼cℒc  (4) 
Where, ℒ 、ℒ 、ℒ 、ℒ  represent losses, and 𝛼 、𝛼 、𝛼 、𝛼  represent con-

stant coefficients. In this paper, the constant coefficients are set according to experience as 
𝛼 = 0.5, 𝛼 = 0.5, 𝛼 = 5, 𝛼 = 1. The losses are defined as following equations respec-
tively: 
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ℒ _ = 1 −  

,

𝑘 ,  (5) 

Where, 𝑘 ,  represents the parameter value of each point of the degradation kernel, 
and the goal of ℒ _  is that the sum of {𝑘 , } is 1. 

ℒb =  

,

𝑘 , ⋅ 𝑚 ,  (6) 

The goal of ℒb is to punish the non-zero value near the boundary, and 𝑚 ,  is the 
constant mask of weight, which increases exponentially with the distance from the center 
of {𝑘 , }. 

ℒsp =  

,

𝑘 ,

/
 (7) 

The goal of ℒsp is the sparsity of 𝑘 ,  to avoid excess smoothness of interior kernel. 

ℒc =
∥∥
∥∥(𝑥 , 𝑦 ) −

∑  , 𝑘 , ⋅ (𝑖, 𝑗)

∑  , 𝑘 , ∥∥
∥∥  (8) 

The goal of ℒc  is to make the center of {𝑘 , } in the center of the interior kernel. 
(𝑥 , 𝑦 ) represents the indices of the center. 

Kernel-G can be regarded as an image downsampling model, which implements lin-
ear downsampling mainly through convolution layer, and the network contains no non-
linear activation unit. Nonlinear generator is not used here because it is possible for the 
nonlinear generator to generate physically unnecessary solutions for the optimization tar-
gets, for example, to generate an image that is not downsampled but contains effective 
pixel patches. In addition, because the single-layer convolution layer cannot converge ac-
curately, we use the multi-layer structure of linear convolution layers as shown in Figure 
4. 

Figure 4. Network structure of Kernel generator consisting of multi-layer linear convolution 
layer 

The goal of Kernel-D is to learn the distribution of pixel patches in the input images 
𝐈  and distinguish between the real patches and fake patches in the distribution. The 
real patches are cropped from the input images 𝐈 , while the fake patches are cropped 
from 𝐈 _  generated by the kernel-G. We use the full convolution pixel patch discrimina-
tor introduced in [44] to learn the pixel patch distribution of every single image as shown 
in Fig. 5. 

The convolution layer used in the kernel-D does not perform pooling operations, so 
as to act on each pixel patch implicitly, and finally generate a hot map (D-map), of which 
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each position corresponds to one cropped patch input. The hot map output by the kernel-
D represents the possibility of each pixel extracting the surrounding pixel patches from 
the original pixel patch distribution, and used to distinguish the real patches from the fake 
patches. The loss is defined as the pixel-wise mean square error between the hot map and 
the label map. Label map refers to all 1 labels of the real patches and all 0 labels of the fake 
patches. 

Figure 5. Discriminator network structure consisting of multi-layer non-pooled convolution 
layer 

After the training of KernelGAN, we do not focus on the generator network, but con-
volute the convolution layers of the kernel-G with the stride of 1 successively to extract 
the explicit degradation kernel. Meanwhile, the training of KernelGAN is based on one 
single input image 𝐈 , which means that each input image trains one degradation ker-
nel, and many degradation kernels generated by the training image set will be randomly 
selected and used in the subsequent steps. The graphical examples of some degradation 
kernels are shown in Figure 6. 

Figure 6. Graphical example of degradation kernel extracted after KernelGAN training 

3.2.2. Generation and Injection of Noise 
We explicitly inject noise into the downsampled images 𝐈 _  to generate realistic 

LR images 𝐈 . In the process of image downsampling, the high-frequency information 
will be lost, so the distribution of noise will change at the same time. In order to ensure 
that the degraded images 𝐈  have a similar noise distribution as the source images 𝐈 , 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2021                   doi:10.20944/preprints202104.0556.v1

https://doi.org/10.20944/preprints202104.0556.v1


 8 of 22 
 

 

we extract the noise mapping patches directly from the source images 𝐈  in the training 
dataset. Due to the large variance of the patches with rick contents [38], and inspired by 
[40,45], when extracting noise mapping patches we control the variance within a specific 
range under the condition: 

𝐷(𝐧 ) < σ  (9) 
Where, 𝐷(·) represents the variance function, and σ  represents the maximum 

value of the variance. The noise mapping patches are extracted from images selected from 
the images of ROI_Src randomly, and a certain number of noise patches are extracted to 
construct the dataset (ROI_Noi). The noise mapping patches used for noise injection pro-
cess are randomly selected from ROI_Noi. 

To sum up, the process of generating LR images in ROI_LR from the source images 
in ROI_Src can be expressed as Equation (10), where i and j are randomly selected: 

𝐈 = (𝐈 ∗ 𝐤𝒊
𝒔) ↓ + 𝐧𝒋 (10) 

3.3. SR-GAN 
SR-GAN consists of super resolution generator (SR-G), super resolution discrimina-

tor (SR-D) and perceptual feature extractor (SR-F). SR-G is designed on the basis of 
ESRGAN [26] model. Because ESRGAN discriminator may introduce more artifacts [38], 
SR-D is designed on the basis of PatchGAN [44] model. The perceptual feature extractor 
is designed on the basis of VGG-19 [46], so as to introduce the perceptual loss [47] to en-
hance the visual effect of low-frequency features of the images. 

The loss ℒ  of SR-GAN consists of three parts, including pixel-wise loss ℒ  [26], 
perceptual loss ℒ  and adversarial loss ℒ . 

ℒ = 𝛼 ℒ + 𝛼pℒ + 𝛼aℒ  (11) 
Where, 𝛼 , 𝛼p and 𝛼a are constant coefficients, and the constant coefficients are set accord-
ing to experience as 𝛼 = 0.01、𝛼p = 1、𝛼a = 0.005. The losses ℒ , ℒ  and ℒ  are defined 
as equation (12), (13) and (16). 

ℒ = 𝔼𝐈 ∥∥𝐺(𝐈 ) − 𝐈 ∥∥  (12) 
Pixel-wise loss ℒ  uses L1 distance to evaluate the pixel-wise content loss between the 
generated images 𝐺(𝐈 ) and the real images 𝐈 . 

ℒ = 𝜆 ℒ +𝜆 ℒ  (13) 
Perceptual loss ℒ  evaluates the perceived differences in content and style among differ-
ent images, and consists of feature reconstructing loss ℒ  related to content and style re-
constructing loss ℒ , where 𝜆  and 𝜆  denotes constant coefficients, and ℒ  and ℒ  can 
be expressed as: 

ℒ =
1

𝐶 𝐻 𝑊
∥∥𝜙 (𝐺(𝐈 )) − 𝜙 (𝐈 )∥∥  (14) 

ℒ =

∥
∥
∥
∥
∥
∥

1

𝐶 𝐻 𝑊
[𝜙 (𝐺(𝐈 )) , , 𝜙 (𝐺(𝐈 )) , , − 𝜙 (𝐈 ) , , 𝜙 (𝐈 ) , , ]

∥
∥
∥
∥
∥
∥

 (15) 

Where 𝜙 (𝐼) represents the characteristic diagram obtained at level 𝑗 of the convolution 
layer after the image 𝐈 inputs SR-F, and the shape of the obtained characteristic diagram 
is 𝐶 × 𝐻 × 𝑊  (Channel × Height × Width) and ∥·∥  represents square Frobenius norm. 

ℒ = −𝐷 𝐺(𝐈 )  (16) 

Adversarial loss ℒ  is used to enhance the texture details of the generated image to make 
it look more realistic. 

The structure of SR-G is shown in Fig. 7. Based on ESRGAN model, and adopting 
RRDB [39] structure, it is trained in the constructed LHR image pairs (𝐈 , 𝐈 ) and the 
resolution of the generated images will be magnified x4. 

Due to the discriminator in ESRGAN model may introduce more artifacts, this paper 
uses the patch discriminator instead of VGG-128 discriminator in ESRGAN model, and 
SR-D is designed based on PatchGAN [44] model. In addition, the patch discriminator is 
used instead of VGG-128 discriminator out of consideration for the following aspects: 
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VGG-128 limits the size of the generated image to 128, which makes it inconvenient to 
conduct the multi-scale training; VGG-128 uses a fixed fully-connected layer, which 
makes the discriminator pay more attention to the global features and ignore the local 
features [34]. We use the patch discriminator with a fully convolutional structure and a 
fixed receptive field. Each output value of SR-D is only related to the patches in the local 
fixed region, so that we can optimize the local details. The average value of all local errors 
are used as the final error to guarantee  the global consistency. The structure of SR-D is 
shown in Figure 8. 

Based on VGG-19 [46] model, this paper introduces the perceptual feature extractor 
to extract the perceptual loss ℒ , that is, to extract the inactive features in VGG-19. The 
perceptual loss can enhance the low-frequency features of the images and make the im-
ages generated by the generator look more realistic. The structure of the perceptual feature 
extractor is shown in Figure 9. 

Figure 7. Structure of super-resolution generator(SR-G) 

 

Figure 8. Structure of super-resolution discriminator(SR-D) 
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Figure 9. Structure of perceptual feature extractor(SR-F) 

4. Experiments and results 
4.1. Training Details 

The proposed model DKN-SR-GAN and other compared models like EDSR8-RGB, 
RCAN, and RS-ESRGAN are run under Pytorch environment, using the modules pro-
vided by “sefibk/KernelGAN” project [39], “xinntao/BasicSR” project [48] and “Ten-
cent/Real-SR” project [38] in the Github library. BiCubic can be obtained directly using 
Matlab functions to perform interpolation operations. 

DKN-SR-GAN first generates a LHR image pair dataset (ROI_Tr) based on a training 
dataset (ROI_Src) for training and testing. We randomly select 2134 images from 40099 
images of ROI_Src to generate a degraded kernel dataset (ROI_Ker) through KernelGAN 
training one by one, namely 𝐤𝒊

𝒔 ∈ {ROI_Ker}, 𝑖 ∈ {1,2 ⋯ 2134}; and then randomly select 
4972 images from 40099 images of ROI_Src to extract noise patches one by one to form a 
noise patch dataset (ROI_Noi), namely 𝒏𝒋 ∈ {ROI_Noi}, 𝑗 ∈ {1,2 ⋯ 4972}; finally, we use 
the degradation kernel and injected noise to perform degrading operations on the images 
in ROI_Src one by one. In the processing of each image, the degradation kernel and in-
jected noise are randomly selected from ROI_Ker and ROI_Noi. 

The network structural parameters of the kernel-G and the kernel-D and the constant 
coefficients of losses of KernelGAN have been mentioned above, so we will not repeat 
them here. In the training phase, both the generator and the discriminator adopt ADAM 
optimizer with the parameters 𝛽 = 0.5、𝛽 = 0.999, the learning rates of the generator 
and the discriminator are both set to 0.0002, decrementing by x0.1 every 750 iterations, 
and the network is iteratively trained 3000 epochs. 

SR-G uses “RRDBNet” model in “BasicSR” project, and SR-D uses “NlayerDiscrimi-
nator” model in “Real-SR” project. The network structural parameters and the constant 
coefficients of losses have been mentioned above, therefore we will not repeat them here. 
The image is magnified by 4 times, and during the training phase, both the generator and 
the discriminator adopt ADAM optimizer with the parameters 𝛽 = 0.9, 𝛽 = 0.999, the 
learning rates of the generator and the discriminator are both set to 0.0001, and the net-
work is iteratively trained 60,000 epochs. 

Many convolutional layers are used in KDN-SR-GAN, and these convolutional layers 
play a vital role. After many tests, it is known that the parameters of the convolutional 
layer in the network need to be set to the values shown in Table 1, to achieve the x4 reso-
lution images by KDN-SR-GAN and obtain the image quality we want. 

EDSR8-RGB, RCAN, and RS-ESRGAN models implement training and testing under 
the framework of BasicSR [48], and adopt the parameter setting schemes which have been 
proven to achieve better results in references [21,32,33], and the parameters used in the 
implementation are detailed in Table 2. 
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Table 1. Setting of specific parameters for convolutional layers of KDN-SR-GAN 

 in_ 
channels 

out_ 
channels 

kernel_ 
size 

stride padding dilation groups bias padding_ 
mode 

Kernel-
G 

3 64 7 1 0 1 1 True 'zeros' 
64 64 5 1 0 1 1 True 'zeros' 
64 64 3 1 0 1 1 True 'zeros' 
64 64 1 1 0 1 1 True 'zeros' 
64 64 1 1 0 1 1 True 'zeros' 
64 64 1 1 0 1 1 True 'zeros' 
64 1 1 2 0 1 1 True 'zeros' 

Kernel-
D 

3 64 7 1 0 1 1 True 'zeros' 
64 64 1 1 0 1 1 True 'zeros' 
64 1 1 1 0 1 1 True 'zeros' 

SR-G 

64 32 3 1 0 1 1 True 'zeros' 
96 32 3 1 0 1 1 True 'zeros' 
128 32 3 1 0 1 1 True 'zeros' 
160 32 3 1 0 1 1 True 'zeros' 
192 64 3 1 0 1 1 True 'zeros' 
64 64 3 1 0 1 1 True 'zeros' 
64 3 3 1 0 1 1 True 'zeros' 

SR-D 

3 64 4 2 0 1 1 True 'zeros' 
64 128 4 2 0 1 1 True 'zeros' 
128 256 4 2 0 1 1 True 'zeros' 
256 512 4 1 0 1 1 True 'zeros' 
512 1 4 1 0 1 1 True 'zeros' 

SR-F 

3 64 3 1 0 1 1 True 'zeros' 
64 64 3 1 0 1 1 True 'zeros' 
64 128 4 2 0 1 1 True 'zeros' 
128 128 4 2 0 1 1 True 'zeros' 
128 256 4 1 0 1 1 True 'zeros' 
256 256 4 1 0 1 1 True 'zeros' 
256 512 4 1 0 1 1 True 'zeros' 
512 512 4 1 0 1 1 True 'zeros' 
512 1 4 1 0 1 1 True 'zeros' 

Because the source images used are already the highest resolution (10m) images of 
Sentinel-2, there are no real ground truth images (2.5m resolution) that can be compared 
with the generated images in reality, and some image quality assessment metrics com-
monly used, such as, PSNR, SSIM, etc., are no longer applicable in this scene. Therefore, 
this paper adopts non-reference image quality assessment (NR-IQA) metrics, including 
NIQE [49], BRISQUE [50] and PIQE [51]. NIQE is a fully-blind image quality assessment 
model, and it establishes a "quality awareness" statistical feature set based on a simple 
and effective statistical model under a natural scene in the spatial domain, and only uses 
the measurable deviations of the statistical regularity observed in natural images for train-
ing. BRISQUE is a general non-reference image quality assessment model based on natu-
ral scene statistics in the spatial domain. BRISQU does not calculate the distortion-specific 
features, but uses the scene statistics of locally normalized luminance coefficients to quan-
tify the possible "natural" losses. Without any training data, PIQE quantifies distortion, 
and relies on extracting local features to evaluate the image quality. The evaluation values 
of NIQE, BRISQUE and PIQE can be calculated by the corresponding functions niqe, 
brisque and piqe in Matlab, and the output results of the three functions are all within the 
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range of [0, 100], where the lower number indicates high perceptual quality and the higher 
number indicates low perceptual quality. 

Table 2. Setting of specific parameters for the models implemented in the framework of BasicSR 

Model EDSR8-RGB RCAN RS-ESRGAN 

Network 

network_g: 
type: EDSR 
num_in_ch: 3 
num_out_ch: 3 
num_feat: 256 
num_block: 32 
upscale: 4 
res_scale: 0.1 
img_range: 255. 
rgb_mean: [0.4488, 
0.4371, 0.4040] 

network_g: 
type: RCAN 
num_in_ch: 3 
num_out_ch: 3 
num_feat: 64 
num_group: 10 
num_block: 20 
squeeze_factor: 16 
upscale: 4 
res_scale: 1 
img_range: 255. 
rgb_mean: [0.4488, 
0.4371, 0.4040] 

network_g: 
type: RRDBNet 
num_in_ch: 3 
num_out_ch: 3 
num_feat: 64 
num_block: 23 
network_d: 
type: VGGStyleDis-
criminator128 
num_in_ch: 3 
num_feat: 64 

Traing 

optim_g: 
type: Adam 
learning rate: 0.0001 
weight_decay: 0 
betas: [0.9, 0.99] 
scheduler: 
type: MultiStepLR 
milestones: [200000] 
gamma: 0.5 
total_iter: 300000 

optim_g: 
type: Adam 
learning rate: 0.0001 
weight_decay: 0 
betas: [0.9, 0.99] 
scheduler: 
type: MultiStepLR 
milestones: [200000] 
gamma: 0.5 
total_iter: 300000 

optim_g: 
type: Adam 
learning rate: 0.0001 
weight_decay: 0 
betas: [0.9, 0.99] 
optim_d: 
type: Adam 
learning rate: 0.0001 
weight_decay: 0 
betas: [0.9, 0.99] 
scheduler: 
type: MultiStepLR 
milestones: [50000, 
100000, 200000, 
300000] 
gamma: 0.5 
total_iter: 400000 

Because the source images used are already the highest resolution (10m) images of 
Sentinel-2, there are no real ground truth images (2.5m resolution) that can be compared 
with the generated images in reality, and some image quality assessment metrics com-
monly used, such as, PSNR, SSIM, etc., are no longer applicable in this scene. Therefore, 
this paper adopts non-reference image quality assessment (NR-IQA) metrics, including 
NIQE [49], BRISQUE [50] and PIQE [51]. NIQE is a fully-blind image quality assessment 
model, and it establishes a "quality awareness" statistical feature set based on a simple 
and effective statistical model under a natural scene in the spatial domain, and only uses 
the measurable deviations of the statistical regularity observed in natural images for train-
ing. BRISQUE is a general non-reference image quality assessment model based on natu-
ral scene statistics in the spatial domain. BRISQU does not calculate the distortion-specific 
features, but uses the scene statistics of locally normalized luminance coefficients to quan-
tify the possible "natural" losses. Without any training data, PIQE quantifies distortion, 
and relies on extracting local features to evaluate the image quality. The evaluation values 
of NIQE, BRISQUE and PIQE can be calculated by the corresponding functions niqe, 
brisque and piqe in Matlab, and the output results of the three functions are all within the 
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range of [0, 100], where the lower number indicates high perceptual quality and the higher 
number indicates low perceptual quality. 

This paper randomly selects one sub-dataset “ROIs1158_spring_106” in ROIs1158 as 
the testing dataset (ROI_Te) containing 784 images. The remote sensing images in ROI_Te 
are collected from the ground areas as shown in Figure 10. In the figure, we marked 8 
regions with strong geographic features, and the x4 generated images of these regions will 
be listed subsequently to visually compare the differences among those models. 

Figure 10. Ground map corresponding to sub-dataset “Rois1158_spring_106” 

Use BiCubic, EDSR8-RGB, RCAN, RS-ESRGAN and DKN-SR-GAN models to pro-
cess 784 images in ROI_Te respectively to generate x4 HR images, and use Matlab to cal-
culate evaluation values of NIQE, BRISQUE and PIQE one by one for the images. The 
histograms are drawn according to the distribution of evaluation values, as shown in Fig-
ure 11, Figure 12, and Figure 13, and the mean and extreme values based on the evaluation 
values are provided in Table 3. It can be seen from the histograms and Table 3 that our 
proposed DKN-SR-GAN model is superior to other models in a variety of non-reference 
image quality assessment metrics. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2021                   doi:10.20944/preprints202104.0556.v1

https://doi.org/10.20944/preprints202104.0556.v1


 14 of 22 
 

 

Figure 11. Distribution of evaluation values of non-reference image quality assessment metric 
NIQE 

 

Figure 12. Distribution of evaluation values of non-reference image quality assessment metric 
BRISQUE 
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Figure 13. Distribution of evaluation values of non-reference image quality assessment metric 
PIQE 

Table 2. Statistics of NIQE, BRISQUE and PIQE evaluation values 

 
BiCubic 

EDSR8-
RGB 

RCAN 
RS-

ESRGAN 
DKN-SR-

GAN 
NIQE mean 6.349 5.296 4.329 3.337 2.544 
NIQE max 7.607 6.381 5.260 4.608 4.120 
NIQE min 5.639 4.086 3.180 2.678 1.816 
BRISQUE 

mean 55.662 49.041 46.564 22.786 16.408 
BRISQUE 

max 61.535 60.014 58.167 33.340 43.405 
BRISQUE 

min 44.464 42.699 35.306 7.886 3.424 
PIQE mean 94.635 79.374 60.333 14.186 13.231 
PIQE max 100.000 33.340 77.966 25.524 25.293 
PIQE min 50.000 65.191 25.925 5.707 6.900 

Figures 14-21 show the generated images of 8 regions with strong geographic fea-
tures selected in “ROIs1158_spring_106” to visually compare the differences between dif-
ferent models. Through the comparison of the images of various terrains in Figures 14-21, 
it can be obviously seen that the images processed by traditional BiCubic method are 
bleariest and smoothest due to the inherent deficiencies of the interpolation algorithm. 
EDSR8-RGB, RCAN and RS-ESRGAN models cannot correctly distinguish the noises with 
sharp edges, resulting in blurred results, and even indistinguishable for houses and roads. 
As shown in our DKN-SR-GAN results, the dividing lines among the objects and the back-
grounds such as roads, bridges and houses, are much clearer, which indicates that the 
noise estimated by noise injection is closer to the real noise. Compared with EDSR8-RGB, 
RCAN and RS-ESRGAN models, our DKN-SR-GAN results are clearer and have no am-
biguity. 
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Figure 14. Comparison of visual effects of the generated images of the region containing mountain-road terrain 

 

Figure 15. Comparison of visual effects of the generated images of the region with hilly terrain 
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Figure 16. Comparison of visual effects of the generated images of the region containing surface water terrain 

Figure 17. Comparison of visual effects of the generated images of the region containing dry river beds and residential 
houses 
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Figure 18. Comparison of visual effects of the generated images of the region containing factories 

Figure 19. Comparison of visual effects of the generated images of the region containing residential houses 
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Figure 20. Comparison of visual effects of the generated images of the region containing farmlands and sandy terrain 

 

Figure 21. Comparison of visual effects of the generated images of the region containing overpasses 
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5. Conclusion 
In this paper, based on the latest and widely-recognized GAN technologies such as 

KernelGAN, ESRGAN, PatchGAN and so on, we introduce the degradation kernel esti-
mation and noise injection, to perform SR for Sentinel-2 satellite remote sensing images, 
and improve the original images with the highest resolution of 10m to 2.5m. Through the 
combination of the degradation kernel and injected noise, we obtain LR images in the 
same domain as the real images, and get the near-natural LHR image pairs. On the basis 
of near-natural LHR image pairs, we use GAN combined of ESRGAN-type generator, 
PatchGAN-type discriminator and VGG-19-type feature extractor, use the perceptual loss, 
and focus on the visual characteristics of the images, so that our results have clearer details 
and better perceptual effects. Compared with state-of-the-art SR models of Sentinel-2 such 
as EDSR8-RGB，RCAN and RS-ESRGAN, the main difference of our model lies in the 
construction of LHR image pairs for the training datasets. In the scene training with nat-
ural LHR image pairs, there is no significant difference in the effect for SR images obtained 
by those models; however, in the scene with only LR images and no HR prior information, 
compared with RCAN which constructs the image pairs through BiCubic, with EDSR8-
RGB and RS-ESRGAN which use WorldView satellite HR images to construct the image 
pairs, KDN-SR-GAN have obvious advantages in the quantitative comparison of the non-
reference image quality assessment and the intuitive visual effects. 
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